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We propose a framework to detect and model shifts in a time series of
continuous proportions, that is, a vector of proportions measuring the parts
of a whole. By reparameterizing the shape of a Dirichlet distribution, we can
model the location and scale separately through generalized linear models. A
hidden Markov model allows the coefficients of the generalized linear models
to change, thus allowing for the time series to undergo multiple regimes. This
framework allows a practitioner to adequately model seasonality, trends, or
include covariate information as well as detect change points. The model’s
behavior is studied via simulation and through the analysis of lake phyto-
plankton data from 1992 through 2012. Our analyses demonstrate that the
model can be effective in detecting and modeling changes in a time series
of proportions. Pertaining to the phytoplankton data, the overall biomass has
grown with some changes to the community level dynamics occurring circa
2000. Specifically, the proportion of cyanobacteria appears to have increased
to the detriment of diatoms.

1. Introduction. Phytoplankton are microscopic, autotrophic organisms found in
oceans, seas, and freshwater basin ecosystems. They typically live near surface waters where
light is sufficient for growth, as single cells or as colonies that can be visible to the naked
eye. A key component of the food web, they transform energy via photosynthesis from sun-
light to organic matter that provides food for other organisms. Not all phytoplankton are to
be treated equal, however, especially in an environmental context. In 2014, a bloom of toxic
cyanobacteria (or blue-green algae) contaminated Lake Erie near Toledo, Ohio, USA, shut-
ting down the city’s supply of drinking water. Likewise, a bloom of diatoms in the Pacific
northwest affected fisheries in 2015; an increase in domoic acid in shellfish and other small
marine animals can be toxic for larger invertebrates. Harmful algal blooms are increasing in
frequency all over the world (Paerl, Otten and Kudela (2018)).

Acton Lake is a eutrophic reservoir with high concentrations of nutrients, inorganic sed-
iments, and phytoplankton located in Hueston Woods State Park in southwestern Ohio.
Since the early 1990s, the levels of sediment and nutrients entering the lake have fluctu-
ated (Renwick et al. (2018)), along with a growth in phytoplankton abundance (Kelly et al.
(2018)). Since 1994, water samples have regularly been recorded for various measurements
of water quality, species abundance, and environmental aspects (Kelly et al. (2018)). Water
samples are collected regularly from late April through October while access to the study site
is available (the marina is closed during the winter).

We study the abundance of phytoplankton taxa, along with environmental conditions (e.g.,
water temperature), collected over a 21-year period with approximately 11 to 13 measure-
ments per year during the nonwinter months. Data are collected in two-week intervals with
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FIG. 1. Raw measures of chlorophyll, on log-10 scale, with mean-shift segmentation (based on aggregated data)

suggested by change point test in Robbins et al. (2011a).

the occasional missing value or longer collection interval. Given the irregular time series, we
aggregate our measurements into three measures per year, corresponding to the late-spring
mixing period, summer stratification, and fall mixing periods: measurements before June 16
are considered Spring, from June 16 through July 31 is Summer, and measurements from
August 1 or later are Fall. Other levels of aggregation were considered, but the results are
similar (see Supplementary Material, Fisher et al. (2022)), so we only report the results based
on three measurements per year here.

Phytoplankton biomass was estimated using the concentration of chlorophyll, as this is the
most direct measure of phytoplankton abundance (Kelly et al. (2018)). Figure 1 displays the
measurements of chlorophyll at our study site on a log-10 scale along with the segmentation
suggested by the ARMA residual change point test from Robbins et al. (2011a) on the ag-
gregate data (deseasoned geometric mean of log;(chlorophyll) with an AR(1) correlation
structure): test stat: 1.6507, change point time: fall 1999, p-value: 0.0086.

Figure 1 shows an increase in phytoplankton abundance but provides no information on the
dynamics of different phytoplankton groups (taxa). For taxonomic information the biovolume
of individual species (or subsets of species) was collected by manually identifying, counting,
and measuring cells in water samples using a microscope (Hayes and Vanni (2018)). This task
is arduous and somewhat susceptible to variability among human counters, particularly for
species-level identifications. However, identification at the level of taxonomic groups is more
feasible and less subject to human error. Phytoplankton were identified to the finest possible
taxonomic resolution but are aggregated into four taxonomic groups: diatoms, flagellates
(mostly cryptomonads but also dinoflagellates and euglenoids), chlorophytes (“green algae”)
and cyanobacteria (“blue-green algae”). Figure 2 displays the phytoplankton compositions in
time faceted by season. Of particular interest is how the proportion of phytoplankton groups
are changing in time and what (if any) external variables may be driving that change.

