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Abstract—Hash-based message authentication code (HMAC)
involves a secret cryptographic key and an underlying crypto-
graphic hash function. HMAC is used to simultaneously verify
both integrity and authenticity of messages and, in turn, plays a
significant role in secure communication protocols e.g., Transport
Layer Security (TLS). The high energy consumption of HMAC
is well-known as is the trade-off between security, energy con-
sumption, and performance. Previous research in reducing energy
consumption in HMAC has approached the problem primarily
at the system software level (e.g. scheduling algorithms). This
paper attempts to reduce energy consumption in HMAC by
applying an energy-reducing algorithmic engineering technique
to the underlying hash function of HMAC, as a means to preserve
the promised security benefits. Using pyRAPL, a python library
to measure computational energy, we experiment with both the
standard and energy-reduced implementations of HMAC for dif-
ferent input sizes (in bytes). Our results show up to 17% reduction
in energy consumption by HMAC, while preserving function.
Such energy savings in HMAC, by virtue of HMAC’s prevalent
use in existing network protocols, extrapolate to lighter-weight
network operations with respect to total energy consumption.

Index Terms—HMAC, Energy, Security.

I. INTRODUCTION

Hashed-based Message Authentication Code (HMAC) is a
well known machine authentication code extensively used
in different cybersecurity applications. Advocates for such
uses cite the HMAC’s ability to provide both integrity and
authentication. [1], [2], [3], [4], [5]. One particularly promoted
use case is the Transport Layer Security (TLS) [1], [3], [6],
[7], [8], which is the standard, widely deployed protocol for
securing client-server communications over the Internet. The
Transport Layer Security (TLS) protocol, sometimes referred
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to, the Secure Sockets Layer (SSL) protocol, is a stateful,
connection-oriented, client-server protocol. TLS is the most
widely deployed communications security protocol on the
Internet, providing confidentiality, integrity and authentication
for parties in communication.

Other usages of HMAC include error correction codes [9],
remote attestation [10], VANETsS [5], [11], [12], [13], security
and privacy in systems [14], and Internet of Things (IoT) [15].
A balance exists in the amount of security, performance, and
energy consumption one wants to achieve. In general, increas-
ing security generally causes additional energy consumption
while decreasing performance. Finding perfect balance be-
tween energy consumption, performance and security level
— becomes a challenge in HMAC based applications, where
supply of energy is often very limited [16].

To be viable for an application that values autonomy for
greater lengths of time, any system must be configured to
make more efficient use of energy. Disabling HMAC integrity
and authentication will certainly save energy, but also weaken
security: it is in such contexts that the exploration of ways
to reduce energy consumption of HMAC alone can be of
tremendous practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,
with numerous points-of-view: hardware-specific platforms,
operating systems, hypervisors and containers [17]; software
development and security [18]; and algorithms [19], [20].
Energy measurements are sometimes obtained by uniquely
instrumented equipment [21], while other times can lever-
age hardware providers’ Application Programmer Interfaces
(APIs) in which firmware counters are recalled to provide
near real-time information e.g., Running Average Power Limit
(RAPL) technology [22]. Energy-efficient (greener) HMAC
implementations have been actively researched as a means
to improve overall energy efficiency in secured systems [23].



These research have mostly focused to optimize energy ef-
ficiency of HMAC in a variety of scenarios (e.g., schedul-
ing [24], [25], [26], system software [27], [28], [29], hardware
implementation [30], [31], and hypervisors [32]). However, all
of these works treat HMAC as a black box and to the best of
our knowledge, no research exist in the literature that deals
directly with the hash algorithms of HMAC and attempts to
engineer them to reduce energy consumption in HMAC.

B. Our Scope and Contributions

We study the extent to which the underlying hash function

(SHA256), a principal element of HMAC, can be made more
energy efficient. Our approach employs an energy-reducing
algorithmic engineering technique, based upon an Energy
Complexity Model (ECM) proposed by Roy et al. [19], [20],
on the SHA256 encryption algorithm, which is central to
HMAC. Using pyRAPL, a python library to measure an
executable’s Runtime Average Power Limit, we experiment
with both the standard and energy-reduced implementations
of HMAC for input sizes (in bytes) that are commonly seen
within applications using HMAC. Our results show significant
reductions in energy consumption, up to 13.5% but on average
around 12.7% across the tested input sizes. At present, it is
only a conjecture that reduced energy consumption in the
HMAC module itself extrapolates to comparable reduction of
an application using HMAC on the whole. In any case, to the
best of our knowledge our work is the first to address energy
optimization of HMAC by engineering the implementation of
one of its component algorithms (SHA256). Moreover, the
proposed energy-reducing technique is similarly applicable to
other key elements of a secured system, potentially affording
even “greener” secured application systems than implied by
only the HMAC results obtained thus far.
This paper builds on top of research done in [33].
While [33] experiments on energy efficiency of Merkle Trees
in Blockchain, this work experiments on energy efficiency of
HMAC, a different algorithm. Also, part of this work was done
while the first author pursued his Masters in EE as presented
in this M.S thesis [34].

