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Abstract—Blockchain-powered smart systems deployed in dif-
ferent industrial applications promise operational efficiencies
and improved yields, while significantly mitigating cybersecurity
risks. Tradeoffs between availability and security arise at imple-
mentation, however, triggered by the additional resources (e.g.,
memory and computation) required by blockchain-enabled hosts.
This paper applies an energy-reducing algorithmic engineering
technique for Merkle Tree (MT) root calculations and the Proof
of Work (PoW) algorithm, two principal elements of blockchain
computations, as a means to preserve the promised security
benefits but with less compromise to system availability. Using
pyRAPL, a python library to measure the energy consumption
of a computation, we experiment with both the standard and
energy-reduced implementations of both algorithms for different
input sizes. Our results show that up to 98% reduction in
energy consumption is possible within the blockchain’s MT
construction module, with the benefits typically increasing with
larger input sizes. For the PoW algorithm, our results show up
to 20% reduction in energy consumption, with the benefits being
lower for higher difficulty levels. The proposed energy-reducing
technique is also applicable to other key elements of blockchain
computations, potentially affording even “greener” blockchain-
powered systems than implied by only the results obtained thus
far on the MT and PoW algorithms.

Index Terms—Blockchain, Merkle Tree, Proof of Work, Energy
Optimization.

I. INTRODUCTION

Blockchain technology, popularized by crypto-currency sys-

tems, is seeing extensive use in several fields. Advocates

for such uses cite the blockchain’s inherent properties of

a decentralized structure alongside enhanced security with

mechanisms for privacy and non-repudiation [1], [2], [3],

[4]. One particularly promising use-case is the Internet of
Things (IoT) [5], [6], [7], which embodies the vision of

computing devices communicating with each other to map a

physically connected world onto its digital mirror. The IoT

vision also motivates prospects of smart systems [8] e.g.,

smart cities, smart homes, smart grid, smart health, smart

agriculture. Unfortunately, smart systems also raise critical

security and privacy challenges, motivating the vision of

blockchain-powered smart systems.
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Smart and secure systems implemented upon IoT tech-

nology require device inter-connectivity for extended time

frames, delivering continuous data. Such operations demand

constant power supply [8] - within a world that demands more

environment-friendly (“green”) solutions, IoT realizations also

face the challenge of energy efficiency i.e., minimizing their

energy footprint. Thakore et al. [9] acknowledge the additional

energy optimization requirements that blockchains require

when implemented together with IoT. Depending on the spe-

cific type of blockchain-IoT combination, precise analysis of

performance and energy requirements becomes critical [10].

As an example of these challenging tradeoffs, consider a

particular blockchain-IoT implementation with a fixed power

budget. To be viable for an application that values autonomy

for greater lengths of time, the system must be configured to

make more efficient use of energy. Disabling the blockchain

will certainly save energy, but also weaken security: it is in

such contexts that the exploration of ways to reduce the energy

consumption of blockchain functionality can be of tremendous

practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,

with numerous points-of-view: hardware-specific platforms,

operating systems, hypervisors and containers [11]; software

development and security [12]; and algorithms [13], [14].

Energy measurements are sometimes obtained by specifically

instrumented equipment [15], while other times can lever-

age hardware providers’ Application Programmer Interfaces

(APIs) in which firmware counters are queried to provide

near real-time information e.g., Running Average Power Limit

(RAPL) technology [16]. Blockchain implementations are

actively under study as providing a decentralized ledger (i.e.

record of transactions) by which to optimize energy manage-

ment in a variety of scenarios (e.g., generation & distribu-

tion [17], [18], micro-grid networks [19], [20], [21] and smart

contracts [22]). In contrast to our motivation, however, these

studies define the optimized management objectives such that

the energy footprint of the blockchain itself is out of scope.

Some past studies do recognize that the blockchain itself

will draw energy away from any symbiotic system it is

integrated with. Examples include Sankaran et al. [10] and

Sanju et al. [23], who perform power measurements and

evaluate real experiments on the energy consumption of two

different blockchain implementations, namely Ethereum and

Hyperledger. A similar analysis of energy consumption is
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presented in [15] for XRP validation, which is a key element

of decentralized consensus processes within many Internet ser-

vices. A particularly novel theoretical approach is reported by

Fu et al. [24], first modeling a blockchain-IoT caching infras-

tructure and posing its energy optimization within a geometric

programming formulation whose solutions allocate resources

accordingly. A recent performance evaluation survey, also by

Fu et al. [1], illustrates how diverse and sophisticated current

implementations of blockchain ledgers are.