1.1. Compositional data. Following its primitive identification in Pearson (1897), the
analysis of compositional data, a multivariate set constrained such that each element is non-
negative and the set of variables sums to one, owes much of its modern development to
Aitchison (1982, 1985). A random observation (or composition) of dimension p, Y;, can be
expressed as

Yl:(Ylez""va);v

p
subjectto Y; >0, i=1,...,p, and ZY,-:I,
i=1
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FI1G. 2.  Composition of phytoplankton in time, faceted by seasons. There are three measurements per year over
21-years of four-dimensional data. Note, the time series has seasonal effects, and there appears to be a change in
the proportions during the length of study.

where A’ is the transpose of vector/matrix A. It is typically described as a set of measurements
representing the parts of a whole, disclosing relative information. In the present application
we consider the composition of phytoplankton abundance separated into taxomic groups.
Mathematically, observations such as Y; fall inside the simplex of dimension p, defined as

p
SP=1y=01.y2.-..yp) 3 >00=1,2,....p).> yi=1¢.
i=1
When p = 2, we are essentially working with a univariate proportion since Y» = 1 —Y;. When
p = 3, the simplex can be visualized through a ternary plot, a particular case of the more
general barycentric plot. At higher dimensions, visualizations of this constrained subspace of
R? is difficult.

Since the seminal work of Aitchison (1986), the development of methods for composi-
tional data has continued to grow but has been sporadic compared to other areas. In part, this
is because a key method in compositional data analysis is to project a p-dimensional com-
position into p — 1 space via a log-ratio transformation. From there, standard multivariate
methods are utilized on the transformed data (see Pawlowsky-Glahn and Buccianti (2011)).

Work on multivariate time series has continued to expand (see Binder, Pourahmadi and
Mjelde (2018), Matteson and Tsay (2011)) and is known to have applications in the field
of ecology (e.g., Hampton et al. (2013)) and economics (Tsay (2010)). Historically, the log-
ratio approach would be applied to time series compositions and then vector autoregressive or
state-space models would be utilized (Barcel6-Vidal, Aguilar and Martin-Ferndndez (2011)).
Grunwald, Raftery and Guttorp (1993) use a state space approach, and, through reparameter-
izing of the Dirichlet distribution, they provide a framework that allows the incorporation of
predictor variables.

Often Bayesian methods are utilized in multivariate time series, due to estimation ineffi-
ciencies in higher dimensions, and to induce necessary structure (Koop and Korobilis (2010),
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West (2020)). In fact, in Grunwald, Raftery and Guttorp (1993), a Bayesian approach is used
for the model development, although they use a maximum likelihood technique for model
estimation.

1.2. Change points. The area of change-point analysis continues to receive interest,
particularly in time series (see Aue and Horvéth (2013), Bardwell and Fearnhead (2017),
Robbins et al. (2011b), e.g.). There, an abrupt change to the distribution of observations is
detected at some (unknown) time point, segmenting the time series into regimes. This may
be as simple as a shift in mean but may also be in terms of coefficients in a regression model
(Lund and Reeves (2002), Robbins, Gallagher and Lund (2016)). Modern methods look to de-
tect change points in multivariate data (Holmes, Kojadinovic and Quessy (2013)). Matteson
and James (2014b) propose a distribution free method for detecting multiple change points in
multivariate series that has good asymptotic properties. Recently, Prabuchandran et al. (2021)
proposed a test for compositional data, based on permutation methods of the log-likelihood
value under an i.i.d. Dirichlet assumption.

In a Bayesian framework, much work has been done on the change-point problem as well.
Carlin, Gelfand and Smith (1992) considered a hierarchical approach to find a single change
point and derive the conditionals of the posterior distribution under certain distributional as-
sumptions. Stephens (1994) extended the Gibbs sampler in Carlin, Gelfand and Smith (1992)
to the case of multiple change points. In Barry and Hartigan (1993) the observations are seg-
mented by a product partition model and that approach can also find multiple change points.
Erdman and Emerson (2008) improve its implementation and apply it to a large multivariate
microarray data set. Kang et al. (2018) develop a Bayesian approach to look for changes in
the variance of a regression model, and Liang et al. (2019) use Bayesian change-point meth-
ods to explore the relationship of phytoplankton and nutrient levels. The Bayesian framework
provides flexible model structures to detect multiple changes in terms of model parameters.
However, the implementation of Bayesian methods remain less accessible to data practition-
ers, especially when the responses are not from an underlying Gaussian process.

