IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, OCTOBER 2022 1

Towards a Green Blockchain: Engineering Merkle
Tree and Proof of Work for Energy Optimization

Cesar E. Castellon, Student Member, IEEE, Swapnoneel Roy, Member, IEEE,
O. Patrick Kreidl, Senior Member, IEEE, Ayan Dutta, Member, IEEE, and Ladislau Boloni, Senior Member, IEEE

Abstract—Blockchain-powered smart systems deployed in dif-
ferent industrial applications promise operational efficiencies
and improved yields, while significantly mitigating cybersecurity
risks. Tradeoffs between availability and security arise at imple-
mentation, however, triggered by the additional resources (e.g.,
memory and computation) required by blockchain-enabled hosts.
This paper applies an energy-reducing algorithmic engineering
technique for Merkle Tree (MT) root calculations and the Proof
of Work (PoW) algorithm, two principal elements of blockchain
computations, as a means to preserve the promised security
benefits but with less compromise to system availability. Using
pyYRAPL, a python library to measure the energy consumption
of a computation, we experiment with both the standard and
energy-reduced implementations of both algorithms for different
input sizes. Our results show that up to 98% reduction in
energy consumption is possible within the blockchain’s MT
construction module, with the benefits typically increasing with
larger input sizes. For the PoW algorithm, our results show up
to 20% reduction in energy consumption, with the benefits being
lower for higher difficulty levels. The proposed energy-reducing
technique is also applicable to other key elements of blockchain
computations, potentially affording even ‘‘greener” blockchain-
powered systems than implied by only the results obtained thus
far on the MT and PoW algorithms.

Index Terms—Blockchain, Merkle Tree, Proof of Work, Energy
Optimization.

I. INTRODUCTION

Blockchain technology, popularized by crypto-currency sys-
tems, is seeing extensive use in several fields. Advocates
for such uses cite the blockchain’s inherent properties of
a decentralized structure alongside enhanced security with
mechanisms for privacy and non-repudiation [1], [2], [3],
[4]. One particularly promising use-case is the Internet of
Things (IoT) [5], [6], [7], which embodies the vision of
computing devices communicating with each other to map a
physically connected world onto its digital mirror. The IoT
vision also motivates prospects of smart systems [8] e.g.,
smart cities, smart homes, smart grid, smart health, smart
agriculture. Unfortunately, smart systems also raise critical
security and privacy challenges, motivating the vision of
blockchain-powered smart systems.
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Smart and secure systems implemented upon IoT tech-
nology require device inter-connectivity for extended time
frames, delivering continuous data. Such operations demand
constant power supply [8] - within a world that demands more
environment-friendly (“green”) solutions, IoT realizations also
face the challenge of energy efficiency i.e., minimizing their
energy footprint. Thakore et al. [9] acknowledge the additional
energy optimization requirements that blockchains require
when implemented together with IoT. Depending on the spe-
cific type of blockchain-IoT combination, precise analysis of
performance and energy requirements becomes critical [10].
As an example of these challenging tradeoffs, consider a
particular blockchain-IoT implementation with a fixed power
budget. To be viable for an application that values autonomy
for greater lengths of time, the system must be configured to
make more efficient use of energy. Disabling the blockchain
will certainly save energy, but also weaken security: it is in
such contexts that the exploration of ways to reduce the energy
consumption of blockchain functionality can be of tremendous
practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,
with numerous points-of-view: hardware-specific platforms,
operating systems, hypervisors and containers [11]; software
development and security [12]; and algorithms [13], [14].
Energy measurements are sometimes obtained by specifically
instrumented equipment [15], while other times can lever-
age hardware providers’ Application Programmer Interfaces
(APIs) in which firmware counters are queried to provide
near real-time information e.g., Running Average Power Limit
(RAPL) technology [16]. Blockchain implementations are
actively under study as providing a decentralized ledger (i.e.
record of transactions) by which to optimize energy manage-
ment in a variety of scenarios (e.g., generation & distribu-
tion [17], [18], micro-grid networks [19], [20], [21] and smart
contracts [22]). In contrast to our motivation, however, these
studies define the optimized management objectives such that
the energy footprint of the blockchain itself is out of scope.
Some past studies do recognize that the blockchain itself
will draw energy away from any symbiotic system it is
integrated with. Examples include Sankaran et al. [10] and
Sanju et al. [23], who perform power measurements and
evaluate real experiments on the energy consumption of two
different blockchain implementations, namely Ethereum and
Hyperledger. A similar analysis of energy consumption is
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presented in [15] for XRP validation, which is a key element
of decentralized consensus processes within many Internet ser-
vices. A particularly novel theoretical approach is reported by
Fu et al. [24], first modeling a blockchain-IoT caching infras-
tructure and posing its energy optimization within a geometric
programming formulation whose solutions allocate resources
accordingly. A recent performance evaluation survey, also by
Fu et al. [1], illustrates how diverse and sophisticated current
implementations of blockchain ledgers are.

