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8.1 Introduction

The last two decades have witnessed major advances in artifi cial intel-
ligence (AI) and robotics. Future progress is expected to be even more spec-
tacular, and many commentators predict that these technologies will trans-
form work around the world (Brynjolfsson and McAfee 2014; Ford 2016; 
Boston Consulting Group 2015; McKinsey Global Institute 2017). Recent 
surveys fi nd high levels of anxiety about automation and other technologi-
cal trends, underscoring the widespread concerns about their eff ects (Pew 
Research Center 2017).

These expectations and concerns notwithstanding, we are far from a sat-
isfactory understanding of how automation in general, and AI and robotics 
in particular, impact the labor market and productivity. Even worse, much of 
the debate in both the popular press and academic circles centers around a 
false dichotomy. On the one side are the alarmist arguments that the oncom-
ing advances in AI and robotics will spell the end of work by humans, while 
many economists on the other side claim that because technological break-
throughs in the past have eventually increased the demand for labor and 
wages, there is no reason to be concerned that this time will be any diff erent.

In this chapter, we build on Acemoglu and Restrepo (2016), as well as 
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Zeira (1998) and Acemoglu and Autor (2011) to develop a framework for 
thinking about automation and its impact on tasks, productivity, and work.

At the heart of our framework is the idea that automation and thus AI 
and robotics replace workers in tasks that they previously performed, and 
via this channel, create a powerful displacement eff ect. In contrast to pre-
sumptions in much of macroeconomics and labor economics, which main-
tain that productivity- enhancing technologies always increase overall labor 
demand, the displacement eff ect can reduce the demand for labor, wages, 
and employment. Moreover, the displacement eff ect implies that increases 
in output per worker arising from automation will not result in a propor-
tional expansion of the demand for labor. The displacement eff ect causes 
a decoupling of wages and output per worker, and a decline in the share of 
labor in national income.

We then highlight several countervailing forces that push against the 
displacement eff ect and may imply that automation, AI, and robotics could 
increase labor demand. First, the substitution of cheap machines for human 
labor creates a productivity eff ect: as the cost of  producing automated tasks 
declines, the economy will expand and increase the demand for labor in 
nonautomated tasks. The productivity eff ect could manifest itself  as an 
increase in the demand for labor in the same sectors undergoing automa-
tion or as an increase in the demand for labor in nonautomating sectors. 
Second, capital accumulation triggered by increased automation (which 
raises the demand for capital) will also raise the demand for labor. Third, 
automation does not just operate at the extensive margin—replacing tasks 
previously performed by labor—but at the intensive margin as well, increas-
ing the productivity of  machines in tasks that were previously automated. 
This phenomenon, which we refer to as deepening of automation, creates a 
productivity eff ect but no displacement, and thus increases labor demand.

Though these countervailing eff ects are important, they are generally 
insuffi  cient to engender a “balanced growth path,” meaning that even if  
these eff ects were powerful, ongoing automation would still reduce the share 
of labor in national income (and possibly employment). We argue that there 
is a more powerful countervailing force that increases the demand for labor 
as well as the share of labor in national income: the creation of new tasks, 
functions and activities in which labor has a comparative advantage rela-
tive to machines. The creation of new tasks generates a reinstatement eff ect 
directly counterbalancing the displacement eff ect.

Indeed, throughout history we have not just witnessed pervasive automa-
tion, but a continuous process of new tasks creating employment opportuni-
ties for labor. As tasks in textiles, metals, agriculture, and other industries 
were being automated in the nineteenth and twentieth centuries, a new range 
of tasks in factory work, engineering, repair, back- offi  ce, management, and 
fi nance generated demand for displaced workers. The creation of new tasks 
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is not an autonomous process advancing at a predetermined rate, but one 
whose speed and nature are shaped by the decisions of fi rms, workers, and 
other actors in society, and might be fueled by new automation technologies. 
First, this is because automation, by displacing workers, may create a greater 
pool of labor that could be employed in new tasks. Second, the currently 
most discussed automation technology, AI itself, can serve as a platform to 
create new tasks in many service industries.

Our framework also highlights that even with these countervailing forces, 
the adjustment of  an economy to the rapid rollout of  automation tech-
nologies could be slow and painful. There are some obvious reasons for 
this related to the general slow adjustment of the labor market to shocks, 
for example, because of the costly process of workers being reallocated to 
new sectors and tasks. Such reallocation will involve both a slow process 
of searching for the right matches between workers and jobs, and also the 
need for retraining, at least for some of the workers.

A more critical, and in this context more novel, factor is a potential mis-
match between technology and skills—between the requirements of  new 
technologies and tasks and the skills of the workforce. We show that such 
a mismatch slows down the adjustment of  labor demand, contributes to 
inequality, and also reduces the productivity gains from both automation 
and the introduction of new tasks (because it makes the complementary 
skills necessary for the operation of new tasks and technologies more scarce).

Yet another major factor to be taken into account is the possibility of 
excessive automation. We highlight that a variety of factors (ranging from a 
bias in favor of capital in the tax code to labor market imperfections create 
a wedge between the wage and the opportunity cost of labor) and will push 
toward socially excessive automation, which not only generates a direct inef-
fi ciency, but also acts as a drag on productivity growth. Excessive automa-
tion could potentially explain why, despite the enthusiastic adoption of new 
robotics and AI technologies, productivity growth has been disappointing 
over the last several decades.

Our framework underscores as well that the singular focus of the research 
and the corporate community on automation, at the expense of other types 
of technologies including the creation of new tasks, could be another factor 
leading to a productivity slowdown because it forgoes potentially valuable 
productivity growth opportunities in other domains.

In the next section, we provide an overview of  our approach without 
presenting a formal analysis. Section 8.3 introduces our formal framework, 
though to increase readability, our presentation is still fairly nontechnical 
(and formal details and derivations are relegated to the appendix). Section 
8.4 contains our main results, highlighting both the displacement eff ect 
and the countervailing forces in our framework. Section 8.5 discusses the 
mismatch between skills and technologies, potential causes for slow pro-
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ductivity growth and excessive automation, and other constraints on labor 
market adjustment to automation technologies. Section 8.6 concludes, and 
the appendix contains derivations and proofs omitted from the text.

8.2 Automation, Work, and Wages: An Overview

At the heart of our framework is the observation that robotics and current 
practice in AI are continuing what other automation technologies have done 
in the past: using machines and computers to substitute for human labor in 
a widening range of tasks and industrial processes.

Production in most industries requires the simultaneous completion of 
a range of  tasks. For example, textile production requires production of 
fi ber, production of yarn from fi ber (e.g., by spinning), production of the 
relevant fabric from the yarn (e.g., by weaving or knitting), pretreatment 
(e.g., cleaning of the fabric, scouring, mercerizing and bleaching), dyeing 
and printing, fi nishing, as well as various auxiliary tasks including design, 
planning, marketing, transport, and retail.1 Each one of these tasks can be 
performed by a combination of human labor and machines. At the dawn 
of the British Industrial Revolution, most of these tasks were heavily labor 
intensive. Many of the early innovations of that era were aimed at automat-
ing spinning and weaving by substituting mechanized processes for the labor 
of skilled artisans (Mantoux 1928).2

The mechanization of US agriculture off ers another example of machines 
replacing workers in tasks they previously performed (Rasmussen 1982). 
In the fi rst half  of  the nineteenth century, the cotton gin automated the 
labor- intensive process of separating the lint from the cotton seeds. In the 
second half  of the nineteenth century, horse- powered reapers, harvesters, 
and plows replaced manual labor working with more rudimentary tools such 
as hoes, sickles, and scythes, and this process was continued with tractors 
in the twentieth century. Horse- powered threshing machines and fanning 
mills replaced workers employed in threshing and winnowing, two of the 
most labor- intensive tasks left in agriculture at the time. In the twentieth 
century, combine harvesters and a variety of  other mechanical harvest-
ers improved upon the horse- powered machinery, and allowed farmers to 
mechanically harvest several diff erent crops.

Yet another example of automation comes from the development of the 

1. See http:// textileguide .chemsec .org/ fi nd/ get- familiar- with- your- textile- production
- processes/.

2. It was this displacement eff ect that motivated Luddites to smash textile machines and 
agricultural workers during the Captain Swing riots to destroy threshing machines. Though 
these workers often appear in history books as misguided, there was nothing misguided about 
their economic fears. They were quite right that they were going to be displaced. Of course, 
had they been successful, they might have prevented the Industrial Revolution from gaining 
momentum with potentially disastrous consequences for technological development and our 
subsequent prosperity.
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factory system in manufacturing and its subsequent evolution. Beginning 
in the second half  of the eighteenth century, the factory system introduced 
the use of  machine tools such as lathes and milling machines, replacing 
the more labor- intensive production techniques relying on skilled artisans 
(Mokyr 1990). Steam power and later electricity greatly increased the oppor-
tunities for the substitution of capital for human labor. Another important 
turning point in the process of  factory automation was the introduction 
of machines controlled via punch cards and then numerically controlled 
machines in the 1940s. Because numerically controlled machines were more 
precise, faster, and easier to operate than manual technologies, they enabled 
signifi cant cost savings while also reducing the role of craft workers in manu-
facturing  production. This process culminated in the widespread use of 
CNC (computer numerical control) machinery, which replaced the numeri-
cally controlled vintages (Groover 1983). A major new development was the 
introduction of industrial robots in the late 1980s, which automated many 
of the remaining labor- intensive tasks in manufacturing, including machin-
ing, welding, painting, palletizing, assembly, material handling, and quality 
 control (Ayres and Miller 1983; Groover et al. 1986; Graetz and Michaels 
2015; Acemoglu and Restrepo 2017).

