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Abstract— Multi-robot teams are becoming an increasingly
popular approach for information gathering in large geographic
areas, with applications in precision agriculture, surveying the
aftermath of natural disasters or tracking pollution. These
robot teams are often assembled from untrusted devices not
owned by the user, making the maintenance of the integrity
of the collected samples an important challenge. Furthermore,
such robots often operate under conditions of opportunistic, or
periodic connectivity and are limited in their energy budget and
computational power. In this paper, we propose algorithms that
build on blockchain technology to address the data integrity
problem, but also take into account the limitations of the robots’
resources and communication. We evaluate the proposed al-
gorithms along the perspective of the tradeoffs between data
integrity, model accuracy, and time consumption.

I. INTRODUCTION

With the increased information demand of precision agri-
culture, aerial or ground robots that collect information about
the state of a crop are quickly becoming a standard part of the
toolkit of modern farmers [9], [12]. As these robots collect
and transmit mission critical information to the operation of
the farm, the integrity of the collected information becomes a
critical concern. Similar to other agricultural machinery, the
usage of such robots fluctuates over time. It is thus likely
that at any given moment, a farmer might deploy a fleet
of robots that are a mix of owned, rented, and borrowed.
With such a mix of robots with different provenances, the
trustworthiness of individual robots cannot be guaranteed
through physical means. Similar to the way blockchain
technology allows the creation of a trusted ledger over the
internet, several recent projects explore the application of
blockchain-based technology to ensure the trustworthiness
of agricultural information.

Unfortunately, algorithms used for cryptocurrencies do not
directly apply to teams of agricultural robots. Because the
paths of the robots depend on the collected data (for instance,
multiple robots need to converge to explore an area with a
disease outbreak), validation of the data needs to be done in
real time, while the drones operate in the air. This creates new
challenges with regards to computing capacity and energy
usage. Moreover, also in contrast to cryptocurrencies, the
connectivity between the nodes might be periodic (i.e., nodes
communicate on a shared network only during scheduled
times, separated by unconnected autonomous operation) or
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Fig. 1. (a) An instance of a data integrity attack studied in [26] using
blockchain-based security techniques under continuous connectivity (CC)
assumptions; an assumed malicious robot (red circled) may send tampered
data to its neighbor robots (green circled) in order to degrade future
estimates of the underlying information field. We consider the problem when
communication resources are more constrained, specifically under scenarios
of (b) periodic connectivity (PC) in which robots share measurements only
in a subset of the rounds (e.g., every three rounds) and (c) opportunistic
connectivity (OC) in which robots share measurements possibly only among
a subset of the nodes (e.g., those within range).

opportunistic (i.e., nodes communicate only when they fall
within range of each other in the course of movement).

This paper describes blockchain-based techniques that
ensure the integrity of the data in the context of the multi-
robot information sampling problem: given n mobile robots
and a budget B, plan B-length paths for the robots such
that the collected information is maximized [9], [10], [21],
[27]. Each robot is equipped with an information collection
sensor (e.g., camera) and senses information along its path.
The information about the environment is represented in the
form of a scalar field, while the knowledge model built by the
robots is implemented through a Gaussian Process that inte-
grates all (trusted) observations made by the robots. To plan
such optimal paths is proven to be NP-Hard and, therefore,
greedy heuristics for navigation are popularly employed [9],
[12], [16], [30]. The first work to integrate blockchain-based
security and multi-robot information collection, observing
the degree to which robots must tradeoff between integrity



guarantees and energy consumption [26], was developed
entirely under continuous connectivity assumptions against
a single attacker. This paper considers scenarios in which
the robots only have access to periodic or opportunistic
connectivity and performances of the proposed algorithms
are investigated on a variety of scenarios with single or
multiple attackers (Fig. 1). The main contributions are:

1) To the best of our knowledge, we are the first to
consider the problem of maintaining data integrity in
multi-robot informative path planning with periodic or
opportunistic connectivity.

2) We propose and validate practical data integrity al-
gorithms based on blockchain that are specifically
designed to be deployable on robots.

3) We study the algorithms along the novel perspective of
the tradeoffs between data integrity, energy consump-
tion and model estimate error.