Despite this diversity, however, all existing implementations

at their core remain faithful to Nakamoto’s original blockchain

concept [25], within which the Merkle Tree construction

module is essential. Also essential to Nakimoto’s blockchain

concept are consensus protocols, for which Proof of Work

(PoW) is arguably the most popular as the backbone of popular

crypto-currencies such as Bitcoin (∼$700B industry) and

Ethereum1 [26]. However, PoW is notorious for its resource-

intensive nature [27], [28] and, therefore, is a concern for

resource-limited (mobile) sensors e.g., robots [29]. A quan-

tification metric to measure the effect on the carbon cost of

such crypto-currencies is studied in [30]. In recent literature,

roboticists have used Blockchain-based consensus protocols,

such as PoW, for preventing malicious data integrity attacks

on multi-robot systems [31], [32], [33]. As standard robots

in today’s market have limited on-board battery resources,

using another resource-intensive application onboard might be

prohibitive. Therefore, novel engineering techniques to reduce

such energy consumption in Blockchains is needed, especially

for the most popular underlying protocols–this paper takes a

significant step in that direction.

Also worth mention is the recent flurry of research to reduce

energy consumption in network services and management, in

general. Examples include techniques to prevent Distributed

Denial-of-Service (DDoS) attacks [34], improve connectivity

of autonomous vehicles [35], or implement delay tolerant net-

works (DTN), all addresssing different root causes of network

disconnection problems [36]. We believe this paper, though

focused on algorithmic techniques to reduce energy consump-

tion of blockchain-enabled applications, similarly contributes

to the broad field of network services and management.

B. Our Scope and Contributions

We study the extent to which two principal elements of

blockchain computations, Merkle Tree (MT) construction and

the Proof of Work (PoW) algorithm, can be made more

energy efficient. Our approach employs an energy-reducing

algorithmic engineering technique, based upon an Energy

Complexity Model (ECM) proposed by Roy et al. [13], [14],

on the SHA256 encryption algorithm, which is central to

both MT and PoW algorithms. Using pyRAPL, a python

library that measures an executable’s Runtime Average Power

Limit (RAPL), we experiment with both the standard and

energy-reduced implementations of both algorithms, varying

for MT the input size and for PoW the difficulty level,

in both algorithms choosing configurations commonly seen

1Ethereum will soon adopt the Proof of Stake (PoS) consensus protocol.

within contemporary blockchain implementations. The main

contributions of this work are:

• To the best of our knowledge, the first to address the

energy optimization of blockchains by re-engineering

the implementation of two of its primary component

algorithms, Merkle Tree (MT) and Proof-of-Work (PoW).

• Our results show significant reductions in energy con-

sumption: in MT, up to 98% reduction and on-average

50% across the tested input sizes, while in PoW up to

20% reduction and on-average 10% across the tested

difficulty levels.

Moreover, the proposed energy-reducing technique is similarly

applicable to other key elements of blockchain computations,

potentially affording even “greener” blockchain-IoT systems

than implied by only the MT and PoW results reported here.

As a final remark, a preliminary version of this paper appeared

in the 2021 IEEE TRUSTCOM conference [37], treating only

the MT construction algorithm. This paper generalizes the ex-

perimental approach to examine energy optimization prospects

within both MT and PoW and, in turn, presents the PoW

results for the first time.

II. OVERVIEW OF MERKLE TREE AND PROOF OF WORK

A. Merkle Tree (MT) Based Block Generation

A graphic representation of a simple MT based block gen-

eration in a blockchain is shown in Fig. 1. The bottom layer

shows the stored transactions (e.g., T001) for the block, which

later are converted to their SHA256 Hash signatures (e.g.,

H001) and represent the Merkle Tree leaves. Merkle Tree root

calculations involve the recursive hash computation starting

from these leaves until a final hash determines the Merkle

Tree root (labeled TX ROOT in Fig. 1).

Figure 1: Basic block generation in a blockchain.

Conceptually, the process of Merkle Tree calculation through

hashing can be viewed as a state transition in which an

investment of computational resources is required e.g.,

δt
f(T )−−−→ δt+1 (1)

T = cost[energy, time] (2)

That is, the block generation is represented by the state

transition in (1), which depends upon a function f(T ) with
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parameter T denoting the cost as represented by (2). This cost

has two main components: one is the energy consumed by the

hardware devices to compute the hash of the input vectors,

while the other is the execution time of those computations.

This paper strives to reduce the overall transition cost T by

reducing the energy consumption of the hardware devices,

employing a technique based upon the ECM described in

Section III-A.

B. Proof of Work (PoW)

In crypto-economic blockchains such as Bitcoin, or Ethereum,

node miners run the Proof of Work (PoW) algorithm, compet-

ing to create new blocks filled with processed transactions.

The PoW algorithm sets the operation rules and mining

difficulty setting the pace for adding valid blocks to the chain.

To create a block in PoW, a miner will repeatedly put

an actual downloaded dataset through a hashing function,

looking for a result below a target nonce as dictated by the

block difficulty parameter, where a lower target nonce permits

a smaller set of valid hashes. Once a successful result is

generated, other miners and clients can verify the validity of

the block with a single hash operation. If one transaction on the

chain were to change, the hash would be completely different,

thus signaling possible fraud.

