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Artificial Intelligence,
Automation, and Work

Daron Acemoglu and Pascual Restrepo

8.1 Introduction

The last two decades have witnessed major advances in artificial intel-
ligence (AI) and robotics. Future progress is expected to be even more spec-
tacular, and many commentators predict that these technologies will trans-
form work around the world (Brynjolfsson and McAfee 2014; Ford 2016;
Boston Consulting Group 2015; McKinsey Global Institute 2017). Recent
surveys find high levels of anxiety about automation and other technologi-
cal trends, underscoring the widespread concerns about their effects (Pew
Research Center 2017).

These expectations and concerns notwithstanding, we are far from a sat-
isfactory understanding of how automation in general, and Al and robotics
in particular, impact the labor market and productivity. Even worse, much of
the debate in both the popular press and academic circles centers around a
false dichotomy. On the one side are the alarmist arguments that the oncom-
ing advances in Al and robotics will spell the end of work by humans, while
many economists on the other side claim that because technological break-
throughs in the past have eventually increased the demand for labor and
wages, there is no reason to be concerned that this time will be any different.

In this chapter, we build on Acemoglu and Restrepo (2016), as well as

Daron Acemoglu is the Elizabeth and James Killian Professor of Economics at the Massa-
chusetts Institute of Technology and a research associate of the National Bureau of Economic
Research. Pascual Restrepo is assistant professor of economics at Boston University.

We are grateful to David Autor for useful comments. We gratefully acknowledge financial
support from Toulouse Network on Information Technology, Google, Microsoft, IBM, and
the Sloan Foundation. For acknowledgments, sources of research support, and disclosure of
the authors’ material financial relationships, if any, please see http://www.nber.org/chapter
/c14027.ack.
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Zeira (1998) and Acemoglu and Autor (2011) to develop a framework for
thinking about automation and its impact on tasks, productivity, and work.

At the heart of our framework is the idea that automation and thus Al
and robotics replace workers in tasks that they previously performed, and
via this channel, create a powerful displacement effect. In contrast to pre-
sumptions in much of macroeconomics and labor economics, which main-
tain that productivity-enhancing technologies always increase overall labor
demand, the displacement effect can reduce the demand for labor, wages,
and employment. Moreover, the displacement effect implies that increases
in output per worker arising from automation will not result in a propor-
tional expansion of the demand for labor. The displacement effect causes
a decoupling of wages and output per worker, and a decline in the share of
labor in national income.

We then highlight several countervailing forces that push against the
displacement effect and may imply that automation, Al, and robotics could
increase labor demand. First, the substitution of cheap machines for human
labor creates a productivity effect: as the cost of producing automated tasks
declines, the economy will expand and increase the demand for labor in
nonautomated tasks. The productivity effect could manifest itself as an
increase in the demand for labor in the same sectors undergoing automa-
tion or as an increase in the demand for labor in nonautomating sectors.
Second, capital accumulation triggered by increased automation (which
raises the demand for capital) will also raise the demand for labor. Third,
automation does not just operate at the extensive margin—replacing tasks
previously performed by labor—but at the intensive margin as well, increas-
ing the productivity of machines in tasks that were previously automated.
This phenomenon, which we refer to as deepening of automation, creates a
productivity effect but no displacement, and thus increases labor demand.

Though these countervailing effects are important, they are generally
insufficient to engender a “balanced growth path,” meaning that even if
these effects were powerful, ongoing automation would still reduce the share
of labor in national income (and possibly employment). We argue that there
is a more powerful countervailing force that increases the demand for labor
as well as the share of labor in national income: the creation of new tasks,
functions and activities in which labor has a comparative advantage rela-
tive to machines. The creation of new tasks generates a reinstatement effect
directly counterbalancing the displacement effect.

Indeed, throughout history we have not just witnessed pervasive automa-
tion, but a continuous process of new tasks creating employment opportuni-
ties for labor. As tasks in textiles, metals, agriculture, and other industries
were being automated in the nineteenth and twentieth centuries, a new range
of tasks in factory work, engineering, repair, back-office, management, and
finance generated demand for displaced workers. The creation of new tasks
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is not an autonomous process advancing at a predetermined rate, but one
whose speed and nature are shaped by the decisions of firms, workers, and
other actors in society, and might be fueled by new automation technologies.
First, this is because automation, by displacing workers, may create a greater
pool of labor that could be employed in new tasks. Second, the currently
most discussed automation technology, Al itself, can serve as a platform to
create new tasks in many service industries.

Our framework also highlights that even with these countervailing forces,
the adjustment of an economy to the rapid rollout of automation tech-
nologies could be slow and painful. There are some obvious reasons for
this related to the general slow adjustment of the labor market to shocks,
for example, because of the costly process of workers being reallocated to
new sectors and tasks. Such reallocation will involve both a slow process
of searching for the right matches between workers and jobs, and also the
need for retraining, at least for some of the workers.

A more critical, and in this context more novel, factor is a potential mis-
match between technology and skills—between the requirements of new
technologies and tasks and the skills of the workforce. We show that such
a mismatch slows down the adjustment of labor demand, contributes to
inequality, and also reduces the productivity gains from both automation
and the introduction of new tasks (because it makes the complementary
skills necessary for the operation of new tasks and technologies more scarce).

Yet another major factor to be taken into account is the possibility of
excessive automation. We highlight that a variety of factors (ranging from a
bias in favor of capital in the tax code to labor market imperfections create
a wedge between the wage and the opportunity cost of labor) and will push
toward socially excessive automation, which not only generates a direct inef-
ficiency, but also acts as a drag on productivity growth. Excessive automa-
tion could potentially explain why, despite the enthusiastic adoption of new
robotics and Al technologies, productivity growth has been disappointing
over the last several decades.

Our framework underscores as well that the singular focus of the research
and the corporate community on automation, at the expense of other types
of technologies including the creation of new tasks, could be another factor
leading to a productivity slowdown because it forgoes potentially valuable
productivity growth opportunities in other domains.

In the next section, we provide an overview of our approach without
presenting a formal analysis. Section 8.3 introduces our formal framework,
though to increase readability, our presentation is still fairly nontechnical
(and formal details and derivations are relegated to the appendix). Section
8.4 contains our main results, highlighting both the displacement effect
and the countervailing forces in our framework. Section 8.5 discusses the
mismatch between skills and technologies, potential causes for slow pro-
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ductivity growth and excessive automation, and other constraints on labor
market adjustment to automation technologies. Section 8.6 concludes, and
the appendix contains derivations and proofs omitted from the text.

8.2 Automation, Work, and Wages: An Overview

At the heart of our framework is the observation that robotics and current
practice in Al are continuing what other automation technologies have done
in the past: using machines and computers to substitute for human labor in
a widening range of tasks and industrial processes.

Production in most industries requires the simultaneous completion of
a range of tasks. For example, textile production requires production of
fiber, production of yarn from fiber (e.g., by spinning), production of the
relevant fabric from the yarn (e.g., by weaving or knitting), pretreatment
(e.g., cleaning of the fabric, scouring, mercerizing and bleaching), dyeing
and printing, finishing, as well as various auxiliary tasks including design,
planning, marketing, transport, and retail.! Each one of these tasks can be
performed by a combination of human labor and machines. At the dawn
of the British Industrial Revolution, most of these tasks were heavily labor
intensive. Many of the early innovations of that era were aimed at automat-
ing spinning and weaving by substituting mechanized processes for the labor
of skilled artisans (Mantoux 1928).2

The mechanization of US agriculture offers another example of machines
replacing workers in tasks they previously performed (Rasmussen 1982).
In the first half of the nineteenth century, the cotton gin automated the
labor-intensive process of separating the lint from the cotton seeds. In the
second half of the nineteenth century, horse-powered reapers, harvesters,
and plows replaced manual labor working with more rudimentary tools such
as hoes, sickles, and scythes, and this process was continued with tractors
in the twentieth century. Horse-powered threshing machines and fanning
mills replaced workers employed in threshing and winnowing, two of the
most labor-intensive tasks left in agriculture at the time. In the twentieth
century, combine harvesters and a variety of other mechanical harvest-
ers improved upon the horse-powered machinery, and allowed farmers to
mechanically harvest several different crops.

Yet another example of automation comes from the development of the

1. See http://textileguide.chemsec.org/find/get-familiar-with-your-textile-production
-processes/.

2. It was this displacement effect that motivated Luddites to smash textile machines and
agricultural workers during the Captain Swing riots to destroy threshing machines. Though
these workers often appear in history books as misguided, there was nothing misguided about
their economic fears. They were quite right that they were going to be displaced. Of course,
had they been successful, they might have prevented the Industrial Revolution from gaining
momentum with potentially disastrous consequences for technological development and our
subsequent prosperity.
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factory system in manufacturing and its subsequent evolution. Beginning
in the second half of the eighteenth century, the factory system introduced
the use of machine tools such as lathes and milling machines, replacing
the more labor-intensive production techniques relying on skilled artisans
(Mokyr 1990). Steam power and later electricity greatly increased the oppor-
tunities for the substitution of capital for human labor. Another important
turning point in the process of factory automation was the introduction
of machines controlled via punch cards and then numerically controlled
machines in the 1940s. Because numerically controlled machines were more
precise, faster, and easier to operate than manual technologies, they enabled
significant cost savings while also reducing the role of craft workers in manu-
facturing production. This process culminated in the widespread use of
CNC (computer numerical control) machinery, which replaced the numeri-
cally controlled vintages (Groover 1983). A major new development was the
introduction of industrial robots in the late 1980s, which automated many
of the remaining labor-intensive tasks in manufacturing, including machin-
ing, welding, painting, palletizing, assembly, material handling, and quality
control (Ayres and Miller 1983; Groover et al. 1986; Graetz and Michaels
2015; Acemoglu and Restrepo 2017).