Examples of automation are not confi ned to industry and agriculture. 
Computer software has already automated a number of tasks performed by 
white- collar workers in retail, wholesale, and business services. Software and 
AI- powered technologies can now retrieve information, coordinate logis-
tics, handle inventories, prepare taxes, provide fi nancial services, translate 
complex documents, write business reports, prepare legal briefs, and diag-
nose diseases. These technologies are set to become much better at these 
and other tasks during the next years (e.g., Brynjolfsson and McAfee 2014; 
Ford 2016).

As these examples illustrate, automation involves the substitution of 
machines for labor and leads to the displacement of  workers from the tasks 
that are being automated. This displacement eff ect is not present—or pres-
ent only incidentally—in most approaches to production functions and 
labor demand used in macroeconomics and labor economics. The canoni-
cal approach posits that production in the aggregate (or in a sector for that 
matter) can be represented by a function of  the form F(AL,BK), where L 
denotes labor and K is capital. Technology is assumed to take a “factor- 
augmenting” form, meaning that it multiplies these two factors of  produc-
tion as the  parameters A and B do in this production function.

It might appear natural to model automation as an increase in B, that is, 
as capital- augmenting technological change. However, this type of techno-
logical change does not cause any displacement and always increases labor 
demand and wages (see Acemoglu and Restrepo 2016). Moreover, as our 
examples above illustrate, automation is not mainly about the development 
of more productive vintages of existing machines, but involves the intro-
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duction of new machinery to perform tasks that were previously the domain 
of human labor.

Labor- augmenting technological change, corresponding to an increase 
in A, does create a type of  displacement if  the elasticity of  substitution 
between capital and labor is small. But in general, this type of technologi-
cal change also expands labor demand, especially if  capital adjusts over the 
long run (see Acemoglu and Restrepo 2016). Moreover, our examples make 
it clear that automation does not directly augment labor; on the contrary, 
it transforms the production process in a way that allows more tasks to be 
performed by machines.

8.2.1 Tasks, Technologies, and Displacement

We propose, instead, a task- based approach, where the central unit of 
production is a task as in the textile example discussed above.3 Some tasks 
have to be produced by labor, while other tasks can be produced either by 
labor or by capital. Also, labor and capital have comparative advantages in 
diff erent tasks, meaning that the relative productivity of labor varies across 
tasks. Our framework conceptualizes automation (or automation at the 
extensive margin) as an expansion in the set of tasks that can be produced 
with capital. If  capital is suffi  ciently cheap or suffi  ciently productive at the 
margin, then automation will lead to the substitution of capital for labor 
in these tasks. This substitution results in a displacement of workers from 
the tasks that are being automated, creating the aforementioned displace-
ment eff ect.

The displacement eff ect could cause a decline in the demand for labor and 
the equilibrium wage rate. The possibility that technological improvements 
that increase productivity can actually reduce the wage of all workers is an 
important point to emphasize because it is often downplayed or ignored.

With an elastic labor supply (or quasi- labor supply refl ecting some labor 
market imperfections), a reduction in the demand for labor also leads to 
lower employment. In contrast to the standard approach based on factor- 
augmenting technological changes, a task- based approach immediately 
opens the way to productivity- enhancing technological developments that 
simultaneously reduce wages and employment.

8.2.2 Countervailing Eff ects

The presence of the displacement eff ect does not mean that automation 
will always reduce labor demand. In fact, throughout history, there are 
several periods where automation was accompanied by an expansion of 

3. See Autor, Leavy, and Murnane (2003) and Acemoglu and Autor (2011). Diff erent from 
these papers that develop a task- based approach focusing on inequality implications of tech-
nological change, we are concerned here with automation and the process of capital- replacing 
tasks previously performed by labor and their implications for wages and employment.
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labor demand and even higher wages. There are a number of reasons why 
automation could increase labor demand.

1. The Productivity Eff ect. By reducing the cost of producing a subset of 
tasks, automation raises the demand for labor in nonautomated tasks (Autor 
2015; Acemoglu and Restrepo 2016). In particular, automation leads to the 
substitution of  capital for labor because at the margin, capital performs 
certain tasks more cheaply than labor used to. This reduces the prices of the 
goods and services whose production processes are being automated, mak-
ing households eff ectively richer, and increasing the demand for all goods 
and services.

The productivity eff ect could manifest itself  in two complementary ways. 
First, labor demand might expand in the same sectors that are undergoing 
automation.4 A telling example of this process comes from the eff ects of the 
introduction of automated teller machines (ATMs) on the employment of 
bank tellers. Bessen (2016) documents that concurrent with the rapid spread 
of ATMs—a clear example of automating technology that enabled these 
new machines to perform tasks that were previously performed more expen-
sively by labor—there was an expansion in the employment of bank tellers. 
Bessen suggests that this is because ATMs reduced the costs of banking and 
encouraged banks to open more branches, raising the demand for bank tell-
ers who then specialized in tasks that ATMs did not automate.

Another interesting example of this process is provided by the dynam-
ics of labor demand in spinning and weaving during the British Industrial 
Revolution as recounted by Mantoux (1928). Automation in weaving (most 
notably, John Kay’s fl y shuttle) made this task cheaper and increased the 
price of  yarn and the demand for the complementary task of  spinning. 
Later automation in spinning reversed this trend and increased the demand 
for weavers. In the words of John Wyatt, one of the inventors of the spin-
ning machine, installing spinning machines would cause clothiers to “then 
want more hands in every other branch of the trade, viz. weavers, shearmen, 
scourers, combers, etc.” (quoted in Mantoux 1928). This is also probably 
the reason why the introduction of Eli Whitney’s cotton gin in 1793, which 
automated the labor- intensive process of separating the cotton lint from 
the seeds, appears to have led to greater demand for slave labor in southern 
plantations (Rasmussen 1982).

The productivity eff ect also leads to higher real incomes and thus to greater 
demand for all products, including those not experiencing automation. The 
greater demand for labor from other industries might then counteract the 
negative displacement eff ect of automation. The clearest historical example 
of this comes from the adjustment of the US and many European economies 

4. This requires that the demand for the products of these sectors is elastic. Acemoglu and 
Restrepo (2017) refer to this channel as the price- productivity eff ect because it works by reduc-
ing the relative price of products that are being automated and restructuring production toward 
these sectors.
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to the mechanization of agriculture. By reducing food prices, mechanization 
enriched consumers who then demanded more nonagricultural goods (Her-
rendorf, Rogerson, and Valentinyi 2013), and created employment oppor-
tunities for many of the workers dislocated by the mechanization process 
in the fi rst place.5

This discussion also implies that, in contrast to the popular emphasis on 
the negative labor market consequences of “brilliant” and highly productive 
new technologies set to replace labor (e.g., Brynjolfsson and McAfee 2014; 
Ford 2016), the real danger for labor may come not from highly productive 
but from “so- so” automation technologies that are just productive enough 
to be adopted and cause displacement, but not suffi  ciently productive to 
bring about powerful productivity eff ects.

2. Capital Accumulation. As our framework in the next section clarifi es, 
automation corresponds to an increase in the capital intensity of produc-
tion. The high demand for capital triggers further accumulation of capital 
(e.g., by increasing the rental rate of capital). Capital accumulation then 
raises the demand for labor. This may have been an important channel of 
adjustment of the British economy during the Industrial Revolution and of 
the American economy in the fi rst half  of the twentieth century in the face 
of mechanization of agriculture, for in both cases there was rapid capital 
accumulation (Allen 2009; Olmstead and Rhode 2001).

As we discuss in the next section, under some (albeit restrictive) assump-
tions often adopted in neoclassical models of economic growth, capital accu-
mulation can be suffi  ciently powerful that automation will always increase 
wages in the long run (see Acemoglu and Restrepo 2016), though the more 
robust prediction is that it will act as a countervailing eff ect.

3. Deepening of Automation. The displacement eff ect is created by auto-
mation at the extensive margin—meaning the expansion of the set of tasks 
that can be produced by capital. But what happens if  technological improve-
ments increase the productivity of capital in tasks that have already been 
automated? This will clearly not create additional displacement because 
labor was already replaced by capital in those tasks. But it will generate the 
same productivity eff ects we have already pointed out above. These pro-
ductivity eff ects then raise labor demand. We refer to this facet of advances 
in automation technology as the deepening of automation (or as automa-
tion at the intensive margin because it is intensifying the productive use of 
machines).

A clear illustration of the role of deepening automation comes from the 
introduction of new vintages of machinery replacing older vintages used in 
already automated tasks. For instance, in US agriculture the replacement of 

5. Acemoglu and Restrepo (2017) refer to it as a “scale eff ect” because in their setting it acted 
in a homothetic manner, scaling up demand from all sectors, though in general it could take 
a nonhomothetic form.
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horse- powered reapers and harvesters by diesel tractors increased produc-
tivity, presumably with limited additional substitution of workers in agri-
cultural tasks.6 In line with our account of the potential role of deepening 
automation, agricultural productivity and wages increased rapidly starting 
in the 1930s, a period that coincided with the replacement of horses by trac-
tors (Olmstead and Rhode 2001; Manuelli and Seshadri 2014).

Another example comes from the vast improvements in the effi  ciency of 
numerically controlled machines used for metal cutting and processing (such 
as mills and lathes), as the early vintages controlled by punched cards were 
replaced by computerized models during the 1970s. The new computer-
ized machines were used in the same tasks as the previous vintages, and 
so the additional displacement eff ects were probably minor. As a result, 
the transition to CNC (computer numerical control) machines increased 
the productivity of machinists, operators, and other workers in the industry 
(Groover 1983).

The three countervailing forces we have listed here are central for under-
standing why the implications of automation are much richer than the direct 
displacement eff ects might at fi rst suggest, and why automation need not 
be an unadulterated negative force against the labor market fortunes of 
workers. Nevertheless, there is one aspect of the displacement eff ect that is 
unlikely to be undone by any of these four countervailing forces: as we show 
in the next section, automation necessarily makes the production process 
more capital intensive, reducing the share of labor in national income. Intui-
tively, this is because it entails the substitution of capital for tasks previously 
performed by labor, thus squeezing labor into a narrower set of tasks.

