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Abstract—Hash-based message authentication code (HMAC)
involves a secret cryptographic key and an underlying crypto-
graphic hash function. HMAC is used to simultaneously verify
both integrity and authenticity of messages and, in turn, plays a
significant role in secure communication protocols e.g., Transport
Layer Security (TLS). The high energy consumption of HMAC
is well-known as is the trade-off between security, energy con-
sumption, and performance. Previous research in reducing energy
consumption in HMAC has approached the problem primarily
at the system software level (e.g. scheduling algorithms). This
paper attempts to reduce energy consumption in HMAC by
applying an energy-reducing algorithmic engineering technique
to the underlying hash function of HMAC, as a means to preserve
the promised security benefits. Using pyRAPL, a python library
to measure computational energy, we experiment with both the
standard and energy-reduced implementations of HMAC for dif-
ferent input sizes (in bytes). Our results show up to 17% reduction
in energy consumption by HMAC, while preserving function.
Such energy savings in HMAC, by virtue of HMAC’s prevalent
use in existing network protocols, extrapolate to lighter-weight
network operations with respect to total energy consumption.

Index Terms—HMAC, Energy, Security.

I. INTRODUCTION

Hashed-based Message Authentication Code (HMAC) is a

well known machine authentication code extensively used

in different cybersecurity applications. Advocates for such

uses cite the HMAC’s ability to provide both integrity and

authentication. [1], [2], [3], [4], [5]. One particularly promoted

use case is the Transport Layer Security (TLS) [1], [3], [6],

[7], [8], which is the standard, widely deployed protocol for

securing client-server communications over the Internet. The

Transport Layer Security (TLS) protocol, sometimes referred
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to, the Secure Sockets Layer (SSL) protocol, is a stateful,

connection-oriented, client-server protocol. TLS is the most

widely deployed communications security protocol on the

Internet, providing confidentiality, integrity and authentication

for parties in communication.

Other usages of HMAC include error correction codes [9],

remote attestation [10], VANETs [5], [11], [12], [13], security

and privacy in systems [14], and Internet of Things (IoT) [15].

A balance exists in the amount of security, performance, and

energy consumption one wants to achieve. In general, increas-

ing security generally causes additional energy consumption

while decreasing performance. Finding perfect balance be-

tween energy consumption, performance and security level

— becomes a challenge in HMAC based applications, where

supply of energy is often very limited [16].

To be viable for an application that values autonomy for

greater lengths of time, any system must be configured to

make more efficient use of energy. Disabling HMAC integrity

and authentication will certainly save energy, but also weaken

security: it is in such contexts that the exploration of ways

to reduce energy consumption of HMAC alone can be of

tremendous practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,

with numerous points-of-view: hardware-specific platforms,

operating systems, hypervisors and containers [17]; software

development and security [18]; and algorithms [19], [20].

Energy measurements are sometimes obtained by uniquely

instrumented equipment [21], while other times can lever-

age hardware providers’ Application Programmer Interfaces

(APIs) in which firmware counters are recalled to provide

near real-time information e.g., Running Average Power Limit

(RAPL) technology [22]. Energy-efficient (greener) HMAC

implementations have been actively researched as a means

to improve overall energy efficiency in secured systems [23].978-1-6654-6550-2/22/$31.00 ©2022 IEEE



These research have mostly focused to optimize energy ef-

ficiency of HMAC in a variety of scenarios (e.g., schedul-

ing [24], [25], [26], system software [27], [28], [29], hardware

implementation [30], [31], and hypervisors [32]). However, all

of these works treat HMAC as a black box and to the best of

our knowledge, no research exist in the literature that deals

directly with the hash algorithms of HMAC and attempts to

engineer them to reduce energy consumption in HMAC.

B. Our Scope and Contributions

We study the extent to which the underlying hash function

(SHA256), a principal element of HMAC, can be made more

energy efficient. Our approach employs an energy-reducing

algorithmic engineering technique, based upon an Energy

Complexity Model (ECM) proposed by Roy et al. [19], [20],

on the SHA256 encryption algorithm, which is central to

HMAC. Using pyRAPL, a python library to measure an

executable’s Runtime Average Power Limit, we experiment

with both the standard and energy-reduced implementations

of HMAC for input sizes (in bytes) that are commonly seen

within applications using HMAC. Our results show significant

reductions in energy consumption, up to 13.5% but on average

around 12.7% across the tested input sizes. At present, it is

only a conjecture that reduced energy consumption in the

HMAC module itself extrapolates to comparable reduction of

an application using HMAC on the whole. In any case, to the

best of our knowledge our work is the first to address energy

optimization of HMAC by engineering the implementation of

one of its component algorithms (SHA256). Moreover, the

proposed energy-reducing technique is similarly applicable to

other key elements of a secured system, potentially affording

even “greener” secured application systems than implied by

only the HMAC results obtained thus far.