The standard blockchains will accept that an agreement of

more than 50% of the total computing capacity suffices to

reach a consensus. Thus, although a possible disagreement

may appear, the majority vote will solve opposite opinions.

That is, another key element of a blockchain’s consensus

mechanism is the chain selection rule by which the correct
chain is decided in the event that multiple paths evolve in

parallel. Bitcoin, for instance, uses the Nakamoto rule that

selects the “longest chain” as the correct one. Finally, PoW

is not only applicable to consensus protocols in blockchains:

it also works as block author selector [38] and a Sybil-

resistance mechanism [39]. Sybil attacks occur when a group

of colluding nodes pretend to be many participant nodes.

Resistance to this attack is crucial for decentralized blockchain

ledgers. PoW makes users expend a lot of energy or crypto

value as protection, as an economic deterrents to Sybil attacks.

1) Implementation of PoW: The PoW algorithm involves

the following essential steps local to each member of the

network sharing a common blockchain:

1) Update the local copy of the chain to the latest version.

2) Solve a mathematical puzzle and create the mined block

header hash.

3) Advertise the solution as soon as the math puzzle is

solved.

4) Append the block to the chain if authorized.

Arguably, the most widely adopted algorithm for PoW is the

Hashcash scheme [40], [41], [42], [43], [44]. To expedite our

experimentation, yet still reliably emulate blockchain hashing

operations, we implemented a simplified version of this al-

gorithm (Algorithm 1). In our implementation, a difficulty is

defined first – how many trailing or preceding 0’s are there in

the hash value of a block. The more 0’s are there, the more

difficult it is to find the hash value. To find this hash value,

an integer number, called nonce, is used, which is initialized

to 0 and increased by 1 within a for loop. If the number

of 0’s (i.e., the difficulty level) match the number of 0’s in

the hash value of the nonce variable, the loop breaks since

the appropriate nonce is found. The hash value is calculated

using the SHA256 algorithm. A maximum loop number is

maintained – if the proper nonce is not found by this maximum

time, the nonce is reset to 0 and the program returns an

exception. This process of finding the proper nonce whose

hash matches the the intended difficulty level is called mining.

Algorithm 1: BlockHash Mining Algorithm (PoW)

Data: nonce,Block(B), difficulty
Result: B.hash, nonce

1 nonce ← 0;

2 diff ← fill(“0”, difficulty); /* Difficulty = #0s */

3 for MAX STEPS do
4 B.Hash ← SHA256(B.Params+nonce);

5 if substr(B.Hash,difficulty) = diff then
6 break ; /* Match found */

7 else
8 if i = 2256 then
9 nonce ← 0 ; /* Reset nonce */

10 break;

11 end
12 end
13 nonce ← nonce+ 1 ; /* Try the next nonce */

14 end

III. ENGINEERING MT AND POW FOR ENERGY

CONSERVATION

In this section, we describe a technique for reducing the energy

consumption of SHA256 by an engineering technique using

the Energy Complexity Model (ECM) designed in [13]. We

then apply the energy-optimized SHA256 to both MT and

PoW to measure the reductions of energy consumption. Before

illustrating the engineering techniques, we briefly describe

ECM in the next section.

A. The Energy Complexity Model (ECM)

The ECM developed in [13] is built upon an abstraction of

the Double Data Rate Synchronous Dynamic Random Access

Memory (DDR SDRAM) architecture [45] illustrated in Fig. 2.

The main memory in DDR is divided into banks, each of

which contains a certain number of chunks2. Data is allocated

over chunks in each bank, and each bank also contains a

special chunk called the sense amplifier. When data needs to

be accessed, the chunk containing the data is fetched into the

sense amplifier of the corresponding bank. The sense amplifier

can only hold one chunk at a time, so the current chunk has

to be put back to its bank before the next one can be fetched

for access. While only one chunk of a particular bank can be

accessed at a time, chunks of different banks (each with their

2The term “block” is used in DDR specifications, but we use the term
“chunk” to avoid confusion within our blockchain context.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, OCTOBER 2022 4

own sense amplifier) can be accessed in parallel. Therefore, if

the DDR memory is organized into P banks (where P = 4 in

Fig. 2), then P chunks can be accessed at a given time. In the

popular DDR3 architecture, the DDR1 notion of the per-bank

sense amplifier is referred to as the per-bank cache, albeit still

only capable of accessing one chunk at a given time.

Figure 2: Internal DDR SDRAM memory chip block diagram.