If, as we have suggested, automation has been ongoing for centuries, with 
or without powerful countervailing forces of the form listed here, we should 
have seen a “nonbalanced” growth process with the share of labor in national 
income declining steadily since the beginning of the Industrial Revolution. 
That clearly has not been the case (see, e.g., Kuznets 1966; Acemoglu 2009). 
This suggests that there have been other powerful forces making production 
more labor intensive and balancing the eff ects of automation. This is what 
we suggest in the next subsection.

8.2.3 New Tasks

As discussed in the introduction, periods of intensive automation have 
often coincided with the emergence of  new jobs, activities, industries, 
and tasks. In nineteenth- century Britain, for example, there was a rapid 
expansion of new industries and jobs ranging from engineers, machinists, 
repairmen, conductors, back- offi  ce workers, and managers involved with 

6. Nevertheless, the move from horse power to tractors contributed to a decline in agricultural 
employment via a diff erent channel: tractors increased agricultural productivity, and because 
of inelastic demand, expenditure on agricultural products declined (Rasmussen 1982).
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the introduction and operation of  new technologies (e.g., Landes 1969; 
Chandler 1977; and Mokyr 1990). In early twentieth- century America, the 
mechanization of  agriculture coincided with a large increase in employ-
ment in new industry and factory jobs (Kuznets 1966) among others in the 
burgeoning industries of farm equipment (Olmstead and Rhode 2001) and 
cotton milling (Rasmussen 1982). This is not just a historical phenomenon. 
As documented in Acemoglu and Restrepo (2016), from 1980 to 2010 the 
introduction and expansion of new tasks and job titles explains about half  
of US employment growth.

Our task- based framework highlights that the creation of  new labor- 
intensive tasks (tasks in which labor has a comparative advantage relative 
to capital) may be the most powerful force balancing the growth process in 
the face of rapid automation. Without the demand for workers from new 
factory jobs, engineering, supervisory tasks, accounting, and managerial 
occupations in the second half  of the nineteenth and much of the twenti-
eth centuries, it would have been impossible to employ millions of workers 
exiting the agricultural sector and automated labor- intensive tasks.

In the same way that automation has a displacement eff ect, we can think 
of the creation of new tasks as engendering a reinstatement eff ect. In this 
way, the creation of  new tasks has the opposite eff ect of  automation. It 
always generates additional labor demand, which increases the share of 
labor in national income. Consequently, one powerful way in which tech-
nological progress could be associated with a balanced growth path is via 
the balancing of the impacts of automation by the creation of new tasks.

The creation of new tasks need not be an exogenous, autonomous process 
unrelated to automation, AI, and robotics for at least two reasons:

1. As emphasized in Acemoglu and Restrepo (2016), rapid automation 
may endogenously generate incentives for fi rms to introduce new labor- 
intensive tasks. Automation running ahead of  the creation of  new tasks 
reduces the labor share and possibly wages, making further automation less 
profi table and new tasks generating employment opportunities for labor 
more profi table for fi rms. Acemoglu and Restrepo (2016) show that this 
equilibrating force could be powerful enough to make the growth process 
balanced.

2. Some automation technology platforms, especially AI, may facilitate 
the creation of new tasks. A recent report by Accenture identifi ed entirely 
new categories of jobs that are emerging in fi rms using AI as part of their 
production process (Accenture PLC 2017). These jobs include “trainers” (to 
train the AI systems), “explainers” (to communicate and explain the output 
of AI systems to customers), and “sustainers” (to monitor the performance 
of AI systems, including their adherence to prevailing ethical standards).

The applications of AI to education, health care, and design may also 
result in employment opportunities for new workers. Take education. Exist-
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ing evidence suggests that many students, not least those with certain learn-
ing disabilities, will benefi t from individualized education programs and 
personalized instruction (Kolb 1984). With current technology, it is pro-
hibitively costly to provide such services to more than a small fraction of 
students. Applications of AI may enable the educational system to become 
more customized, and in the process create more jobs for education profes-
sionals to monitor, design, and implement individualized education pro-
grams. Similar prospects exist in health care and elderly care services.

8.2.4 Revisiting the False Dichotomy

The conceptual framework outlined above, which will be further elabo-
rated in the next section, clarifi es why the current debate is centered on a false 
dichotomy between disastrous and totally benign eff ects of automation.

Our task- based framework underscores that automation will always 
create a displacement eff ect. Unless neutralized by the countervailing forces, 
this displacement eff ect could reduce labor demand, wages, and employ-
ment. At the very least, this displacement eff ect implies that a falling share 
of output will accrue to labor. These possibilities push against the benign 
accounts emphasizing that technology always increases the demand for 
labor and benefi ts workers.

Our framework does not support the alarmist perspectives stressing the 
disastrous eff ects of automation for labor either. Rather, it highlights several 
countervailing forces that soften the impact of automation on labor. More 
important, as we have argued in the previous subsection, the creation of new 
labor- intensive tasks has been a critical part of the adjustment process in the 
face of rapid automation. The creation of new tasks is not just manna from 
heaven. There are good reasons why market incentives will endogenously 
lead to the creation of new tasks that gain strength when automation itself  
becomes more intensive. Also, some of the most defi ning automation tech-
nologies of our age, such as AI, may create a platform for the creation of 
new sets of tasks and jobs.

At the root of some of the alarmism is the belief  that AI will have very dif-
ferent consequences for labor than previous waves of technological change. 
Our framework highlights that the past is also replete with automation 
technologies displacing workers, but this need not have disastrous eff ects 
for labor. Nor is it technologically likely that AI will replace labor in all or 
almost all of the tasks in which it currently specializes. This limited remit of 
AI can be best understood by contrasting the current nature and ambitions 
of AI with those of its fi rst coming under the auspices of “cybernetics.” The 
intellectual luminaries of cybernetics, such as Norbert Wiener, envisaged 
the production of Human- Level Artifi cial Intelligence—computer systems 
capable of thinking in a way that could not be distinguished from human 
intelligence—replicating all human thought processes and faculties (Nilsson 
2009). In 1965, Herbert Simon predicted that “machines will be capable, 



208    Daron Acemoglu and Pascual Restrepo

within twenty years, of doing any work a man can do” (Simon 1965, 96). 
Marvin Minsky agreed, declaring in 1967 that “Within a generation, I am 
convinced, few compartments of intellect will remain outside the machine’s 
realm” (Minsky 1967, 2).

Current practice in the fi eld of AI, especially in its most popular and prom-
ising forms based on deep learning and various other “big data” methods 
applied to unstructured data, eschews these initial ambitions and aims at 
developing applied artifi cial intelligence—commercial systems specializing 
in clearly delineated tasks related to prediction, decision- making, logistics, 
and pattern recognition (Nilsson 2009). Though many occupations involve 
such tasks—and so AI is likely to have a displacement eff ect in these tasks—
there are still many human skills that we still cannot automate, including 
complex reasoning, judgment, analogy- based learning, abstract problem- 
solving, and a mixture of physical activity, empathy, and communication 
skills. This reading of the current practice of AI suggests that the potential 
for AI and related technological advances to automate a vast set of tasks 
is limited.

8.2.5 Flies in the Ointment

Our framework so far has emphasized two key ideas. First, automation 
does create a potential negative impact on labor through the displacement 
eff ect and also by reducing the share of labor in national income. But sec-
ond, it can be counterbalanced by the creation of new tasks (as well as the 
productivity eff ect, capital accumulation and the deepening of automation, 
which tend to increase the demand for labor, even though they do not gener-
ally restore the share of labor in national income to its preautomation levels).

The picture we have painted underplays some of the challenges of adjust-
ment, however. The economic adjustment following rapid automation can 
be more painful than the process we have outlined for a number of reasons.

Most straightforward, automation changes the nature of existing jobs, 
and the reallocation of workers from existing jobs and tasks to new ones 
is a complex and often slow process. It takes time for workers to fi nd new 
jobs and tasks in which they can be productive, and periods during which 
workers are laid off  from their existing jobs can create a depressed local or 
national labor market, further increasing the costs of  adjustment. These 
eff ects are visible in recent studies that have focused on the adjustment of 
local US labor markets to negative demand shocks, such as Autor, Dorn, 
and Hanson (2013), who study the slow and highly incomplete adjustment 
of local labor markets in response to the surge in Chinese exports, Mian 
and Sufi  (2014), who investigate the implications of the collapse in housing 
prices on consumption and local employment, and perhaps more closely 
related to our focus, Acemoglu and Restrepo (2017), who fi nd employment 
and wage declines in areas most exposed to one specifi c type of automation, 
the introduction of industrial robots in manufacturing.
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The historical record also underscores the painful nature of the adjust-
ment. The rapid introduction of new technologies during the British Indus-
trial Revolution ultimately led to rising labor demand and wages, but this 
was only after a protracted period of stagnant wages, expanding poverty, 
and harsh living conditions. During an eighty- year period extending from 
the beginning of the Industrial Revolution to the middle of the nineteenth 
century, wages stagnated and the labor share fell, even as technological 
advances and productivity growth were ongoing in the British economy, 
a phenomenon which Allen (2009) dubs the “Engel’s pause” (previously 
referred to as the “living standards paradox”; see Mokyr [1990]).

There should thus be no presumption that the adjustment to the changed 
labor market brought about by rapid automation will be a seamless, costless, 
and rapid process.

8.2.6 Mismatch between Skills and Technologies

It is perhaps telling that wages started growing in the nineteenth- century 
British economy only after mass schooling and other investments in human 
capital expanded the skills of the workforce. Similarly, the adjustment to 
the large supply of labor freed from agriculture in early twentieth- century 
America may have been greatly aided by the “high school movement,” which 
increased the human capital of the new generation of American workers 
(Goldin and Katz 2010). The forces at work here are likely to be more general 
than these examples. New tasks tend to require new skills. But to the extent 
that the workforce does not possess those skills, the adjustment process will 
be hampered. Even more ominously, if  the educational system is not up to 
providing those skills (and if  we are not even aware of the types of new skills 
that will be required so as to enable investments in them), the adjustment 
will be greatly impeded. Even the most optimistic observers ought to be 
concerned about the ability of the current US educational system to identify 
and provide such skills.

