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Abstract— Motivated by the recent empirical success of
policy-based reinforcement learning (RL), there has been a
research trend studying the performance of policy-based RL
methods on standard control benchmark problems. In this
paper, we examine the effectiveness of policy-based RL methods
on an important robust control problem, namely ;. synthesis.
We build a connection between robust adversarial RL and
1 synthesis, and develop a model-free version of the well-
known D K-iteration for solving state-feedback u synthesis
with static D-scaling. In the proposed algorithm, the K step
mimics the classical central path algorithm via incorporating
a recently-developed double-loop adversarial RL method as
a subroutine, and the D step is based on model-free finite
difference approximation. Extensive numerical study is also
presented to demonstrate the utility of our proposed model-
free algorithm. Our study sheds new light on the connections
between adversarial RL and robust control.

I. INTRODUCTION

Recently, policy-based reinforcement learning (RL) [1],
[2] has achieved impressive performance on various control
tasks [3], [4]. Despite the empirical successes, how to choose
and tune policy-based RL methods for a specific control
problem at hand is not fully understood [5]. This inspires
an increasing interest in understanding the performance of
policy-based RL algorithms on simplified linear control
benchmarks. For standard linear quadratic control problems,
policy-based RL methods have been proved to yield strong
convergence guarantees in various settings [6]-[15]. For
robust/risk-sensitive control problems, the robust adversarial
reinforcement learning (RARL) framework appears to be
quite relevant. An important issue for deploying RL into real-
world applications is the simulation-to-real gap. Originally
RARL was developed to account for this gap by jointly
training a protagonist and an adversary, where the protagonist
learns to robustly perform the control tasks under the possible
disturbances generated by its adversary [16], [17]. Recently,
the connections between policy-based RARL and robust/risk-
sensitive control have been formally studied, and policy-
based RARL methods relying on double-loop update rules
have been developed to solve the Hy/H., mixed design
problem and the Linear Exponential Quadratic Gaussian
problem in a provable manner [18]-[20].
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An important robust control problem whose connection
with policy-based RARL has been overlooked in the past
is pu-synthesis whose objective is to design a controller
optimizing the so-called structured singular value (or equiva-
lently the robust performance) [21]. Over the past decade, p
synthesis has found numerous applications in industry, e.g.
for robust control of hard disk drives for cloud storage [22].
Reexamining the performance of RARL on p synthesis is an
important task which can lead to valuable insights regarding
the connections between RL and robust control.

In this paper, we bridge the gap between policy-based
RARL and state-feedback p-synthesis with static D-scaling.
We build upon the double-loop RARL algorithm in [18] to
develop a model-free policy optimization method for solv-
ing the state-feedback p synthesis problem. Our proposed
algorithm can be viewed as a model-free version of the
well-known D K-iteration. In our algorithm, the K-step is
a policy-based model-free variant of the well-established
central path algorithm, and relies on the use of the double-
loop RARL algorithm as the main subroutine. The D-step is
based on model-free finite difference approximation. Similar
to D K -iteration, our proposed method alternates between the
K and D steps. When the D scaling is fixed, state-feedback
1 synthesis reduces to H., state-feedback design, and our
algorithm can also be directly applied. The effectiveness of
the proposed RARL approach on model-free ;4 synthesis are
demonstrated via an extensive numerical study. Our paper
complements existing work on data-driven robust control
[23]-[25] by establishing a a new connection between model-
free adversarial RL and p-synthesis. Our paper also bring
new insights for understanding robust RL in general.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Statement

In this section, we formulate the model-free, state-
feedback p synthesis problem and clarify the “black-box"
simulator needed in such a data-driven setting. To motivate
our formulation, consider a discrete-time robust synthesis
problem as shown in Figure 1'. The linear time-invariant
(LTID) system G is governed by the following discrete-time
state-space model:

Tr+1 = Azg + By wi + Bady + By ug
Ve = Cv Ti + Duv Uk (1)
€ = Ce TE + Due Uk

We assume that the state of G can be directly measured and
a static state-feedback controller is used, i.e. uy = —Kxg.