II. BACKGROUND

Information gathering using a single or multiple robots
has received considerable attention in the recent literature [4],
[8], [9], [10], [19], [18], [31]. In an informative path planning
setting, the objective of the robot(s) is to plan a maximally
informative path within a given path length budget from a
start to a goal location, where the robots can get collected
by human operators [13], [21], [27], [32]. On the other hand,
in a life-long learning and sampling scenario such as studied
in this paper, the robot(s) can be given a budget for one
particular day’s mission and the objective is to collect the
maximum information possible within the daily budget [8],
[19], [24]. These information gathering techniques often
use Gaussian Process regressor to model the underlying
ambient phenomena and an information-theoretic metric such
as Entropy or Mutual Information is used to drive the
robot(s) to meaningful locations where the information gain
is the maximum [20], [27], [28]. As different parts of the
environment might contain significantly different properties
of the same ambient phenomena, it is often a good idea to
deploy a multi-robot system across disjoint sub-regions in the
environment [15], [19], [10], [26]. In [10], the authors have
proposed a decentralized MDP-based online coordination
mechanism that lets the robot collect maximal information
even under control uncertainty. Only recently, researchers
have started looking into reinforcement learning-based in-
formation sampling technique while using Gaussian Process
as the information modeling tool [24], [32].

Most of the multi-robot information collection techniques
in the literature assume the communication among the robots
is always available, and therefore, the coordination among
them is continuous. However, keeping continuous connec-
tivity (CC) in a dynamic, online informative path planning
scenario has been proved to be compute-intensive [9]. On
the other hand, if the robots want to connect only periodi-
cally (PC), the optimal multi-robot re-connection planning
problem has been proved to be NP-hard even when the
environment is modeled as a tree [3]. Heuristic solutions
are presented in the literature for such settings [3], [12],

[18]. The final connectivity technique is opportunistic (OC),
where the robots coordinate with others only when two or
more are in vicinity. As this does not pose any connectivity
policy restrictions, this strategy is often adopted in general
multi-robot exploration studies [2], [8], [10]. A survey of
various connectivity models for multi-robot exploration and
coordination can be found in [1].

None of the above-mentioned works consider adversary
influence, such as tampering with measured data, on multi-
robot information collection. As a robot’s future decision-
making as well as path planning depend on the previously
collected data (locally and communicated by others), tam-
pered data can create havoc. The preservation of data in-
tegrity via a blockchain-based solution using so-called Proof-
of-Work (PoW) consensus was examined in [29] and [26],
each assuming the robots enjoyed continuous connectivity
(CC). PoW consensus is a popular and effective choice in the
cryptocurrency industry [22], but it is known to be resource
intensive [6], [7] and, in turn, raises new challenges for
resource-limited multi-robot information collection.

III. PROBLEM SETUP

We have a set of n homogeneous robots R =
r1, r2, · · · , rn that explore a shared environment. The en-
vironment is discretized into a planar graph Gp = {V,E},
where the node set V represents the information collection
locations and the connections among them are denoted by
the edge set E. Each robot ri has its unique sub-region for
exploration, Vi, and Vi ∩ Vj = ∅. We have pre-calculated
Vi using K-medoids clustering [14]. ri is equipped with an
on-board sensor using which it can sense and collect infor-
mation (e.g., radiation detector). The robots’ observations are
modeled to be noisy. A robot ri starts from a node v0i ∈ Vi.
The robots are sensing an ambient phenomenon Z that varies
with the location, with Z(v0i ) being the (scalar real) value
at node v0i .

We use a Gaussian Process (GP) to model the uncertain
environment. Let X denote a Gaussian random vector of
length |V | with prior mean vector µ and covariance matrix
Σ, where µ and Σ represent the prediction in node set
V and its corresponding uncertainty, respectively [23]. The
volumetric measure of this uncertainty is calculated by an
information theoretic metric, (differential) entropy, which is
formally defined as H(X) = 1

2 log |Σ|+ |V |
2 log(2πe). Each

robot starts with a common initial GP model, GP 0, and
then takes measurement Z(v0i ) at the start node v0i ∈ V .
We assume the measurements are subject to additive white
Gaussian noise ε ∈ N (0, σ). The updated local GP, GPi, for
robot ri is then given by the posterior statistics:
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except for a one in component v0i and C
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is its matrix
transpose. During periodic or opportunistic connectivity, the



posterior statistics will sometimes evolve on a batch of
measurements, which is easily accommodated by appropriate
augmentation of the output matrix C(·)—the reader is re-
ferred to [10] for more details. It is a standard assumption in
kernel-based parametrizations of GPs that the the correlation
between two nodes are inversely proportional to the distances
between them [10], [16], [23]. We exploit this property when
computing entropy by approximating the computationally
intensive matrix determinant |Σ| by the product of the per-
node variances (σ2

v) along the diagonal of Σ. In turn, the
associated entropy H(X) decomposes additively across the
nodes, each per-node term given by