At stake here is not only the speed of adjustment, but potential produc-
tivity gains from new technologies. If  certain skills are complementary to 
new technologies, their absence will imply that the productivity of  these 
new technologies will be lower than otherwise. Thus the mismatch between 
skills and technologies not only slows down the adjustment of employment 
and wages, but holds back potential productivity gains. This is particularly 
true for the creation of new tasks. The fact that while there is heightened 
concerns about job losses from automation, many employers are unable to 
fi nd workers with the right skills for their jobs underscores the importance 
of these considerations (Deloitte and the Manufacturing Institute 2011).

8.2.7 Missing Productivity and Excessive Automation

The issues raised in the previous subsection are important not least because 
a deep puzzle in any discussion of the impact of new technologies is miss-
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ing productivity growth—the fact that while so many sophisticated tech-
nologies are being adopted, productivity growth has been slow. As pointed 
out by Gordon (2016), US productivity growth since 1974 (with the excep-
tion of the period from 1995 to 2004) compares dismally to its postwar per-
formance. While the annual rate of labor productivity growth of the US 
economy averaged 2.7 percent between 1947 and 1973, it only averaged 
1.5 percent between 1974 and 1994. Average productivity growth rebounded 
to 2.8 percent between 1995 and 2004, and then fell again to only 1.3 percent 
between 2005 and 2015 (Syverson 2017). How can we make sense of this?

One line of attack argues that there is plenty of productivity growth, but it 
is being mismeasured. But, as pointed out by Syverson (2017), the pervasive 
nature of this slow down, and the fact that it is even more severe in industries 
that have made greater investments in information technology (Acemoglu 
et al. 2014), make the productivity mismeasurement hypothesis unlikely to 
account for all of the slowdown.

Our conceptual framework suggests some possible explanations. They 
center around the possibility of  “excessive automation,” meaning faster 
automation than socially desirable (Acemoglu and Restrepo 2016, 2018a). 
Excessive automation not only creates direct ineffi  ciencies, but may also hold 
productivity growth down by wastefully using resources and displacing labor.

There are two broad reasons for excessive automation, both of which we 
believe to be important. The fi rst is related to the biases in the US tax code, 
which subsidizes capital relative to labor. This subsidy takes the form of 
several diff erent provisions, including additional taxes and costs employ-
ers have to pay for labor, subsidies in the form of tax credits and acceler-
ated depreciation for capital outlays, and additional tax credit for interest 
rate deductions in case of  debt- fi nanced investments (AEI 2008; Tuzel 
and Zhang 2017). All of these distortions imply that at the margin, when 
a utilitarian social planner would be indiff erent between capital and labor, 
the market would have an incentive to use machines, giving an ineffi  cient 
boost to automation. This ineffi  ciency could translate into slow productivity 
growth because the substitution of labor for machines worsens the misal-
location of capital and labor.

Even absent such a fi scal bias, there are natural reasons for excessive auto-
mation. Labor market imperfections and frictions also tend to imply that 
the equilibrium wage is above the social opportunity cost of labor. Thus 
a social planner would use a lower shadow wage in deciding whether to 
automate a task than the market, creating another force toward excessive 
automation. The implications of this type of excessive automation would 
again include slower productivity growth than otherwise.

Finally, it is possible that automation has continued at its historical pace, 
or may have even accelerated recently, but the dismal productivity growth 
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performance we are witnessing is driven by a slowdown in the creation of 
new tasks or investment in other productivity- enhancing technologies (see 
Acemoglu and Restrepo 2016). A deceleration in the creation of new tasks 
and technologies other than automation would also explain why the period 
of slow productivity growth coincided with poor labor market outcomes, 
including stagnant median wages and a decline in the labor share.

There are natural reasons why too much emphasis on automation may 
come at the cost of investments in other technologies, including the creation 
of new tasks. For instance, in a setting where technologies are developed 
endogenously using a common set of resources (e.g., scientists), there is a 
natural trade- off  between faster automation and investments in other types 
of technologies (Acemoglu and Restrepo 2016). Though it is at the moment 
impossible to know whether the redirection of research resources away from 
the creation of new tasks and toward automation has played an important 
role in the productivity slowdown, the almost singular focus in the corporate 
sector and research community on AI, applications of deep learning, and 
other big data methods to automate various tasks makes it at least plausible 
that there may be too much attention devoted to automation at the expense 
of other technological breakthroughs.

8.3 A Model of Automation, Tasks, and the Demand for Labor

In the previous section, we provided an intuitive discussion of how auto-
mation in general, and robotics and AI in particular, is expected to impact 
productivity and the demand for labor. In this section, we outline a for-
mal framework that underlines these conclusions. Our presentation will be 
somewhat informal and without any derivations, which are all collected in 
the appendix.

8.3.1  A Task- Based Framework

We start with a simplifi ed version of  the task- based framework intro-
duced in Acemoglu and Restrepo (2016). Aggregate output is produced by 
combining the services of a unit measure of tasks x ∈ [N – 1, N ] according 
to the following Cobb- Douglas (unit elastic) aggregator

(1) lnY =
N 1

N

lny(x)dx,

where Y denotes aggregate output and y(x) is the output of  task x. The 
fact that tasks run between N – 1 and N enables us to consider changes in 
the range of tasks, for example, because of the introduction of new tasks, 
without altering the total measure of tasks in the economy.

Each task can be produced by human labor, ℓ(x), or by machines, m(x), 
depending on whether it has been (technologically) automated or not. In 
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particular, tasks x ∈ [N – 1,I ] are technologically automated, so can be 
produced by either labor or machines, while the rest are not technologically 
automated, so must be produced with labor:

(2) y(x) = L(x) (x) + M (x)m(x) if x N 1, I

L(x) (x) if x I ,N( .

Here, �L(x)  is the productivity of labor in task x and is assumed to be increas-
ing, while �M(x) is the productivity of  machines in automated tasks. We 
assume that �L(x) /�M(x) is increasing in x, and thus labor has a comparative 
advantage in higher- indexed tasks.7

The threshold I denotes the frontier of  automation possibilities: it 
describes the range of tasks that can be automated using current available 
technologies in AI, industrial robots, various computer- assisted technolo-
gies, and other forms of “smart machines.”

We also simplify the discussion by assuming that both the supply of labor, 
L, and the supply of machines, K, are fi xed and inelastic. The fact that the 
supply of labor is inelastic implies that changes in labor demand impact the 
share of labor in national income and the wage, but not the level of employ-
ment. We outline below how this framework can be easily generalized to 
accommodate changes in employment and unemployment.

8.3.2 Types of Technological Change

Our framework incorporates four diff erent types of  technological ad-
vances. All advances increase productivity, but as we will see with a very 
diff erent impact on the demand for labor and wages.

1. Labor- augmenting technological advances: Standard approaches in 
macroeconomics and labor economics typically focus on labor- augmenting 
technological advances. Such technological changes correspond to increases 
(or perhaps an equi- proportionate increase) in the function �L(x) . Our anal-
ysis will show that they are in fact quite special, and the implications of auto-
mation and AI are generally very diff erent from those of labor- augmenting 
advances.

2. Automation (at the extensive margin): We consider automation to be an 
expansion of the set of tasks that are technologically automated as repre-
sented by the parameter I.

7. Our theoretical framework builds on Zeira (1998) who develops a model where fi rms 
produce intermediates using labor- intensive or capital- intensive technologies. Zeira focuses on 
how wages aff ect the adoption of capital- intensive production methods and how this margin 
amplifi es productivity diff erences across countries and over time. In contrast, we focus on the 
implications of automation—modeled here as an increase in the set of tasks that can be pro-
duced by machines, represented by I—for the demand for labor, wages, and employment, and 
we also study the implications of the introduction of new tasks. In Acemoglu and Restrepo 
(2016), we generalize Zeira’s framework in a number of other dimensions and also endogenize 
the development of automation technologies and new tasks.
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3. Deepening of automation (or automation at the intensive margin): An-
other dimension of  advances in AI and robotics technology will tend to 
increase the productivity of machines in tasks that are already automated, 
for example, by replacing existing machines with newer, more productive 
vintages. In terms of our model, this corresponds to an increase in the �M(x) 
function for tasks x < I. We will see that this type of deepening of automa-
tion has very diff erent implications for labor demand than automation (at 
the extensive margin).

4. Creation of new tasks: As emphasized in Acemoglu and Restrepo 
(2016), another important aspect of technological change is the creation of 
new tasks and activities in which labor has a comparative advantage. In our 
model this can be captured in the simplest possible way by an increase in N.

8.3.3 Equilibrium

Throughout, we denote the equilibrium wage rate by W and the equilib-
rium cost of machines (or the rental rate) by R. An equilibrium requires 
fi rms to choose the cost- minimizing way of producing each task and labor 
and capital markets to clear.

To simplify the discussion, we impose the following assumption

(A1) L(N )

M (N 1)
>
W
R
> L(I )

M (I )
.

The second inequality implies that all tasks in [N – 1,I ] will be produced 
by machines. The fi rst inequality implies that the introduction of  new 
tasks—an increase in N—will increase aggregate output. This assumption 
is imposed on the wage- to-rental rate ratio, which is an endogenous object; 
the appendix provides a condition on the stock of capital and labor that is 
equivalent to this assumption (see assumption [A2]).

We also show in the appendix that aggregate output (GDP) in the equi-
librium takes the form

(3) Y = B K
I N + 1

I N+1 L
N I

N I

,

where

(4) B = exp
N 1

I

ln M (x)dx +
I

N

ln L(x)dx .