The ECM denotes the P banks of a given DDR3 SDRAM

resource by M1,M2, . . . ,MP , each such bank Mi comprised

of multiple chunks of size B bytes and its own cache Ci. The

illustrative example of Fig. 3 assumes P = 4 banks, as was

the case in Fig. 2, with just four chunks per bank, assigning

numerical labels 1, 2, . . . , 16 to the memory’s collection of

data chunks. Heeding the DDR constraint that each cache Ci

may access exactly one chunk at a time, the access patterns

(1, 2, 3, 4) or (5, 6, 7, 8) imply a completely serial execution,

while the access patterns (1, 5, 9, 13) or (3, 8, 10, 13) are each

completely parallel. The authors of [13] discovered two key

properties of DDR memory: firstly, the difference in power

consumption between the same number of chunks accessed

sequentially or in parallel is not significant; however, the

execution time of an algorithm when chunks are accessed in

parallel is significantly lower than when chunks are accessed

sequentially. Because the associated energy consumption de-

pends upon both power and time, parallelizing chunk accesses

offers the potential for energy reduction for any algorithm!

More formally, the energy consumption (in Joules) of an

algorithm A with computational complexity (execution time)

W (A), assuming a P -bank DDR3 architecture with B bytes

per chunk, is given by

E(A) = W (A) + (P ×B)/I (3)

where I is the parallelization index, essentially the number

of parallel block accesses across memory banks per P block

accesses made by A on the whole. That is, under the ECM,

an algorithm’s potential for energy reduction is inversely

proportional to the degree to which it can be re-engineered

for parallelization of its memory accesses.

Figure 3: ECM for DDR3 resource with P = 4 banks

Equation 3 implies, for W (A) � (P×B)/I , E(A) ≈ W (A).
In other words, for algorithms with high computational com-

plexity (e.g. exponential execution time), the energy complex-

ity becomes equivalent to its computational complexity.

B. Re-engineering Hash Calculations Using ECM

In this work, we engineer the hash algorithm of Line 4 of Al-

gorithm 1 based on ECM to reduce energy consumption. First,

we briefly describe how any algorithm A can be parallelized

based on ECM. We then illustrate how, specifically the SHA

hash algorithm, is re-engineered for parallelization.

1) Parallelizing any algorithm: Given an algorithm A, the

input to A is considered to identify the most common access

sequence in A. The required level of parallelism for the vector

formed by the desired access sequence is then engineered

using a logical mapping over chunks of memory that store

data accessed by A. As mentioned above, the order of chunk

accesses is different for different levels of parallelization. But

the physical location (chunk) of the input in the memory

is static, and is handled by the memory controller of DDR.

Therefore, to implement parallelization of access over physical

chunks, a different page table vector V is generated for each

level of parallelization, which defines the ordering among the

chunks to be accessed (see Fig. 4).

For 1-way access, the page table vector V has the pattern

(1, 2, 3, 4, . . .) while for 4-way access it has the pattern

(1, 5, 9, 13, . . .). A function is then created to map the pattern

of the page table vector V to the original physical locations of

the input. Algorithm 2 shows the function to create an ordering

among the chunks. The ordering is based on the way we want

to access the chunks (P -way would mean full parallel access).

The page table is populated by picking chunks with jumps.

For P -way access, jumps of P are selected that ensure the

consecutive chunk accesses lie in P different banks. Going

by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of

Fig. 3). On the other hand, for P = 4, jumps of 4 ensure that

4 consecutive chunk accesses lie in 4 different banks (banks

1 through 4 of Fig. 3).

2) Parallelizing SHA for MT and PoW: As described earlier,

both MT and PoW (Algorithm 1) perform their respective hash
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Figure 4: Memory layout (P = 4) and role of page tables

Algorithm 2: Create a Page Table for N Chunks

Input: Page table vector V, jump amount jump.

1 factor = 0;

2 for i = 0 to N
B − 1 do

3 if i > 1 and (i× jump) mod N
B = 0 then

4 factor = factor +1;

5 end
6 Vi = (i× jump + factor) mod N

B ;

7 end

calculations via the repeated use of the SHA256 algorithm.

As shown in Fig. 5, the input to SHA256 is partitioned into

fixed size message blocks, presented in sequence to separate

compression functions.

Figure 5: Illustration of the SHA256 algorithm

This block sequence is identified in correspondence with the

access pattern of the SHA256 algorithm, which we subject to

re-engineering based on the ECM. The input vector is pre-

processed into another vector by applying Algorithm 2. The

mapping is then stored in a page table to be used in subsequent

hash calculations. An example of this operation for 16 blocks

and a parallelization index (jump) of 4 is shown in Fig. 6.

Fig. ?? shows the outcome of re-engineering the SHA256

Figure 6: Mapping of SHA input blocks based on ECM

algorithm based on ECM. In our experimentation, an 8-bank

DDR3 SDRAM is used and the parallelization index is set

to I = 8. This essentially means that for any set of eight

consecutive block access in SHA256, we created a virtual

mapping using techniques described in [14] to ensure that each

size-8 access occurs across all eight banks.

Theorem III.1. The re-engineered SHA256 algorithm has
the same computational complexity as the original SHA256
algorithm.

Proof. SHA256 has a computational complexity of Θ(N),
where N is the number of blocks in Fig. 5 [46]. Algorithm 2

has a computational complexity of Θ(N) since the for loop

of line 2 executes exactly N
B times. Therefore applying Algo-

rithm 2 to SHA256 as illustrated in Fig. 6 does not change

the overall computational complexity of SHA256.