The hidden Markov model (HMM) is a valuable tool in the statistical arsenal and has
been shown to have many applications. HMMs have a history in change-point detection and
modeling (see Chib (1998), Fearnhead (2006), Fearnhead and Liu (2007), Luong, Perduca
and Nuel (2012), for examples). In HMMs the distribution of an observation at time ¢ depends
on an unobserved (latent) state. The latent states are assumed to follow a Markov process,
and, in general, the underlying Markov process allows the distribution of observations to
transition between states. When used for change-point detection, a constrained HMM may
be implemented, as the underlying data is not necessarily assumed to move back-and-forth
between states but rather transition into unique regimes.

1.3. Contribution. This article considers detecting and modeling changes in a time series
of continuous proportions and modeling those changes with covariate information. Although
each of those topics have been studied marginally, connecting all the aforementioned areas
appears to be an understudied problem. Several of the methods in the literature can detect
multiple change points on multivariate data but are not necessarily designed for data in the
simplex. Prabuchandran et al. (2021) propose a change-point test for compositional data,
but it is not designed to work with seasonal data or potential predictor variables. These ap-
proaches may find a change point, but they do not simultaneously model the process at the
same time.

The outline of this article is as follows: Section 2 describes our proposed methodology
where a HMM with a Dirichlet regression detects and models changes in a time series of
proportions. The HMM not only can detect changes but also quantify the probability of a
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change at a given time. The Dirichlet regression allows a practitioner to separately model
the underlying mean and variance of the composition. Section 3 provides a simulation study,
demonstrating the efficacy of our method. An in-depth analysis of the phytoplankton data and
some conclusions are provided in Sections 4 and 5.

2. Methodology. The foundation is the Dirichlet distribution which is considered the
most natural distribution for working with compositions (Grunwald, Raftery and Guttorp
(1993)). Unlike the log-ratio approaches in Aitchison (1986) and used in other time series
applications (see Brunsdon and Smith (1998), Mills (2010), to name a few), working directly
in the simplex allows for an easy interpretation of the behavior of the components. For ran-
dom composition Yy, the Dirichlet distribution is defined as

P
i—1
fylo)y =D [y,
i=1
where D(e) is the Dirichlet function on the vector of shape parameters a = (a1, @2, ..., ap),
aj eRY, fori=1,2,..., p, defined as
o T(a)

D(a) = =1
e +ax+ - +ap)

and I'(-) is the Gamma function. The domain of the Dirichlet distribution is the simplex
of dimension p, S”, and the Dirichlet distribution is a multivariate generalization of the
common Beta distribution. It is well known that the expectation and variance of Y;, the ith
component of Y, is

o (Ot/l P Ol,')
(@'1,)* (1, + 1)’
where 1, is a p-dimensional vector of ones. The shape parameter «; essentially controls the
behavior of component Y; in Y.

ElYile]=c;/a'l, and Var[Y¥;la]=

2.1. Generalization of Dirichlet assumption. The shape parameter of the Dirichlet distri-
bution, ¢, controls both the location and dispersion of the distribution. If ; were to increase
while the other terms are held constant, we would expect the proportion of component i to in-
crease and the dispersion of that component to decrease. To isolate the effects of the location
and dispersion, we use the approach of Grunwald, Raftery and Guttorp (1993) by reparam-
eterizing the distribution with location, @, and scale, 7, parameters. This approach relaxes
some of the independence properties associated with the Dirichlet distribution; the term t
not only influences the variance of component i but also the covariance of components Y;
and Y;,i # j.Let® = a/t, where T =a'l,, thus Y ~ Dirichlet(e = 76), with

E[Y|0,7]=60 and Var[Y|0,7]=00"/(r +1).

The parameter space for the location parameter @ is the simplex of dimension p, S?, and
determines the mean of Y. The scale parameter 7 is a strictly positive value, has no influence
on the expectation, and only influences the underlying variability (inversely) and correlation
between components. This reparameterization allows us to separately model the location and
scale.

The parameter 0 is in S”, and any estimation of it must account for the constrained nature
of the simplex. As in Grunwald, Raftery and Guttorp (1993), we use a Bayesian approach
for model development and induce a Dirichlet prior distribution on @; that is, assume 6 ~
Dirichlet(s). The expectation of 8 is E[6#]=1n/(5'1,), and we can model the location using
a generalized linear model on the y parameter (Hijazi and Jernigan (2009)).
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The scale parameter t is strictly positive and can be modeled as a function of relevant
predictors via a log-link. Combined with the above, the framework of the proposed model
assumes an observation Y, at time ¢ is from a Dirichlet distribution with location @ and scale
T such that the Dirichlet shape parameter is & = 6. The location parameter is modeled by

(2.1) 0=n/(n'1,), where log(n;) = Bio+ Bi1 X1+ Bi2a X2+ -+ Bir X,

and X;, j =1,..., k, are predictor variables with B;; as the coefficient on the jth predictor
for component i. Model the scale parameter with

(2.2) log(t) =yo+ 1 X1 + 2 X2+ + ¥ Xk,

where the y; terms are the coefficients on the jth predictor. It is possible to use different
predictor variables in (2.1) and (2.2), and the framework allows for the location/scale to be
constant while the other is influenced by covariate terms. It also provides flexibility for one
set of the parameters (f or 7) to undergo a regime shift while the other stays constant. The
predictor variables can model seasonality, trends, or other covariates (ecological drivers).

