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Policy Optimization for Markovian Jump Linear Quadratic Control:
Gradient Method and Global Convergence

Joao Paulo Jansch-Porto, Bin Hu, and Geir E. Dullerud

Abstract— Recently, policy optimization has received renewed
attention from the control community due to various applications
in reinforcement learning tasks. In this paper, we investigate the
global convergence of the gradient method for quadratic optimal
control of discrete-time Markovian jump linear systems (MJLS).
First, we study the optimization landscape of direct policy op-
timization for MJLS, with static state feedback controllers and
quadratic performance costs. Despite the non-convexity of the
resultant problem, we are still able to identify several useful prop-
erties such as coercivity, gradient dominance, and smoothness.
Based on these properties, we prove that the gradient method
converges to the optimal state feedback controller for MJLS at
a linear rate if initialized at a controller which is mean-square
stabilizing. This work brings new insights for understanding the
performance of the policy gradient method on the Markovian jump
linear quadratic control problem.

Index Terms— Markovian jump linear systems, optimal
control, policy gradient methods, reinforcement learning.

I. INTRODUCTION

Recently, reinforcement learning (RL) [1] has achieved impressive
performance on continuous control tasks such as locomotion [2] and
robotic hand manipulation [3]. One main algorithmic framework for
such RL applications is policy optimization [4]. Specifically, policy-
based RL methods including the policy gradient method [5], natural
policy gradient [6], TRPO [7], natural AC [8], and PPO [9], have been
widely used in various control tasks. These methods enable flexible
policy parameterizations and optimize control performance directly.

Although policy-based RL methods have shown great promise in
addressing complex control tasks, the selection and tuning of these
methods have not been fully understood [10], [11]. This has motivated
a recent research trend focusing on understanding the performances
of policy optimization algorithms on simplified benchmarks such as
linear quadratic regulator (LQR) [12]–[22], linear robust control [23]–
[25], and linear control of Lur’e systems [26]. Notice that even for
LQR, directly optimizing over the policy space leads to a non-convex
constrained problem. Nevertheless, one can still prove the global
convergence of policy gradient methods on the LQR problem by
exploiting properties such as gradient dominance, almost smoothness,
and coercivity [12], [13]. This provides a good sanity check for
applying policy optimization to more advanced control applications.

Built upon the good progress on understanding policy-based RL for
linear time-invariant (LTI) systems, this paper moves one step further
and presents new theoretical results on policy optimization of Markov
jump linear systems (MJLS) [27]. MJLS form an important class of
hybrid dynamical systems that find many applications in control [28]–
[33] and machine learning [34], [35]. The research on MJLS has great

J. P. Jansch-Porto is with the Department of Mechanical Science
and Engineering, University of Illinois at Urbana-Champaign, Email:
janschp2@illinois.edu.

B. Hu is with the Coordinated Science Laboratory (CSL) and the De-
partment of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, Email: binhu7@illinois.edu.

G. E. Dullerud is with the Coordinated Science Laboratory (CSL) and
the Department of Mechanical Science and Engineering, University of
Illinois at Urbana-Champaign, Email: dullerud@illinois.edu.

J. P. Jansch-Porto and G. Dullerud are funded by NSF under the grant
ECCS 19-32735. B. Hu is funded by the NSF award CAREER-2048168.

practical value while in the mean time also provides new interesting
theoretical questions. Different from the LTI case, the state/input
matrices of a Markov jump linear system are functions of a jump
parameter sampled from an underlying Markov chain. Controlling
unknown MJLS poses many new challenges over traditional LQR
due to the appearance of this Markov jump parameter, and it is
the coupling effect between the state/input matrices and the jump
parameter distribution that causes the main difficulty. To this end,
the optimal control of MJLS provides a meaningful benchmark for
further understanding of policy-based RL algorithms.

However, the theoretical properties of policy-based RL methods
on discrete-time MJLS have been overlooked in the existing liter-
ature [36]–[39]. In this paper, we make one step towards bridging
this gap. Specifically, we develop new convergence theory for direct
policy optimization of MJLS. Despite the non-convexity of the resul-
tant policy search problem, we are still able to identify several useful
properties such as coercivity, gradient dominance, and smoothness.
Then we use these identified properties to prove that the gradient
method converges to the optimal state feedback controller for MJLS
at a linear rate if a stabilizing initial controller is used.