II. METHODOLOGY

An Energy Complexity Model (ECM) [19], [20] has been
applied to the underlying SHA256 function of HMAC. We
first describe how the general HMAC function works, followed
by a brief discussion of the ECM and its application to the
underlying SHA256 of HMAC.

A. HMAC Message Digest Generation

As mentioned before, HMAC implements both integrity check-
ing and authentication of messages using cryptographic hash
functions. Any hash function (e.g. MD5, SHA128, SHA256,
etc.) can be used in HMAC combined with a shared secret
key. HMAC’s strength cryptography-wise is dependent on the
strength of its underlying hash function [35], [36].

Fig. 1 shows a graphic representation of a simple HMAC
message digest generation. The input to HMAC is a message

M containing £—1 blocks (Y (1) - - - Y (£—1)), each of size b. A
signature S; is concatenated to the left of M before it is input
to the underlying hash function (e.g. SHA256) to produce a
temporary message digest M D’. M D’ is further concatenated
with output signature S, = K+ @& PAD, which is then hashed
again using the underlying hash (e.g. SHA256) to produce
M D, the final message digest.
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Figure 1: Basic HMAC generation

For a recap, in Fig. 1, HASH stands for the hash function
function (SHA256), M is the input message, S; and S, are
respectively the input and output signatures, Y (i) is the i'"
block of M, ¢ ranges from [1, /), ¢ is the number of blocks
in M. K is the secret key used for the hash. IV is an initial

vector (constant values used by SHA256).
B. The Energy Complexity Model (ECM)

The Double Data Rate Synchronous Dynamic Random Access
Memory (DDR SDRAM) is the reference architecture for the
energy complexity model (ECM) [19], which has applied to
HMAC in this work. As illustrated in Fig. 2, the main memory
of DDR is divided into banks, containing a fixed number of
chunks'.

Allocation of data happens in each bank over chunks.
Additionally, every bank contains a special chunk called the
sense amplifier. For any data access, the chunk containing the
data to be accessed has to be brought inside the corresponding
bank’s sense amplifier. Each sense amplifier can house one

IThe term “block™ is used in DDR specifications, but we use the term
”chunk” to avoid confusion within our HMAC context.



chunk at a given time, so the present chunk has to be returned
to its bank before a new one can be brought in for the next
access. At a given time, therefore, only one chunk of a given
bank can be accessed; however, chunks of different banks
can be accessed in parallel (within each bank’s own sense
amplifier). Hence, for a P bank DDR memory (e.g., P = 4
in Fig. 2), at any point of time we can access P chunks. The
sense amplifier is called per-bank cache in DDR3 version of
the DDR architecture.
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Figure 2: Internal DDR SDRAM memory chip block diagram.

The P banks of a given DDR3 SDRAM resource is denoted
by My, Ms, ..., Mp by the ECM. There are multiple chunks
of size-B (in bytes) and a cache C; respectively in each
bank M;. Fig. 3 illustrates an example with P = 4 banks
similar to the case in Fig. 2 with each bank having only
four chunks. Labels in numbers 1,2,...,16 were assigned
to the chunks. Given the constraint in DDR that a single
chunk may be put inside a given cache C; at any time,
examples of completely serial execution are the access patterns
(1,2,3,4) or (5,6,7,8), while (1,5,9,13) or (3,8, 10, 13) are
examples of completely parallel execution. The authors of [19]
discovered (1) accessing same number of chunks (sequentially
or in parallel) account for very similar amount of power
consumption and (2) execution time of an algorithm is reduced
significantly when chunks are accessed in parallel than when
chunks are accessed sequentially. Since energy consumption
of an algorithm is dependent on both time and power, it
was implied that energy consumption in any algorithm is
potentially reduced by parallelizing chunk accesses during the
execution of that algorithm. Formally, as derived by Roy et
al. [19], the energy consumption (in Joules) of an algorithm .4
with execution time 7, assuming a P-bank DDR3 architecture
with B bytes per chunk, is given by

E(A) =7+ (PxB)/I (1)

where the so-called parallelization index is denoted by I,
which is essentially the number of parallel block accesses

across memory banks per P block accesses made by A
on the whole. In other words, an algorithm’s potential for
energy reduction is inversely proportional to the degree it
can be engineered for parallelization of its memory accesses,
according to ECM.