2.2. Hidden Markov model. LetY;,t=1,...,n, be an observed composition assumed
to follow the Dirichlet distribution. Define S; to be the latent state of the tth observation,
where S; € {1,2,...,m}. Further, assume the process controlling the states S; satisfy the
Markov property
(2.3) P(Siv1=JI1S =1, 8-1,8-2,...,851) = P(St+1 =JjISr =i) = Pij
and that

P(Yt €A|S1,...,St:St):P(Y[ EA|St:S;).

That is, the probability distribution of responses at time ¢ only depends on the underlying state
at time 7. This setup is an m state HMM with a Dirichlet response. Using the formulation in
Section 2.1, the latent Markov process effectively determines the regression coefficients in
(2.1) and (2.2).

The term p;; in (2.3) is known as the transition probability from state i to state j. An
m x m matrix, P with entry in ith row, jth column, p;;, is known as the probability transition
matrix. When a HMM is used for change-point detection, a practitioner may wish to constrain
elements of P to prevent the process from jumping to certain states from others (see Chib
(1998)) but an ergodic model may be used in general; see the Supplementary Material for
further discussion (Fisher et al. (2022)).

2.3. Proposed model. We implement a HMM with the generalized Dirichlet formation
presented in Section 2.1. This allows the HMM to detect changes in the underlying location
or scale of the distribution. Following Chib (1998), we constrain our transition matrix such
that a Markov chain in state i can only jump to state i 4+ 1 or remain in state i at the next
transition; that is, p;; = 0 for all j #i,i + 1. Figure 3 provides a conceptual schematic of
the constrained HMM when three states are present. This constrained HMM, along with the
Dirichlet regression models in (2.1) and (2.2), allows us to address the ecological questions:
did a considerable shift in phytoplankton phenology occur, and what is the nature of that
shift? The Viterbi state assignments (Cappé, Moulines and Rydén (2005)) from the estimated
HMM can be used to determine if a change point occurred—a change in Viterbi state indicates
a change in the observed distribution.
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FI1G. 3. Schematic of a constrained three-state hidden Markov model process where change points would be
observed in our length n time series at time points ¢y and c;.

2.4. Model implementation. This methodology lends itself to both frequentist and
Bayesian implementations (Cappé, Moulines and Rydén (2005)). Maximum likelihood esti-
mation (MLE) for the proposed models is available via the EM-algorithm (Leroux (1992),
Lystig and Hughes (2002)), although the constrained HMM may make estimation difficult.
The depmixS4 package in R (Visser and Speekenbrink (2010)) provides a set of routines
for the practitioner to define their own likelihood and estimate the HMM, even with con-
straints. Alternatively, HMMs can be implemented in a Bayesian framework (Robert, Celeux
and Diebolt (1993)). Due to the constrained nature of our HMM and the small-to-moderate
sample size (63 observations on four dimensions), we implement the methods using the latter
in the rstan package (Stan Development Team (2018)). Details on the priors of hyperpa-
rameters, Bayesian Markov chain Monte Carlo (MCMC) implementation and source code
are available in the Supplementary Material (Fisher et al. (2022)).

3. Simulation study. The effectiveness of our proposed model is studied through sim-
ulation. Data was generated to reasonably mimic the observed seasonal phytoplankton com-
positions. In the first set of simulations we use dummy variables to model seasonality in the
Dirichlet response. Specifically, the design matrix X is an n x 3 matrix with a first column
of all ones corresponding to the spring, and the second and third columns contain indicators
separating the summer and fall measurements.

We also implement a variation of the Prabuchandran et al. (2021) Dirichlet likelihood per-
mutation test. For a seasonal response we calculate a different shape parameter for each of
the three seasons and perform the permutation within seasonal responses (i.e., spring ob-
servations are shuffled with other spring observations), the distribution of the maximum in
differences of log-likelihoods was calculated based on 1000 permutations. In the results be-
low, this method is denoted as the Likelihood Permutation.