Despite this diversity, however, all existing implementations
at their core remain faithful to Nakamoto’s original blockchain
concept [25], within which the Merkle Tree construction
module is essential. Also essential to Nakimoto’s blockchain
concept are consensus protocols, for which Proof of Work
(PoW) is arguably the most popular as the backbone of popular
crypto-currencies such as Bitcoin (~$700B industry) and
Ethereum! [26]. However, PoW is notorious for its resource-
intensive nature [27], [28] and, therefore, is a concern for
resource-limited (mobile) sensors e.g., robots [29]. A quan-
tification metric to measure the effect on the carbon cost of
such crypto-currencies is studied in [30]. In recent literature,
roboticists have used Blockchain-based consensus protocols,
such as PoW, for preventing malicious data integrity attacks
on multi-robot systems [31], [32], [33]. As standard robots
in today’s market have limited on-board battery resources,
using another resource-intensive application onboard might be
prohibitive. Therefore, novel engineering techniques to reduce
such energy consumption in Blockchains is needed, especially
for the most popular underlying protocols—this paper takes a
significant step in that direction.

Also worth mention is the recent flurry of research to reduce
energy consumption in network services and management, in
general. Examples include techniques to prevent Distributed
Denial-of-Service (DDoS) attacks [34], improve connectivity
of autonomous vehicles [35], or implement delay tolerant net-
works (DTN), all addresssing different root causes of network
disconnection problems [36]. We believe this paper, though
focused on algorithmic techniques to reduce energy consump-
tion of blockchain-enabled applications, similarly contributes
to the broad field of network services and management.

B. Our Scope and Contributions

We study the extent to which two principal elements of
blockchain computations, Merkle Tree (MT) construction and
the Proof of Work (PoW) algorithm, can be made more
energy efficient. Our approach employs an energy-reducing
algorithmic engineering technique, based upon an Energy
Complexity Model (ECM) proposed by Roy et al. [13], [14],
on the SHA256 encryption algorithm, which is central to
both MT and PoW algorithms. Using pyRAPL, a python
library that measures an executable’s Runtime Average Power
Limit (RAPL), we experiment with both the standard and
energy-reduced implementations of both algorithms, varying
for MT the input size and for PoW the difficulty level,
in both algorithms choosing configurations commonly seen

!Ethereum will soon adopt the Proof of Stake (PoS) consensus protocol.

within contemporary blockchain implementations. The main
contributions of this work are:

o To the best of our knowledge, the first to address the
energy optimization of blockchains by re-engineering
the implementation of two of its primary component
algorithms, Merkle Tree (MT) and Proof-of-Work (PoW).

e Our results show significant reductions in energy con-
sumption: in MT, up to 98% reduction and on-average
50% across the tested input sizes, while in PoW up to
20% reduction and on-average 10% across the tested
difficulty levels.

Moreover, the proposed energy-reducing technique is similarly
applicable to other key elements of blockchain computations,
potentially affording even “greener” blockchain-IoT systems
than implied by only the MT and PoW results reported here.
As a final remark, a preliminary version of this paper appeared
in the 2021 IEEE TRUSTCOM conference [37], treating only
the MT construction algorithm. This paper generalizes the ex-
perimental approach to examine energy optimization prospects
within both MT and PoW and, in turn, presents the PoW
results for the first time.

II. OVERVIEW OF MERKLE TREE AND PROOF OF WORK
A. Merkle Tree (MT) Based Block Generation

A graphic representation of a simple MT based block gen-
eration in a blockchain is shown in Fig. 1. The bottom layer
shows the stored transactions (e.g., 77001) for the block, which
later are converted to their SHA256 Hash signatures (e.g.,
HO001) and represent the Merkle Tree leaves. Merkle Tree root
calculations involve the recursive hash computation starting
from these leaves until a final hash determines the Merkle
Tree root (labeled TX_ROOT in Fig. 1).
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Figure 1: Basic block generation in a blockchain.

Conceptually, the process of Merkle Tree calculation through
hashing can be viewed as a state transition in which an
investment of computational resources is required e.g.,

T
5 105 614 ()
T = costlenergy,time] (2)

That is, the block generation is represented by the state
transition in (1), which depends upon a function f(7) with
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parameter 7" denoting the cost as represented by (2). This cost
has two main components: one is the energy consumed by the
hardware devices to compute the hash of the input vectors,
while the other is the execution time of those computations.
This paper strives to reduce the overall transition cost 7' by
reducing the energy consumption of the hardware devices,
employing a technique based upon the ECM described in
Section III-A.