Examples of automation are not confined to industry and agriculture.
Computer software has already automated a number of tasks performed by
white-collar workers in retail, wholesale, and business services. Software and
Al-powered technologies can now retrieve information, coordinate logis-
tics, handle inventories, prepare taxes, provide financial services, translate
complex documents, write business reports, prepare legal briefs, and diag-
nose diseases. These technologies are set to become much better at these
and other tasks during the next years (e.g., Brynjolfsson and McAfee 2014;
Ford 2016).

As these examples illustrate, automation involves the substitution of
machines for labor and leads to the displacement of workers from the tasks
that are being automated. This displacement effect is not present—or pres-
ent only incidentally—in most approaches to production functions and
labor demand used in macroeconomics and labor economics. The canoni-
cal approach posits that production in the aggregate (or in a sector for that
matter) can be represented by a function of the form F(AL,BK), where L
denotes labor and K is capital. Technology is assumed to take a “factor-
augmenting” form, meaning that it multiplies these two factors of produc-
tion as the parameters 4 and B do in this production function.

It might appear natural to model automation as an increase in B, that is,
as capital-augmenting technological change. However, this type of techno-
logical change does not cause any displacement and always increases labor
demand and wages (see Acemoglu and Restrepo 2016). Moreover, as our
examples above illustrate, automation is not mainly about the development
of more productive vintages of existing machines, but involves the intro-
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duction of new machinery to perform tasks that were previously the domain
of human labor.

Labor-augmenting technological change, corresponding to an increase
in A4, does create a type of displacement if the elasticity of substitution
between capital and labor is small. But in general, this type of technologi-
cal change also expands labor demand, especially if capital adjusts over the
long run (see Acemoglu and Restrepo 2016). Moreover, our examples make
it clear that automation does not directly augment labor; on the contrary,
it transforms the production process in a way that allows more tasks to be
performed by machines.

8.2.1 Tasks, Technologies, and Displacement

We propose, instead, a task-based approach, where the central unit of
production is a task as in the textile example discussed above.? Some tasks
have to be produced by labor, while other tasks can be produced either by
labor or by capital. Also, labor and capital have comparative advantages in
different tasks, meaning that the relative productivity of labor varies across
tasks. Our framework conceptualizes automation (or automation at the
extensive margin) as an expansion in the set of tasks that can be produced
with capital. If capital is sufficiently cheap or sufficiently productive at the
margin, then automation will lead to the substitution of capital for labor
in these tasks. This substitution results in a displacement of workers from
the tasks that are being automated, creating the aforementioned displace-
ment effect.

The displacement effect could cause a decline in the demand for labor and
the equilibrium wage rate. The possibility that technological improvements
that increase productivity can actually reduce the wage of all workers is an
important point to emphasize because it is often downplayed or ignored.

With an elastic labor supply (or quasi-labor supply reflecting some labor
market imperfections), a reduction in the demand for labor also leads to
lower employment. In contrast to the standard approach based on factor-
augmenting technological changes, a task-based approach immediately
opens the way to productivity-enhancing technological developments that
simultaneously reduce wages and employment.

8.2.2 Countervailing Effects

The presence of the displacement effect does not mean that automation
will always reduce labor demand. In fact, throughout history, there are
several periods where automation was accompanied by an expansion of

3. See Autor, Leavy, and Murnane (2003) and Acemoglu and Autor (2011). Different from
these papers that develop a task-based approach focusing on inequality implications of tech-
nological change, we are concerned here with automation and the process of capital-replacing
tasks previously performed by labor and their implications for wages and employment.
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labor demand and even higher wages. There are a number of reasons why
automation could increase labor demand.

1. The Productivity Effect. By reducing the cost of producing a subset of
tasks, automation raises the demand for labor in nonautomated tasks (Autor
2015; Acemoglu and Restrepo 2016). In particular, automation leads to the
substitution of capital for labor because at the margin, capital performs
certain tasks more cheaply than labor used to. This reduces the prices of the
goods and services whose production processes are being automated, mak-
ing households effectively richer, and increasing the demand for all goods
and services.

The productivity effect could manifest itself in two complementary ways.
First, labor demand might expand in the same sectors that are undergoing
automation.* A telling example of this process comes from the effects of the
introduction of automated teller machines (ATMs) on the employment of
bank tellers. Bessen (2016) documents that concurrent with the rapid spread
of ATMs—a clear example of automating technology that enabled these
new machines to perform tasks that were previously performed more expen-
sively by labor—there was an expansion in the employment of bank tellers.
Bessen suggests that this is because ATMs reduced the costs of banking and
encouraged banks to open more branches, raising the demand for bank tell-
ers who then specialized in tasks that ATMs did not automate.

Another interesting example of this process is provided by the dynam-
ics of labor demand in spinning and weaving during the British Industrial
Revolution as recounted by Mantoux (1928). Automation in weaving (most
notably, John Kay’s fly shuttle) made this task cheaper and increased the
price of yarn and the demand for the complementary task of spinning.
Later automation in spinning reversed this trend and increased the demand
for weavers. In the words of John Wyatt, one of the inventors of the spin-
ning machine, installing spinning machines would cause clothiers to “then
want more hands in every other branch of the trade, viz. weavers, shearmen,
scourers, combers, etc.” (quoted in Mantoux 1928). This is also probably
the reason why the introduction of Eli Whitney’s cotton gin in 1793, which
automated the labor-intensive process of separating the cotton lint from
the seeds, appears to have led to greater demand for slave labor in southern
plantations (Rasmussen 1982).

The productivity effect also leads to higher real incomes and thus to greater
demand for all products, including those not experiencing automation. The
greater demand for labor from other industries might then counteract the
negative displacement effect of automation. The clearest historical example
of this comes from the adjustment of the US and many European economies

4. This requires that the demand for the products of these sectors is elastic. Acemoglu and
Restrepo (2017) refer to this channel as the price-productivity effect because it works by reduc-
ing the relative price of products that are being automated and restructuring production toward
these sectors.



204 Daron Acemoglu and Pascual Restrepo

to the mechanization of agriculture. By reducing food prices, mechanization
enriched consumers who then demanded more nonagricultural goods (Her-
rendorf, Rogerson, and Valentinyi 2013), and created employment oppor-
tunities for many of the workers dislocated by the mechanization process
in the first place.’

This discussion also implies that, in contrast to the popular emphasis on
the negative labor market consequences of “brilliant” and highly productive
new technologies set to replace labor (e.g., Brynjolfsson and McAfee 2014;
Ford 2016), the real danger for labor may come not from highly productive
but from “so-so” automation technologies that are just productive enough
to be adopted and cause displacement, but not sufficiently productive to
bring about powerful productivity effects.

2. Capital Accumulation. As our framework in the next section clarifies,
automation corresponds to an increase in the capital intensity of produc-
tion. The high demand for capital triggers further accumulation of capital
(e.g., by increasing the rental rate of capital). Capital accumulation then
raises the demand for labor. This may have been an important channel of
adjustment of the British economy during the Industrial Revolution and of
the American economy in the first half of the twentieth century in the face
of mechanization of agriculture, for in both cases there was rapid capital
accumulation (Allen 2009; Olmstead and Rhode 2001).

As we discuss in the next section, under some (albeit restrictive) assump-
tions often adopted in neoclassical models of economic growth, capital accu-
mulation can be sufficiently powerful that automation will always increase
wages in the long run (see Acemoglu and Restrepo 2016), though the more
robust prediction is that it will act as a countervailing effect.

3. Deepening of Automation. The displacement effect is created by auto-
mation at the extensive margin—meaning the expansion of the set of tasks
that can be produced by capital. But what happens if technological improve-
ments increase the productivity of capital in tasks that have already been
automated? This will clearly not create additional displacement because
labor was already replaced by capital in those tasks. But it will generate the
same productivity effects we have already pointed out above. These pro-
ductivity effects then raise labor demand. We refer to this facet of advances
in automation technology as the deepening of automation (or as automa-
tion at the intensive margin because it is intensifying the productive use of
machines).

A clear illustration of the role of deepening automation comes from the
introduction of new vintages of machinery replacing older vintages used in
already automated tasks. For instance, in US agriculture the replacement of

5. Acemoglu and Restrepo (2017) refer to it as a “scale effect” because in their setting it acted
in a homothetic manner, scaling up demand from all sectors, though in general it could take
a nonhomothetic form.



Artificial Intelligence, Automation, and Work 205

horse-powered reapers and harvesters by diesel tractors increased produc-
tivity, presumably with limited additional substitution of workers in agri-
cultural tasks.® In line with our account of the potential role of deepening
automation, agricultural productivity and wages increased rapidly starting
in the 1930s, a period that coincided with the replacement of horses by trac-
tors (Olmstead and Rhode 2001; Manuelli and Seshadri 2014).

Another example comes from the vast improvements in the efficiency of
numerically controlled machines used for metal cutting and processing (such
as mills and lathes), as the early vintages controlled by punched cards were
replaced by computerized models during the 1970s. The new computer-
ized machines were used in the same tasks as the previous vintages, and
so the additional displacement effects were probably minor. As a result,
the transition to CNC (computer numerical control) machines increased
the productivity of machinists, operators, and other workers in the industry
(Groover 1983).