To compare with some other existing methods, we transform the generated compositions
via a log-ratio. The transformed data are deseasoned (subtracting seasonal averages), if neces-
sary, and we apply the nonparametric multivariate change implemented in the npcp package
in R (see Kojadinovic (2020)), denoted as Nonparametric Test below. The nonparametric
test implemented in the ecp package (James and Matteson (2014)) is also applied to the
transformed data, denoted ecp Test. Our simulations were conducted on the Owens cluster at
the Ohio Supercomputer Center (Ohio Supercomputer Center (2016)). Additional results and
details are available in the Supplementary Material (Fisher et al. (2022)).

3.1. No change data. Using MLEs for each season of the phytoplankton data in Fig-
ure 2, we generate 200 realizations of length n = 63 observations, each as four-dimensional
compositions, using the parameters in Table 1.

We fit two versions of our proposed model, a single state HMM labeled Dirichlet Regres-
sion and a two-state model, called Location & Scale HMM. To summarize the findings of
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TABLE 1
Parameter values used for simulated datasets when no change point is present

MLEs for Phytoplankton Data

Season 01 0> 03 04 T
Spring 0.14 0.21 0.46 0.18 7
Summer 0.65 0.11 0.15 0.08 11
Fall 0.55 0.14 0.22 0.09 11

the models, we considered two simple aggregate metrics to determine whether convergence
of the posterior simulation routine was achieved and whether the fitted HMM jumped. To
determine convergence, for each fitted model the average Gelman & Rubin statistics (R-hat
from Gelman and Rubin (1992)) value of all model coefficients, the Viterbi states and the log-
likelihood value were calculated. If the average R-hat value was less than 1.005, the MCMC
was classified as having converged. From there, we randomly sampled 100 of the converged
fits. We computed the posterior median Viterbi states in each fitted HMM: if the Viterbi state
changed, a jump occurred in this fit.

Table 2 reports the results when no change point is present in the data. For the singe
state HMM Dirichlet regression (“correct” model), the MCMC algorithm always converged.
For the model allowing for a shift in HMM states, the Location & Scale HMM had a 72%
rate of convergence; note this model was intentionally misspecified. When the Location &
Scale HMM converged, in zero of the 100 randomly selected cases did it jump from state 1
to 2, thus indicating the implemented HMM will not detect nonexistent change points. The
nonparametric tests and the Dirichlet likelihood permutation test were calculated on the same
100 randomly selected datasets and report an appropriate number of detected change points
(near 5%).

To compare the two fitted Dirichlet-regression based models, we also calculate the approx-
imate leave-one-out (LOO) cross-validation values (Vehtari, Gelman and Gabry (2017)) im-
plemented in the 1 oo package (Vehtari et al. (2018)) to assess goodness-of-fit. As expected,
the average LOO value across the Dirichlet regression fits is —383 with a standard deviation
17, and the LOO for the two-state HMM is —343 with standard deviation 19, indicating the
single state Dirichlet regression model is the better fit.

3.2. Single change point. 'We now study two scenarios where a change point is present: a
seasonal series with a shift in the location parameters (Location Change Data) and a seasonal
series with a shift in the scale parameters (Scale Change Data). The chosen parameters are

TABLE 2
Proportion of models where the MCMC algorithm converged and proportion of times a change point was
detected for each model fit/method when no change point exists

No Change Data
MCMC Change Point
Model Converged Detected
Dirichlet Regression 1.00 -
Location & Scale HMM 0.72 0.00
Nonparametric Test - 0.05
ecp Test - 0.02

Likelihood Permutation - 0.07
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TABLE 3
Parameter values used for simulated datasets when a change point occurred

Season State (s) Gl(x) Qéx) 03(S) Qf) )
Spring 1 0.10 0.12 0.40 0.38 13
2 0.24 0.22 0.47 0.07 1
Summer 1 0.51 0.15 0.16 0.18 5
2 0.70 0.11 0.16 0.04 17
Fall 1 0.46 0.11 0.23 0.20 5
2 0.60 0.15 0.21 0.04 17

based on the MLEs from the phytoplankton data and displayed in Table 3. For the location
shift data we use the GJ(-S) values in Table 3 while keeping T constant corresponding to the

MLE in Table 1. For the scale shift series we use the respective 7'*) values in Table 3 while
using the MLE values for 6; in Table 1. In both scenarios the shift in regime occurs at time
point 31.

Table 4 summarizes the results for the two scenarios, comparing the different approaches.
There are good rates of convergence for the proposed model in both scenarios, even in the
case of single-state Dirichlet regression (misspecified model). The proportion of model fits
where a jump occurred is exceptional: 100% of model fits indicated a jump occurred. The
two nonparametric tests detect the shift in location while they struggle to detect the shift in
scale. The Dirichlet likelihood test modified to handle seasonality provides a perfect rate of
detection for both the shift in location and scale scenarios. The LOO results indicate that the
Location & Scale HMM is a better fit than the single-state Dirichlet-regression model.