This paper builds on top of research done in [33].

While [33] experiments on energy efficiency of Merkle Trees

in Blockchain, this work experiments on energy efficiency of

HMAC, a different algorithm. Also, part of this work was done

while the first author pursued his Masters in EE as presented

in this M.S thesis [34].

II. METHODOLOGY

An Energy Complexity Model (ECM) [19], [20] has been

applied to the underlying SHA256 function of HMAC. We

first describe how the general HMAC function works, followed

by a brief discussion of the ECM and its application to the

underlying SHA256 of HMAC.

A. HMAC Message Digest Generation

As mentioned before, HMAC implements both integrity check-

ing and authentication of messages using cryptographic hash

functions. Any hash function (e.g. MD5, SHA128, SHA256,

etc.) can be used in HMAC combined with a shared secret

key. HMAC’s strength cryptography-wise is dependent on the

strength of its underlying hash function [35], [36].

Fig. 1 shows a graphic representation of a simple HMAC

message digest generation. The input to HMAC is a message

M containing �−1 blocks (Y (1) · · ·Y (�−1)), each of size b. A

signature Si is concatenated to the left of M before it is input

to the underlying hash function (e.g. SHA256) to produce a

temporary message digest MD′. MD′ is further concatenated

with output signature So = K+⊕PAD, which is then hashed

again using the underlying hash (e.g. SHA256) to produce

MD, the final message digest.

Figure 1: Basic HMAC generation

For a recap, in Fig. 1, HASH stands for the hash function

function (SHA256), M is the input message, Si and So are

respectively the input and output signatures, Y (i) is the ith

block of M , i ranges from [1, �), � is the number of blocks

in M . K is the secret key used for the hash. IV is an initial

vector (constant values used by SHA256).

B. The Energy Complexity Model (ECM)

The Double Data Rate Synchronous Dynamic Random Access

Memory (DDR SDRAM) is the reference architecture for the

energy complexity model (ECM) [19], which has applied to

HMAC in this work. As illustrated in Fig. 2, the main memory

of DDR is divided into banks, containing a fixed number of

chunks1.

Allocation of data happens in each bank over chunks.

Additionally, every bank contains a special chunk called the

sense amplifier. For any data access, the chunk containing the

data to be accessed has to be brought inside the corresponding

bank’s sense amplifier. Each sense amplifier can house one

1The term “block” is used in DDR specifications, but we use the term
”chunk” to avoid confusion within our HMAC context.



chunk at a given time, so the present chunk has to be returned

to its bank before a new one can be brought in for the next

access. At a given time, therefore, only one chunk of a given

bank can be accessed; however, chunks of different banks

can be accessed in parallel (within each bank’s own sense

amplifier). Hence, for a P bank DDR memory (e.g., P = 4
in Fig. 2), at any point of time we can access P chunks. The

sense amplifier is called per-bank cache in DDR3 version of

the DDR architecture.

Figure 2: Internal DDR SDRAM memory chip block diagram.

The P banks of a given DDR3 SDRAM resource is denoted

by M1,M2, . . . ,MP by the ECM. There are multiple chunks

of size-B (in bytes) and a cache Ci respectively in each

bank Mi. Fig. 3 illustrates an example with P = 4 banks

similar to the case in Fig. 2 with each bank having only

four chunks. Labels in numbers 1, 2, . . . , 16 were assigned

to the chunks. Given the constraint in DDR that a single

chunk may be put inside a given cache Ci at any time,

examples of completely serial execution are the access patterns

(1, 2, 3, 4) or (5, 6, 7, 8), while (1, 5, 9, 13) or (3, 8, 10, 13) are

examples of completely parallel execution. The authors of [19]

discovered (1) accessing same number of chunks (sequentially

or in parallel) account for very similar amount of power

consumption and (2) execution time of an algorithm is reduced

significantly when chunks are accessed in parallel than when

chunks are accessed sequentially. Since energy consumption

of an algorithm is dependent on both time and power, it

was implied that energy consumption in any algorithm is

potentially reduced by parallelizing chunk accesses during the

execution of that algorithm. Formally, as derived by Roy et
al. [19], the energy consumption (in Joules) of an algorithm A
with execution time τ , assuming a P -bank DDR3 architecture

with B bytes per chunk, is given by

E(A) = τ + (P ×B)/I (1)

where the so-called parallelization index is denoted by I ,

which is essentially the number of parallel block accesses

across memory banks per P block accesses made by A
on the whole. In other words, an algorithm’s potential for

energy reduction is inversely proportional to the degree it

can be engineered for parallelization of its memory accesses,

according to ECM.