ITo be consistent with the current RL literature, we set up, = —Kxy,.
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Fig. 1. Interconnection for Robust Synthesis

In this paper, we assume that all disturbance feedthrough
terms are zero, however this assumptions may be possible
to relax via a computationally heavy transformation. For
convenient reference, we will use F;(G, K) to denote the
feedback interconnection of G and K. Thus, F;(G, K) is a
mapping from the input (w, d) to the output (v, e).

The pair (v, w) satisfies w = Av where A is a mapping in
a cone A of structured bounded linear operators. We call A
the uncertainty set. Details on this general interconnection
for an uncertain feedback system can be found in [26], [27].
The closed-loop for a given state-feedback depends on A
and is denoted Ty .(A). We use || - || to denote the H o,
norm. The state-feedback will be designed to optimize the
robust performance of the closed-loop as defined next.

Definition 1: The controller K achieves Robust Perfor-
mance of level v if for all A € A satisfying [|Afl < 2,
the closed-loop is: (i) well-posed, (ii) stable, and (iii) has
the mapping from d to e satisfying ||Tie(A)]|co < 7. We
define 1 to be the infimum of all such ~.

Verifying robust performance is, in general, a fundamen-
tally difficult non-convex problem, and accordingly so is
computing 1 5. Hence one typically focuses on computing an
upper bound. Specifically, define a set of scaling matrices D
with the property that for each D € D we have DA = AD
for all A € A. For a fixed controller K, an upper bound on
i is given by the following optimization:

fic = jnf || diag(D, ) Fi(G, K) diag(D™!, D)l (2)

This is the so-called D-scale upper bound on the robust
performance metric [26]-[28]; when time-varying uncertain-
ties are considered the set D contains only static matrices
and fix = px. Although more general frequency-dependent
scalings can be used for LTI uncertainties, our paper will
focus on the static diagonal D-scaling case for simplicity.
Figure 2 shows a block diagram representation of the
scaled system that appears in the robust performance upper
bound (2). The goal for p synthesis is to minimize the
function px over all stabilizing controllers K. We denote
this optimal value of px as p*. An approach to this problem
is to work with the above upper bound, and related set of D-
scales, to minimize the induced /5 gain from (w, d) to (7, e).
Formally, the resulting synthesis is stated as the following
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Fig. 2. Interconnection for DK Formulation

optimization problem:

i . . . _1
w= Dé%7K||dlag(D7I)}—l(G, K) diag(D™", I)|ls (3)
Note that p* = p* for our specific problem when A is the
set of LTV uncertainty, but generally p* < p*. Since we
consider the state-feedback with static D scaling, the prob-
lem can be reformulated as a convex program [29]. One issue
is that this convex approach cannot be directly applied in the
model-free setting. An alternative approach is the so-called
D K-iteration which alternates between optimizing over D
(with K fixed) and optimizing over K (with D fixed). While
each step is convex, the alternation does not necessarily
yield the global optimum for the joint optimization over D
and K. However, such a heuristic approach can find good
solutions in many practical scenario, and we will generalize
this method to the model-free setting.

The focus of this paper is the model-free setting where all
the state/input/output matrices in (1) are unknown. We only
assume the availability of a "black-box" simulator for G.
Notice that the nominal control design corresponds to A = 0.
In this case, one only needs a simulator which is capable
of generating the trajectories of {e;} given w = 0 and
any sequence {dy}. However, solving the robust synthesis
in a model-free manner requires a more powerful simulator.
We assume that the simulator for (1) is able to generate
the trajectories of {ey, vy, xy} for any given {dj,wy,uy}.
Notice that a black box simulator for the nominal model
(with no uncertainty) can be modified to incorporate (w,v)
channels corresponding to input multiplicative uncertainty.
This is a standard uncertainty class that accounts for non-
parametric error (unmodeled dynamics) at the plant input
[26]-[28]. We will also demonstrate such simulator via the
setting in Section IV. Then the goal of our paper is to use
the above “black-box" simulator of the uncertain plant to
solve the state-feedback p synthesis problem (3) with static
D-scaling in a model-free manner.