The three countervailing forces we have listed here are central for under-
standing why the implications of automation are much richer than the direct
displacement effects might at first suggest, and why automation need not
be an unadulterated negative force against the labor market fortunes of
workers. Nevertheless, there is one aspect of the displacement effect that is
unlikely to be undone by any of these four countervailing forces: as we show
in the next section, automation necessarily makes the production process
more capital intensive, reducing the share of labor in national income. Intui-
tively, this is because it entails the substitution of capital for tasks previously
performed by labor, thus squeezing labor into a narrower set of tasks.

If, as we have suggested, automation has been ongoing for centuries, with
or without powerful countervailing forces of the form listed here, we should
have seen a “nonbalanced” growth process with the share of labor in national
income declining steadily since the beginning of the Industrial Revolution.
That clearly has not been the case (see, e.g., Kuznets 1966; Acemoglu 2009).
This suggests that there have been other powerful forces making production
more labor intensive and balancing the effects of automation. This is what
we suggest in the next subsection.

8.2.3 New Tasks

As discussed in the introduction, periods of intensive automation have
often coincided with the emergence of new jobs, activities, industries,
and tasks. In nineteenth-century Britain, for example, there was a rapid
expansion of new industries and jobs ranging from engineers, machinists,
repairmen, conductors, back-office workers, and managers involved with

6. Nevertheless, the move from horse power to tractors contributed to a decline in agricultural
employment via a different channel: tractors increased agricultural productivity, and because
of inelastic demand, expenditure on agricultural products declined (Rasmussen 1982).
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the introduction and operation of new technologies (e.g., Landes 1969;
Chandler 1977; and Mokyr 1990). In early twentieth-century America, the
mechanization of agriculture coincided with a large increase in employ-
ment in new industry and factory jobs (Kuznets 1966) among others in the
burgeoning industries of farm equipment (Olmstead and Rhode 2001) and
cotton milling (Rasmussen 1982). This is not just a historical phenomenon.
As documented in Acemoglu and Restrepo (2016), from 1980 to 2010 the
introduction and expansion of new tasks and job titles explains about half
of US employment growth.

Our task-based framework highlights that the creation of new labor-
intensive tasks (tasks in which labor has a comparative advantage relative
to capital) may be the most powerful force balancing the growth process in
the face of rapid automation. Without the demand for workers from new
factory jobs, engineering, supervisory tasks, accounting, and managerial
occupations in the second half of the nineteenth and much of the twenti-
eth centuries, it would have been impossible to employ millions of workers
exiting the agricultural sector and automated labor-intensive tasks.

In the same way that automation has a displacement effect, we can think
of the creation of new tasks as engendering a reinstatement effect. In this
way, the creation of new tasks has the opposite effect of automation. It
always generates additional labor demand, which increases the share of
labor in national income. Consequently, one powerful way in which tech-
nological progress could be associated with a balanced growth path is via
the balancing of the impacts of automation by the creation of new tasks.

The creation of new tasks need not be an exogenous, autonomous process
unrelated to automation, Al, and robotics for at least two reasons:

1. As emphasized in Acemoglu and Restrepo (2016), rapid automation
may endogenously generate incentives for firms to introduce new labor-
intensive tasks. Automation running ahead of the creation of new tasks
reduces the labor share and possibly wages, making further automation less
profitable and new tasks generating employment opportunities for labor
more profitable for firms. Acemoglu and Restrepo (2016) show that this
equilibrating force could be powerful enough to make the growth process
balanced.

2. Some automation technology platforms, especially Al, may facilitate
the creation of new tasks. A recent report by Accenture identified entirely
new categories of jobs that are emerging in firms using Al as part of their
production process (Accenture PLC 2017). These jobs include “trainers” (to
train the Al systems), “explainers” (to communicate and explain the output
of Al systems to customers), and “sustainers” (to monitor the performance
of Al systems, including their adherence to prevailing ethical standards).

The applications of Al to education, health care, and design may also
result in employment opportunities for new workers. Take education. Exist-
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ing evidence suggests that many students, not least those with certain learn-
ing disabilities, will benefit from individualized education programs and
personalized instruction (Kolb 1984). With current technology, it is pro-
hibitively costly to provide such services to more than a small fraction of
students. Applications of Al may enable the educational system to become
more customized, and in the process create more jobs for education profes-
sionals to monitor, design, and implement individualized education pro-
grams. Similar prospects exist in health care and elderly care services.

8.2.4 Revisiting the False Dichotomy

The conceptual framework outlined above, which will be further elabo-
rated in the next section, clarifies why the current debate is centered on a false
dichotomy between disastrous and totally benign effects of automation.

Our task-based framework underscores that automation will always
create a displacement effect. Unless neutralized by the countervailing forces,
this displacement effect could reduce labor demand, wages, and employ-
ment. At the very least, this displacement effect implies that a falling share
of output will accrue to labor. These possibilities push against the benign
accounts emphasizing that technology always increases the demand for
labor and benefits workers.

Our framework does not support the alarmist perspectives stressing the
disastrous effects of automation for labor either. Rather, it highlights several
countervailing forces that soften the impact of automation on labor. More
important, as we have argued in the previous subsection, the creation of new
labor-intensive tasks has been a critical part of the adjustment process in the
face of rapid automation. The creation of new tasks is not just manna from
heaven. There are good reasons why market incentives will endogenously
lead to the creation of new tasks that gain strength when automation itself
becomes more intensive. Also, some of the most defining automation tech-
nologies of our age, such as Al, may create a platform for the creation of
new sets of tasks and jobs.

At the root of some of the alarmism is the belief that Al will have very dif-
ferent consequences for labor than previous waves of technological change.
Our framework highlights that the past is also replete with automation
technologies displacing workers, but this need not have disastrous effects
for labor. Nor is it technologically likely that AT will replace labor in all or
almost all of the tasks in which it currently specializes. This limited remit of
Al can be best understood by contrasting the current nature and ambitions
of Al with those of its first coming under the auspices of “cybernetics.” The
intellectual luminaries of cybernetics, such as Norbert Wiener, envisaged
the production of Human-Level Artificial Intelligence—computer systems
capable of thinking in a way that could not be distinguished from human
intelligence—replicating all human thought processes and faculties (Nilsson
2009). In 1965, Herbert Simon predicted that “machines will be capable,
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within twenty years, of doing any work a man can do” (Simon 1965, 96).
Marvin Minsky agreed, declaring in 1967 that “Within a generation, [ am
convinced, few compartments of intellect will remain outside the machine’s
realm” (Minsky 1967, 2).

Current practice in the field of Al especially in its most popular and prom-
ising forms based on deep learning and various other “big data” methods
applied to unstructured data, eschews these initial ambitions and aims at
developing applied artificial intelligence—commercial systems specializing
in clearly delineated tasks related to prediction, decision-making, logistics,
and pattern recognition (Nilsson 2009). Though many occupations involve
such tasks—and so Al is likely to have a displacement effect in these tasks—
there are still many human skills that we still cannot automate, including
complex reasoning, judgment, analogy-based learning, abstract problem-
solving, and a mixture of physical activity, empathy, and communication
skills. This reading of the current practice of Al suggests that the potential
for AI and related technological advances to automate a vast set of tasks
is limited.

8.2.5 Flies in the Ointment

Our framework so far has emphasized two key ideas. First, automation
does create a potential negative impact on labor through the displacement
effect and also by reducing the share of labor in national income. But sec-
ond, it can be counterbalanced by the creation of new tasks (as well as the
productivity effect, capital accumulation and the deepening of automation,
which tend to increase the demand for labor, even though they do not gener-
ally restore the share of labor in national income to its preautomation levels).

The picture we have painted underplays some of the challenges of adjust-
ment, however. The economic adjustment following rapid automation can
be more painful than the process we have outlined for a number of reasons.

Most straightforward, automation changes the nature of existing jobs,
and the reallocation of workers from existing jobs and tasks to new ones
is a complex and often slow process. It takes time for workers to find new
jobs and tasks in which they can be productive, and periods during which
workers are laid off from their existing jobs can create a depressed local or
national labor market, further increasing the costs of adjustment. These
effects are visible in recent studies that have focused on the adjustment of
local US labor markets to negative demand shocks, such as Autor, Dorn,
and Hanson (2013), who study the slow and highly incomplete adjustment
of local labor markets in response to the surge in Chinese exports, Mian
and Sufi (2014), who investigate the implications of the collapse in housing
prices on consumption and local employment, and perhaps more closely
related to our focus, Acemoglu and Restrepo (2017), who find employment
and wage declines in areas most exposed to one specific type of automation,
the introduction of industrial robots in manufacturing.
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The historical record also underscores the painful nature of the adjust-
ment. The rapid introduction of new technologies during the British Indus-
trial Revolution ultimately led to rising labor demand and wages, but this
was only after a protracted period of stagnant wages, expanding poverty,
and harsh living conditions. During an eighty-year period extending from
the beginning of the Industrial Revolution to the middle of the nineteenth
century, wages stagnated and the labor share fell, even as technological
advances and productivity growth were ongoing in the British economy,
a phenomenon which Allen (2009) dubs the “Engel’s pause” (previously
referred to as the “living standards paradox”; see Mokyr [1990]).

There should thus be no presumption that the adjustment to the changed
labor market brought about by rapid automation will be a seamless, costless,
and rapid process.