Figure 3: ECM for DDR3 Resource with P = 4 Banks

C. Engineering Hash Calculations Using ECM

The energy consumption of the underlying hash algorithm

(SHA256) of HMAC has been reduced by engineering it based

on ECM in this work. First, how any algorithm A can be

parallelized based on ECM is described. Then we illustrate

how SHA256, the underlying hash algorithm for HMAC is

engineered for parallelization based on ECM.

1) Parallelizing any algorithm: For algorithm A, the most

common access sequence of A on execution for a given input

is first identified. The vector formed by this access sequence is

then engineered to achieve the desired level of parallelism by

framing a logical mapping over chunks of memory that store

data accessed by A. Physical location of the input (chunks)

is static in the memory and is controlled by the memory

controller of DDR. But order of access over chunks is different

for different levels of parallelization. Different page table

vectors V is framed each time for implementing different

levels of parallelization of access over physical chunks. V
defines the ordering of access among chunks (Fig. 4).

For 1-way access, the page table vector V has the pat-

tern (1, 2, 3, 4, . . .) and for 4-way access it has the pattern

(1, 5, 9, 13, . . .). A function is then created to map the pattern

of the page table vector V to the original physical locations of

the input. Algorithm 1 shows the function to create an ordering

among the chunks. The ordering is based on the way we want

to access the chunks (P -way would mean full parallel access).

The page table is populated by picking chunks with jumps.

For P -way access, jumps of P are selected that ensure the

consecutive chunk accesses lie in P different banks. Going

by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of

Fig. 3). On the other hand, for P = 4, jumps of 4 ensures that

4 consecutive chunk access lie in 4 different banks (banks 1
through 4 of Fig. 3).



Figure 4: Memory Layout (P = 4) and Role of Page Tables

Input: Page table vector V, jump amount jump.

factor = 0;

for i = 0 to N
B − 1 do

if i > 1 and (i× jump) mod N
B = 0 then

factor = factor +1;

end
Vi = (i× jump + factor) mod N

B ;

end
Algorithm 1: Create a Page Table for N Chunks

2) Parallelizing SHA256: As illustrated in Fig. 1, HMAC

generates the final message digest (MD) by applying SHA256
twice. The SHA256 algorithm partitions its input into fixed

size message blocks, presented in sequence to separate com-

pression functions, as shown in Fig. 5. This block sequence

is identified in correspondence with the access pattern of the

SHA256 algorithm, which we subject to engineering based

on the ECM. The SHA256 input vector (see Fig. 5), is pre-

processed into another vector by applying Algorithm 1. The

mapping is then stored in a page table to be used in subsequent

hash calculations. An example of this operation for 16 blocks

and a parallelization index (jump) of 4 is shown in Fig. ??.

Fig. 6 shows the outcome of engineering the SHA256
algorithm based on ECM. In our experimentation, an 8-bank

DDR3 SDRAM is used and the parallelization index is set

to I = 8. This essentially means that for any set of eight

consecutive block access in SHA256, we created a virtual

mapping using techniques described in [20] to ensure that each

size-8 access occurs across all eight banks.

Theorem 1. The engineered SHA256 algorithm has the same
computational complexity as the original SHA256 algorithm.

Proof. SHA256 has a computational complexity of Θ(N),
where N is the number of blocks in Fig. 5 [37]. Algorithm 1

Figure 5: The SHA256 Algorithm

Figure 6: ECM-Enhanced SHA256

has a computational complexity of Θ(N) since the for loop

of line 2 executes exactly N
B times. Therefore applying Algo-

rithm 1 to SHA256 as illustrated in Fig. ?? does not change

the overall computational complexity of SHA256.