B. Proof of Work (PoW)

In crypto-economic blockchains such as Bitcoin, or Ethereum,
node miners run the Proof of Work (PoW) algorithm, compet-
ing to create new blocks filled with processed transactions.
The PoW algorithm sets the operation rules and mining
difficulty setting the pace for adding valid blocks to the chain.
To create a block in PoW, a miner will repeatedly put
an actual downloaded dataset through a hashing function,
looking for a result below a target nonce as dictated by the
block difficulty parameter, where a lower target nonce permits
a smaller set of valid hashes. Once a successful result is
generated, other miners and clients can verify the validity of
the block with a single hash operation. If one transaction on the
chain were to change, the hash would be completely different,
thus signaling possible fraud.
The standard blockchains will accept that an agreement of
more than 50% of the total computing capacity suffices to
reach a consensus. Thus, although a possible disagreement
may appear, the majority vote will solve opposite opinions.
That is, another key element of a blockchain’s consensus
mechanism is the chain selection rule by which the correct
chain is decided in the event that multiple paths evolve in
parallel. Bitcoin, for instance, uses the Nakamoto rule that
selects the “longest chain” as the correct one. Finally, PoW
is not only applicable to consensus protocols in blockchains:
it also works as block author selector [38] and a Sybil-
resistance mechanism [39]. Sybil attacks occur when a group
of colluding nodes pretend to be many participant nodes.
Resistance to this attack is crucial for decentralized blockchain
ledgers. PoW makes users expend a lot of energy or crypto
value as protection, as an economic deterrents to Sybil attacks.
1) Implementation of PoW: The PoW algorithm involves
the following essential steps local to each member of the
network sharing a common blockchain:

1) Update the local copy of the chain to the latest version.

2) Solve a mathematical puzzle and create the mined block
header hash.

3) Advertise the solution as soon as the math puzzle is
solved.

4) Append the block to the chain if authorized.

Arguably, the most widely adopted algorithm for PoW is the
Hashcash scheme [40], [41], [42], [43], [44]. To expedite our
experimentation, yet still reliably emulate blockchain hashing
operations, we implemented a simplified version of this al-
gorithm (Algorithm 1). In our implementation, a difficulty is
defined first — how many trailing or preceding 0’s are there in
the hash value of a block. The more 0’s are there, the more
difficult it is to find the hash value. To find this hash value,

an integer number, called nonce, is used, which is initialized
to 0 and increased by 1 within a for loop. If the number
of 0’s (i.e., the difficulty level) match the number of 0’s in
the hash value of the nonce variable, the loop breaks since
the appropriate nonce is found. The hash value is calculated
using the SHA256 algorithm. A maximum loop number is
maintained — if the proper nonce is not found by this maximum
time, the nonce is reset to O and the program returns an
exception. This process of finding the proper nonce whose
hash matches the the intended difficulty level is called mining.

Algorithm 1: BlockHash Mining Algorithm (PoW)
Data: nonce, Block(B), difficulty
Result: B.hash,nonce

1 nonce < 0;

2 diff < fill(“0”, difficulty);
3 for MAX STEPS do

/* Difficulty = #0s */

4 B.Hash <~ SHA256(B.Params+nonce);

5 if substr(B.Hash,difficulty) = diff then

6 ‘ break ; /* Match found */
7 else

8 if i = 225 then

9 nonce < 0 ; /* Reset nonce */
10 break;

11 end
12 end
13 nonce < nonce + 1 ; /* Try the next nonce */
14 end

ITII. ENGINEERING MT AND POW FOR ENERGY
CONSERVATION

In this section, we describe a technique for reducing the energy
consumption of SHA256 by an engineering technique using
the Energy Complexity Model (ECM) designed in [13]. We
then apply the energy-optimized SHA256 to both MT and
PoW to measure the reductions of energy consumption. Before
illustrating the engineering techniques, we briefly describe
ECM in the next section.