Theorem III.1 implies that applying the re-engineered

SHA256 in place of the original SHA256 in any algorithm will
not modify the computational complexity of the algorithm.

3) Applying the re-engineered SHA256 to MT: To recap, a

graphic representation of a simple MT-based block generation

in a blockchain is shown in Fig. 1. The bottom layer shows the

stored transactions (e.g., T001) for the block, which later are

converted to their SHA256 Hash signatures (e.g., H001) and

represent the Merkle Tree leaves. Merkle Tree root calculations

involve the recursive hash computation starting from these

leaves until a final hash determines the Merkle Tree root

(labeled TX ROOT in Fig. 1). Fig. 7 shows the input to the

SHA256 hash for the MT algorithm.

Section IV describes the results of a series of experiments

conducted to calculate the energy savings obtained by incor-

porating the re-engineered SHA256 algorithm into MT.

Figure 7: Input to SHA256 for the MT algorithm
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4) Engineered SHA256 Applied to PoW: For PoW, Line 4

of Algorithm 1 uses SHA256. The input vector in Line 4 of

Algorithm 1 being the concatenation of the string (B.Params)

and the nonce (Fig. 8) is pre-processed into another vector by

applying Algorithm 2.

Figure 8: Input to SHA256 for the PoW algorithm

Theorem III.2. For hash size h, Algorithm 1 has a computa-
tional complexity of O(2h).

Proof. Algorithm 1 attempts to find a hash value satisfying

the difficulty level by brute-forcing over every possible hash

values. The computational complexity stated in Theorem III.2

therefore follows.

Theorem III.2 implies, the energy complexity of Algorithm 1

(or PoW) will converge with its computational complexity

based on the size of the hash function used at some point.

In this work, we therefore attempted to optimize the hash
function (SHA256) used in Algorithm 1 to investigate whether

that reduces the overall energy consumption of the PoW

algorithm. Next, we present the results of our experiments

with these proposed energy-optimized MT root calculation and

PoW versions.

IV. EXPERIMENTS

In the following we describe a series of experiments designed

to quantify the energy savings of the methodology described in

the previous section. By virtue of the ECM’s formulation, the

enhanced implementation requires computer hardware using

a DDR RAM architecture. Maximum energy reduction is

promised by a parallelization index taken to equal the number

of memory banks, which depends upon the DDR version:

4 for DDR2, 8 for DDR3 and 16 for DDR4 and higher.

The machine used for our experiments features a 64-bit dual-

core processor (Intel i5-2410M @ 2900MHz with cache size

L2 256KB and L3 3072KB), running Linux Mint version

19.3 with a 8GB DD3 RAM and 500GB SSD storage. We

use pyRAPL, a software toolkit to measure a host machine’s

energy footprint along the execution of a piece of Python code,

to compare the energy consumption between the standard

and ECM-enhanced implementations. pyRAPL is built upon

Intel’s Running Average Power Limit (RAPL) technology that

estimates a CPU’s power consumption; depending on the

hardware and operating system configurations, pyRAPL can

measure energy consumption of the following CPU domains:

CPU socket, GPU, and DRAM [16].

A. Implementation Details and Setup

Our experimental objectives could not be met by using the

SHA256 function in the Hash Python library because memory

management in Python involves a private heap, containing all

objects and data structures. The control of this private heap

is ensured internally by the Python memory manager, with

different components dealing with sharing, segmentation, pre-

allocation or caching. Our ECM-enhanced implementation of

SHA256 requires greater control over memory allocation than

Python’s memory manager permits. Such low-level control on

memory management is possible in the standard C program-

ming language. We thus implement the standard and ECM-

enhanced versions of the SHA256 algorithm within separate

C programs, which are called from a Python script (upon

importing the ctypes module) as an external routine. This

permits the use of pyRAPL for the needed energy measure-

ments without denying low-level memory control to implement

the ECM-enhanced SHA256 functionality in both MT and

PoW algorithms.

1) MT Experimental Details: Our experiments simulated

the Merkle Tree calculation with Python code that runs 103

consecutive two-leaves-input hashes with pyRAPL invoked.

Each execution of the code yields an energy measurement,

but because the instrumentation is subject to noise we invoke

5000 repetitions and report the mean and standard devia-

tion results. Our experiments also vary the input size (i.e.,

the compounded-leaf size) to the Merkle Tree calculations,

choosing 1, 64, 96, 128, 512, 1024, 16384 and 262144 bytes

motivated as follows:

1) the 1B input is the bare minimum that the ECM permits

for any algorithm [13];

2) the 64B, 96B and 128 inputs are common in blockchain

applications [6];

3) the 512B and 1024B inputs are common in file hashing

applications [47]; while

4) the 16384B and 262144B inputs are common in the

Interplanetary File System (IPFS) [48], [49].