8.2.6 Mismatch between Skills and Technologies

It is perhaps telling that wages started growing in the nineteenth-century
British economy only after mass schooling and other investments in human
capital expanded the skills of the workforce. Similarly, the adjustment to
the large supply of labor freed from agriculture in early twentieth-century
America may have been greatly aided by the “high school movement,” which
increased the human capital of the new generation of American workers
(Goldin and Katz 2010). The forces at work here are likely to be more general
than these examples. New tasks tend to require new skills. But to the extent
that the workforce does not possess those skills, the adjustment process will
be hampered. Even more ominously, if the educational system is not up to
providing those skills (and if we are not even aware of the types of new skills
that will be required so as to enable investments in them), the adjustment
will be greatly impeded. Even the most optimistic observers ought to be
concerned about the ability of the current US educational system to identify
and provide such skills.

At stake here is not only the speed of adjustment, but potential produc-
tivity gains from new technologies. If certain skills are complementary to
new technologies, their absence will imply that the productivity of these
new technologies will be lower than otherwise. Thus the mismatch between
skills and technologies not only slows down the adjustment of employment
and wages, but holds back potential productivity gains. This is particularly
true for the creation of new tasks. The fact that while there is heightened
concerns about job losses from automation, many employers are unable to
find workers with the right skills for their jobs underscores the importance
of these considerations (Deloitte and the Manufacturing Institute 2011).

8.2.7 Missing Productivity and Excessive Automation

The issues raised in the previous subsection are important not least because
a deep puzzle in any discussion of the impact of new technologies is miss-
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ing productivity growth—the fact that while so many sophisticated tech-
nologies are being adopted, productivity growth has been slow. As pointed
out by Gordon (2016), US productivity growth since 1974 (with the excep-
tion of the period from 1995 to 2004) compares dismally to its postwar per-
formance. While the annual rate of labor productivity growth of the US
economy averaged 2.7 percent between 1947 and 1973, it only averaged
1.5 percent between 1974 and 1994. Average productivity growth rebounded
to 2.8 percent between 1995 and 2004, and then fell again to only 1.3 percent
between 2005 and 2015 (Syverson 2017). How can we make sense of this?

One line of attack argues that there is plenty of productivity growth, but it
is being mismeasured. But, as pointed out by Syverson (2017), the pervasive
nature of this slow down, and the fact that it is even more severe in industries
that have made greater investments in information technology (Acemoglu
et al. 2014), make the productivity mismeasurement hypothesis unlikely to
account for all of the slowdown.

Our conceptual framework suggests some possible explanations. They
center around the possibility of “excessive automation,” meaning faster
automation than socially desirable (Acemoglu and Restrepo 2016, 2018a).
Excessive automation not only creates direct inefficiencies, but may also hold
productivity growth down by wastefully using resources and displacing labor.

There are two broad reasons for excessive automation, both of which we
believe to be important. The first is related to the biases in the US tax code,
which subsidizes capital relative to labor. This subsidy takes the form of
several different provisions, including additional taxes and costs employ-
ers have to pay for labor, subsidies in the form of tax credits and acceler-
ated depreciation for capital outlays, and additional tax credit for interest
rate deductions in case of debt-financed investments (AEI 2008; Tuzel
and Zhang 2017). All of these distortions imply that at the margin, when
a utilitarian social planner would be indifferent between capital and labor,
the market would have an incentive to use machines, giving an inefficient
boost to automation. This inefficiency could translate into slow productivity
growth because the substitution of labor for machines worsens the misal-
location of capital and labor.

Even absent such a fiscal bias, there are natural reasons for excessive auto-
mation. Labor market imperfections and frictions also tend to imply that
the equilibrium wage is above the social opportunity cost of labor. Thus
a social planner would use a lower shadow wage in deciding whether to
automate a task than the market, creating another force toward excessive
automation. The implications of this type of excessive automation would
again include slower productivity growth than otherwise.

Finally, it is possible that automation has continued at its historical pace,
or may have even accelerated recently, but the dismal productivity growth
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performance we are witnessing is driven by a slowdown in the creation of
new tasks or investment in other productivity-enhancing technologies (see
Acemoglu and Restrepo 2016). A deceleration in the creation of new tasks
and technologies other than automation would also explain why the period
of slow productivity growth coincided with poor labor market outcomes,
including stagnant median wages and a decline in the labor share.

There are natural reasons why too much emphasis on automation may
come at the cost of investments in other technologies, including the creation
of new tasks. For instance, in a setting where technologies are developed
endogenously using a common set of resources (e.g., scientists), there is a
natural trade-off between faster automation and investments in other types
of technologies (Acemoglu and Restrepo 2016). Though it is at the moment
impossible to know whether the redirection of research resources away from
the creation of new tasks and toward automation has played an important
role in the productivity slowdown, the almost singular focus in the corporate
sector and research community on Al, applications of deep learning, and
other big data methods to automate various tasks makes it at least plausible
that there may be too much attention devoted to automation at the expense
of other technological breakthroughs.

8.3 A Model of Automation, Tasks, and the Demand for Labor

In the previous section, we provided an intuitive discussion of how auto-
mation in general, and robotics and Al in particular, is expected to impact
productivity and the demand for labor. In this section, we outline a for-
mal framework that underlines these conclusions. Our presentation will be
somewhat informal and without any derivations, which are all collected in
the appendix.

8.3.1 A Task-Based Framework

We start with a simplified version of the task-based framework intro-
duced in Acemoglu and Restrepo (2016). Aggregate output is produced by
combining the services of a unit measure of tasks x € [N — 1, N] according
to the following Cobb-Douglas (unit elastic) aggregator

N
(1) InY = j Iny(x)dkx,

N-1
where Y denotes aggregate output and y(x) is the output of task x. The
fact that tasks run between N — 1 and N enables us to consider changes in
the range of tasks, for example, because of the introduction of new tasks,
without altering the total measure of tasks in the economy.

Each task can be produced by human labor, €(x), or by machines, m(x),

depending on whether it has been (technologically) automated or not. In
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particular, tasks x € [N — 1,1] are technologically automated, so can be
produced by either labor or machines, while the rest are not technologically
automated, so must be produced with labor:

¥, () + 7, ()m(x) if xe[N-11]

2 =
@ y) ¥, (x)0(x) if xe(1,N].

Here, v, (x) is the productivity of labor in task x and is assumed to be increas-
ing, while v,,(x) is the productivity of machines in automated tasks. We
assume that vy, (x)/v,,(x) is increasing in x, and thus labor has a comparative
advantage in higher-indexed tasks.’

The threshold I denotes the frontier of automation possibilities: it
describes the range of tasks that can be automated using current available
technologies in Al, industrial robots, various computer-assisted technolo-
gies, and other forms of “smart machines.”

We also simplify the discussion by assuming that both the supply of labor,
L, and the supply of machines, K, are fixed and inelastic. The fact that the
supply of labor is inelastic implies that changes in labor demand impact the
share of labor in national income and the wage, but not the level of employ-
ment. We outline below how this framework can be easily generalized to
accommodate changes in employment and unemployment.

8.3.2 Types of Technological Change

Our framework incorporates four different types of technological ad-
vances. All advances increase productivity, but as we will see with a very
different impact on the demand for labor and wages.

1. Labor-augmenting technological advances: Standard approaches in
macroeconomics and labor economics typically focus on labor-augmenting
technological advances. Such technological changes correspond to increases
(or perhaps an equi-proportionate increase) in the function v, (x) . Our anal-
ysis will show that they are in fact quite special, and the implications of auto-
mation and Al are generally very different from those of labor-augmenting
advances.

2. Automation ( at the extensive margin): We consider automation to be an
expansion of the set of tasks that are technologically automated as repre-
sented by the parameter /.

7. Our theoretical framework builds on Zeira (1998) who develops a model where firms
produce intermediates using labor-intensive or capital-intensive technologies. Zeira focuses on
how wages affect the adoption of capital-intensive production methods and how this margin
amplifies productivity differences across countries and over time. In contrast, we focus on the
implications of automation—modeled here as an increase in the set of tasks that can be pro-
duced by machines, represented by /—for the demand for labor, wages, and employment, and
we also study the implications of the introduction of new tasks. In Acemoglu and Restrepo
(2016), we generalize Zeira’s framework in a number of other dimensions and also endogenize
the development of automation technologies and new tasks.
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3. Deepening of automation (or automation at the intensive margin): An-
other dimension of advances in Al and robotics technology will tend to
increase the productivity of machines in tasks that are already automated,
for example, by replacing existing machines with newer, more productive
vintages. In terms of our model, this corresponds to an increase in the v,,(x)
function for tasks x < I. We will see that this type of deepening of automa-
tion has very different implications for labor demand than automation (at
the extensive margin).

4. Creation of new tasks: As emphasized in Acemoglu and Restrepo
(2016), another important aspect of technological change is the creation of
new tasks and activities in which labor has a comparative advantage. In our
model this can be captured in the simplest possible way by an increase in N.

8.3.3 Equilibrium

Throughout, we denote the equilibrium wage rate by 1 and the equilib-
rium cost of machines (or the rental rate) by R. An equilibrium requires
firms to choose the cost-minimizing way of producing each task and labor
and capital markets to clear.

To simplify the discussion, we impose the following assumption

N v ()
’YM(N - 1) R YM([ )
The second inequality implies that all tasks in [N — 1,/] will be produced
by machines. The first inequality implies that the introduction of new
tasks—an increase in N—will increase aggregate output. This assumption
is imposed on the wage-to-rental rate ratio, which is an endogenous object;
the appendix provides a condition on the stock of capital and labor that is
equivalent to this assumption (see assumption [A2]).