B. Model-Free Minimum-Entropy H, Control via RARL

Our proposed model-free solution for state-feedback p
synthesis will rely on existing results on RARL for linear
quadratic (LQ) games. Via the RARL framework, one can
design robust policies against possible adversarial attacks by
jointly training a protagonist and an adversary via a game
formulation where the protagonist learns to robustly perform
the control tasks under the possible disturbances generated by



its adversary. Here, we briefly review some relevant results
on LQ RARL. Consider a two-player, zero-sum, LQ game:

J(u,h) :=EY {2 TQux + uf R'ux — b R"hi}  (4)
k=0
subject to: x4+ = Axy + Byuy + Brhg, x9 ~ D

where @), R*, and R" are positive definite matrices with
compatible dimensions. The initial state x is drawn from
the distribution D. In the RARL framework, the protagonist
uses the “control action” u to minimize J while the adversary
uses the “attack” h to maximize J. The expectation is taken
over the trajectory {x;}, and the only randomness stems from
the random initial state satisfying E[zox]] = Xo. The goal
for RARL is to solve the Nash equilibrium of the above
game and obtain a pair of control-disturbance sequences
{uy} and {h}} satisfying J(u*, h) < J(u*, h*) < J(u,h*)
for any u and h. It is known [30] that the Nash Equilibrium
of the above LQ game can be attained by state-feedback
controllers, i.e., there exists a pair of matrices (K*,L*),
such that uj = —K*x; and hj = —L*z;. Hence, it suffices
to search over the stabilizing control gain matrices (K, L)
(policy parameters). This leads to the following minimax
problem where J becomes a function of (X, L):

min max J(K, L)
K L

subject to: x;11 = Axy + Byuy + Bphy, x9 ~ D
U = *K!Et, ht = *Ll’t

Therefore, one can apply various iterative gradient-based
methods and their model-free counterparts to solve the
above minimax problem. Based on [18], a double-loop
algorithm can be used to guarantee convergence and sta-
bility. For our problem, the most important application of
this double-loop RARL method is to provide a model-
free solver for the so-called minimum-entropy H., control
problem [31].%2 For a fixed D, let K, denote the set of all
stabilizing controllers satisfying the close-loop H., bound
v, ie. ||diag(D,I) F(G,K) diag((D7*,I)||«« < 7. The
minimum-entropy control aims at solving the “minimum
entropy” center of K, for any given ~. It is well known
that the minimum entropy controller can be solved via
an equivalent game formulation. Therefore, we can modify
the above double-loop RARL algorithm to obtain a model-
free oracle RARLSolver (v, K, D) which uses an internal
iterative process initialized from K to generate the minimum-
entropy center of /C, for any given v and D. The implemen-
tation details for RARLSolver are presented in our arXiv
report [34].

C. Model-free Hoo Evaluation via Power Iteration

Before proceeding to our proposed model-free method for
solving the design problem (3), it is natural to ask whether
there exists a model-free oracle for evaluating the value of the

2Depending on whether to include the “—" sign into the definition of
the entropy, some papers adopt the terminology “maximum-entropy Hoo
control" to refer to the same problem [32], [33].

objective function ||diag(D,I) F(G, K) diag(D~1, I)]|so
given any K and D. The answer is yes. There are various
methods available for the H..-norm estimation tasks [35]—
[40]. One approach which is particularly suitable for our
setting is the multi-input, multi-output (MIMO) power iter-
ation method [41]. This relies on a specialized time-reversal
method to estimate the H, norm of an LTI MIMO system
from the spectral radius of its finite-time approximated rep-
resentation. Given a black-box simulator for a stable system
G, the power iteration method provides an efficient oracle
for estimating ||G|| denoted as

|G|l ~ HinfOracle(G, N) (5)

where N is specified by the users. The HinfOracle uses the
simulated input/output data of G to query G ~»> Which is an
N-step finite-time approximation of G, and then outputs a
number to estimate the following spectral radius

7(Gn) = |/ A (GG )-

The Hoo-norm of G can be recovered as:
G- gme@) o

The key step in the HinfOracle is that time-reversal is used
to access the adjoint system Q; from the input/output data
generated by the simulator of G. We refer the readers to [41]
for implementation details of the power iteration method.

It should be noted that the HinfOracle will typically
generate a lower-bound for the H., norm of the original
system. Some relevant theory can be found in [38]. For our
purpose, a tight upper bound is desired, and we will discuss
a potential fix in the next section.