H(Xv) =
1

2
log

(
2πeσ2

v

)
. (2)

The next section utilizes these per-node entropies, their sum
(via the Hadamard inequality) serving as upper bound for the
true global entropy H(X), to drive the robots to opportune
locations for information collection. Each robot’s local GP
model, GPi, is initialized with a training dataset D, and
the prior statistics are calculated before it is deployed in
node v0i ∈ Vi. After deployment, each robot first collects
the information in v0i and this observed data is used along
with D to calculate the per-node rewards using using Eq. 2.
In a greedy fashion, ri then chooses the next adjacent node
v∗i ∈ Vi that provides the maximum information.

v∗i = arg max
v∈adj(v0

i )
H(v|D ∪ Z(v0i )), s.t. v ∈ Vi (3)

In the absence of communication, each robot will continue
this sense − and −move cycle until it runs out the given
budget B. Such greedy strategies have been observed to be
efficient in the literature, and in certain conditions (albeit not
being satisfied here) even provably so [5], [16], [27].

IV. ALGORITHMS

It is not this paper’s objective to develop a new algorithm
for information sampling; rather, we study how an integrity-
preserving blockchain-based protocol can be integrated with
the information collection framework presented in [30], [1],
[9], [26]. This paper is interested in studying the resilience
against data integrity attacks within the constrained com-
munication setting, specifically under periodic (PC) and
opportunistic connectivity (OC). In PC, the robots will form
a connected network after every F cycles named coordina-
tion frequency [18], [12]. The readers are referred to [3],
[12] to see how such re-connections can be established
periodically. In OC, the robots are not guaranteed to form
connected communication networks, instead communicating
if and when two or more robots are within each other’s
communication ranges (C). One should note that with OC
one robot might never communicate with another robot
during the exploration, and it is also possible that the robots
form disconnected sub-networks [8], [10].

A. Proof-of-Work (PoW) Consensus Protocol in CC

In the absence of a security protocol, each robot takes
the received information from the other robots into account

Algorithm 1: Secure Information Sampling
1 /* Every robot follows a

<move-sense-communicate-estimate> cycle */
2 ri calculates the next best location v∗i to move to;
3 while budget left do
4 Move to v∗i and Sense information Z(v∗i );
5 Create a block bidx that includes v∗i and Z(v∗i );
6 Add bidx to Ci and broadcast it 1) every cycle with

OC, or 2) periodically every F cycle with PC;
7 C̃ ← receive similar blockchains from 1) ∀rj ∈ R \ ri

with PC, or 2) ∀rj ∈ R̄ with OC;
8 Secure. Decide to add the measurements from C̃ to Ci

or not using PoW [26, Algorithm 2];
9 Estimate. update GPi with the new data in Ci (Eq. 1)

and update the entropies (Eq. 2);
10 Select v∗i based on the updated entropies (Eq. 3);

and updates the local GP model using Eq. 1 (e.g., see
Algorithm 1). One or more malicious entities can attack
this data sharing system via data tampering attempts and
denial-of-service (DoS) [11], [17]. To prevent other robots
to incorporate such fake data for their future decision-
making, we have used a Blockchain-based security protocol.
Blockchain is a tamper-resistant digital ledger that the robots
maintain in a distributed fashion [25]. In a blockchain, the
data is stored in discrete units, called blocks, that are linked
(chained) to each other by having the hash of one block be
part of the data of the next block. Similar to [26], each robot
ri maintains a local blockchain Ci. Each block bidx ∈ Ci
contains the following components < D,T, idx,N, Hlast >,
where D denotes the collected measurement(s), T represents
the current timestamp, idx is the index of the block, N
is an integer called nonce, and finally, Hlast represents the
previous block bidx−1’s hash. We particularly use blockchain
because of its chain data structure – if an attacker is able to
modify D in block bx, the hash of the block will also change,
and therefore, it will then not match Hlast in bx+1.