Aggregate output is given by a Cobb- Douglas aggregate of the capital stock 
and employment. This resulting aggregate production function in equation 
(3) is itself  derived from the allocation of the two factors of production to 
tasks. More important, the exponents of capital and labor in this production 
function depend on the extent of automation, I, and the creation of new 
tasks, as captured by N.

Central to our focus is not only the impact of new technologies on pro-
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ductivity, but also on the demand for labor. The appendix shows that the 
demand for labor can be expressed as

(5) W = (N I )Y
L

.

This equation is intuitive in view of the Cobb- Douglas production func-
tion in equation(3), since it shows that the wage (the marginal product of 
labor) is equal to the average product of labor—which we will also refer to 
as “productivity”—times the exponent of labor in the aggregate production 
function.

Equation (5) implies that the share of labor in national income is given by

(6) sL =
WL
Y

= N I .

8.4  Technology and Labor Demand

8.4.1 The Displacement Eff ect

Our fi rst result shows that automation (at the extensive margin) indeed 
creates a displacement eff ect, reducing labor demand as emphasized in sec-
tion 8.2, but also that it is counteracted by a productivity eff ect, pushing 
toward greater labor demand.

Specifi cally, from equation (5) we directly obtain

(7) 
d lnW
dI

=
d ln N I( )

dI
Displacement effect<0

+
d ln Y / L( )

dI
Productivity effect >0

.

Without the productivity eff ect, automation would always reduce labor 
demand because it is directly replacing labor in tasks that were previously 
performed by workers. Indeed, if  the productivity eff ect is limited, automa-
tion will reduce labor demand and wages.

8.4.2 Counteracting the Displacement Eff ect I: The Productivity Eff ects

The productivity eff ect, on the other hand, captures the important idea 
that by increasing productivity, automation raises labor demand in the tasks 
that are not automated. As highlighted in the previous section, there are two 
complementary manifestations of the productivity eff ect. The fi rst works 
by increasing the demand for labor in nonautomated tasks in the industries 
where automation is ongoing. The second works by raising the demand 
for labor in other industries. The productivity eff ect shown in equation (7) 
combines these two mechanisms.

One important implication of the decomposition in equation (7) is that, in 
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contrast to some popular discussions, the new AI and robotics technologies 
that are more likely to reduce the demand for labor are not those that are 
brilliant and highly productive, but those that are “so- so”—just productive 
enough to be adopted but not much more productive or cost- saving than 
the production processes that they are replacing. Interestingly, and related 
to our discussion on missing productivity, if  new automation technologies 
are so-so, they would not bring major improvements in productivity either.

To elaborate further on this point and to understand the productivity 
implications of automation technologies better, let us also express the pro-
ductivity eff ect in terms of the physical productivities of labor and machines 
and factor prices as follows:

 
dln Y / L( )

dI
= ln W

L I( )
ln R

M I( )
> 0.

The fact that this expression is positive, and that new automation technolo-
gies will be adopted, follows from assumption (A1). Using this expression, 
the overall impact on labor demand can be alternatively written as

(8) 
dlnW
dI

=
1

N I
Displacement effect <0

+ ln W

L I( )
ln R

M I( )

Productivity effect > 0

.

This expression clarifi es that the displacement eff ect of automation will 
dominate the productivity eff ect and thus reduce labor demand (and wages) 
when �M(I ) / R ≈ �L(I ) / W, which is exactly the case when new technologies 
are so-so—only marginally better than labor at newly automated tasks. In 
contrast, when �M(I ) / R >> �L(I ) / W , automation will increase productivity 
suffi  ciently to raise the demand for labor and wages.

Turning next to the implications of automation for the labor share, equa-
tion (6) implies

(9) 
dsL
dI

= 1 < 0,

so that regardless of the magnitude of the productivity eff ect, automation 
always reduces the share of labor in national income. This negative impact 
on the labor share is a direct consequence of the fact that automation always 
increases productivity more than the wage, d ln(Y /L) /dI > d lnW /dI (itself  
directly following from equation [7], which shows that the impact on wages 
is given by the impact on productivity minus the displacement eff ect).

The implications of  standard labor- augmenting technological change, 
which corresponds to a (marginal) shift-up of the �L(x) schedule, are very 
diff erent from those of automation. Labor-augmenting technologies leave 
the form of the wage equation (5) unchanged, and increase average output 
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per worker, Y/L, and the equilibrium wage, W, proportionately, and thus 
do not impact the share of labor in national income.8

8.4.3 Counteracting the Displacement Eff ect II: Capital Accumulation

We have so far emphasized the displacement eff ect created by new auto-
mation technologies. We have also seen that the productivity eff ect counter-
acts the displacement eff ects to some degree. In this and the next subsection, 
we discuss two additional countervailing forces.

The fi rst force is capital accumulation. The analysis so far assumed that 
the economy has a fi xed supply of  capital that could be devoted to new 
machines (automation technologies). As a result, a further increase in auto-
mation (at the extensive margin) increases the demand for capital and thus 
the equilibrium rental rate, R. This may be understood as the short- run 
eff ect of automation.

Instead, we may envisage the “medium- run” eff ect as the impact of 
these technologies after the supply of machines used in newly automated 
tasks expands as well. Because machines and labor are q- complements, an 
increase in the capital stock, with the level of employment held constant at 
L, increases the real wage and reduces the rental rate. Equation (8) shows 
that this change in factor prices makes the productivity eff ect more powerful 
and the impact on the wage more likely to be positive.

In the limit, if  capital accumulation fi xes the rental rate at a constant 
level (which will be the case, for example, when we have a representative 
household with exponential discounting and time- separable preferences), 
the productivity eff ect will always dominate the displacement eff ect.9

Crucially, however, equation (6) still applies, and thus automation contin-
ues to reduce the labor share, even after the adjustment of the capital stock.

8.4.4   Counteracting the Displacement Eff ect III: 
Deepening of Automation

Another potentially powerful force counteracting the displacement eff ect 
from automation at the extensive margin comes from the deepening of auto-
mation (or automation at the intensive margin), for example, because of 
improvements in the performance of already- existing automation technolo-

8. A small shift-up of �L(x) does not violate assumption (A1) because at the margin it was 
strictly cost- saving to use machines. A larger labor- augmenting technological change may 
result in a violation of assumption (A1). At this point, only tasks below an endogenous thresh-
old I< I would be automated, and labor- augmenting technologies could also reduce I , increas-
ing the labor share in national income.

9. Assuming that production exhibits constant returns to scale, the productivity gains from 
any technology accrue to both capital and labor. In particular, for any constant returns to scale 
production function, we have d lnY |K,L = sLd lnW + (1 – sL)d lnR, where d lnY |K,L > 0 denotes 
the productivity gains brought by technology holding the use of capital and labor constant, 
and sL is the labor share. If  the rental rate is constant in the long run, then d lnR = 0 and all 
productivity gains accrue to the relatively inelastic factor, labor.
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gies or the replacement of such technologies with newer, more productive 
vintages. This increase in the productivity of  machines in tasks that are 
already automated corresponds in our model to an increase in the function 
�M(x) in tasks below I.

To explore the implications of this type of change in the simplest possible 
way, let us suppose that �M(x) = �M in all automated tasks, and consider an 
increase in the productivity of machines by d ln�M > 0, with no change in 
the extensive margin of automation, I. The implications of this change in 
the productivity of machines on equilibrium wages and productivity can 
be obtained as

 dlnW = dlnY / L = I N + 1( )dln M > 0.

Hence, deepening of automation will tend to increase labor demand and 
wages, further counteracting the displacement eff ect. Note, however, that 
as with capital accumulation, in our model this has no impact on the share 
of labor in national income, as can be seen from the fact that wages and 
productivity increase by exactly the same amount.

8.4.5 New Tasks and the Comparative Advantage of Labor

Much more powerful than the countervailing eff ects of capital accumula-
tion and the deepening of automation is the creation of new tasks in which 
labor has a comparative advantage. These tasks include both new, more 
complex versions of existing tasks and the creation of new activities, which 
are made possible by advances in technology. In terms of our framework, 
they correspond to increases in N.

An increase in N—the creation of new tasks—raises productivity by

 
dlnY / L

dN
= ln R

M (N 1)
ln W

L(N )
> 0,

which is positive from assumption (A1).
More important for our focus here, the creation of  new tasks also in-

creases labor demand and equilibrium wages by creating a reinstatement 
eff ect counter acting the displacement eff ect. In particular,

(10) 
dlnW
dN

= ln R

M (n 1)
ln W

L(N )
Productivity effect>0

+
1

N I
Reinstatement effect>0

.

In contrast to capital accumulation and the deepening of automation, 
which increase the demand for labor but do not aff ect the labor share, equa-
tion (6) implies that new tasks increase the labor share, that is,

 
dsL
dN

= 1.
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The centrality of new tasks can be understood when viewed from a com-
plementary historical angle. Automation is not a recent phenomenon. As we 
already discussed in section 8.2, the history of technology of the last two cen-
turies is full of examples of automation, ranging from weaving and spinning 
machines to the mechanization of agriculture, as discussed in the previous 
section. Even with capital accumulation and the deepening of automation, 
if  there were no other counteracting force, we would see the share of labor 
in national income declining steadily. Our conceptual framework highlights 
a major force preventing such a decline—the creation of new tasks in which 
labor has a comparative advantage.

This can be seen by putting together equations (7) and (10), which yields

(11) dlnW = ln R

M (N 1)
ln W

L(N )
dN

 + ln W

L(I )
ln R

M (I )
dI + 1

N I
dN dI( ),

and also from equation (6),

 dsL = dN dI .

For the labor share to remain stable and for wages to increase in tandem 
with productivity, as has been the case historically, we need I—capturing 
the extensive margin of automation—to grow by the same amount as the 
range of new tasks, N. When that happens, equilibrium wages grow propor-
tionately with productivity, and the labor share, sL, remains constant, as can 
be seen from the fact that the fi rst line of equation (11) is in this case equal 
to the increase in productivity or gross domestic product (GDP) per worker. 
Indeed, rewriting equation (11) imposing dN = dI, we have

 dlnW = ln L(N )

M (N 1)
ln L(I )

M (I )
dI > 0,

which is strictly positive because of assumption (A1).