A. The Energy Complexity Model (ECM)

The ECM developed in [13] is built upon an abstraction of
the Double Data Rate Synchronous Dynamic Random Access
Memory (DDR SDRAM) architecture [45] illustrated in Fig. 2.
The main memory in DDR is divided into banks, each of
which contains a certain number of chunks®. Data is allocated
over chunks in each bank, and each bank also contains a
special chunk called the sense amplifier. When data needs to
be accessed, the chunk containing the data is fetched into the
sense amplifier of the corresponding bank. The sense amplifier
can only hold one chunk at a time, so the current chunk has
to be put back to its bank before the next one can be fetched
for access. While only one chunk of a particular bank can be
accessed at a time, chunks of different banks (each with their

2The term “block” is used in DDR specifications, but we use the term
“chunk” to avoid confusion within our blockchain context.
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own sense amplifier) can be accessed in parallel. Therefore, if
the DDR memory is organized into P banks (where P =4 in
Fig. 2), then P chunks can be accessed at a given time. In the
popular DDR3 architecture, the DDR1 notion of the per-bank
sense amplifier is referred to as the per-bank cache, albeit still
only capable of accessing one chunk at a given time.
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Figure 2: Internal DDR SDRAM memory chip block diagram.

The ECM denotes the P banks of a given DDR3 SDRAM
resource by My, Ms, ..., Mp, each such bank M; comprised
of multiple chunks of size B bytes and its own cache C;. The
illustrative example of Fig. 3 assumes P = 4 banks, as was
the case in Fig. 2, with just four chunks per bank, assigning
numerical labels 1,2,...,16 to the memory’s collection of
data chunks. Heeding the DDR constraint that each cache C;
may access exactly one chunk at a time, the access patterns
(1,2,3,4) or (5,6,7,8) imply a completely serial execution,
while the access patterns (1,5,9,13) or (3, 8,10, 13) are each
completely parallel. The authors of [13] discovered two key
properties of DDR memory: firstly, the difference in power
consumption between the same number of chunks accessed
sequentially or in parallel is not significant; however, the
execution time of an algorithm when chunks are accessed in
parallel is significantly lower than when chunks are accessed
sequentially. Because the associated energy consumption de-
pends upon both power and time, parallelizing chunk accesses
offers the potential for energy reduction for any algorithm!
More formally, the energy consumption (in Joules) of an
algorithm A with computational complexity (execution time)
W (A), assuming a P-bank DDR3 architecture with B bytes
per chunk, is given by

E(A)=W(A)+ (P xB)/I 3)

where [ is the parallelization index, essentially the number
of parallel block accesses across memory banks per P block
accesses made by A on the whole. That is, under the ECM,
an algorithm’s potential for energy reduction is inversely

proportional to the degree to which it can be re-engineered
for parallelization of its memory accesses.

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
C1 C2 C3 C4

Figure 3: ECM for DDR3 resource with P = 4 banks

Equation 3 implies, for W(A) > (PxB)/1, E(A) = W(A).
In other words, for algorithms with high computational com-
plexity (e.g. exponential execution time), the energy complex-
ity becomes equivalent to its computational complexity.

B. Re-engineering Hash Calculations Using ECM

In this work, we engineer the hash algorithm of Line 4 of Al-
gorithm 1 based on ECM to reduce energy consumption. First,
we briefly describe how any algorithm A can be parallelized
based on ECM. We then illustrate how, specifically the SHA
hash algorithm, is re-engineered for parallelization.

1) Parallelizing any algorithm: Given an algorithm A, the

input to A is considered to identify the most common access
sequence in A. The required level of parallelism for the vector
formed by the desired access sequence is then engineered
using a logical mapping over chunks of memory that store
data accessed by A. As mentioned above, the order of chunk
accesses is different for different levels of parallelization. But
the physical location (chunk) of the input in the memory
is static, and is handled by the memory controller of DDR.
Therefore, to implement parallelization of access over physical
chunks, a different page table vector V is generated for each
level of parallelization, which defines the ordering among the
chunks to be accessed (see Fig. 4).
For 1-way access, the page table vector V has the pattern
(1,2,3,4,...) while for 4-way access it has the pattern
(1,5,9,13,...). A function is then created to map the pattern
of the page table vector V to the original physical locations of
the input. Algorithm 2 shows the function to create an ordering
among the chunks. The ordering is based on the way we want
to access the chunks (P-way would mean full parallel access).
The page table is populated by picking chunks with jumps.
For P-way access, jumps of P are selected that ensure the
consecutive chunk accesses lie in P different banks. Going
by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of
Fig. 3). On the other hand, for P = 4, jumps of 4 ensure that
4 consecutive chunk accesses lie in 4 different banks (banks
1 through 4 of Fig. 3).

2) Parallelizing SHA for MT and PoW: As described earlier,
both MT and PoW (Algorithm 1) perform their respective hash



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, OCTOBER 2022 5

——  2-WAY PAGE TABLE
MEM
BANK

I\\ !

MEM
BANK \ 7]

4-WAY PAGE TABLE

Figure 4: Memory layout (P = 4) and role of page tables

Algorithm 2: Create a Page Table for N Chunks
Input: Page table vector V, jump amount jump.