III. EXPERIMENTS

This section describes experiments performed to measure

energy efficiency of HMAC out of the engineering illustrated

in the previous section. The ECM required a hardware with

a DDR RAM architecture. According to the ECM, maximum

energy efficiency is attained by the parallelization index set

to the number of memory banks, which depends upon the

DDR version: 4 for DDR2, 8 for DDR3 and 16 for DDR4 and

higher. We used a machine with a 64-bit dual-core processor



(Intel i5-2410M @ 2900MHz with cache size L2 256KB and

L3 3072KB), running Linux Mint version 19.3 with a 8GB

DD3 RAM and 500GB SSD storage. Also, pyRAPL, a soft-

ware toolkit, was used to measure the host machine’s energy

footprint along the execution of Python code for comparing

energy consumption between HMAC with standard and ECM-

enhanced of the underlying SHA256. pyRAPL is built upon

Intel’s Running Average Power Limit (RAPL) technology that

estimates a CPU’s power consumption; depending on the

hardware and operating system configurations, pyRAPL can

measure energy consumption of the following CPU domains:

CPU socket, GPU, and DRAM [22].

A. Implementation Details and Setup

Standard and ECM-enhanced versions of the SHA256 al-

gorithm have been implemented in two different C language

programs, these are called from a master Python program via

the ctypes module) as an external command. This permits

the use of Python pyRAPL to measure energy events having

at the same time the low-level memory control to implement

the ECM-enhanced SHA256 functionality.

Our experiments simulated the HMAC calculation with

Python code that runs one complete round of Message Digest

generation having pyRAPL methods invoked yielding in a

single energy measurement per event. Since measurement

implementation is subject to noise we have invoked 1000
repetitions for the process and report the average energy (mean

and deviation). Our experiments also vary the input size (i.e.,

the message size) to the HMAC calculations, choosing 64,

128, 256, 384, 512, 768, and 1024 bytes motivated by having

standard message’s not to exceed traditional MTU limit of

1500 bytes and selecting standard steps of size increase.

B. Results and Discussion

Our experimental setup features two implementations of

HMAC calculations, the standard one (which we label by “O”

as it uses the standard SHA256) and the engineered one using

ECM (which we label by “E” as it uses the energy efficient

SHA256), as well as seven different input sizes.

Per implementation and per input size, our experimental

Python script leverages the pyRAPL toolkit to measure the

average energy (mean and deviation over 1000 trials) of

simulated HMAC calculations. Fig. 7 summarizes the seven

average energy measurements in a bar chart, per input size

comparing the Standard HMAC (O) and the Enhanced HMAC

(E) average energy (in μJoules). We observe that the ECM-

enhanced implementation consistently consumes less energy

that the standard implementation.

The first set (Fig. 7) compares average energy measurements

between the energy efficient (‘E’) and the original (‘O’)

HMAC implementations, starting from input size 64 byte to

1024 bytes. To summarize, the ECM-engineered HMAC shows

an average energy consumption increment of around 100%
with increase in input size from 64 byte to 1024 bytes.

The standard (‘O’, non-enhanced) model in comparison

showed an average energy consumption increment of around

Figure 7: Comparison of Average Energy Consumption in

HMAC per Message Size (with 1-sigma standard deviation

over 1000 trials)

75% over the same input sizes. For example, with input sizes

of 64,128, and 256 bytes, the average energy consumption are

8380 and 9600 μJoules for ‘E’ and ‘O’ respectively, while

for input size 1024 bytes, they are 14866 and 17213 μJoules
respectively. It can be concluded that memory parallelism

implementation in SHA256 based on ECM has an overhead

impact on energy consumption of HMAC. This is in line with

the ECM model proposed in [19].

Figure 8: Percentage of Energy Saving per process in HMAC

per Message Size

Fig. 8 presents average energy savings on more relative

terms, namely as a percent reduction achieved by the ECM-

enhanced implementation over the standard implementation of

HMAC over all seven input sizes. The energy savings for the

smaller input sizes range between 12−13%, while the energy

savings for the larger input sizes range between 13% and 14%,.

As observed, the 768B input renders a savings lower than the

average, yet it is still around the margins over 10% for single

operation.



IV. CONCLUSION

This work considers reducing the energy consumption

of HMAC by engineering the underlying hashing algo-

rithm (SHA256), based on the Energy Complexity Model

(ECM) [19]. The ECM-enhanced implementation was com-

pared to the standard implementation via experimental energy

measurements with various input sizes of practical signifi-

cance. The results show up to about 14% energy savings for

input sizes typically used by HMAC. It remains conjecture that

reduced energy consumption in HMAC extrapolates to com-

parable reduction to applications using HMAC. Future work

can also assess the energy savings in different applications of

HMAC mentioned in Section I.
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