2) PoW Experimental Details: The standard PoW imple-

mentation is labeled by “O” that uses the original SHA256
hashing algorithm, while the implementation using the pro-

posed re-engineered SHA256 algorithm is labeled by “E”.

The input size is fixed to 256 bytes including all the block

header parameters and byte padding, while we experimented

with six difficulty levels ranged from 1 through 6 (encoded

by H0, H00, H000, H0000, H00000 and H000000). Per

implementation and difficulty level, our experimental Python

program leverages the pyRAPL toolkit to measure the average

energy (mean and standard deviation over repeated trials) of

the emulated PoW calculations.

B. Results and Discussion

We discuss experimental results from both sets of experiments

(MT and PoW) separately in this section.

1) MT Results: Recall that our experimental setup features

two implementations of Merkle Tree (MT) calculations, the

standard one (which we label by “O” as it uses the original

SHA256) and the re-engineered one using ECM (which we

label by “E” as it uses the enhanced SHA256), as well as

eight different input sizes. Per implementation and per input

size, our experimental Python script leverages the pyRAPL

toolkit to measure the average energy (mean and deviation
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over 5000 trials) of simulated Merkle Tree calculations. Fig. 9

summarizes the sixteen average energy measurements in two

bar charts, per input size comparing the Standard MT (O) and

the Enhanced MT (E) average energy (in μJoules). Fig. 9(a)

renders the comparison over the six smallest input sizes (using

a linearly-scaled vertical axis), while Fig. 9(b) is over the

two largest input sizes (using a log-scaled vertical axis). It

is seen that the ECM-enhanced implementation consistently

requires less energy than the standard implementation, the

difference being increasingly significant with the larger input

sizes that befit file hashing applications (i.e., 512B and above)

while still remaining meaningful for input sizes of 64B, 96B

and 128B that befit blockchain applications. This observed

dependence on input size may be a consequence of CPU

memory caching. DRAM memory often allows the memory

controller to optimise accesses by L1/L2/L3 caching of data.

With smaller inputs, such caching enables parallelization of

bank accesses even in the standard implementation. The com-

parison for the 1B input size corroborates this point, where we

observe the enhanced implementation consume more energy

than the standard implementation.

(a) Small input sizes (in Bytes)

(b) Large input sizes (in Bytes)

Figure 9: Comparison of average energy consumption in MT

Fig. 10 presents the average energy comparison on more

relative terms, namely as a percent reduction achieved by the

Figure 10: Energy savings based on various input sizes in MT

enhanced implementation over the standard implementation

versus all eight input sizes. The energy savings for the

blockchain-motivated input sizes range between 19% and 34%,

while the energy savings for the file-system-motivated input

sizes range between 69% and 98% – the case of 16384B

exhibiting that maximum 98.47% savings. As noted in Fig. 9,

the 1B input renders a savings of −4.27%, meaning the

standard implementation is more energy-efficient by virtue of

the parallelism invoked within the CPU’s L1/L2/L3 cache in

this case.

2) PoW Results: Fig. 11 summarizes the average energy

measurements (using a log-scaled vertical axis) per difficulty

level size, at each level comparing the Standard PoW (O)

and the Enhanced PoW (E) average energy (in μJoules). It

Figure 11: Comparison of average energy consumption in PoW

per difficulty level (with 1-sigma standard deviation over 1000
trials)

is observed from Fig. 11 that there exists energy savings

when comparing both implementations, although the savings

percentage is inversely proportional to the difficulty level.

The results in Fig. 11 tally with what we had derived in

Section III-B4 in light of Theorem III.2. With higher difficulty

levels the energy complexity of PoW based on the ECM

converges with its computational complexity based on the
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Turing Model. Our experimental results underscore what we

had theoretically analyzed about PoW in terms of its energy

consumption. To further illustrate this, in Fig. 12, the average

Figure 12: Energy savings in PoW per difficulty

energy comparison in relative terms versus difficulty level,

namely as a percent reduction achieved by the enhanced im-

plementation over the standard implementation, is presented.

The energy savings in PoW range between 4% and 20%, the

case of Difficulty 1 exhibiting a maximum saving of 20%. We

observe steady reduction in energy savings as the difficulty

level increases (Fig. 12). This again tallies with our theoretical

energy complexity analysis of PoW in Section III-B4.

Figure 13: Iterations per difficulty level in PoW (y-axis in log-

scale)

As further illustration, Fig. 13 displays the exponential rise

in the number of iterations within the PoW operations with

increasing difficulty levels, signifying the exponential runtime

dependency of PoW (Algorithm 1) based on the hash size and

difficulty level as a higher difficulty level forces Algorithm 1 to

iterate through the for loop (line 3) exponentially more times.

This complements Theorem III.2 about the energy complexity

of Algorithm 1 converging with its computational complexity

based on size of the hash function used at some point.