We also show in the appendix that aggregate output (GDP) in the equi-
librium takes the form

(AD)

I-N+1 N-I
® o) (55
I-N+1 N-1I
where
I N
4) B= exp( J Iny,, (x)dx + JlnyL(x)de.
N-1 1

Aggregate output is given by a Cobb-Douglas aggregate of the capital stock
and employment. This resulting aggregate production function in equation
(3) is itself derived from the allocation of the two factors of production to
tasks. More important, the exponents of capital and labor in this production
function depend on the extent of automation, /, and the creation of new
tasks, as captured by N.

Central to our focus is not only the impact of new technologies on pro-
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ductivity, but also on the demand for labor. The appendix shows that the
demand for labor can be expressed as

(5) W=(N—1)%

This equation is intuitive in view of the Cobb-Douglas production func-
tion in equation(3), since it shows that the wage (the marginal product of
labor) is equal to the average product of labor—which we will also refer to
as “productivity”—times the exponent of labor in the aggregate production
function.

Equation (5) implies that the share of labor in national income is given by

(6) s, =—=N-1

8.4 Technology and Labor Demand

8.4.1 The Displacement Effect

Our first result shows that automation (at the extensive margin) indeed
creates a displacement effect, reducing labor demand as emphasized in sec-
tion 8.2, but also that it is counteracted by a productivity effect, pushing
toward greater labor demand.

Specifically, from equation (5) we directly obtain

dinw  dln(N-1) din(Y /L)
da dl T Ta

Displacement effect<0 Productivity effect>0

()

Without the productivity effect, automation would always reduce labor
demand because it is directly replacing labor in tasks that were previously
performed by workers. Indeed, if the productivity effect is limited, automa-
tion will reduce labor demand and wages.

8.4.2 Counteracting the Displacement Effect I: The Productivity Effects

The productivity effect, on the other hand, captures the important idea
that by increasing productivity, automation raises labor demand in the tasks
that are not automated. As highlighted in the previous section, there are two
complementary manifestations of the productivity effect. The first works
by increasing the demand for labor in nonautomated tasks in the industries
where automation is ongoing. The second works by raising the demand
for labor in other industries. The productivity effect shown in equation (7)
combines these two mechanisms.

One important implication of the decomposition in equation (7) is that, in
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contrast to some popular discussions, the new Al and robotics technologies
that are more likely to reduce the demand for labor are not those that are
brilliant and highly productive, but those that are “so-so”—just productive
enough to be adopted but not much more productive or cost-saving than
the production processes that they are replacing. Interestingly, and related
to our discussion on missing productivity, if new automation technologies
are so-so, they would not bring major improvements in productivity either.

To elaborate further on this point and to understand the productivity
implications of automation technologies better, let us also express the pro-
ductivity effect in terms of the physical productivities of labor and machines
and factor prices as follows:

dln(Y/L)_l w | R 0
a “[nm} “(w} |

The fact that this expression is positive, and that new automation technolo-
gies will be adopted, follows from assumption (A1). Using this expression,
the overall impact on labor demand can be alternatively written as

dinW 1 w R
(8) T N7 +1n[YL(1)J—1n[YM(1)j.
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Displacement effect<0 —
Productivity effect > 0

This expression clarifies that the displacement effect of automation will
dominate the productivity effect and thus reduce labor demand (and wages)
when v,,(I)/R = v,(I)/ W, which is exactly the case when new technologies
are so-so—only marginally better than labor at newly automated tasks. In
contrast, wheny,,(I)/R>>~,(I)/ W, automation will increase productivity
sufficiently to raise the demand for labor and wages.

Turning next to the implications of automation for the labor share, equa-
tion (6) implies

ds,

9 JF=1<0,

so that regardless of the magnitude of the productivity effect, automation
always reduces the share of labor in national income. This negative impact
on the labor share is a direct consequence of the fact that automation always
increases productivity more than the wage, dIn(Y/L) /dI> din W /dI (itself
directly following from equation [7], which shows that the impact on wages
is given by the impact on productivity minus the displacement effect).

The implications of standard labor-augmenting technological change,
which corresponds to a (marginal) shift-up of the vy, (x) schedule, are very
different from those of automation. Labor-augmenting technologies leave
the form of the wage equation (5) unchanged, and increase average output
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per worker, Y/L, and the equilibrium wage, W, proportionately, and thus
do not impact the share of labor in national income.®

8.4.3 Counteracting the Displacement Effect I1: Capital Accumulation

We have so far emphasized the displacement effect created by new auto-
mation technologies. We have also seen that the productivity effect counter-
acts the displacement effects to some degree. In this and the next subsection,
we discuss two additional countervailing forces.

The first force is capital accumulation. The analysis so far assumed that
the economy has a fixed supply of capital that could be devoted to new
machines (automation technologies). As a result, a further increase in auto-
mation (at the extensive margin) increases the demand for capital and thus
the equilibrium rental rate, R. This may be understood as the short-run
effect of automation.

Instead, we may envisage the “medium-run” effect as the impact of
these technologies after the supply of machines used in newly automated
tasks expands as well. Because machines and labor are g-complements, an
increase in the capital stock, with the level of employment held constant at
L, increases the real wage and reduces the rental rate. Equation (8) shows
that this change in factor prices makes the productivity effect more powerful
and the impact on the wage more likely to be positive.

In the limit, if capital accumulation fixes the rental rate at a constant
level (which will be the case, for example, when we have a representative
household with exponential discounting and time-separable preferences),
the productivity effect will always dominate the displacement effect.’

Crucially, however, equation (6) still applies, and thus automation contin-
ues to reduce the labor share, even after the adjustment of the capital stock.

8.4.4 Counteracting the Displacement Effect III:
Deepening of Automation

Another potentially powerful force counteracting the displacement effect
from automation at the extensive margin comes from the deepening of auto-
mation (or automation at the intensive margin), for example, because of
improvements in the performance of already-existing automation technolo-

8. A small shift-up of v,(x) does not violate assumption (Al) because at the margin it was
strictly cost-saving to use machines. A larger labor-augmenting technological change may
result in a violation of assumption (A1). At this point, only tasks below an endogenous thresh-
old /< I would be automated, and labor-augmenting technologies could also reduce /, increas-
ing the labor share in national income.

9. Assuming that production exhibits constant returns to scale, the productivity gains from
any technology accrue to both capital and labor. In particular, for any constant returns to scale
production function, we have dInY |, = 5,dInW + (1 —s,)dInR, where dInY |, > 0 denotes
the productivity gains brought by technology holding the use of capital and labor constant,
and s, is the labor share. If the rental rate is constant in the long run, then dInR = 0 and all
productivity gains accrue to the relatively inelastic factor, labor.
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gies or the replacement of such technologies with newer, more productive
vintages. This increase in the productivity of machines in tasks that are
already automated corresponds in our model to an increase in the function
¥,/(x) in tasks below 1.

To explore the implications of this type of change in the simplest possible
way, let us suppose that v,,(x) = v,,1n all automated tasks, and consider an
increase in the productivity of machines by dlnvy,, > 0, with no change in
the extensive margin of automation, /. The implications of this change in
the productivity of machines on equilibrium wages and productivity can
be obtained as

dinW = dinY /L= (I~ N +1)dlny,, > 0.

Hence, deepening of automation will tend to increase labor demand and
wages, further counteracting the displacement effect. Note, however, that
as with capital accumulation, in our model this has no impact on the share
of labor in national income, as can be seen from the fact that wages and
productivity increase by exactly the same amount.

8.4.5 New Tasks and the Comparative Advantage of Labor

Much more powerful than the countervailing effects of capital accumula-
tion and the deepening of automation is the creation of new tasks in which
labor has a comparative advantage. These tasks include both new, more
complex versions of existing tasks and the creation of new activities, which
are made possible by advances in technology. In terms of our framework,
they correspond to increases in V.

An increase in N—the creation of new tasks—raises productivity by

dinY /L [ R ] ( /4 }
=1n —In >0>
dN YM(N_I) YL(N)

which is positive from assumption (Al).

More important for our focus here, the creation of new tasks also in-
creases labor demand and equilibrium wages by creating a reinstatement
effect counteracting the displacement effect. In particular,

(10) dl“W=1n(7R j—ln[—W j+ L
dN Yu(n—1) Y, (N) N-1I

\ﬁ/_/
Reinstatement effect>0

Productivity effect>0

In contrast to capital accumulation and the deepening of automation,
which increase the demand for labor but do not affect the labor share, equa-
tion (6) implies that new tasks increase the labor share, that is,

ds,

dN
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The centrality of new tasks can be understood when viewed from a com-
plementary historical angle. Automation is not a recent phenomenon. As we
already discussed in section 8.2, the history of technology of the last two cen-
turies is full of examples of automation, ranging from weaving and spinning
machines to the mechanization of agriculture, as discussed in the previous
section. Even with capital accumulation and the deepening of automation,
if there were no other counteracting force, we would see the share of labor
in national income declining steadily. Our conceptual framework highlights
a major force preventing such a decline—the creation of new tasks in which
labor has a comparative advantage.

This can be seen by putting together equations (7) and (10), which yields

(11) dan={ln( R J—ln( v ﬂdN
YM(N_I) YL(N)

+ ln( W J—ln( R ]d]+ ! (dN =dI),
Y. () YD) N-1I

and also from equation (6),

ds, = dN —dlI.