3.3. Multiple change points. We also study the methods when 200 realizations of sea-
sonal data with multiple change points are generated. The first 21 observations have a loca-

tion and scale corresponding to 01(.1) and () from Table 3, the next 21 observations have the
same scale but see a change in location to 01(-2) and the remaining 21 observations have a shift

in scale ® while having the same location of 61(-2) . There are two change points (at time
points 21 and 42) with the first experiencing a shift in the location while the second is a shift
in scale.

We fit a three-state version of the proposed model to the 200 simulated datasets. For com-
parison, we implement the multiple change-point algorithm in Prabuchandran et al. (2021)

TABLE 4
Proportion of models where the MCMC algorithm converged for our approach and proportion of times a change
point was detected when one change point exists in the data

Location Change Data Scale Change Data
MCMC Change Point MCMC Change Point
Model Converged Detected Converged Detected
Dirichlet Regression 1.00 - 1.00 -
Location & Scale HMM 0.98 1.00 0.99 1.00
Nonparametric Test - 1.00 - 0.14
ecp Test - 1.00 - 0.22

Likelihood Permutation - 1.00 - 1.00
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TABLE 5
Proportion of models where the MCMC algorithm converged for our model and proportion of times the two
change points were detected for simulated data with two change points

MCMC Single Change Two Change
Model Converged Point Detected Points Detected
Location & Scale HMM 0.76 0.07 0.93
Nonparametric Test - 0.92 0.08
ecp Test - 0.94 0.06
Likelihood Permutation - 0.66 0.34

and compute the Likelihood permutation test and Nonparametric Test. The ecp Test is de-
signed to segment the data into multiple regimes and is included as well. Table 5 demon-
strates the proportion of times our three-state model converged as well as the proportion of
times each method detected the different numbers of change points.

All of the approaches consistently detected the first change point, but only the proposed
model regularly detects the second change point. Although the Dirichlet likelihood permuta-
tion method works well in the single change-point case, it struggles to detect the shift in scale
at time point 42, likely due to the limited sample size (only 42 observations, split across three
seasons).

Our method has the added feature of modeling the underlying process simultaneous to
detecting any shifts. Figure 4 displays the location of change points, based on posterior me-
dians of the Viterbi states in our three-state model; there we see the model accurately detects
the true location of the change points, with slightly more variability in detecting a change in
scale.

In Figure 5 we display the posterior means of the estimated regression coefficients (the B;;
and y; terms in equations (2.1) and (2.2)), along with the theoretical values (gray diamonds)
from the simulation parameters. We note that, even with a fairly small sample size (there are
only seven observations for each season in each regime), the proposed model estimated the
parameters with reasonable accuracy.

3.4. Covariate influence. Compared to the methods in the literature, the proposed frame-
work has the added benefit of detecting changes in a model involving covariates. Using the
fitted model on the phytoplankton in Section 4.1 as a baseline, we generate a length n = 63
seasonal univariate time series, where each spring observation is N(16,0 = 1.5), summer
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observations are N (27,0 = 1.5) and fall observations are N (21,0 = 1.5). These covariate
terms were used to generate location, and scale parameters using (2.1) and (2.2) with param-
eters in Table 6, and a compositional response is generated from the corresponding Dirichlet
distribution at each time point. The first 30 observations are Regime 1 with the latter 33 in
Regime 2.

The proposed Location & Scale HMM with an intercept and the generated covariate as
the predictor variable was fit to the simulated data, using the same MCMC parameters as
before. In 84% of the 200 simulated datasets, the MCMC algorithm converged. We randomly
sampled 100 converged model fits and in 100% of those did the model detect a change point
(87 times the change point was detected at time 31, nine times at point 30, and four times at
32). The average (and standard deviation) of the posterior mean of coefficients for each of
the selected 100 model fits is in Table 7; there we see estimated coefficients reasonably close
to the true values in Table 6.

TABLE 6
Coefficient values for the covariate model where X is a univariate seasonal time series and the response is
generated based on equations (2.1) and (2.2)

Regime 1 Regime 2
01 (%) 03 04 T 01 (%) 03 04 T
Bio/vo -3 0.8 1.6 0.7 -0.2 -1 0.8 1.4 0.3 —0.15

Bit/v1 0.2 —0.02 —-0.20 0.05 0.10 0.2 —0.05 —0.05 0.10 0.15
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TABLE 7
Mean (std. dev.) of mean posterior coefficients from the fitted HMM including a seasonal univariate covariate
predictor variable. Corresponding true values are in Table 6