III. MAIN ALGORITHM

As mentioned previously, in the case where the model
G is known, the robust synthesis problem (3) is typically
solved via a coordinate-descent-type method called DK-
iteration. For any fixed (K, D), denote the objective function
I'(K, D) := || diag(D, I) Fi(G, K) diag((D~*,I)||oc- Then
D K -iteration follows the update rule:

KD = argmin T (K, D<">) 7
DY — argmin (KD D (8)
& D

where the initial D) is usually chosen as I. This approach
alternates between the K-step (7) and D-step (8). When
the model is known, both steps can be efficiently solved
as convex programs. In the model-free case, our proposed
algorithm can be viewed as a model-free counterpart of the
D K -iteration method. Specifically, we will develop iterative
model-free algorithms to solve both the K-step (7) and the
D-step (8) in an approximate way.



A. Overview

An overview summary of our proposed approach is given
in Algorithm 1. Our model-free algorithm still delineates two
main steps: 1) a K-step which performs H, synthesis for
a fixed scaling D, and 2) a D-step which optimizes p over
static scaling matrix D for a fixed K. The main difference is
that the exact minimization (7) (8) are replaced with model-
free approximation updates (9) (10).

o K-step: In contrast to solving (7) exactly, we call the
oracle Approx-Kmin to obtain a model-free solution
for the H,, synthesis with a fixed scaling D(™). The
oracle Approx-Kmin runs an iterative method by itself
and requires an initial policy which is not explicitly
needed in the original exact minimization (7). At step
n, We use the iterate K™ to initialize the iterations
in Approx-Kmin and the output of Approx-Kmin is
used as K1) On the conceptual level, the iterative
algorithm within Approx-Kmin can be viewed as a
model-free counterpart of the central path algorithm.
The details for the model-free oracle Approx-Kmin are
presented in Section III-B.

o D-step: Similarly, the exact optimization (8) is replaced
with a model-free oracle Approx-Dmin that runs an
iterative finite-difference optimization method to opti-
mize D for a fixed K. At step n, the finite-difference
optimization in Approx-Dmin is initialized with D)
and will generate an output D("t1)_ Section III-C gives
details for the model-free oracle Approx-Dmin.

It is emphasized that both Approx-Kmin and Approx-Dmin
only require the use of a “black-box” system G of the
structure (1) which is able to generate the trajectories of
{ek, v} given inputs {d,wy}. Both oracles heavily rely on
the model-free H ., estimator HinfOracle introduced in Sec-
tion II-C as well as some model-free iterative optimization
methods and hence we need to provide effective initialization
when calling them. It is also worth mentioning that Algo-
rithm 1 requires an initial nominally stabilizing controller
K (i) which can also be obtained using standard policy-
based RL methods [42]. We will now describe Approx-
Kmin and Approx-Dmin in detail as well as some practical
considerations important for implementation.

B. Model-free Approximation for K-step

Now we give details for how to solve the K-step in
a model-free way. The pseudo code for Approx-Kmin is
given in Algorithm 2. The goal is to perform model-free
Hoo synthesis for a fixed scaling D. An iterative algorithm
is used. For clarity, we use IN(T to denote the internal
controller iterations within Approx-Kmin. When used in the
n-th iteration of the main algorithm 1, Approx-Kmin will
initialize as Ky = K and generate the final output as
K@+ — K1 where T is the number of the iterations run
within Approx-Kmin.

Next, we discuss the internal process for Approx-Kmin.
At each iteration 7, HinfOracle is first called to compute
the closed-loop Ho, norm -y, for the associated controller

Algorithm 1 Model-free D K -iteration
Require: Simulator G
1: Input: Stabilizing K *)_ and number of iterations N
2: Initialize D) := I, K(©) .= g (ini®)
3: forn=0,---,N—1do
4 Model-Free K-Step Section (III-B): Call the oracle
Approx-Kmin(K (", D(") to update K as:

K™+ — Approx-Kmin(K™ D™)  (9)

5. Model-Free D-Step Section (III-C): Call the oracle
Approx-Dmin(KX ("1 D) to update D as:

D™+ — Approx-Dmin(K "+ D)

(10)