For the labor share to remain stable and for wages to increase in tandem
with productivity, as has been the case historically, we need /—capturing
the extensive margin of automation—to grow by the same amount as the
range of new tasks, N. When that happens, equilibrium wages grow propor-
tionately with productivity, and the labor share, s,, remains constant, as can
be seen from the fact that the first line of equation (11) is in this case equal
to the increase in productivity or gross domestic product (GDP) per worker.
Indeed, rewriting equation (11) imposing dN = dI, we have

dinW = {m( 7. (V) J— 11{ 7. Hdl >0,
’YM(N_I) YM(I)

which is strictly positive because of assumption (Al).

8.4.6 A False Dichotomy: Recap

With our conceptual framework exposited in a more systematic manner,
we can now briefly revisit the false dichotomy highlighted in the introduc-
tion. Our analysis (in particular equation [7]) highlights that there is always
a negative displacement effect on labor resulting from automation. Equa-
tion (11) reiterates that there is no presumption that this displacement effect
could not reduce overall demand for labor.

However, several countervailing effects imply that a negative impact from
automation on labor demand is not a forgone conclusion. Most important,
the productivity effect could outweigh the displacement effect, leading to an
expansion in labor demand and equilibrium wages from automation. The
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presence of the productivity effect as counterweight to the displacement
created by automation highlights an important conceptual issue, however.
In contrast to the emphasis in the popular discussions it is not the brilliant,
superproductive automation technologies that threaten labor, but the “so-
s0” ones that create the displacement effect as they replace labor in tasks
that it previously performed, but do not engender the countervailing pro-
ductivity effect.

The productivity effect is supplemented by the capital accumulation
that automation sets in motion and the deepening of automation, which
increases the productivity of machines in tasks that have already been auto-
mated. But even with these countervailing effects, equation (9) shows that
automation will always reduce the share of labor in national income. All the
same, this does not signal the demise of labor either, because the creation
of new tasks in which labor has a comparative advantage could counterbal-
ance automation, which is our interpretation of why the demand for labor
has kept up with productivity growth in the past despite several rapid waves
of automation.

Our framework suggests that the biggest shortcoming of the alarmist
and the optimist views is their failure to recognize that the future of labor
depends on the balance between automation and the creation of new tasks.
Automation will often lead to a healthy growth of labor demand and wages
if it is accompanied with a commensurate increase in the set of tasks in
which labor has a comparative advantage—a feature that alarmists seem to
ignore. Even though there are good economic reasons for why the economy
will create new tasks, this is neither a forgone conclusion nor something
we can always count on—as the optimists seem to assume. Artificial intel-
ligence and robotics could be permanently altering this balance, causing
automation to pace ahead of the creation of new tasks with negative conse-
quences for labor, at the very least in regard to the share of labor in national
income.

8.4.7 Generalizations

Many of the features adopted in the previous subsection are expositional
simplifications. In particular, the aggregate production function (1) can be
taken to be any constant elasticity of substitution aggregate. One impli-
cation of this would be that aggregate output in equation (3) would be a
constant elasticity aggregate itself. This does not affect any of our main
conclusions, including the negative impact of automation on the labor share
(see Acemoglu and Restrepo 2016).'°

We also do not need assumption (A1) for any of the results. If the second

10. Recent work by Aghion, Jones, and Jones (2017) points out, however, that if the elastic-
ity of substitution between tasks is less than one and there is an exogenous and high saving
rate, the labor share might asymptote to a positive value even with continuously ongoing
automation.
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inequality in this assumption does not hold, changes in automation tech-
nology have no impact on the equilibrium because it is not cost effective to
adopt all available automation technologies (for this reason, in the general
case, Acemoglu and Restrepo [2016] distinguish technologically automated
tasks from equilibrium automation). Given our focus here, there is no loss
of generality in making this assumption.

A final feature that is worth commenting on is the fact that in the aggregate
production function (1), the limits of integration are N — 1 and N, ensuring
that the total measure of tasksis one. Thisis useful for several reasons. First,
when the introduction of new tasks expands the total measure of tasks, it
becomes more challenging to obtain a balanced growth path (see Acemoglu
and Restrepo 2016). Second, in this case some minor modifications are nec-
essary so that an expansion in the total measure of tasks leads to productiv-
ity improvements. In particular, consider the general case where the elastic-
ity of substitution between tasks is not necessarily equal to one. If it is
greater than one, an increase in N leads to higher productivity, but not nec-
essarily when it is less than or equal to one. In this latter case, we then need
to introduce direct productivity gains from task variety. For example, in
the present case where the elasticity of substitution between tasks is equal
to one, we could modify (1) to InY = (1/N) Zévln[N“"‘y(i)], where a = 0
represents these productivity gains from task variety and ensures that the
qualitative results explicit here continue to apply.

8.4.8 Employment and Unemployment

An additional generalization concerns the endogenous adjustment of
employment in the face of new automation technologies. We have so far
taken labor to be supplied inelastically for simplicity. There are two ways in
which the level of employment responds to the arrival of new technologies.
The first is via a standard labor supply margin. Acemoglu and Restrepo
(2016) show that the endogenous adjustment of labor supply, including
income effects and the substitution of consumption and leisure, links the
level of employment to the share of labor in national income.

The second possibility is through labor market frictions, for example, as
in Acemoglu and Restrepo (2018a). Under appropriate assumptions, the
endogenous level of employment in this case is also a function of the share
of labor in national income. Though both models with and without labor
market frictions endogenize employment as a function of the labor share,
their normative implications are potentially different, as we discuss below.

For now, however, the more important implication of such extensions
is to link the level of employment (or unemployment) to labor demand.
Automation, when it reduces labor demand, will also reduce the level of
employment (or increase the level of unemployment). Moreover, because the
supply of labor depends on the labor share, in our framework automation
results in a reduction in employment (or an increase in unemployment). As
such, our analysis so far also sheds light on (and clarifies the conditions for)



Artificial Intelligence, Automation, and Work 221

the claims that new automation technologies will reduce employment. It also
highlights, however, that the fact that automation has been ongoing does not
condemn the economy to a declining path of employment. If automation is
met by equivalent changes in the creation of new tasks, the share of labor in
national income can remain stable and ensure a stable level of employment
(or unemployment) in the economy.

8.5 Constraints and Inefficiencies

Even in the presence of the countervailing forces limiting the displace-
ment effect from automation, there are potential inefficiencies and con-
straints limiting the smooth adjustment of the labor market and hindering
the productivity gains from new technologies.

Here we focus on how the mismatch between skills and technologies not
only increases inequality, but also hinders the productivity gains from auto-
mation and new tasks. We then explore the possibility that, concurrent with
rapid automation, we are experiencing a slowdown in the creation of new
tasks, which could result in slow productivity growth. Finally, we examine
how a range of factors leads to excessive automation, which not only creates
inefficiency but also hinders productivity.

8.5.1 Mismatch of Technologies and Skills

The emphasis on the creation of new tasks counterbalancing the potential
negative effects of automation on the labor share and the demand for labor
ignores an important caveat and constraint: the potential mismatch between
the requirements of new technologies (tasks) and the skills of the workforce.
To the extent that new tasks require skilled employees or even new skills to
be acquired, the adjustment may be much slower than our analysis so far
suggests.

To illustrate these ideas in the simplest possible fashion, we follow Acemo-
glu and Restrepo (2016) and assume that there are two types of workers,
low-skill with supply L and high-skill with supply H, both of them sup-
plied inelastically. We also assume that low-skill workers can only perform
tasks below a threshold S € (I,N), while high-skill workers can perform
all tasks. For simplicity, we assume that the productivity of both low-skill
and high-skill workers in the tasks that they can perform is still given by
v, (x).!! Low-skill workers earn a wage W, and high-skill workers earn a
wage W,

11. We can also introduce differential comparative advantages and also an absolute produc-
tivity advantage for high-skill workers, though we choose not to do so to increase transparency
(see Acemoglu and Restrepo 2016). The more restrictive assumption here is that automation
happens at the bottom of the range of tasks. In general, automation could take place in the
middle range, and its impact would depend on whether automated tasks are competing pre-
dominantly against low-skill or high-skill workers (see Acemoglu and Autor 2011; Acemoglu
and Restrepo 2018b).
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In this simple extension of the framework presented so far, the threshold
S can be considered as an inverse measure of the mismatch between new
technologies and skills. A greater value of S implies that there are plenty
of additional tasks for low-skill workers, while a low value of S implies the
presence of only a few tasks left that low-skill workers can perform.

Assuming that in equilibrium W, > W,,!> which implies that low-skill
workers will perform all tasks in the range (/,S), equilibrium wages satisfy

Y Y
W,=—(N-S)and W, = —(S-1).
H H( ) and W, L( )

Thus, the impact of automation on inequality—defined here as the wage
premium between high- and low-skill workers—is given by

dinW, /W, 1
dl S—1

This equation shows that automation increases inequality. This is not sur-
prising, since the tasks that are automated are precisely those performed by
low-skill workers. But in addition, it also demonstrates that the impact of
automation on inequality becomes worse when there is a severe skill mis-
match—the threshold S'is close to I. In this case, displaced workers will be
squeezed into a very small range of tasks, and hence, each of these tasks will
receive a large number of workers and will experience a substantial drop in
price, which translates into a sharp decline in the wage of low-skill workers.
In contrast, when S'is large, displaced workers can spread across a larger set
of tasks without depressing their wage as much.