Coefficient State 61 0> 03 N T

Bio/vo 1 —2.71 (0.54) 0.76 (0.57) 1.22 (0.63) 0.74 (0.56) —0.13 (0.71)
2 —1.29 (0.40) 0.33 (0.60) 0.89 (0.49) 0.08 (0.38) —0.02 (0.67)

Bitlvi 1 0.18 (0.06) —0.03 (0.06) —0.20 (0.06) 0.04 (0.06) 0.10 (0.03)
2 0.16 (0.05) —0.09 (0.05) —0.08 (0.06) 0.05 (0.05) 0.15 (0.03)

For comparison, we also fit the version of our model where the design matrix has dummy
variables to model seasonality (thus ignoring the covariate influence); that model had a nearly
100% convergence rate and also detected the change point 100% of the time. However, the
average LOO goodness-of-fit value for the model with the covariate was —2480 (standard
deviation of 396), while the model using seasonal dummy variables was worse fitting with an
average LOO of —2429 (standard deviation of 469), thus the model including the covariate
influence was a better fit, on average.

3.5. Additional simulations and conclusions. The Supplementary Material (Fisher et al.
(2022)) provides additional implementation details, the results of additional simulations and
variants of the proposed model. In one such simulation we see that by separately modeling
the location and scale, we can gain detection power of a change point compared to using the
shape.

Simulations indicate the proposed modeling techniques are viable. The HMM can effec-
tively detect shifts in the location and scale parameters of an underlying Dirichlet distribution
and works in the multiple change point setting. Since our simulation parameters are based on
the observed phytoplankton data, we anticipate our model will work in detecting any regime
changes. Based on the provided results (including in Fisher et al. (2022)), the other tests may
be helpful in confirming any single change-point shift in location but may struggle to detect
multiple changes or a shift in scale.

4. Analysis of phytoplankton. We now apply the proposed model to the observed phy-
toplankton compositions in Figure 2. We fit three versions of our proposed model to the data:
a single-state Dirichlet regression model, a two-state HMM, and a three-state HMM. The
MCMC algorithm converged (diagnostic plots also available in Fisher et al. (2022)) for all
three models with the two- and three-state HMMs showing a change in regimes.

The LOO goodness-of-fit values of the three models are —371.00, —379.25, and —336.72,
respectively, indicating that the two-state HMM is the best fit of the three. In fact, the three-
state HMM suggest a jump from State 1 to 2, occurring at time points similar to that seen in
Figure 6 but in none of the posterior samples did the HMM jump to state 3. The distribution
of posterior model coefficients is also similar to those seen in Figures 7 and 8 below, and the
posterior 8 and y coefficients in state 3 closely follow the N (0, 2) prior distribution. This
suggest that only a single regime shift has occurred in the distribution of phytoplankton.

The two-state HMM suggests a change in all 1000 posterior samples. The posterior distri-
bution of the location of change is in the left panel of Figure 6. The modal peak of that shift is
suggested to occur at time point 26 (summer 2000). The right panel of Figure 6 displays the
mean posterior Viterbi path demonstrating that, on average, the change point occurs in 2000
and that the years 1999 through 2003 were one of transition for the phytoplankton.

For comparison, we also perform the multiple change-point tests from the literature, each
suggests a single change point: the modified nonparametric test (to look for multiple change
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the best fitting Location & Scale HMM for the phytoplankton data.

points) identifies a change at time point 24 (Fall 1999), the ecp test suggest a change at
time 37 (Spring 2004), and the Dirichlet likelihood permutation test at time 34 (Spring
2003). Each of these approaches appear to confirm the detected change, but the proposed
method provides more information, as we can see variability associated with any shift in
Figure 6.

To gain insight into the nature of the shift suggested by the model, we explore the posterior
samples of the estimated Dirichlet parameters. The posterior location estimations (6), based
on the posterior 8 estimates (2.1), were calculated and are displayed in Figure 7. There is a
clear decrease in the proportion of diatoms from regime 1 to 2 in all three seasons, with the
proportion decreasing to just above zero in the summer and fall seasons. The proportion of
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blue-green algae increased in the second regime in all three seasons, and there are moderate
changes in the proportion of green algae and flagellates (both show a moderate increase in
the spring).

The posterior distribution for the scale T parameters, calculated from the posterior y es-
timates (2.2), are displayed in Figure 8. There is fairly strong evidence that the scale in the
summer months has increased since the start of the study. Recall that the variance of a com-
ponent is inversely proportional to the scale term. So, not only do we see an increase in
blue-green algae in the summer and a substantial decrease in diatoms, we more consistently
see this phenological behavior.