After ri measures Z(v∗i ) at v∗i , it puts them in D. The
nonce is initially set to zero. The robot creates a block with
it and finds its corresponding hash. To mine this block, ri
checks whether the hash has the required difficulty or not.
The difficulty of a block is represented by the leading zeros
in the hash – the higher the number of zeros are there in the
beginning of the hash, the more difficult it is to mine. We
use an iterative nonce setting approach, i.e., if the nonce does
not produce a hash with the desired difficulty, we increase
the nonce by one. This process continues until the desired
nonce, and more importantly, the desired difficulty in the
corresponding hash is found. Once this mining process is
over, the block is placed into ri’s local blockchain Ci. With
CC, the robots share their newly created blocks among each
other after every cycle of sense and measurement. The robots
replace their local blockchains with the received blockchains
if the blocks are validated, and as a result, at the end of
each coordination cycle, every robot will have other robots’
valid new blocks along with their existing blocks in their
local blockchains [26, Algo. 2]. Note that the verification of



the hash is straightforward. A robot looks at the nonce in
a particular block, finds it corresponding hash, and checks
whether the hash has the desired difficulty level. If not,
the block is rejected; otherwise, it is validated. As can be
understood, increasing the difficulty reduces the probability
of it being compromised while the time and energy required
by the robots increase significantly.

B. PoW Consensus Protocol in PC and OC

With PC, ri creates D with the last F collected measure-
ments. As the robots coordinate periodically, they do not get
a chance to share their collected information every cycle.
Therefore, each block will contain F measurements in PC
whereas it contained only one in CC. The other components
in the block are calculated in the same way as in CC. Having
a larger block size has one advantage – the robots do not
need to share information in every cycle, and therefore,
the communication and mining overheads are significantly
less. On the other hand, in a bandwidth-limited environment,
sharing a larger block might be prohibitive. Furthermore, as
the robots are not aware of others’ collected data, the quality
their informative paths might be sub-par compared to CC.

With OC, when two or more robots R̄ ⊆ R come within
each other’s communication ranges, they share their local
blockchains and the coordination happens in the same way
as in CC. Each robot ri ∈ R̄’s local blockchain contains
its observed data and any valid data it has received earlier
from rj ∈ R. As the robots are collecting data from
disjoint sub-regions in the environment, they might have
mutually exclusive local blockchains. This might lead to
orphan blocks. An orphan block is a block that was mined
and placed in the blockchain at some point. However, over
time, a new blockchain was generated that did not include
this block, leaving it abandoned. Orphan blocks only exist
in OC. For example, suppose robot ri has a local blockchain
containing the following blocks {a, b, c, d}, and Robot rj
has a local blockchain of {a, b, c, e, f, g}. Next, these two
robots come within C distance. Following our algorithm,
ri will accept the longer blockchain of rj , causing block d
to be abandoned, namely an orphan block. While Block d
in particular will no longer be used, the data within it will
be extracted and put back into a memory buffer known as
unconfirmed data that ri maintains in OC for such scenarios.
Note that this is not the same as block d; the data D in
it is the same, but the previous hash, the timestamp, and
the nonce will all be different. Also, block d was still a
valid block, but was left out of the blockchain simply due
to asynchronous coordination in OC and not because of
malicious data. Although the data in block d is preserved,
the block itself will stay orphaned, meaning the mining effort
put into it is lost.

Lemma 1: Using our proposed algorithm, the robots will
not lose any observed data.

Proof: Consider a scenario with two robots ri and rj
and suppose at a particular point in time ri’s blockchain
is larger than rj’s blockchain. Additionally, rj’s blockchain
contains a particular observed data x. We claim that the

observed data x will not be lost after ri and rj coordinate.
Assume the contrary, which is that data x will be lost. If ri’s
blockchain does contain x, then x cannot possibly be lost,
because when rj accepts ri’s blockchain, x will be among the
accepted data. On the other hand, if ri’s blockchain does not
contain x, rj will take x and place it back in its unconfirmed
data, a data structure that contains data not yet included
in the blockchain. Once rj accepts ri’s blockchain, it will
then insert x at the end of the blockchain after mining. If
rj has not already mined this cycle, x will be restored to
its blockchain, so x cannot possibly be lost in this case.
However, if rj has already mined this cycle, x will be
restored to the blockchain on the next cycle. It follows that
it is impossible for x to be permanently lost.