1 factor = 0;

2fori=0t & —1do

3 if i > 1 and (i x jump) mod % =0 then

4 ‘ factor = factor +1;

5 end

6 V= (i x jump + factor) mod %;

7 end

calculations via the repeated use of the SHA256 algorithm.
As shown in Fig. 5, the input to SHA256 is partitioned into
fixed size message blocks, presented in sequence to separate
compression functions.

INPUT MESSAGE
MSG MSG
NSG BLOCK BLOCK
BLOCK _n n+1
MSG .

BLOCK

Figure 5: Illustration of the SHA256 algorithm

This block sequence is identified in correspondence with the
access pattern of the SHA256 algorithm, which we subject to

re-engineering based on the ECM. The input vector is pre-
processed into another vector by applying Algorithm 2. The
mapping is then stored in a page table to be used in subsequent
hash calculations. An example of this operation for 16 blocks
and a parallelization index (jump) of 4 is shown in Fig. 6.
Fig. ?? shows the outcome of re-engineering the SHA256

| INPUT MESSAGE |

l BLOCKS OF THE INPUT MESSAGE

[+ [2T= T« [Ee] ~ [« T= [eo RN < |

l REALLOCATION OF BLOCKS

AFTER APPLYING ALGORITHM 2

[+ 0 - I [T o - - |

Figure 6: Mapping of SHA input blocks based on ECM

algorithm based on ECM. In our experimentation, an 8-bank
DDR3 SDRAM is used and the parallelization index is set
to I = 8. This essentially means that for any set of eight
consecutive block access in SHA256, we created a virtual
mapping using techniques described in [14] to ensure that each
size-8 access occurs across all eight banks.

Theorem III.1. The re-engineered SHA256 algorithm has
the same computational complexity as the original SHA256
algorithm.

Proof. SHA256 has a computational complexity of O(N),
where IV is the number of blocks in Fig. 5 [46]. Algorithm 2
has a computational complexity of ©(NV) since the for loop
of line 2 executes exactly % times. Therefore applying Algo-
rithm 2 to SHA256 as illustrated in Fig. 6 does not change
the overall computational complexity of SHA256. O

Theorem III.1 implies that applying the re-engineered
SHA256 in place of the original SHA256 in any algorithm will
not modify the computational complexity of the algorithm.

3) Applying the re-engineered SHA256 to MT: To recap, a
graphic representation of a simple MT-based block generation
in a blockchain is shown in Fig. 1. The bottom layer shows the
stored transactions (e.g., 7001) for the block, which later are
converted to their SHA256 Hash signatures (e.g., H001) and
represent the Merkle Tree leaves. Merkle Tree root calculations
involve the recursive hash computation starting from these
leaves until a final hash determines the Merkle Tree root
(labeled TX_ROOQOT in Fig. 1). Fig. 7 shows the input to the
SHA256 hash for the MT algorithm.

Section IV describes the results of a series of experiments
conducted to calculate the energy savings obtained by incor-
porating the re-engineered SHA256 algorithm into MT.

HASH LEAF (p+1)

Figure 7: Input to SHA256 for the MT algorithm
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4) Engineered SHA256 Applied to PoW: For PoW, Line 4
of Algorithm 1 uses SHA256. The input vector in Line 4 of
Algorithm 1 being the concatenation of the string (B.Params)
and the nonce (Fig. 8) is pre-processed into another vector by
applying Algorithm 2.

Figure 8: Input to SHA256 for the PoW algorithm

Theorem IIL.2. For hash size h, Algorithm 1 has a computa-
tional complexity of O(2").

Proof. Algorithm 1 attempts to find a hash value satisfying
the difficulty level by brute-forcing over every possible hash
values. The computational complexity stated in Theorem II1.2
therefore follows. O

Theorem III.2 implies, the energy complexity of Algorithm 1
(or PoW) will converge with its computational complexity
based on the size of the hash function used at some point.
In this work, we therefore attempted to optimize the hash
Sfunction (SHA256) used in Algorithm 1 to investigate whether
that reduces the overall energy consumption of the PoW
algorithm. Next, we present the results of our experiments
with these proposed energy-optimized MT root calculation and
PoW versions.