6: end for

7: return the final control design K ()

K.. Specifically, we want 7, to be a good estimate for
| diag(D, I) Fi(G, K,) diag((D~*,I)||e. Let K. denote
the set of all stabilizing controllers satisfying the close-loop
Hoo bound 7, ie. T'(K,D) < ~. In the robust control
literature, K, is also termed as the ““y-admissible set."
Obviously, K is on the boundary of the set KC,_. Intuitively,
the center of X, should have a closed-loop H., norm
being smaller than 7,. If we move the iterations towards
the center of KC.,_, we should be able to get a controller with
a smaller closed-loop H~, norm and then improve the robust
performance. This motivates our next step which is to call
the RARL algorithm RARLSolver to approximately solve
the “minimum-entropy" center for the ~.-admissible set.
One technical subtlety is that running RARLSolver(~, K)
requires the initial point K to have a closed-loop H, norm
which is strictly smaller than . Therefore, we cannot run
RARLSolver(~,, K.) directly. We need to slightly perturb
~. to enlarge the admissible set such that K, becomes an
interior point that is good for the initialization purpose. Then
we can call RARLSolver(~,+d, K ) to generate the central
solution of the set K, 45 . The perturbation parameter
0r needs to be tuned in a case-by-case manner, and can

Algorithm 2 Model-Free Oracle Approx-Kmin(X, D)
1: Input: Initial K, number of iterations T, fixed scaling
D, finite window length L, scalars {57}3;01
. Initialize K, := K
cfor7=0,---,T—1do
4:  Call HinfOracle to obtain an estimate for the .,
norm of the closed-loop system with controller K

~, = HinfOracle(diag(D, I) (G, K,) diag((D~',I), L)

5. Slightly perturb ~, and then call RARLSolver to
solve the resultant mixed design problem:

K..1 = RARLSolver(v; + 6., K., D)

[SSI ]

end for R
7: Return the controller Kt

a




be typically chosen as a small positive number as long as
the estimate from HinfNorm is reasonable. Then the center
of K, +s, should be close to the center of K, . Then we
will just set the updated controller IN(TH to be the “central”
solution generated by RARLSolver. As 7 increases, the set
IC. is expected to shrink. For sufficiently large T, the set
K., becomes sufficiently small, and the algorithm will return
a controller K'r which approximates the solution for the
original K -step minimization problem (7).

Connections with central path: There is a deep connec-
tion between the proposed method Approx-Kmin and the
well-known central path algorithm for solving semi-definite
programs (SDPs) [43], [44]. The central path algorithm
computes the analytic center p*(\) of a A-cost sublevel set
of the feasible LMI through a barrier function formulation.
At each iteration, A is updated as the cost achieved by the
previous analytic center. Our proposed method is similar in
the sense that at each iteration, K. ~+1 1s generated to approx-
imate the center of the previous admissible set. Formally
speaking, RARLSolver generates an approximate solution
for the so-called minimum entropy H., control problem,
and this naturally leads to the “central solution" for the given
Hoo-constrained set [32]. Therefore, on the conceptual level,
Approx-Kmin can be viewed as an approximate version of
the central path algorithm. It is well known that the central
path algorithm yields strong convergence guarantees and is
typically much faster than non-smooth methods based on the
subgradient of the H, norm. We suspect that Approx-Kmin
will also yield strong convergence guarantees and leave such
theoretical study as future work. Notice the entropy itself is
not a barrier function for the H,-constrained set, and hence
new theoretical arguments may be needed. Inspired by a vari-
ant of the central path algorithm, we can also apply a factor
6 € [0,1) to interpolate A\;11 = (1 — 0)y,41 + 6X,. This
interpolation further promotes feasibility of RARLSolver.

C. Model-Free Approximation for D-step

We now develop the model-free D-step procedure
Approx-Dmin with pseudo code given in Algorithm 3. In
the D-step, we fix the controller K and optimize (3) over
static diagonal D scaling matrices via a subgradient method.
Similarly to Approx-Kmin, we denote the internal D scale
iterations by D, and their parameters by d.. At the n-th
iteration of our main Algorithm 1, we apply Approx-Dmin,
with Dy := D™, to generate the update D("+1) := Dr.