C. Approximate Cost-Savings Analysis

We present an approximate cost-reduction analysis on im-

plementing the energy optimization techniques on MT and

PoW. Evaluating possible power optimization needs total time

estimation for every operation. Figs. 14 and 15 respectively

illustrate the percentage of savings for time (μsec) and

power(μWatt) for MT and PoW.

Figure 14: Savings in Merkle Tree duration and power

Figure 15: Savings in PoW duration and power

The following formulas have been used to estimate energy

costs in the analysis.

Energy consumption calculation. The energy E in kilowatt-

hours (kWh) per day is equal to the power P in watts (W)

times number of usage hours per day t divided by 1000 watts

per kilowatt.

E(kWh/day) = P(W ) × t(h/day)/1000(W/kW ) (4)

Electricity cost calculation. The electricity cost per day in

dollars is equal to the energy consumption E in kWh per day

times the energy cost of 1 kWh in ¢/kWh divided by 100
(¢/$).
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Cost($/day) = E(kWh/day) × Cost(¢/kWh)/100 (5)

To estimate a yearly energy savings by our optimized PoW

we make the following assumptions: The system generates

500 blocks per hour, a total of 16 hours is consumed in daily

operation. Additionally, residential electricity rates in Florida

average 11.42¢/kWh. Fig. 16 depicts the calculated yearly

energy savings based on the above assumptions.

Figure 16: Example of potential yearly savings for a ECM

BCH-powered application

D. Discussion on Network Throughput Change
Blockchain nodes are authorized stakeholders to keep track of

the distributed ledger, and may also serve as communication

proxies (e.g hierarchical distributed cryptocurrency system)

for different network tasks, when the underlying topology is

complex, or a highly populated ecosystem is used. In simpler

topologies (e.g. a fully meshed interconnected robot fleet), all

nodes are considered to have access to the ledger, and no proxy

functions are implemented on them.
This work has been motivated by the latter topology type,

where the ledger life depends only on duration of the mission,

therefore parameters like node size or network throughput

have not been considered for evaluation while conducting

experiments (since this is a limited-size, low-volume, small-

scale transactions scenario.
Nevertheless, based on Theorem III.1 it can be inferred that

since the ECM modification lies in the core programming of

the nodes (it is a modification of an algorithm), it does not

add any additional data to the transactions. Since the resulting

hashes have the same size as the original ones, there will not

be any increase in size for any given node. Therefore we

conjecture that our energy optimization techniques will not

have influence on overall network throughput.
However, it will be interesting to observe any possible

changes in Read Latency, Read Throughput, Transaction La-

tency, Transaction Throughput as Key Performance Indicators

depending on the type of Blockchain application to implement

while applying our techniques for energy optimization.

V. A COMPARISON WITH EXISTING TECHNIQUES

Most of the focus on energy optimization in blockchain has

either been in designing new hardware or designing energy-
lighter versions of existing protocols. A few recent techniques

include:

1) Specializing the Datacenter. Usage of Clouds in

blockchain. Power consumption has been significantly

reduced by using GPU and FPGA based clouds espe-

cially when dealing with intensive workloads [50].

2) Resource-efficient mining. This technique is based on

a novel trusted hardware by Intel named as Software

Guard Extension (SGX). The idea is to smartly curtail

the infinite loop of PoW to design Proof of Useful Work

(PoUW), involving miners that provide trustworthy re-

porting on CPU cycles [51].

3) Sawtooth blockchain software. Intel proposed a novel

energy-saving blockchain system that incorporates the

security features into the chipmaker’s CPU. This system

software randomly selects users for writing the block.

The underlying algorithm is called Proof of Elapsed-

Time that makes miners sleep and wake insead of

constantly mining as in PoW [52].

4) Side Chains This method has evolved over Bitcoin and

Ethereum network using again an alternate algorithm

called Proof of Authority (PoA) to determine miners.

This is mostly used in private blockchains [53].

The notable part is to the best of our knowledge, ours is the

first work that attempts to re-engineer PoW based on the ECM

to reduce energy consumption in it. Our technique is generic

so that it can be also applied to the lighter algorithms as

mentioned above to further reduce their energy consumption.

VI. CONCLUSION AND FUTURE WORK

This paper described a technique to reduce the energy

consumption of the Merkle Tree (MT) and Proof of Work

(PoW) computations within blockchanns. At the technique’s

core is a re-engineered SHA256 hashing algorithm based

upon the Energy Complexity Model (ECM) [13]. The ECM-

enhanced implementations were compared to the standard im-

plementations via experimental energy measurements, varying

input sizes within the MT experiments and varying difficulty

level within PoW experiments, both including configurations

of practical significance. The results for MT show that up to

34% energy savings is possible for input sizes typically used

by blockchains, while up to 98% is possible for input sizes

used by other applications (e.g., file systems). The results for

PoW show up to 20% energy savings is possible, yielding

diminished savings with increasing difficulty levels as the

theoretical energy complexity analysis of PoW predicts. Due

to limitations of our current experimental infrastructure, we

can only conjecture that the reduced energy consumption in

these algorithm modules (MT and PoW) extrapolates to a

comparable reduction for blockchains on the whole. Should

such a conjecture hold, however, numerous applications could

render “greener” blockchained-enabled networked systems
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e.g., autonomous vehicles [54], crypto-currencies [55], cloud-

based software defined networks [56], intrusion detection

systems [57] as well as Internet-of-Things (IoT) technology

[5], [6], [7] and smart systems [8].