IV. EXPERIMENTS

In the following we describe a series of experiments designed
to quantify the energy savings of the methodology described in
the previous section. By virtue of the ECM’s formulation, the
enhanced implementation requires computer hardware using
a DDR RAM architecture. Maximum energy reduction is
promised by a parallelization index taken to equal the number
of memory banks, which depends upon the DDR version:
4 for DDR2, 8 for DDR3 and 16 for DDR4 and higher.
The machine used for our experiments features a 64-bit dual-
core processor (Intel i5-2410M @ 2900MHz with cache size
L2 256KB and L3 3072KB), running Linux Mint version
19.3 with a 8GB DD3 RAM and 500GB SSD storage. We
use pyRAPL, a software toolkit to measure a host machine’s
energy footprint along the execution of a piece of Python code,
to compare the energy consumption between the standard
and ECM-enhanced implementations. pyRAPL is built upon
Intel’s Running Average Power Limit (RAPL) technology that
estimates a CPU’s power consumption; depending on the
hardware and operating system configurations, pyRAPL can
measure energy consumption of the following CPU domains:
CPU socket, GPU, and DRAM [16].

A. Implementation Details and Setup

Our experimental objectives could not be met by using the
SHAZ256 function in the Hash Python library because memory
management in Python involves a private heap, containing all

objects and data structures. The control of this private heap
is ensured internally by the Python memory manager, with
different components dealing with sharing, segmentation, pre-
allocation or caching. Our ECM-enhanced implementation of
SHA256 requires greater control over memory allocation than
Python’s memory manager permits. Such low-level control on
memory management is possible in the standard C program-
ming language. We thus implement the standard and ECM-
enhanced versions of the SHA256 algorithm within separate
C programs, which are called from a Python script (upon
importing the ctypes module) as an external routine. This
permits the use of pyRAPL for the needed energy measure-
ments without denying low-level memory control to implement
the ECM-enhanced SHA256 functionality in both MT and
PoW algorithms.

1) MT Experimental Details: Our experiments simulated
the Merkle Tree calculation with Python code that runs 103
consecutive two-leaves-input hashes with pyRAPL invoked.
Each execution of the code yields an energy measurement,
but because the instrumentation is subject to noise we invoke
5000 repetitions and report the mean and standard devia-
tion results. Our experiments also vary the input size (i.e.,
the compounded-leaf size) to the Merkle Tree calculations,
choosing 1, 64, 96, 128, 512, 1024, 16384 and 262144 bytes
motivated as follows:

1) the 1B input is the bare minimum that the ECM permits
for any algorithm [13];

2) the 64B, 96B and 128 inputs are common in blockchain
applications [6];

3) the 512B and 1024B inputs are common in file hashing
applications [47]; while

4) the 16384B and 262144B inputs are common in the
Interplanetary File System (IPFS) [48], [49].

2) PoW Experimental Details: The standard PoW imple-
mentation is labeled by “O” that uses the original SHA256
hashing algorithm, while the implementation using the pro-
posed re-engineered SHA256 algorithm is labeled by “E”.
The input size is fixed to 256 bytes including all the block
header parameters and byte padding, while we experimented
with six difficulty levels ranged from 1 through 6 (encoded
by HO, H0O, H000, HO0O00, HO0000 and HO00000). Per
implementation and difficulty level, our experimental Python
program leverages the pyRAPL toolkit to measure the average
energy (mean and standard deviation over repeated trials) of
the emulated PoW calculations.

B. Results and Discussion

We discuss experimental results from both sets of experiments
(MT and PoW) separately in this section.

1) MT Results: Recall that our experimental setup features
two implementations of Merkle Tree (MT) calculations, the
standard one (which we label by “O” as it uses the original
SHA256) and the re-engineered one using ECM (which we
label by “E” as it uses the enhanced SHA256), as well as
eight different input sizes. Per implementation and per input
size, our experimental Python script leverages the pyRAPL
toolkit to measure the average energy (mean and deviation
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over 5000 trials) of simulated Merkle Tree calculations. Fig. 9
summarizes the sixteen average energy measurements in two
bar charts, per input size comparing the Standard MT (O) and
the Enhanced MT (E) average energy (in pJoules). Fig. 9(a)
renders the comparison over the six smallest input sizes (using
a linearly-scaled vertical axis), while Fig. 9(b) is over the
two largest input sizes (using a log-scaled vertical axis). It
is seen that the ECM-enhanced implementation consistently
requires less energy than the standard implementation, the
difference being increasingly significant with the larger input
sizes that befit file hashing applications (i.e., 512B and above)
while still remaining meaningful for input sizes of 64B, 96B
and 128B that befit blockchain applications. This observed
dependence on input size may be a consequence of CPU
memory caching. DRAM memory often allows the memory
controller to optimise accesses by L1/L.2/L3 caching of data.
With smaller inputs, such caching enables parallelization of
bank accesses even in the standard implementation. The com-
parison for the 1B input size corroborates this point, where we
observe the enhanced implementation consume more energy
than the standard implementation.
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Figure 9: Comparison of average energy consumption in MT

Fig. 10 presents the average energy comparison on more
relative terms, namely as a percent reduction achieved by the
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Figure 10: Energy savings based on various input sizes in MT

enhanced implementation over the standard implementation
versus all eight input sizes. The energy savings for the
blockchain-motivated input sizes range between 19% and 34%,
while the energy savings for the file-system-motivated input
sizes range between 69% and 98% - the case of 16384B
exhibiting that maximum 98.47% savings. As noted in Fig. 9,
the 1B input renders a savings of —4.27%, meaning the
standard implementation is more energy-efficient by virtue of
the parallelism invoked within the CPU’s L1/L2/L3 cache in
this case.