V. EXPERIMENTS

We have implemented our proposed secure information
sampling techniques with up to 10 robots in MATLAB and
Python. The robots are placed randomly in an 8-connected
14 × 14 grid environment. The robots can only visit up to
20 nodes within their own sub-regions Vi. Our adversary
model is the same as our earlier work in [26], where a data-
tampering adversary (e.g., one of the robots in the system)
falsifies its measurement only every four rounds. The random
false measurement is chosen in the range of [−10,+10]. For
more details, the readers are referred to [26]. Unlike [26], our
experiments include the case of multiple adversarial robots.

We have sampled our underlying ground truth information
for 196 grid locations from a zero-mean Gaussian random
vector, where the covariance matrix represents an expo-
nential kernel function: specifically, for any pair of nodes
vs and vt, the covariance between them is represented by
β2 exp (−||vs − vt||/`), where hyperparameters β > 0 is
the local standard deviation and ` is the exponential rate of
diminishing covariance between increasingly distant nodes.
In our experiments, β and ` are set to 1 and 25 respectively.
The additive white Gaussian noise ε ∈ N (0, 0.25). We
compare our proposed PoW-based algorithms with CC, PC,
and OC assumptions against two benchmarks: 1) No Attack.
in this scenario, there is no malicious robot in the system,
and therefore, there is no chance of data tampering; and 2)
Insecure. in this scenario, data integrity attacks are exactly
similar to the attacks on our algorithms, however, there is no
security protocol in place to protect against such attacks.

1) Single Attacker: To analyze the effects of data integrity
attacks on multi-robot information sampling, we investigate
the mean square error (MSE) metric that represents how
close to the ground truth the predicted information model
is. The results are presented in Figs. 2 and 3.(a). The results
for CC [26] are also presented to benchmark the PC and OC
results against it. When we compare MSE results with PC
against the insecure version, it almost always performs statis-
tically significantly better. Similar to CC, the the blockchain-
based proposed technique will fail to safeguard against the
data tampering attempts if the selected difficulty is low, e.g.,
1. Since there are 16 possible hash values per digit and
only one digit is an acceptable value for the prefix (0), the



probability that the hash satisfies the difficulty 1 condition
is 1

16 , which is fairly low, and therefore, the malicious robot
can tamper the global data sharing once in a while. When we
compare the PC results with varying F , the robots performed
better, i.e., final MSE was lower, when they communicated
more often (e.g., F = 2 is better than F = 5). However,
an interesting thing to note is that while this trend was
consistent, they rarely resulted in a large difference in MSE.
We believe that the small range in MSE results due to various
frequencies are because that the robots that coordinate more
often have more opportunities to adapt their plans to explore
better (see Fig. 3.(a) for reference). In general, the closer the
connectivity model is to CC, the better performance in terms
of MSE can be observed because of the reason stated above.
Note that, this results in a higher computation time, which
we will discuss later in the section.

(a) (b)

(c) (d)

(e) (f)
Fig. 2. Single Attacker: MSE comparison (lower the better) among various
connectivity models used: (a,d) CC with n = 10 and 6; (b,e) OC with
n = 10 and 6; and (d,f) PC with n = 10 and 6.

Similar to CC and PC, the OC model almost always
performs statistically significantly better than the insecure
version except a few cases with difficulty 1 due to reason
explained earlier. We have found that with a higher C, the
MSE is lower than compared to a smaller C. The difference
in MSE with various communication ranges are significant.
For example, with difficulty and n set to 4, the final MSE
value with C = 4 is 0.33, whereas with C = 12 it is 0.14.
In nearly every experiment, C = 12 outperformed C = 4 by

(a) (b)

(c) (d)
Fig. 3. Single Attacker: (a) Comparison of MSE values among all the
connectivity models with n = 8; Run time comparison (lower the better)
between our proposed secure techniques and the implemented benchmark
algorithms: (b) CC; (c) PC; and (d) OC.

a statistically significant amount. C = 8 resembled C = 12
when there were 8 and 10 robots, with a small difference
for 6 robots and a clear difference at the edge of statistical
significance for 4 robots. With 2 robots, the MSEs with
range 8 seem more similar to range 4 than C = 12. This
is because that when there are more robots, communication
range matters less since two robots out-of-range can still
communicate if there is a third robot in range of the other
two. So having a range of 8 instead of 12 made a much
larger difference (up to 5.5 times when n increases from 4
to 8 with difficulty 4). The robots that communicated more
often usually had less data that needed to redo PoW, and
consequently, required less time.