8.4.6 A False Dichotomy: Recap

With our conceptual framework exposited in a more systematic manner, 
we can now briefl y revisit the false dichotomy highlighted in the introduc-
tion. Our analysis (in particular equation [7]) highlights that there is always 
a negative displacement eff ect on labor resulting from automation. Equa-
tion (11) reiterates that there is no presumption that this displacement eff ect 
could not reduce overall demand for labor.

However, several countervailing eff ects imply that a negative impact from 
automation on labor demand is not a forgone conclusion. Most important, 
the productivity eff ect could outweigh the displacement eff ect, leading to an 
expansion in labor demand and equilibrium wages from automation. The 



Artifi cial Intelligence, Automation, and Work    219

presence of  the productivity eff ect as counterweight to the displacement 
created by automation highlights an important conceptual issue, however. 
In contrast to the emphasis in the popular discussions it is not the brilliant, 
superproductive automation technologies that threaten labor, but the “so- 
so” ones that create the displacement eff ect as they replace labor in tasks 
that it previously performed, but do not engender the countervailing pro-
ductivity eff ect.

The productivity eff ect is supplemented by the capital accumulation 
that automation sets in motion and the deepening of  automation, which 
increases the productivity of  machines in tasks that have already been auto-
mated. But even with these countervailing eff ects, equation (9) shows that 
automation will always reduce the share of labor in national income. All the 
same, this does not signal the demise of  labor either, because the creation 
of new tasks in which labor has a comparative advantage could counterbal-
ance automation, which is our interpretation of  why the demand for labor 
has kept up with productivity growth in the past despite several rapid waves 
of  automation.

Our framework suggests that the biggest shortcoming of  the alarmist 
and the optimist views is their failure to recognize that the future of labor 
depends on the balance between automation and the creation of new tasks. 
Automation will often lead to a healthy growth of labor demand and wages 
if  it is accompanied with a commensurate increase in the set of  tasks in 
which labor has a comparative advantage—a feature that alarmists seem to 
ignore. Even though there are good economic reasons for why the economy 
will create new tasks, this is neither a forgone conclusion nor something 
we can always count on—as the optimists seem to assume. Artifi cial intel-
ligence and robotics could be permanently altering this balance, causing 
automation to pace ahead of the creation of new tasks with negative conse-
quences for labor, at the very least in regard to the share of labor in national 
income.

8.4.7 Generalizations

Many of the features adopted in the previous subsection are expositional 
simplifi cations. In particular, the aggregate production function (1) can be 
taken to be any constant elasticity of  substitution aggregate. One impli-
cation of this would be that aggregate output in equation (3) would be a 
constant elasticity aggregate itself. This does not aff ect any of  our main 
conclusions, including the negative impact of automation on the labor share 
(see Acemoglu and Restrepo 2016).10

We also do not need assumption (A1) for any of the results. If  the second 

10. Recent work by Aghion, Jones, and Jones (2017) points out, however, that if  the elastic-
ity of substitution between tasks is less than one and there is an exogenous and high saving 
rate, the labor share might asymptote to a positive value even with continuously ongoing 
auto mation.
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inequality in this assumption does not hold, changes in automation tech-
nology have no impact on the equilibrium because it is not cost eff ective to 
adopt all available automation technologies (for this reason, in the general 
case, Acemoglu and Restrepo [2016] distinguish technologically automated 
tasks from equilibrium automation). Given our focus here, there is no loss 
of generality in making this assumption.

A fi nal feature that is worth commenting on is the fact that in the aggregate 
production function (1), the limits of integration are N – 1 and N, ensuring 
that the total measure of tasks is one. This is useful for several reasons. First, 
when the introduction of new tasks expands the total measure of tasks, it 
becomes more challenging to obtain a balanced growth path (see Acemoglu 
and Restrepo 2016). Second, in this case some minor modifi cations are nec-
essary so that an expansion in the total measure of tasks leads to productiv-
ity improvements. In particular, consider the general case where the elastic-
ity of  substitution between tasks is not necessarily equal to one. If  it is 
greater than one, an increase in N leads to higher productivity, but not nec-
essarily when it is less than or equal to one. In this latter case, we then need 
to introduce direct productivity gains from task variety. For example, in 
the present case where the elasticity of substitution between tasks is equal 
to one, we could modify (1) to lnY = (1 /N) 0

Nln[N1+�y(i )], where � ≥ 0 
represents these productivity gains from task variety and ensures that the 
qualitative results explicit here continue to apply.

8.4.8 Employment and Unemployment

An additional generalization concerns the endogenous adjustment of 
employment in the face of new automation technologies. We have so far 
taken labor to be supplied inelastically for simplicity. There are two ways in 
which the level of employment responds to the arrival of new technologies. 
The fi rst is via a standard labor supply margin. Acemoglu and Restrepo 
(2016) show that the endogenous adjustment of  labor supply, including 
income eff ects and the substitution of consumption and leisure, links the 
level of employment to the share of labor in national income.

The second possibility is through labor market frictions, for example, as 
in Acemoglu and Restrepo (2018a). Under appropriate assumptions, the 
endogenous level of employment in this case is also a function of the share 
of labor in national income. Though both models with and without labor 
market frictions endogenize employment as a function of the labor share, 
their normative implications are potentially diff erent, as we discuss below.

For now, however, the more important implication of such extensions 
is to link the level of  employment (or unemployment) to labor demand. 
Automation, when it reduces labor demand, will also reduce the level of 
employment (or increase the level of unemployment). Moreover, because the 
supply of labor depends on the labor share, in our framework automation 
results in a reduction in employment (or an increase in unemployment). As 
such, our analysis so far also sheds light on (and clarifi es the conditions for) 
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the claims that new automation technologies will reduce employment. It also 
highlights, however, that the fact that automation has been ongoing does not 
condemn the economy to a declining path of employment. If  automation is 
met by equivalent changes in the creation of new tasks, the share of labor in 
national income can remain stable and ensure a stable level of employment 
(or unemployment) in the economy.

8.5 Constraints and Ineffi  ciencies

Even in the presence of the countervailing forces limiting the displace-
ment eff ect from automation, there are potential ineffi  ciencies and con-
straints limiting the smooth adjustment of the labor market and hindering 
the productivity gains from new technologies.

Here we focus on how the mismatch between skills and technologies not 
only increases inequality, but also hinders the productivity gains from auto-
mation and new tasks. We then explore the possibility that, concurrent with 
rapid automation, we are experiencing a slowdown in the creation of new 
tasks, which could result in slow productivity growth. Finally, we examine 
how a range of factors leads to excessive automation, which not only creates 
ineffi  ciency but also hinders productivity.

8.5.1 Mismatch of Technologies and Skills

The emphasis on the creation of new tasks counterbalancing the potential 
negative eff ects of automation on the labor share and the demand for labor 
ignores an important caveat and constraint: the potential mismatch between 
the requirements of new technologies (tasks) and the skills of the workforce. 
To the extent that new tasks require skilled employees or even new skills to 
be acquired, the adjustment may be much slower than our analysis so far 
suggests.

To illustrate these ideas in the simplest possible fashion, we follow Acemo-
glu and Restrepo (2016) and assume that there are two types of workers, 
low- skill with supply L and high- skill with supply H , both of them sup-
plied inelastically. We also assume that low- skill workers can only perform 
tasks below a threshold S ∈ (I,N ), while high- skill workers can perform 
all tasks. For simplicity, we assume that the productivity of both low- skill 
and high- skill workers in the tasks that they can perform is still given by 
�L(x).11 Low- skill workers earn a wage WL and high- skill workers earn a 
wage WH.

11. We can also introduce diff erential comparative advantages and also an absolute produc-
tivity advantage for high- skill workers, though we choose not to do so to increase transparency 
(see Acemoglu and Restrepo 2016). The more restrictive assumption here is that automation 
happens at the bottom of the range of tasks. In general, automation could take place in the 
middle range, and its impact would depend on whether automated tasks are competing pre-
dominantly against low- skill or high- skill workers (see Acemoglu and Autor 2011; Acemoglu 
and Restrepo 2018b).
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In this simple extension of the framework presented so far, the threshold 
S can be considered as an inverse measure of the mismatch between new 
technologies and skills. A greater value of S implies that there are plenty 
of additional tasks for low- skill workers, while a low value of S implies the 
presence of only a few tasks left that low- skill workers can perform.

Assuming that in equilibrium WH > WL,12 which implies that low- skill 
workers will perform all tasks in the range (I,S), equilibrium wages satisfy

 WH =
Y
H

(N S ) and WL =
Y
L

(S I ).

Thus, the impact of automation on inequality—defi ned here as the wage 
premium between high- and low- skill workers—is given by

 
dlnWH /WL

dI
=

1
S I

> 0.

This equation shows that automation increases inequality. This is not sur-
prising, since the tasks that are automated are precisely those performed by 
low- skill workers. But in addition, it also demonstrates that the impact of 
automation on inequality becomes worse when there is a severe skill mis-
match—the threshold S is close to I. In this case, displaced workers will be 
squeezed into a very small range of tasks, and hence, each of these tasks will 
receive a large number of workers and will experience a substantial drop in 
price, which translates into a sharp decline in the wage of low- skill workers. 
In contrast, when S is large, displaced workers can spread across a larger set 
of tasks without depressing their wage as much.

A severe mismatch also aff ects the productivity gains from automation. 
In particular, we have

 
dln Y / L( )

dI
= ln WL

L(I )
ln R

M (I )
> 0.

This equation shows that the productivity gains from automation depend 
positively on WL/R: it is precisely when displaced workers have a high oppor-
tunity cost that automation raises productivity. Using the fact that R = 
(Y/ K)(I – N + 1), we obtain

 
WL

R
=

S I
I N + 1

K
L

.