A severe mismatch also affects the productivity gains from automation.
In particular, we have

dln(Y/L)=1n( W, j_ln( R ]>0
dl v.(1) V(1)

This equation shows that the productivity gains from automation depend
positively on W,/ R: it is precisely when displaced workers have a high oppor-
tunity cost that automation raises productivity. Using the fact that R =
(Y/K)(I - N + 1), we obtain

W, S-1 K

R I-N+1L

0.

A worse mismatch (a lower S) reduces the opportunity cost of displaced
workers further, and via this channel, it makes automation less profitable.
This is because a severe mismatch impedes reallocation, reducing the pro-
ductivity gains of freeing workers from automated tasks.

12. This is equivalent to [(N —S)/(S—1)] > (H/L), so that high-skill workers are scarce relative
to the range of tasks that only they can produce.
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Equally important are the implications of a skill mismatch for the pro-
ductivity gains from new tasks. Namely,

dln(Y/L)=1n( R J_ln( W, j>0
dN ’YM(N_ [) YH(N) ’

which depends negatively on W,/ R: it is precisely when high-skill workers
have a relatively high wage that the gains from new tasks will be limited. With
similar arguments to before, we also have

W, N-S K

R I-N+1L’

which implies that in the presence of a worse mismatch (a lower S), the
productivity gains from new tasks will be limited. This is because new tasks
require high-skill workers who are scarce and expensive when S is low.

An important implication of this analysis is that to limit increasing
inequality and to best deploy new tasks and harness the benefits of auto-
mation, society may need to simultaneously increase the supply of skills. A
balanced growth process requires not only automation and the creation of
new tasks to go hand-in-hand, but also the supply of high-skill workers to
grow in tandem with these technological trends.

8.5.2 Automation at the Expense of New Tasks

As discussed in section 8.2, a puzzling aspect of recent macroeconomic
developments has been the lack of robust productivity growth despite the
bewildering array of new technologies. Our conceptual framework provides
three novel (and at least to us, more compelling) reasons for slow produc-
tivity growth. The first was the skill mismatch discussed in the previous
subsection.

The second one, discussed in this subsection, is that concurrent with the
rapid introduction of new automation technologies, we may be experiencing
a slowdown in the creation of new tasks and investments in other technolo-
gies that benefit labor.

This explanation comes in two flavors. First, we may be running out of
good ideas to create new jobs, sectors, and products capable of expanding
the demand for labor (e.g., Gordon 2016; Bloom et al. 2017), even if auto-
mation continues at a healthy or accelerating pace. Alternatively, the rapid
introduction of new automation technologies may redirect resources that
were devoted to other technological advances, in particular, the creation of
new tasks (see Acemoglu and Restrepo 2016). To the extent that the recent
enthusiasm—or even “frenzy”—about deep learning and some aspects of
Al can be viewed as such a redirection, our framework pinpoints a potential
powerful mechanism for slower productivity growth in the face of rapid
automation.

Both explanations hinge on the redirection of research activity from the
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creation of new tasks to automation—in the first case exogenously and in
the second for endogenous reasons. Recall from our analysis so far that the
productivity gains from new tasks in our baseline framework are given by

dln(Y/L)=1n( R J_ln[ w j>0
dN YM(N_D YL(N) ’

while productivity gains from automation are

dln(Y/L)=1n( w j—ln( R J>O
dl Y. () Y ()

If the former expression is greater than the latter, then the redirection of
research effort from the creation of new tasks toward automation, or a lower
research efficiency in creating new tasks, will lead to a slowdown of produc-
tivity growth, even if advances in automation are accelerating and being
adopted enthusiastically. This conclusion is strengthened if additional effort
devoted to automation at the expense of the creation of new tasks runs into
diminishing returns.

8.5.3 Excessive Automation

In this subsection, we highlight the third reason for why there may be
modest productivity growth: socially excessive automation (see Acemoglu
and Restrepo 2016, 2018a).

To illustrate why our framework can generate excessive automation, we
modify the assumption that the supply of capital, K, is given, and instead
suppose that machines used in automation are produced—as intermediate
goods—using the final good at a fixed cost R. Moreover, suppose that be-
cause of subsidies to capital, accelerated depreciation allowances, tax credit
for debt-financed investment or simply because of the tax cost of employing
workers, capital receives a marginal subsidy of © > 0.

Given this subsidy, the rental rate for machines is R(1 —t), and assump-
tion (A1) now becomes

RO I AN A0
Yu(N=1) RA=1) " 7,,(])

Let us now compute GDP as value added, subtracting the cost of produc-
ing machines. This gives us

GDP =Y - RK.
Suppose next that there is an increase in automation. Then we have
dGDP _d¥| o L dK L dK
dil dl |, dil dil

which simplifies to
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dGDP [ W j [R(l—r)J dK
=In —1In - Rt—
dI v, (1) v, (D) dl

R N Excessive automation<0
Productivity effect>0

The first term is positive and captures the productivity increase generated by
automation. However, when t > 0—so that the real cost of using capital is
distorted—we have an additional negative effect originating from excessive
automation.'® At the root of this negative effect is the fact that subsidies
induce firms to substitute capital for labor even when this is not socially
cost-saving (though it is privately beneficial because of the subsidy).

This conclusion is further strengthened when there are also labor market
frictions as pointed out in section 8.2. To illustrate this point in the simplest
possible fashion, let us assume that there is a threshold J €(/,N) such that,
when performing the tasks in [/,J], workers earn rents w > 0 proportional
to their wage in other tasks. In particular, workers are paid a wage W to
produce tasks in [J,N], and a wage W(1 + o) to produce tasks in (Z,J).'* Let
L, denote the total amount of labor allocated to the tasks in (/,J), and note
that these are the workers that will be displaced by automation, that is, by a
small increase in /. Given this additional distortion, assumption (A1) now
becomes

00 NS W A1)
YuN=-1) R(1-1) l+ovy,U)
The demand for labor in tasks where workers earn rents is now

Y
LA =m(J—]).

The demand for labor in tasks where workers do not earn rents is

L—LA=§(N—J).

Dividing these two expressions, we obtain the equilibrium condition for L ,,
L, 1 J-1
L-L, 1+oN-J’

13. We show in the appendix that K = (Y/R)(I — N + 1), which implies that K increases in /.

14. The assumption that there are rents only in a subset of tasks is adopted for simplic-
ity. The same results apply (a) when there are two sectors and one of the sectors has higher
rents/wages for workers and enables automation and (b) there is an endogenous margin
between employment and nonemployment and labor market imperfections (such as search,
bargaining, or efficiency wages) that create a wedge between wages and outside options. In
both cases the automation decisions of firms fail to internalize the gap between the market
wage and the opportunity cost of labor, leading to excessive automation (see Acemoglu and
Restrepo 2018a).
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which implies that the total number of workers earning rents declines with
automation.
Moreover, the appendix shows that (gross) output is now given by

I-N+1 J-1 N-J
(12) y-8 —& Ly L-L,
I-N+1 J-1 N-J) ~

and GDP is still given by Y- RK. Equation (12) highlights that there is now
amisallocation of labor across tasks—output can be increased by allocating
more workers to tasks (1,J) where their marginal product is greater (because
of the rents they are earning).

Equation (12) further implies that the impact of automation on GDP is
given by

dGDP:ln(W“m)j_m(Mj_ R el

dl 1 1 dl dl
v,() V(D) _ AL
Productivity effect>0 au]i():f:;fil(;/:<0 Excesst)v:lg;)sg)rli%emcnt

The new term Ww(dL ,/dI) captures the first-order losses from a decline in
employment in tasks (7,J). These losses arise because by automating jobs
where workers earn rents, firms are effectively displacing workers to other
tasks in which they have a lower marginal product and earn a strictly lower
wage, which increases the extent of misallocation.

The point highlighted here is much more general. Without labor market
frictions, automation increases GDP (and net output), so at the very least
it is possible to redistribute the gains that it creates to make workers—of
different skill levels—better off. Labor market frictions change this picture.
In the presence of such frictions, firms’ automation decisions do not inter-
nalize the fact that the marginal product of labor is above its opportunity
cost, or equivalently, do not recognize that there are first-order losses that
workers will suffer as a result of automation. Consequently, equilibrium
automation could reduce GDP and welfare and there may not be a way
to make (all) workers better off, even with tools for costless redistribution.
Under these circumstances, a utilitarian planner would choose a lower level
of automation than the equilibrium.!

8.6 Concluding Remarks

Despite the growing concerns and intensifying debate about the implica-
tions of automation for the future of work, the economics profession and
popular discussions lack a satisfactory conceptual framework. To us this

15. Naturally, if the planner could remove the rents, or the labor market frictions underpin-
ning them, then the equilibrium would be restored to efficiency. Nevertheless, most sources of
rents, including search, bargaining, and efficiency wages, would be present in the constrained
efficient allocations as well.
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lack of appropriate conceptual approach is also the key reason why much
of the debate is characterized by a false dichotomy between the view that
automation will spell the end of work for humans and the argument that
technologies will always tend to increase the demand for labor as they have
done in the past.

In this chapter, we summarized a conceptual framework that can help
understand the implications of automation and bridge the opposite sides
of this false dichotomy. At the center of our framework is a task-based
approach, where automation is conceptualized as replacing labor in tasks
that it used to perform. This type of replacement causes a direct displace-
ment effect, reducing labor demand. If this displacement effect is not coun-
terbalanced by other economic forces, it will reduce labor demand, wages,
and employment. But our framework also emphasizes that there are several
countervailing forces. These include the fact that automation will reduce the
costs of production and thus create a productivity effect, the induced capital
accumulation, and the deepening of automation—technological advances
that increase the productivity of machines in tasks that have already been
automated.