2) PoW Results: Fig. 11 summarizes the average energy
measurements (using a log-scaled vertical axis) per difficulty
level size, at each level comparing the Standard PoW (O)
and the Enhanced PoW (E) average energy (in wJoules). It
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Figure 11: Comparison of average energy consumption in PoW
per difficulty level (with 1-sigma standard deviation over 1000
trials)

is observed from Fig. 11 that there exists energy savings
when comparing both implementations, although the savings
percentage is inversely proportional to the difficulty level.

The results in Fig. 11 tally with what we had derived in
Section III-B4 in light of Theorem III1.2. With higher difficulty
levels the energy complexity of PoW based on the ECM
converges with its computational complexity based on the
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Turing Model. Our experimental results underscore what we
had theoretically analyzed about PoW in terms of its energy
consumption. To further illustrate this, in Fig. 12, the average
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Figure 12: Energy savings in PoW per difficulty

energy comparison in relative terms versus difficulty level,
namely as a percent reduction achieved by the enhanced im-
plementation over the standard implementation, is presented.
The energy savings in PoW range between 4% and 20%, the
case of Difficulty 1 exhibiting a maximum saving of 20%. We
observe steady reduction in energy savings as the difficulty
level increases (Fig. 12). This again tallies with our theoretical
energy complexity analysis of PoW in Section II1I-B4.
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Figure 13: Iterations per difficulty level in PoW (y-axis in log-
scale)

As further illustration, Fig. 13 displays the exponential rise
in the number of iterations within the PoW operations with
increasing difficulty levels, signifying the exponential runtime
dependency of PoW (Algorithm 1) based on the hash size and
difficulty level as a higher difficulty level forces Algorithm 1 to
iterate through the for loop (line 3) exponentially more times.
This complements Theorem II1.2 about the energy complexity
of Algorithm 1 converging with its computational complexity
based on size of the hash function used at some point.

C. Approximate Cost-Savings Analysis

We present an approximate cost-reduction analysis on im-
plementing the energy optimization techniques on MT and
PoW. Evaluating possible power optimization needs total time
estimation for every operation. Figs. 14 and 15 respectively
illustrate the percentage of savings for time (usec) and
power(uWatt) for MT and PoW.
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Figure 14: Savings in Merkle Tree duration and power
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Figure 15: Savings in PoW duration and power

The following formulas have been used to estimate energy
costs in the analysis.

Energy consumption calculation. The energy £ in kilowatt-
hours (kWh) per day is equal to the power P in watts (W)
times number of usage hours per day ¢ divided by 1000 watts
per kilowatt.

“

Electricity cost calculation. The electricity cost per day in
dollars is equal to the energy consumption F in kWh per day
times the energy cost of 1 kWh in ¢/kWh divided by 100
(/$).

E(whyday) = Pow) X t(hday) /1000w /kw)
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COSt($/day) = E(kWh/day) X OOSt(¢/kWh)/1OO 5)

To estimate a yearly energy savings by our optimized PoW
we make the following assumptions: The system generates
500 blocks per hour, a total of 16 hours is consumed in daily
operation. Additionally, residential electricity rates in Florida
average 11.42¢/kWh. Fig. 16 depicts the calculated yearly
energy savings based on the above assumptions.
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Figure 16: Example of potential yearly savings for a ECM
BCH-powered application

D. Discussion on Network Throughput Change

Blockchain nodes are authorized stakeholders to keep track of
the distributed ledger, and may also serve as communication
proxies (e.g hierarchical distributed cryptocurrency system)
for different network tasks, when the underlying topology is
complex, or a highly populated ecosystem is used. In simpler
topologies (e.g. a fully meshed interconnected robot fleet), all
nodes are considered to have access to the ledger, and no proxy
functions are implemented on them.