A worse mismatch (a lower S) reduces the opportunity cost of displaced 
workers further, and via this channel, it makes automation less profi table. 
This is because a severe mismatch impedes reallocation, reducing the pro-
ductivity gains of freeing workers from automated tasks.

12. This is equivalent to [(N – S)/ (S – I)] > (H/ L), so that high- skill workers are scarce relative 
to the range of tasks that only they can produce.
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Equally important are the implications of a skill mismatch for the pro-
ductivity gains from new tasks. Namely,

 
dln(Y / L)

dN
= ln R

M (N I )
ln WH

H (N )
> 0,

which depends negatively on WH/R: it is precisely when high- skill workers 
have a relatively high wage that the gains from new tasks will be limited. With 
similar arguments to before, we also have

 
WH

R
=

N S
I N + 1

K
L

,

which implies that in the presence of  a worse mismatch (a lower S), the 
productivity gains from new tasks will be limited. This is because new tasks 
require high- skill workers who are scarce and expensive when S is low.

An important implication of  this analysis is that to limit increasing 
inequality and to best deploy new tasks and harness the benefi ts of auto-
mation, society may need to simultaneously increase the supply of skills. A 
balanced growth process requires not only automation and the creation of 
new tasks to go hand- in-hand, but also the supply of high- skill workers to 
grow in tandem with these technological trends.

8.5.2 Automation at the Expense of New Tasks

As discussed in section 8.2, a puzzling aspect of recent macroeconomic 
developments has been the lack of robust productivity growth despite the 
bewildering array of new technologies. Our conceptual framework provides 
three novel (and at least to us, more compelling) reasons for slow produc-
tivity growth. The fi rst was the skill mismatch discussed in the previous 
subsection.

The second one, discussed in this subsection, is that concurrent with the 
rapid introduction of new automation technologies, we may be experiencing 
a slowdown in the creation of new tasks and investments in other technolo-
gies that benefi t labor.

This explanation comes in two fl avors. First, we may be running out of 
good ideas to create new jobs, sectors, and products capable of expanding 
the demand for labor (e.g., Gordon 2016; Bloom et al. 2017), even if  auto-
mation continues at a healthy or accelerating pace. Alternatively, the rapid 
introduction of new automation technologies may redirect resources that 
were devoted to other technological advances, in particular, the creation of 
new tasks (see Acemoglu and Restrepo 2016). To the extent that the recent 
enthusiasm—or even “frenzy”—about deep learning and some aspects of 
AI can be viewed as such a redirection, our framework pinpoints a potential 
powerful mechanism for slower productivity growth in the face of  rapid 
automation.

Both explanations hinge on the redirection of research activity from the 
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creation of new tasks to automation—in the fi rst case exogenously and in 
the second for endogenous reasons. Recall from our analysis so far that the 
productivity gains from new tasks in our baseline framework are given by

 
dln(Y / L)

dN
= ln R

M (N 1)
ln W

L(N )
> 0,

while productivity gains from automation are

 
dln(Y / L)

dI
= ln W

L(I )
ln R

M (I )
> 0.

If  the former expression is greater than the latter, then the redirection of 
research eff ort from the creation of new tasks toward automation, or a lower 
research effi  ciency in creating new tasks, will lead to a slowdown of produc-
tivity growth, even if  advances in automation are accelerating and being 
adopted enthusiastically. This conclusion is strengthened if  additional eff ort 
devoted to automation at the expense of the creation of new tasks runs into 
diminishing returns.

8.5.3 Excessive Automation

In this subsection, we highlight the third reason for why there may be 
modest productivity growth: socially excessive automation (see Acemoglu 
and Restrepo 2016, 2018a).

To illustrate why our framework can generate excessive automation, we 
modify the assumption that the supply of capital, K, is given, and instead 
suppose that machines used in automation are produced—as intermediate 
goods—using the fi nal good at a fi xed cost R. Moreover, suppose that be-
cause of subsidies to capital, accelerated depreciation allowances, tax credit 
for debt- fi nanced investment or simply because of the tax cost of employing 
workers, capital receives a marginal subsidy of τ > 0.

Given this subsidy, the rental rate for machines is R(1 – τ), and assump-
tion (A1) now becomes

 L(N )

M (N 1)
>

W
R(1 )

> L(I )

M (I )
.

Let us now compute GDP as value added, subtracting the cost of produc-
ing machines. This gives us

 GDP = Y RK .

Suppose next that there is an increase in automation. Then we have

 
dGDP
dI

=
dY
dI K

+ R(1 ) dK
dI

R dK
dI

,

which simplifi es to
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dGDP
dI

= ln W

L I( )
ln

R 1( )

M I( )

Productivity effect>0

R dK
dI

Excessive automation<0

.

The fi rst term is positive and captures the productivity increase generated by 
automation. However, when τ > 0—so that the real cost of using capital is 
distorted—we have an additional negative eff ect originating from excessive 
automation.13 At the root of this negative eff ect is the fact that subsidies 
induce fi rms to substitute capital for labor even when this is not socially 
cost- saving (though it is privately benefi cial because of the subsidy).

This conclusion is further strengthened when there are also labor market 
frictions as pointed out in section 8.2. To illustrate this point in the simplest 
possible fashion, let us assume that there is a threshold J ∈(I,N ) such that, 
when performing the tasks in [I,J ], workers earn rents � > 0 proportional 
to their wage in other tasks. In particular, workers are paid a wage W to 
produce tasks in [J,N ], and a wage W(1 + �) to produce tasks in (I,J).14 Let 
LA denote the total amount of labor allocated to the tasks in (I,J), and note 
that these are the workers that will be displaced by automation, that is, by a 
small increase in I. Given this additional distortion, assumption (A1) now 
becomes

 L(N )

M (N 1)
>

W
R(1 )

>
1

1+
L(I )

M (I )
.

The demand for labor in tasks where workers earn rents is now

 LA =
Y

W (1+ )
(J I ).

The demand for labor in tasks where workers do not earn rents is

 L LA =
Y
W

(N J ).

Dividing these two expressions, we obtain the equilibrium condition for LA,

 
LA

L LA

=
1

1+
J I
N J

,

13. We show in the appendix that K = (Y/ R)(I – N + 1), which implies that K increases in I.
14. The assumption that there are rents only in a subset of  tasks is adopted for simplic-

ity. The same results apply (a) when there are two sectors and one of  the sectors has higher 
rents/ wages for workers and enables automation and (b) there is an endogenous margin 
between employment and nonemployment and labor market imperfections (such as search, 
bargaining, or effi  ciency wages) that create a wedge between wages and outside options. In 
both cases the automation decisions of  fi rms fail to internalize the gap between the market 
wage and the opportunity cost of  labor, leading to excessive automation (see Acemoglu and 
Restrepo 2018a).
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which implies that the total number of workers earning rents declines with 
automation.

Moreover, the appendix shows that (gross) output is now given by

(12) Y = B K
I N + 1

I N+1 LA

J I

J I L LA

N J

N J

,

and GDP is still given by Y – RK. Equation (12) highlights that there is now 
a misallocation of labor across tasks—output can be increased by allocating 
more workers to tasks (I,J ) where their marginal product is greater (because 
of the rents they are earning).

Equation (12) further implies that the impact of automation on GDP is 
given by

 
dGDP
dI

= ln W (1+ )

L(I )
ln R(1 )

M (I )
Productivity effect>0

R dK
dI

Excessive 
automation<0

+ W dLA

dI
Excessive displacement

 of labor<0

.

The new term W�(dLA/dI ) captures the fi rst- order losses from a decline in 
employment in tasks (I,J ). These losses arise because by automating jobs 
where workers earn rents, fi rms are eff ectively displacing workers to other 
tasks in which they have a lower marginal product and earn a strictly lower 
wage, which increases the extent of misallocation.

The point highlighted here is much more general. Without labor market 
frictions, automation increases GDP (and net output), so at the very least 
it is possible to redistribute the gains that it creates to make workers—of 
diff erent skill levels—better off . Labor market frictions change this picture. 
In the presence of such frictions, fi rms’ automation decisions do not inter-
nalize the fact that the marginal product of labor is above its opportunity 
cost, or equivalently, do not recognize that there are fi rst- order losses that 
workers will suff er as a result of  automation. Consequently, equilibrium 
automation could reduce GDP and welfare and there may not be a way 
to make (all) workers better off , even with tools for costless redistribution. 
Under these circumstances, a utilitarian planner would choose a lower level 
of automation than the equilibrium.15

8.6 Concluding Remarks

Despite the growing concerns and intensifying debate about the implica-
tions of automation for the future of work, the economics profession and 
popular discussions lack a satisfactory conceptual framework. To us this 

15. Naturally, if  the planner could remove the rents, or the labor market frictions underpin-
ning them, then the equilibrium would be restored to effi  ciency. Nevertheless, most sources of 
rents, including search, bargaining, and effi  ciency wages, would be present in the constrained 
effi  cient allocations as well.
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lack of appropriate conceptual approach is also the key reason why much 
of the debate is characterized by a false dichotomy between the view that 
automation will spell the end of work for humans and the argument that 
technologies will always tend to increase the demand for labor as they have 
done in the past.

In this chapter, we summarized a conceptual framework that can help 
understand the implications of automation and bridge the opposite sides 
of  this false dichotomy. At the center of  our framework is a task- based 
approach, where automation is conceptualized as replacing labor in tasks 
that it used to perform. This type of replacement causes a direct displace-
ment eff ect, reducing labor demand. If  this displacement eff ect is not coun-
terbalanced by other economic forces, it will reduce labor demand, wages, 
and employment. But our framework also emphasizes that there are several 
countervailing forces. These include the fact that automation will reduce the 
costs of production and thus create a productivity eff ect, the induced capital 
accumulation, and the deepening of automation—technological advances 
that increase the productivity of machines in tasks that have already been 
automated.