C

Figure 3: ECM for DDR3 Resource with P = 4 Banks
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C. Engineering Hash Calculations Using ECM

The energy consumption of the underlying hash algorithm
(SHA256) of HMAC has been reduced by engineering it based
on ECM in this work. First, how any algorithm A can be
parallelized based on ECM is described. Then we illustrate
how SHA256, the underlying hash algorithm for HMAC is
engineered for parallelization based on ECM.

1) Parallelizing any algorithm: For algorithm A, the most
common access sequence of .4 on execution for a given input
is first identified. The vector formed by this access sequence is
then engineered to achieve the desired level of parallelism by
framing a logical mapping over chunks of memory that store
data accessed by .A. Physical location of the input (chunks)
is static in the memory and is controlled by the memory
controller of DDR. But order of access over chunks is different
for different levels of parallelization. Different page table
vectors V is framed each time for implementing different
levels of parallelization of access over physical chunks. V
defines the ordering of access among chunks (Fig. 4).

For 1-way access, the page table vector V has the pat-
tern (1,2,3,4,...) and for 4-way access it has the pattern
(1,5,9,13,...). A function is then created to map the pattern
of the page table vector V to the original physical locations of
the input. Algorithm 1 shows the function to create an ordering
among the chunks. The ordering is based on the way we want
to access the chunks (P-way would mean full parallel access).
The page table is populated by picking chunks with jumps.
For P-way access, jumps of P are selected that ensure the
consecutive chunk accesses lie in P different banks. Going
by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of
Fig. 3). On the other hand, for P = 4, jumps of 4 ensures that
4 consecutive chunk access lie in 4 different banks (banks 1
through 4 of Fig. 3).
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Figure 4: Memory Layout (P = 4) and Role of Page Tables

Input: Page table vector V, jump amount jump.
factor = 0;
fori:Om%—ldo

if i > 1 and (i x jump) mod & = 0 then

‘ factor = factor +1,;

end

V,; = (i x jump + factor) mod %;
end
Algorithm 1: Create a Page Table for N Chunks

2) Parallelizing SHA256: As illustrated in Fig. 1, HMAC
generates the final message digest (MD) by applying SHA256
twice. The SHA256 algorithm partitions its input into fixed
size message blocks, presented in sequence to separate com-
pression functions, as shown in Fig. 5. This block sequence
is identified in correspondence with the access pattern of the
SHA256 algorithm, which we subject to engineering based
on the ECM. The SHA256 input vector (see Fig. 5), is pre-
processed into another vector by applying Algorithm 1. The
mapping is then stored in a page table to be used in subsequent
hash calculations. An example of this operation for 16 blocks
and a parallelization index (jump) of 4 is shown in Fig. ??.

Fig. 6 shows the outcome of engineering the SHA256
algorithm based on ECM. In our experimentation, an 8-bank
DDR3 SDRAM is used and the parallelization index is set
to I = 8. This essentially means that for any set of eight
consecutive block access in SHA256, we created a virtual
mapping using techniques described in [20] to ensure that each
size-8 access occurs across all eight banks.

Theorem 1. The engineered SHA256 algorithm has the same
computational complexity as the original SHA256 algorithm.

Proof. SHA256 has a computational complexity of ©(N),
where IV is the number of blocks in Fig. 5 [37]. Algorithm 1

Figure 5: The SHA256 Algorithm
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Figure 6: ECM-Enhanced SHA256

has a computational complexity of O(N) since the for loop
of line 2 executes exactly % times. Therefore applying Algo-
rithm 1 to SHA256 as illustrated in Fig. ?? does not change
the overall computational complexity of SHA256. O

III. EXPERIMENTS

This section describes experiments performed to measure
energy efficiency of HMAC out of the engineering illustrated
in the previous section. The ECM required a hardware with
a DDR RAM architecture. According to the ECM, maximum
energy efficiency is attained by the parallelization index set
to the number of memory banks, which depends upon the
DDR version: 4 for DDR2, 8 for DDR3 and 16 for DDR4 and
higher. We used a machine with a 64-bit dual-core processor



(Intel 15-2410M @ 2900MHz with cache size L2 256KB and
L3 3072KB), running Linux Mint version 19.3 with a 8GB
DD3 RAM and 500GB SSD storage. Also, pyRAPL, a soft-
ware toolkit, was used to measure the host machine’s energy
footprint along the execution of Python code for comparing
energy consumption between HMAC with standard and ECM-
enhanced of the underlying SHA256. pyRAPL is built upon
Intel’s Running Average Power Limit (RAPL) technology that
estimates a CPU’s power consumption; depending on the
hardware and operating system configurations, pyRAPL can
measure energy consumption of the following CPU domains:
CPU socket, GPU, and DRAM [22].