This work has been motivated by the latter topology type,

where the ledger life depends only on duration of the mission,
therefore parameters like node size or network throughput
have not been considered for evaluation while conducting
experiments (since this is a limited-size, low-volume, small-
scale transactions scenario.
Nevertheless, based on Theorem III.1 it can be inferred that
since the ECM modification lies in the core programming of
the nodes (it is a modification of an algorithm), it does not
add any additional data to the transactions. Since the resulting
hashes have the same size as the original ones, there will not
be any increase in size for any given node. Therefore we
conjecture that our energy optimization techniques will not
have influence on overall network throughput.

However, it will be interesting to observe any possible
changes in Read Latency, Read Throughput, Transaction La-
tency, Transaction Throughput as Key Performance Indicators
depending on the type of Blockchain application to implement
while applying our techniques for energy optimization.

V. A COMPARISON WITH EXISTING TECHNIQUES

Most of the focus on energy optimization in blockchain has
either been in designing new hardware or designing energy-
lighter versions of existing protocols. A few recent techniques
include:

1) Specializing the Datacenter. Usage of Clouds in
blockchain. Power consumption has been significantly
reduced by using GPU and FPGA based clouds espe-
cially when dealing with intensive workloads [50].

2) Resource-efficient mining. This technique is based on
a novel trusted hardware by Intel named as Software
Guard Extension (SGX). The idea is to smartly curtail
the infinite loop of PoW to design Proof of Useful Work
(PoUW), involving miners that provide trustworthy re-
porting on CPU cycles [51].

3) Sawtooth blockchain software. Intel proposed a novel
energy-saving blockchain system that incorporates the
security features into the chipmaker’s CPU. This system
software randomly selects users for writing the block.
The underlying algorithm is called Proof of Elapsed-
Time that makes miners sleep and wake insead of
constantly mining as in PoW [52].

4) Side Chains This method has evolved over Bitcoin and
Ethereum network using again an alternate algorithm
called Proof of Authority (PoA) to determine miners.
This is mostly used in private blockchains [53].

The notable part is to the best of our knowledge, ours is the
first work that attempts to re-engineer POW based on the ECM
to reduce energy consumption in it. Our technique is generic
so that it can be also applied to the lighter algorithms as
mentioned above to further reduce their energy consumption.

VI. CONCLUSION AND FUTURE WORK

This paper described a technique to reduce the energy
consumption of the Merkle Tree (MT) and Proof of Work
(PoW) computations within blockchanns. At the technique’s
core is a re-engineered SHA256 hashing algorithm based
upon the Energy Complexity Model (ECM) [13]. The ECM-
enhanced implementations were compared to the standard im-
plementations via experimental energy measurements, varying
input sizes within the MT experiments and varying difficulty
level within PoW experiments, both including configurations
of practical significance. The results for MT show that up to
34% energy savings is possible for input sizes typically used
by blockchains, while up to 98% is possible for input sizes
used by other applications (e.g., file systems). The results for
PoW show up to 20% energy savings is possible, yielding
diminished savings with increasing difficulty levels as the
theoretical energy complexity analysis of PoW predicts. Due
to limitations of our current experimental infrastructure, we
can only conjecture that the reduced energy consumption in
these algorithm modules (MT and PoW) extrapolates to a
comparable reduction for blockchains on the whole. Should
such a conjecture hold, however, numerous applications could
render “greener” blockchained-enabled networked systems
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e.g., autonomous vehicles [54], crypto-currencies [55], cloud-
based software defined networks [56], intrusion detection
systems [57] as well as Internet-of-Things (IoT) technology
[5], [6], [7] and smart systems [8].

Natural next steps of this work are to assess the energy-
saving opportunities in other applications of Merkle Trees
e.g., authentication schemes [49], healthcare systems [58],
embedded systems [59], network protocols [60], [61]. Also
of interest is the exploration to reduce energy consumption
of the different variations and implementations of PoW al-
gorithm (e.g. [31], [32], [62], [63], [64]), and the alternative
Proof of Stake (PoS) algorithm [31], [65]. Future work could
also examine directions by which the emulation testbench
developed herein can be merged with an actual blockchain
implementation, offering all the functionalities that a peer node
uses while connected to other peers in true distributed fash-
ion. Real-world usage may also feature different sequencing
and/or intermittent reliance on hashing primitives, so achieved
energy savings may be only probabilistically related to the
results demonstrated under deterministic usage patterns here.
Another avenue for future work is to examine the sensitivity
of energy savings to different hardware platforms. The energy
measurement tool employed here, namely RAPL, is developed
for only Intel processors; meanwhile, the Energy Complexity
Model (ECM) by which the hash function was re-engineered
is developed currently only for DDR memory architectures.
However, current “smart” devices technologies are anticipated
to use other hardware configurations, such as ARM platforms,
for which the ECM is not yet developed to analogously exploit
prospects of memory/CPU parallelization.
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