4.1. Time-varying covariate. Unlike the other methods studied herein, our framework al-
lows for time-varying covariates in the model, thus allowing for potential drivers to explain
any observed changes. With the phytoplankton time series of compositions the epilimnion
temperature (degrees Celsius), the temperature of the mixed layer at the surface of the lake,
where nearly all phytoplankton biomass is contained, is available. The epilimnion tempera-
ture is recorded at the time of sampling and aggregated into three measures per year (sea-
sonal averages), as with the phytoplankton. Warming temperatures are known to exacerbate
blooms of phytoplankton, especially blue-green algae (Paerl, Otten and Kudela (2018)), so
epilimnion temperature may act as an explanatory variable for the phytoplankton phenol-
ogy.

As expected, the temperature data is highly seasonal (plots available in Fisher et al.
(2022)). Thus, using this as a covariate may model the observed seasonality in the phyto-
plankton compositions. After removing the seasonal effects, the epilimnion temperature time
series exhibits some autocorrelation and weak evidence of an underlying trend (trend coeffi-
cient: 0.0732 with SE 0.0445 and an AR(1): qAS =0.2543, SE¢; =0.1208). The observed in-
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crease in epilimnion temperature is similar to many lakes worldwide (O’Reilly et al. (2015)).
We note that the trend is not statistically significant (based on historical practice) but is sug-
gestive. Further, the deseasoned data contains 31 negative values and 32 positive values (as
expected), but 20 of these negative values occur before time point 36 (99.6% of the posterior
paths had a regime shift at or before this point). There is at least suggestive evidence that
the epilimnion temperature increased during the period of study and may help explain the
observed shift in phytoplankton phenology.

We fit a single state Dirichlet regression model and the two-state HMM with the epilimnion
temperature as a covariate. The LOO CV value for the regression model was —315.7976
and for the Location & Scale HMM —283.3801, suggesting that the regression model is the
better fit of the two. From these two models there does not appear to be a regime shift in
the underlying Dirichlet regression coefficients when utilizing epilimnion temperature as the
only predictor, possibly due to the weak increasing trend in the covariate term. It is worth
noting that both LOO CV values for these covariate fitted models are worse than the values
reported above. Thus, even though epilimnion temperature is seasonal and appears to have
a weak trend, it may not be adequately modeling the the phytoplankton data. Further, the
credible intervals for epilimnion temperature regression coefficients for the location cover
zero (in all cases) and the sample posterior distributions closely match the prior distributions
(see Fisher et al. (2022)).

From the fitted Dirichlet regression model, we calculated the marginal residuals for each
phytoplankton group (difference between the observed proportions and the expected propor-
tion) and explored them in time (plot available in Fisher et al. (2022)). From the residuals it
is clear that epilimnion temperature is not adequately modeling the seasonality for the blue-
green algae proportions or for the flagellates. The expected proportion of green algae appears
to be over predicted (mostly negative residuals) and epilimnion temperature does not appear
to adequately model the shifts in diatoms. Thus, we can conclude that epilimnion tempera-
ture may have some explanatory properties for phytoplankton phenology but is lacking vital
information.

The analysis provides evidence the proportion of phytoplankton have changed in time.
Furthermore, changes in lake temperature alone do not explain the shift in phenology. Overall,
there appears to be a change in the distribution of phytoplankton phenology circa 2000, and
the behavior of the taxa appears to follow the distributions presented in Figure 9.
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FIG. 9. Expected compositions of phytoplankton based on the two-state Location & Scale Shift hidden Markov
model.
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5. Conclusions. In this article we proposed a method for determining if/where change
points occur in a compositional time series. The method simultaneously models the effects of
the regime shift for the location (expected proportion) and scale (inverse of variance) when
assuming a Dirichlet likelihood, the most natural distribution for a composition. Covariate
information can be included in the modeling framework. Simulations demonstrate the mod-
eling framework is effective in determining if a shift has occurred, the location of that change,
and in estimating the associated parameters of the underlying generalized linear models. In
an analysis of 21-years of phytoplankton data (1992 through 2012), we found that there ap-
pears to be a shift in the total abundance of phytoplankton circa 2000, based on chlorophyll
concentration. Likewise, the proportion of blue-green algae (cyanobacteria) appears to have
increased in that time period, while the proportion of diatoms has greatly dissipated. The
methods presented here may also have applications in economics (e.g., detect changes in a
stock portfolio), geography (detecting changes in land use), and other disciplines.
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SUPPLEMENTARY MATERIAL

hmmDirichletModel.zip (DOI: 10.1214/21-AOAS1509SUPPA; .zip). Source code
implementing model, simulations and data for analysis.

Additional results, simulations and data analysis details (DOI: 10.1214/21-A0OAS
1509SUPPB; .pdf). Document outlining further contextual motivation, additional discussion
of the proposed model and its implementation, details and simulation results, and further data
analysis results.
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