When compared all three connectivity models together
(Fig. 3.(a)), CC always performed the best. Both PC and OC
performed significantly worse when facing more constrained
conditions, i.e., higher coordination frequencies for PC and
lower C values for OC. In particular, OC performed among
the three connectivity models when there were few robots
since that meant they would rarely communicate. PC always
performed worse than CC since the robots with CC always
communicate and coordinate more often, i.e., after every data
collection, and therefore, the robots could adapt their joint
paths on a finer scale. For OC, however, this is not the case.
When the C and n are high, OC becomes almost identical
to CC as all the robots can share their collected data after
every round and fine tune their paths.

In regards to the run time of the algorithm, PC always
outperformed CC (Fig. 3.(b-d)). Furthermore, with PC, the
run time is lower in cases when robots coordinate less often.
For example, with n = 10 and Difficulty 4, the run times for
PC with F = 2 and 5 are 34.04 and 15.50 sec. respectively
while the run time for CC is 59.76 sec. On the other hand,
OC always performed better than CC, but worse than PC.



(a) (b)

(c) (d)
Fig. 4. Multiple Attackers: MSE comparison (lower the better) among
various connectivity models used: (a) CC; (b) PC; (c) PC zoomed in on our
algorithm’s results; and (d) OC.
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Fig. 5. Run time comparison (lower the better) among various connectivity
models used with Multiple Attackers: (a) CC; (b) PC; (c) OC; and (d) Effect
of various Baud Rates and message sizes on run time (n = 2).

Additionally, while OC usually did better when range was
greater, in some case, this is not followed. This is because
that there were certain occasions when the time saved from
coordinating less often was counterbalanced by the time
spent in re-doing PoW for the orphaned blocks.

2) Multiple Attackers: For CC, PC, and OC, the difference
in finals MSEs with 1, 2, and 4 malicious robots was
small (Figs. 4.(b-d)). As the objective of PoW is to ensure
that attacks do not affect accuracy, therefore, having more
attacks did lead to a slightly worse performance in most
cases, the difference was insignificant. For example, with
one malicious attacking robot, n = 10, and F set to 3 in
PC, the final MSE is 0.131, whereas with four attacking

robots this value is 0.133. This is likely because even if
the attacker was unable to add fake data to the blockchain,
it still deleted all of the compromised robots’ unconfirmed
data while degrading the information model. More malicious
robots in the system have led to a decrease in run time. While
PoW takes up the majority of the computation time [26],
another time-consuming operation is transferring the data
from one blockchain to another. Since this transfer of data
occurs less often due to more attacks, run time decreases
as fewer uncompromised robots transfer the blockchain data
among themselves.

3) Effect of Baud Rate: Finally, We are interested in
investigating how with baud rate – data transmission rate in a
communication channel – the communication time changes.
For this, we have used Webots, a high-fidelity 3D simulator,
where one robot is set up to send data and the other is set
up to receive it. In CC, coordination happens after every
round of data collection, and therefore, a message containing
a block is smaller when compared to PC, where the robots
share past F collected data in a single message. The result
is presented in Fig. 5. When the baud rate is set to infinity, a
standard assumption in multi-robot coordination studies [9],
[8], [31], [15], [10], [19], the communication time is almost
negligible, the maximum being 0.13 sec. On the other hand,
when it is restricted to be only 6 bits/sec., to send a 192 byte-
size message (e.g., putting past eight observations in mes-
sage), it takes 257.40 sec. whereas for a 24 byte message, the
communication time is 33.40 sec. This result is significant in
terms of CC, PC, and OC comparisons. Although PC needed
a fraction of computation time of CC, it might not be a good
choice in case of a limited-bandwidth environment. This is
also partially true for OC as the communication among the
robots is not algorithmically determined, the robots might
need to exchange large chunks of data if and when they
come within each other’s communication ranges.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a method aiming to improve data
integrity for a multi-robot team performing informative path
planning under periodic and opportunistic connectivity. The
approach builds on blockchain technology adapted to the
connectivity and energy limitations. We performed an exten-
sive set of experiments assuming threat models with single
or multiple attackers. We found that by varying the number
of digits in the hash prefix, we can trade off between the
energy consumption and the integrity guarantees of the data.
As our setting involves an estimation technique that uses
a Gaussian process, the estimation is robust to occasional
incorrect observations. Thus, even a hash prefix of a single
digit can achieve an acceptable error in the estimate. Future
work will include the extension of the proposed algorithm
to path planning algorithms that react to changes in the
environment, and extensions of the proposed approach that
further improve scalability.
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