Natural next steps of this work are to assess the energy-

saving opportunities in other applications of Merkle Trees

e.g., authentication schemes [49], healthcare systems [58],

embedded systems [59], network protocols [60], [61]. Also

of interest is the exploration to reduce energy consumption

of the different variations and implementations of PoW al-

gorithm (e.g. [31], [32], [62], [63], [64]), and the alternative

Proof of Stake (PoS) algorithm [31], [65]. Future work could

also examine directions by which the emulation testbench

developed herein can be merged with an actual blockchain

implementation, offering all the functionalities that a peer node

uses while connected to other peers in true distributed fash-

ion. Real-world usage may also feature different sequencing

and/or intermittent reliance on hashing primitives, so achieved

energy savings may be only probabilistically related to the

results demonstrated under deterministic usage patterns here.

Another avenue for future work is to examine the sensitivity

of energy savings to different hardware platforms. The energy

measurement tool employed here, namely RAPL, is developed

for only Intel processors; meanwhile, the Energy Complexity

Model (ECM) by which the hash function was re-engineered

is developed currently only for DDR memory architectures.

However, current “smart” devices technologies are anticipated

to use other hardware configurations, such as ARM platforms,

for which the ECM is not yet developed to analogously exploit

prospects of memory/CPU parallelization.

REFERENCES

[1] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, “Performance evaluation
of blockchain systems: A systematic survey,” IEEE Access, vol. 8, pp.
126 927–126 950, 2020.

[2] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of bitcoin,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3416–3452, 2018.

[3] N. Gaur, L. Desrosiers, V. Ramakrishna, P. Novotny, S. A. Baset, and
A. O’Dowd, Hands-on blockchain with hyperledger: building decen-
tralized applications with hyperledger fabric and composer. Packt
Publishing Ltd, 2018.

[4] C. Alcaraz, J. E. Rubio, and J. Lopez, “Blockchain-assisted access
for federated Smart Grid domains: Coupling and features,” Journal of
Parallel and Distributed Computing, vol. 144, pp. 124–135, October
2020.

[5] B. Yu, J. Wright, S. Nepal, L. Zhu, J. Liu, and R. Ranjan, “TrustChain:
Establishing trust in the IoT-based applications ecosystem using
blockchain,” IEEE Cloud Computing, vol. 5, no. 4, pp. 12–23, 2018.

[6] Y. Sun, L. Zhang, G. Feng, B. Yang, B. Cao, and M. A. Imran,
“Blockchain-enabled wireless Internet of Things: Performance analysis
and optimal communication node deployment,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 5791–5802, 2019.

[7] A. Banafa, “IoT and blockchain convergence: benefits and challenges,”
IEEE Internet of Things, 2017.

[8] A. Reyna, C. Martı́n, J. Chen, E. Soler, and M. Dı́az, “On blockchain
and its integration with IoT. Challenges and opportunities,” Future
Generation Computer Systems, vol. 88, pp. 173–190, 2018.

[9] R. Thakore, R. Vaghashiya, C. Patel, and N. Doshi, “Blockchain-based
IoT: A survey,” Procedia Computer Science, vol. 155, pp. 704–709,
2019.

[10] S. Sankaran, S. Sanju, and K. Achuthan, “Towards realistic energy
profiling of blockchains for securing internet of things,” in Proc. of
2018 IEEE 38th Int. Conf. on Distributed Computing Systems (ICDCS),
2018, pp. 1454–1459.

[11] J. Westin, “Evaluation of energy consumption in virtualization environ-
ments: proof of concept using containers,” 2017.

[12] P. D. Harish, “Towards designing energy-efficient secure hashes,” Mas-
ter’s thesis, University of North Florida, 2015.

[13] S. Roy, A. Rudra, and A. Verma, “An energy complexity model for
algorithms,” in Proc. of the 4th Conf. on Innovations in Theoretical
Computer Science, 2013, pp. 283–304.

[14] ——, “Energy aware algorithmic engineering,” in Proc. 22nd IEEE
Int. Symp. on Modelling, Analysis & Simulation of Computer and
Telecommunication Systems, 2014, pp. 321–330.

[15] C. A. Roma and M. A. Hasan, “Energy consumption analysis of
XRP validator,” in Proc. of 2020 IEEE Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 2020, pp. 1–3.

[16] M. Santos, J. Saraiva, Z. Porkoláb, and D. Krupp, “Energy consumption
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