Our framework also emphasizes that these countervailing forces are gen-
erally insufficient to totally balance out the implications of automation. In
particular, even if these forces are strong, the displacement effect of automa-
tion tends to cause a decline in the share of labor in national income. But
we know from the history of technology and industrial development that
despite several waves of rapid automation, the growth process has been more
or less balanced, with no secular downward trend in the share of labor in
national income. We argue this is because of another powerful force: the
creation of new tasks in which labor has a comparative advantage, which
fosters a countervailing reinstatement effect for labor. These tasks increase
the demand for labor and tend to raise the labor share. When they go hand-
in-hand with automation, the growth process is balanced and it need not
imply a dismal scenario for labor.

Nevertheless, the adjustment process is likely to be slower and more pain-
ful than this account of balance between automation and new tasks at first
suggests. This is because the reallocation of labor from its existing jobs
and tasks to new ones is a slow process, in part owing to time-consuming
search and other labor market imperfections. But even more ominously, new
tasks require new skills. When the education sector does not keep up with
the demand for new skills, the mismatch between skills and technologies is
bound to complicate the adjustment process and hinder the productivity
gains from new technologies.

Our framework further suggests that there are additional reasons for the
productivity slowdown. At the center of these is a tendency for excessive
automation because of the tax treatment of capital investments and labor
market imperfections. Excessive automation directly reduces productivity,
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but may have even more powerful indirect effects because it redirects tech-
nological improvements away from productivity-enhancing activities that
lead to the creation of new tasks to excessive efforts at the extensive margin
of automation, a picture that receives informal support from the current
singular focus on Al and deep learning.

We would like to conclude by pointing out a number of additional issues
that may be important in understanding the full impact of Al and other auto-
mation technologies on future prospects of labor. We believe that these issues
can be studied using simple extensions of the framework presented here.

First, we have emphasized the role of the productivity effect in partially
counterbalancing the displacement effect created by automation. However,
this countervailing effect works by increasing the demand for products. As
we have also seen, automation tends to increase inequality. If, as a conse-
quence of this distributional impact, the rise in real incomes resulting from
automation ends up in the hands of a narrow segment of the population
with much lower marginal propensity to consume than those losing incomes
and their jobs, these countervailing forces would be weakened and might
operate much more slowly. This imbalance in the distribution of the gains
from automation might slow down the creation of new tasks as well.

Second, our analysis highlighted the negative consequences of a short-
age of skills for realizing the productivity gains from automation and for
inequality. In practice, the problem may be workers acquiring the wrong
types of skills rather than a general lack of skills. For example, if Al and
other new automation technologies necessitate a mix of numeracy, com-
munication, and problem-solving skills different than those emphasized in
current curricula, this would have implications similar to those of a shortage
of skills, but it cannot be overcome by just increasing educational spending
with current educational practices remaining intact. One important con-
sideration in this respect is that there is little concrete information about
what types of skills new technologies will complement, underscoring the
importance of further empirical work in this area.

Third, government policies and labor market institutions may impact not
just the speed of automation (and thus whether there is excessive auto-
mation), but what types of technologies will receive more investments. To
the extent that some uses of Al may complement labor more or generate
opportunities for more rapid creation of new tasks, an understanding of
the impact of various policies, including support for academic and applied
research, and social factors on the path of development of Al is critical.

Last but not least, the development and adoption of technologies that re-
instate labor cannot be taken for granted. If we do not find a way of creating
shared prosperity from the productivity gains generated by new technolo-
gies, there is a danger that the political reaction to these technologies may
slow down or even completely stop their adoption and development. This
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underscores the importance of studying the distributional implications of
AT and robotics, the political economy reactions to it, and the design of
new and improved institutions for creating more broadly shared gains from
these new technologies.

Appendix

Derivations for the Basic Model

Suppose that assumption (Al) holds. We first derive the demand for
factors:

¢ Denote by p(x) the price of task x. Assumption (A1) implies

ifxe[N-11]

¥ (%)
(8A.1) p(x) =

ifxe(L,N].

v.(x)
* In addition, the demand for task x is given by
Y

y(x)=——-.

p(x)

* Thus, the demand for smart machines in task x is
L ifxe [N-11]
k(x)=1 R :
0 ifxe(LN]

and the demand for labor in task x is

0 ifxe[N-17]
(x) =
“ % ifxe(L,N]

e Aggregating the demand for machines from this expression and set-

ting it equal to the supply of capital, K, we have the following market-
clearing condition for capital:

Y
= —(I-N+1).
R( )

Similarly, aggregating the demand for labor and setting it equal to its inelas-
tic supply, L, we obtain the market-clearing condition for labor as
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Y
L= (N=D).

» Rearranging these two equations, the equilibrium rental rate and wage
can be obtained as

(8A.2) R=%([—N+l)andW=%(N—l),

which are the expressions used in the text.
We next turn to deriving the expression for aggregate output.

» Because we normalized the price of the final good to 1 as numeraire,
we have

N
'[ Inp(x)dx = 0.
N-1
 Plugging in the expressions for p(x) from equation (8A.1) yields

1 N

J [InR=1ny,,(x)]dx + [[InW —Iny, (x) ]dx = 0.

N-1 I

 Substituting the expressions for R and W from (8A.2), we obtain

j [InY = In(K/(1 = N + 1))~ Iny,,,(x) |dx

N-1
N

+j[1nY— In(L/(N = 1)) - Iy, (x) |dx = 0.

1

 This equation can be rearranged as

e e

1

= '1[ Iny,,(x)dx + ]j{ln'yL(x)dx

N-1 1

+(I-N+ 1)1n[%}mj+(N—l)ln(NL_ ]j,

which, after taking exponentials on both sides of the equation, yields the
expression for aggregate output in equation (1) in the text.

Assumption (A1)

We now show that assumption (A1) is equivalent to the capital-labor ratio
of the economy taking an intermediate value. In particular, there exist two
positive thresholds X < K such that assumption (A1) holds whenever
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K _
(A2) 7 € (,¥).
Equation (8A.2) shows that
W_K_N-1
R LI-N+1
Define
I-N+1vy,(D _I=-N+1 y,(N)

K= ,and ¥ .
N=T 7, N=T 7,(N-1)

Then equation (A2) is equivalent to assumption (A1l).

Derivations in the Presence of Technology-Skill Mismatch

« Denote by p(x) the price of task x. Assumption (A1) together with the

fact that W, > W, (see footnote 12) implies
R

-~ ifxe[N-11]
p(x) = i ifxe(l,S)
Y (%)
Wy ifxe S,N]
Y (x)

e Following the same steps as in our baseline model, we obtain the

market-clearing condition for capital,
Y
K=—({-N+1).
7! +1)
e The demand for low-skill labor in task x is given by
0 ifxe[N-11]
Y
lx)=9 — ifxe(l,S
W ifxe(l,S)

L

0 ifxesS,N].

« Aggregating the demand for low-skill labor and setting it equal to its
inelastic supply, L, we obtain the market-clearing condition for low-

skill labor as

Y
=W(S—1),

L
which implies the expression for W, given in the main text.
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e The demand for high-skill labor in task x is given by
0 ifxe[N-11]

hy- ] 0 ifxe (L)

Y itxes,N].
WH

» Aggregating the demand for high-skill labor and setting it equal to
its supply, H, we obtain the market-clearing condition for high-skill
labor as

Y
H=—(N-S5),
7 )

H

which implies the expression for W, given in the main text.

Derivations for the Model with Distortions

» Denote by p(x) the price of task x. The variant of assumption (A1)
introduced in section 8.5 implies

R(1-71) . B
—r ifxe[N-1I]
sy =1 A+ e ey
’YL(x)
" ifx e J,N].
Y. (x)

« Following the same steps as in the model with no distortions, we obtain
the market-clearing condition for capital,

K=——(I-N+1).
R(1-1)
¢ The demand for labor in task x is
0 ifxe[N-11]
Y .
((x)= m 1fx€([,J)
r ifxe J,N]
w

¢ The expression for €(x) implies that the total amount of labor employed
in tasks where labor gets rents is

Y
LA =m(]—]).
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The total amount of labor employed in tasks where labor does not get rents is
Y
L-L,=—(N-J).
=N =)

To derive the expression for (gross) output we proceed as follows:

¢ Again from our choice of numeraire, we have

N
j Inp(x)dx = 0.
N-1
» Plugging in the expressions for p(x) we obtain

1 J

j {lnR - lnyM(x):|dx + j{an +In(1+ ®) - Iny, (x) |dx

N-1 1
N
+ J[an— lnyL(x)]dx =0.
J

* Substituting for factor prices using the expressions for K, L, and
L - L, we obtain
1
J [lnY— ln(K/([— N + 1))— lnyM(x)de

N-1

+

~ —

[InY —In(L,/(J = D))~ Iny, (x) ]dx

J
+ j[lnY— In((L=L,)/ (N =J))=Iny,(x)]dx = 0.
1
« This equation can be rearranged as

1 K J, L
Iny = | {m[m] ¥ lnyM(x)}dx ¥ J{ln(J - 1) + lnyL(x)}dx

N-1 I

+ ﬂln( Nf Jj + lnyL(x)}dx

I N K
= J Iny,,(x)dx + Jln'yL(x)dx +(I-N+ l)ln(mj

N-1 I

+(J - I)In(JLAIj +(N —J)ln[?\[__L.}1 j,

which yields equation (12) in the text.
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