Our framework also emphasizes that these countervailing forces are gen-
erally insuffi  cient to totally balance out the implications of automation. In 
particular, even if  these forces are strong, the displacement eff ect of automa-
tion tends to cause a decline in the share of labor in national income. But 
we know from the history of technology and industrial development that 
despite several waves of rapid automation, the growth process has been more 
or less balanced, with no secular downward trend in the share of labor in 
national income. We argue this is because of another powerful force: the 
creation of new tasks in which labor has a comparative advantage, which 
fosters a countervailing reinstatement eff ect for labor. These tasks increase 
the demand for labor and tend to raise the labor share. When they go hand- 
in-hand with automation, the growth process is balanced and it need not 
imply a dismal scenario for labor.

Nevertheless, the adjustment process is likely to be slower and more pain-
ful than this account of balance between automation and new tasks at fi rst 
suggests. This is because the reallocation of  labor from its existing jobs 
and tasks to new ones is a slow process, in part owing to time- consuming 
search and other labor market imperfections. But even more ominously, new 
tasks require new skills. When the education sector does not keep up with 
the demand for new skills, the mismatch between skills and technologies is 
bound to complicate the adjustment process and hinder the productivity 
gains from new technologies.

Our framework further suggests that there are additional reasons for the 
productivity slowdown. At the center of these is a tendency for excessive 
automation because of the tax treatment of capital investments and labor 
market imperfections. Excessive automation directly reduces productivity, 
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but may have even more powerful indirect eff ects because it redirects tech-
nological improvements away from productivity- enhancing activities that 
lead to the creation of new tasks to excessive eff orts at the extensive margin 
of automation, a picture that receives informal support from the current 
singular focus on AI and deep learning.

We would like to conclude by pointing out a number of additional issues 
that may be important in understanding the full impact of AI and other auto-
mation technologies on future prospects of labor. We believe that these issues 
can be studied using simple extensions of the framework presented here.

First, we have emphasized the role of the productivity eff ect in partially 
counterbalancing the displacement eff ect created by automation. However, 
this countervailing eff ect works by increasing the demand for products. As 
we have also seen, automation tends to increase inequality. If, as a conse-
quence of this distributional impact, the rise in real incomes resulting from 
automation ends up in the hands of a narrow segment of the population 
with much lower marginal propensity to consume than those losing incomes 
and their jobs, these countervailing forces would be weakened and might 
operate much more slowly. This imbalance in the distribution of the gains 
from automation might slow down the creation of new tasks as well.

Second, our analysis highlighted the negative consequences of a short-
age of skills for realizing the productivity gains from automation and for 
inequality. In practice, the problem may be workers acquiring the wrong 
types of skills rather than a general lack of skills. For example, if  AI and 
other new automation technologies necessitate a mix of numeracy, com-
munication, and problem- solving skills diff erent than those emphasized in 
current curricula, this would have implications similar to those of a shortage 
of skills, but it cannot be overcome by just increasing educational spending 
with current educational practices remaining intact. One important con-
sideration in this respect is that there is little concrete information about 
what types of skills new technologies will complement, underscoring the 
importance of further empirical work in this area.

Third, government policies and labor market institutions may impact not 
just the speed of  automation (and thus whether there is excessive auto-
mation), but what types of technologies will receive more investments. To 
the extent that some uses of AI may complement labor more or generate 
opportunities for more rapid creation of new tasks, an understanding of 
the impact of various policies, including support for academic and applied 
research, and social factors on the path of development of AI is critical.

Last but not least, the development and adoption of technologies that re-
instate labor cannot be taken for granted. If  we do not fi nd a way of creating 
shared prosperity from the productivity gains generated by new technolo-
gies, there is a danger that the political reaction to these technologies may 
slow down or even completely stop their adoption and development. This 
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underscores the importance of studying the distributional implications of 
AI and robotics, the political economy reactions to it, and the design of 
new and improved institutions for creating more broadly shared gains from 
these new technologies.

Appendix

Derivations for the Basic Model

Suppose that assumption (A1) holds. We fi rst derive the demand for 
 factors:

• Denote by p(x) the price of task x. Assumption (A1) implies

(8A.1) p(x) =

R

M (x)
if x N 1, I

W

L(x)
if x I ,N( .

• In addition, the demand for task x is given by

 y(x) = Y
p(x)

.

• Thus, the demand for smart machines in task x is

 k(x) =
Y
R

if x N 1, I

0 if x I ,N(
,

and the demand for labor in task x is

 (x) =
0 if x N 1, I

Y
W

if x I ,N(
.

•  Aggregating the demand for machines from this expression and set-
ting it equal to the supply of capital, K, we have the following market- 
clearing condition for capital:

 K =
Y
R

(I N + 1).

Similarly, aggregating the demand for labor and setting it equal to its inelas-
tic supply, L, we obtain the market- clearing condition for labor as
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 L = Y
W

(N I ).

•  Rearranging these two equations, the equilibrium rental rate and wage 
can be obtained as

(8A.2) R =
Y
K

(I N + 1) andW =
Y
L

(N I ),

which are the expressions used in the text.
We next turn to deriving the expression for aggregate output.

•  Because we normalized the price of the fi nal good to 1 as numeraire, 
we have

 
N 1

N

lnp(x)dx = 0.

• Plugging in the expressions for p(x) from equation (8A.1) yields

 
N 1

I

lnR ln M (x) dx +
I

N

lnW ln L(x) dx = 0.

• Substituting the expressions for R and W from (8A.2), we obtain

 
N 1

I

lnY ln K /(I N + 1)( ) ln M (x) dx

 +
I

N

lnY ln L/(N I )( ) ln L(x) dx = 0.

• This equation can be rearranged as

 lnY =
N 1

I

ln K
I N + 1

+ ln M (x) dx +
I

N

ln L
N 1

+ ln L(x) dx

 =
N 1

I

ln M (x)dx +
I

N

ln L(x)dx

 + (I N + 1)ln K
I N + 1

+ (N I )ln L
N I

,

which, after taking exponentials on both sides of the equation, yields the 
expression for aggregate output in equation (1) in the text.

Assumption (A1)

We now show that assumption (A1) is equivalent to the capital- labor ratio 
of the economy taking an intermediate value. In particular, there exist two 
positive thresholds <  such that assumption (A1) holds whenever



Artifi cial Intelligence, Automation, and Work    231

(A2) 
K
L

( , ).

Equation (8A.2) shows that

 
W
R
=
K
L

N I
I N + 1

.

Defi ne

 =
I N + 1
N I

L(I )

M (I )
, and =

I N + 1
N I

L(N )

M (N I )
.

Then equation (A2) is equivalent to assumption (A1).

Derivations in the Presence of Technology- Skill Mismatch

•  Denote by p(x) the price of task x. Assumption (A1) together with the 
fact that WH > WL (see footnote 12) implies

 p(x) =

R

M (x)
if x N 1, I

WL

L(x)
if x (I ,S )

WH

L(x)
if x S ,N ]

.

•  Following the same steps as in our baseline model, we obtain the 
market- clearing condition for capital,

 K =
Y
R

(I N + 1).

• The demand for low- skill labor in task x is given by

 (x) =

0 if x N 1, I

Y
WL

if x (I ,S )

0 if x S ,N ].

.

•  Aggregating the demand for low- skill labor and setting it equal to its 
inelastic supply, L, we obtain the market- clearing condition for low- 
skill labor as

 L = Y
WL

(S I ),

which implies the expression for WL given in the main text.
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• The demand for high- skill labor in task x is given by

 h(x) =

0 if x N 1, I

0 if x (I ,S )
Y
WH

if x S ,N ].

.

•  Aggregating the demand for high- skill labor and setting it equal to 
its supply, H , we obtain the market- clearing condition for high- skill 
labor as

 H =
Y
WH

(N S ),

which implies the expression for WH given in the main text.

Derivations for the Model with Distortions

•  Denote by p(x) the price of  task x. The variant of  assumption (A1) 
introduced in section 8.5 implies

 p(x) =

R(1 )

M (x)
if x N 1, I

W (1+ )

L(x)
if x (I , J )

W

L(x)
if x J ,N ].

•  Following the same steps as in the model with no distortions, we obtain 
the market- clearing condition for capital,

 K =
Y

R(1 )
(I N + 1).

•  The demand for labor in task x is

 (x) =

0 if x N 1, I

Y
W (1+ )

if x (I , J )

Y
W

if x J ,N ]

.

•  The expression for ℓ(x) implies that the total amount of labor employed 
in tasks where labor gets rents is

 LA =
Y

W (1+ )
(J I ).
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The total amount of labor employed in tasks where labor does not get rents is

 L LA =
Y
W

(N J ).

To derive the expression for (gross) output we proceed as follows:

• Again from our choice of numeraire, we have

 
N 1

N

lnp(x)dx = 0.

• Plugging in the expressions for p(x) we obtain

 
N 1

I

lnR ln M (x) dx +
I

J

lnW + ln(1+ ) ln L(x) dx

 +
J

N

lnW ln L(x) dx = 0.

•  Substituting for factor prices using the expressions for K, LA, and 
L – LA, we obtain

 
N 1

I

lnY ln K / (I N + 1)( ) ln M (x) dx

 +
I

J

lnY ln LA / (J I )( ) ln L(x) dx

 +
I

J

lnY ln (L LA) / (N J )( ) ln L(x) dx = 0.

• This equation can be rearranged as

 lnY =
N 1

I

ln K
I N + 1

+ ln M (x) dx +
I

J

ln LA

J I
+ ln L(x) dx

 +
J

N

ln L
N J

+ ln L(x) dx

 =
N 1

I

ln M (x)dx +
I

N

ln L(x)dx + (I N + 1)ln K
I N + 1

 + (J I )ln LA

J I
+ (N J )ln L LA

N J
,

which yields equation (12) in the text.
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