In the model-free setting, we can only query evaluations
of the objective function (3) through our data-driven power
method HinfOracle, so we employ the finite difference
method to obtain subgradient estimates. The static diagonal
D scaling is explicitly parameterized by D := exp(diag(d)),
where d = (di,...,d;) and m is the dimension of the
diagonal uncertainty A. We define the function H as

H(d) = || diag(e™5D), 1) Fy(G, K) diag(e~ @ )]«
(1)
The central difference estimate of the jth entry of the

Algorithm 3 Model-Free Oracle Approx-Dmin(X, D)

1: Input: Fixed K, initial parameterized scaling D =
diag(exp(d)), number of iterations T, finite window
length L, gradient step-size «, perturbation size €.

2: Initialize czo =d

3: for7r=0,---,T—1do

4. Use the CentralDiffOracle to estimate the central

difference gradient update for the ., norm of the
closed-loop system with controller K and scaling
elements czT:

d-,1 = CentralDiffOracle(d,, <, o, L)
5: end for ~
6: D := diag(exp(dr)) .
7: Return the scaling matrix D

gradient g is
H(d+ce;) — H(d —ce;

gj(d75): ( +€J)2€ ( EJ)’
where e; is a vector who’s jth entry is 1 and zero elsewhere
and ¢ is some positive number sufficiently small. With the
gradient g in hand, we can proceed to perform gradient
descent updates on d. Using the black-box simulator and
HinfOracle with a window of N to take evaluations of
H, we have an approximate oracle for the finite difference
gradient update on our internal parameter dy:

JTH =d, — ozg(cZT7 g) & CentralDiffOracle(cZT7 g,a,N)

jelml (12

Where CentralDiffOracle is applied for a fixed number
of iterations and the final scaling is given by D =
diag(exp(d;)). Note that when using unreliable evaluations,
€ must be chosen large enough to observe a valid descent
direction, but also small enough to capture the local gradient

information and avoid oscillations around a minimum.

IV. NUMERICAL CASE STUDY

In order to demonstrate the effectiveness of our proposed
model-free D K -iteration algorithm 1, we present a numer-
ical example of a MIMO system with input-multiplicative
uncertainty. We will compare our model-free procedure to a
standard model-based D K synthesis method to make empiri-
cal observations of accuracy and convergence characteristics.

Uncertain Coupled Spring-Mass System: The nominal
system is a fully-observable, coupled mass-spring system
with two control inputs and four outputs. The model is
extended to include two input uncertainties and two distur-
bances which enter through the same channel as the control
input (i.e. B, = B,, = By). The continuous-time state-space
matrices and outputs for this system are given by:

0 0 1 0 0 0

0 0 0 1 0 0

A= —k/ml k‘/ml 0 0 7Bu_ 1/m1 0
k/m2 —k’/TTLQ O O O 1/m2

0 R'/?

C’U = 07 Ce = |:Q1/2:| s -Duv = -[7 Due = |: 0 :|
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Fig. 3. Closed loop interconnection for a fully-observable coupled mass-
spring system with input multiplicative uncertainty. The scaled plant G is the
interconnection of plant G and two scaled matrices D and D—!. Where D is
a 2x 2 diagonal matrix. 1 = wu; and U2 = w2 are inputs of one dimensional
uncertainties A1 and Ay, respectively. Uncertainties outputs w1 = A9

and Wy = Ag?2 along with control inputs w1, u2 and disturbance inputs d
and do _enter scaled plant G' as the plant inputs . @ := (@] , %, )", d =

(d],d])T, u:i=(u],ug )" and ¥ := (¥, ,95 )T and e:= (e, el )T

are system inputs and outputs in Figure 2, respectively.

with m; = 1.0, my =0.5, k=1.0, Q =1 and R = 0.11.

The discrete-time matrices are given by a zero-order-hold
discretization of A and B, with a sample time ¢, = 0.1.
As in the p synthesis problem (3), we aim to minimize the
gain from h := (10, d) to (7,e), where e := (e, ,e])T is a
performance output describing the state error e, and control
effort e,,. The multiplicative uncertainty is at the plant input
as seen in Figure 3, which can account for a standard class of
non-parametric errors. It is standard to design for normalized
uncertainty ||Alloc < 1 (i.e. to aim for 7 < 1). We include
a constant factor of v = 0.25 at the uncertainty input. This
corresponds to an effective uncertainty of 25% in each input
channel. We emphasize that our approach is model-free and
does not require knowing the above model parameters.