A. Implementation Details and Setup

Standard and ECM-enhanced versions of the SHA256 al-
gorithm have been implemented in two different C language
programs, these are called from a master Python program via
the ctypes module) as an external command. This permits
the use of Python pyRAPL to measure energy events having
at the same time the low-level memory control to implement
the ECM-enhanced SHA256 functionality.

Our experiments simulated the HMAC calculation with
Python code that runs one complete round of Message Digest
generation having pyRAPL methods invoked yielding in a
single energy measurement per event. Since measurement
implementation is subject to noise we have invoked 1000
repetitions for the process and report the average energy (mean
and deviation). Our experiments also vary the input size (i.e.,
the message size) to the HMAC calculations, choosing 64,
128, 256, 384, 512, 768, and 1024 bytes motivated by having
standard message’s not to exceed traditional MTU limit of
1500 bytes and selecting standard steps of size increase.

B. Results and Discussion

Our experimental setup features two implementations of
HMAC calculations, the standard one (which we label by “O”
as it uses the standard SHA256) and the engineered one using
ECM (which we label by “E” as it uses the energy efficient
SHA256), as well as seven different input sizes.

Per implementation and per input size, our experimental

Python script leverages the pyRAPL toolkit to measure the
average energy (mean and deviation over 1000 trials) of
simulated HMAC calculations. Fig. 7 summarizes the seven
average energy measurements in a bar chart, per input size
comparing the Standard HMAC (O) and the Enhanced HMAC
(E) average energy (in pJoules). We observe that the ECM-
enhanced implementation consistently consumes less energy
that the standard implementation.
The first set (Fig. 7) compares average energy measurements
between the energy efficient (‘E’) and the original (‘O’)
HMAC implementations, starting from input size 64 byte to
1024 bytes. To summarize, the ECM-engineered HMAC shows
an average energy consumption increment of around 100%
with increase in input size from 64 byte to 1024 bytes.

The standard (‘O’, non-enhanced) model in comparison
showed an average energy consumption increment of around
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Figure 7: Comparison of Average Energy Consumption in
HMAC per Message Size (with 1-sigma standard deviation
over 1000 trials)

75% over the same input sizes. For example, with input sizes
of 64,128, and 256 bytes, the average energy consumption are
8380 and 9600 pJoules for ‘E’ and ‘O’ respectively, while
for input size 1024 bytes, they are 14866 and 17213 pJoules
respectively. It can be concluded that memory parallelism
implementation in SHA256 based on ECM has an overhead
impact on energy consumption of HMAC. This is in line with
the ECM model proposed in [19].

15 -
—— %Savings HMAC E/O
14 -

13-

12 -

% of Savings

11-

10- ‘ ‘ ‘ ‘ :
256 384 512 768 1024
Input Message Size

64 128

Figure 8: Percentage of Energy Saving per process in HMAC
per Message Size

Fig. 8 presents average energy savings on more relative
terms, namely as a percent reduction achieved by the ECM-
enhanced implementation over the standard implementation of
HMAC over all seven input sizes. The energy savings for the
smaller input sizes range between 12 — 13%, while the energy
savings for the larger input sizes range between 13% and 14%,.
As observed, the 768B input renders a savings lower than the
average, yet it is still around the margins over 10% for single
operation.



IV. CONCLUSION

This work considers reducing the energy consumption
of HMAC by engineering the underlying hashing algo-
rithm (SHA256), based on the Energy Complexity Model
(ECM) [19]. The ECM-enhanced implementation was com-
pared to the standard implementation via experimental energy
measurements with various input sizes of practical signifi-
cance. The results show up to about 14% energy savings for
input sizes typically used by HMAC. It remains conjecture that
reduced energy consumption in HMAC extrapolates to com-
parable reduction to applications using HMAC. Future work
can also assess the energy savings in different applications of
HMAC mentioned in Section I.
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