To apply our model-free approach, we can formulate the
following dynamic game cost for a fixed v and diagonal
scaling D:

J(u,h) =B {w) Quy, + u (R+ D*)uy,
k=1

—~%h} diag(D?, I)h;}. (13)
More details for the above formulation can be found in the
appendix of our arXiv report [34]. Then the K-step is
solved with this cost using the model-free RARLSolver.
In this case study, the procedure Approx-Dmin is applied
over 2 x 2 diagonal scaling matrices parameterized by
D = exp(diag(dy,ds)). The Approx-Kmin (algorithm 2)
is implemented using LSPI to perform the RARLSolver
subroutine. An error constant of g = le—1 and §, = 5e—3
for all 7 > 0 is added to each new -, estimate given
by HinfOracle. The first constant is made to be larger
because the first closed-loop under K is often less robust
and HinfOracle typically yields a higher error. We continue
to apply the RARLSolver subroutine until v can no longer
be decreased by a small threshold value, where we then
proceed to apply Approx-Dmin once again.

| | |
—== H Synthesis (D =1)
Model-based DK Iteration
—— Model-free DK Iteration

er-bound
= = e e
o %) =S [=>]
1 ( 1

2,

=

= 0.8 1

0.6 .
D-step: l)l 2)| 3)| 4)|5)
0 500 1000 1500 2000 2500
Number of K updates
Fig. 4. The model-free DK-iteration Algorithm 1 is initialized with

a stabilizing controller and five D K-iterations are run. For each update
on K within RARLSolver, we plot the true achieved upper-bound fi of
problem (3). The value is piece-wise constant since a new f is only
determined after completing the RARLSolver subroutine. The gray lines
denote when a D step occurs, hence the instantaneous jumps. Values of i
are also shown for nominal model-based H o synthesis and D K -iteration.

Figure 4 shows results from five total D K -iterations. We
compare the values of i found by our Model-free DK -
iteration algorithm 1 and fully model-based DK -iteration.’
The horizontal axis of Figure 4 is the number updates on K
that occur within the RARLSolver subroutine. RARLSolver
will continue to update K until convergence, where it returns
f(TH and a new -y, is computed, hence the piece-wise form
of the graph. The iteration at which Approx-Dmin is applied
is denoted by grey lines. As we get closer to the optimal
it upper-bound, convergence in Approx-Kmin occurs more
quickly and Approx-Dmin occurs more frequently.

In this first K-step when D = [, the application of
Approx-Kmin is equivalent to H . synthesis of the uncertain
loop in Figure 3. The model-free Approx-Kmin approaches
the optimal nominal H ., value when D = I. Moreover, the
minimum upper bound ji after Model-free D K -iterations (al-
gorithm 1) approaches within 2% of the value found through
model-based D K -iterations. Ultimately, the level of accuracy
is determined by the accuracy of HinfOracle and the size
of the error constants {J,}, which must be large enough to
yield an upper-bound. Clearly there is a trade-off between
the number of samples expended on HinfOracle and the ac-
curacy of ji. Fortunately, using a window length of L = 100
was sufficient to achieve the performance shown in Figure 4.
Although there is no theoretic convergence guarantee for our
proposed algorithm, this case study provides evidence that
our algorithm is capable of achieving a near optimal ~ in
a model-free manner for the case of H, synthesis and pu-
synthesis. As shown in Figure 4, the convergence requires
running the K-step for roughly 2500 times. Each time
requires a full trajectory and consumes about 0.6 seconds of
CPU time on a laptop. Hence the total CPU time is roughly
25 minutes. Of course this is much slower than model-based
approaches. However, we emphasize that our goal is not to
propose a computationally efficient method outperforming

3Notice that the model-based D K -iteration and the convex approach in
[29] generate almost the same results on this example.



existing approaches in the model-based setting. It is our hope
that the connection between adversarial RL and p-synthesis
can shed new light on data-driven robust control.
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