Our paper generalizes the convergence theory for LTI policy
optimization [12], [13], [20] to the MJLS case. This extension is non-
trivial, and heavily relies on the operator-theoretic stability arguments
used in the MJLS literature [27]. Our paper also expands on the
previous results published by the authors in a conference paper [40],
and has made significant extensions in identifying the smoothness
property and analyzing the gradient descent method in the MJLS
setting. Our work serves as an important step toward understanding
the theoretical aspects of policy-based RL methods for MJLS control.
There is a follow-up work [41] which extended our convergence
theory of the gradient method to the model-free policy gradient
setting. When the models are unknown, the gradient method can still
be implemented using zeroth-order optimization techniques and yield
global convergence guarantees [41]. The sample complexity analysis
in [41] heavily relies on the cost properties identified in our paper.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notation

We denote the set of real numbers by R. Let A be a matrix,
then we use the notation AT , ‖A‖, tr(A), σmin(A), and ρ(A) to
denote its transpose, maximal singular value, trace, minimum singular
value, and spectral radius, respectively. Given matrices {Di}mi=1, let
diag(D1, . . . , Dm) denote the block diagonal matrix whose (i, i)-th
block is Di. The Kronecker product of matrices A and B is denoted
as A⊗B. We use vec(A) to denote the vectorization of matrix A. We
indicate when a symmetric matrix Z is positive definite or positive
semidefinite matrices by Z � 0 and Z � 0, respectively. Given a
function f , we use df to denote its total derivative [42].

We now introduce some specific matrix spaces and notation
motivated from the MJLS literature [27]. Let MN

n×m denote the
space made up of all N -tuples of real matrices V = (V1, . . . , VN )
with Vi ∈ Rn×m, i ∈ N. For simplicity, we write MN in place of
MN
n×m when the dimensions n and m are clear from context. For
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V = (V1, . . . , VN ) ∈ MN , we define

‖V ‖1 :=
∑
i∈Ω

‖Vi‖, ‖V ‖22 :=

N∑
i=1

tr
(
V Ti Vi

)
,

‖V ‖max := max
i=1,...,N

‖Vi‖, Λmin(V ) := min
i=1,...,N

σmin(Vi).

Clearly, we have ‖V ‖max ≤ ‖V ‖1 ≤ ‖V ‖2. For V, S ∈ MN , their
inner product is defined as

〈V, S〉 :=

N∑
i=1

tr
(
V Ti Si

)
Notice both V and S are sequences of matrices. It is also
convenient to define V + S := (V1 + S1, . . . , VN + SN ),
V S := (V1S1, . . . , VNSN ), V T := (V T1 , . . . , V TN ), and V −1 :=
(V −1

1 , . . . , V −1
N ). We say that V � S if Vi − Si � 0 for i =

1, . . . , N .

B. Markovian Jump Linear Quadratic Control
In this paper, we consider the optimal control of the following

discrete-time Markovian jump linear system (MJLS):

xt+1 = Aω(t)xt +Bω(t)ut (1)

where xt ∈ Rd is the system state, and ut ∈ Rk corresponds to
the control action. The system matrices Aω(t) ∈ Rd×d and Bω(t) ∈
Rd×k depend on the switching parameter ω(t), which takes values
on Ω := {1, . . . , Ns}. We will denote A = (A1, . . . , ANs) ∈ MNs

d×d
and B = (B1, . . . , BNs) ∈ MNs

d×k.
The jump parameter {ω(t)}∞t=0 is assumed to form a time-

homogeneous Markov chain whose transition probability is given as

pij = P (ω(t+ 1) = j|ω(t) = i) . (2)

Let P denote the probability transition matrix whose (i, j)-th entry is
pij . The initial distribution of ω(0) is given by π =

[
π1 · · · πNs

]T .
Obviously, we have pij ≥ 0,

∑Ns
j=1 pij = 1, and

∑
i∈Ω πi = 1. We

further assume that system (1) is mean-square stabilizable1.
Our control design objective is to choose the actions {ut}∞t=0 to

minimize the following quadratic cost function

C = Ex0∼D,ω0∼π

[ ∞∑
t=0

xTt Qω(t)xt + uTt Rω(t)ut

]
, (3)

where D denotes the initial state distribution. For simplicity, it is
assumed that Q = (Q1, . . . , QNs) � 0, R = (R1, . . . , RNs) �
0, πi > 0, and Ex0∼D

[
x0x

T
0

]
� 0. The assumptions on π and

Ex0∼D
[
x0x

T
0

]
indicate that there is a chance of starting from any

mode i and the covariance of the initial state is full rank. These
assumptions can be somehow informally thought as the persistently
excitation condition in the system identification literature and are
quite standard for learning-based control. The above problem can be
viewed as the MJLS counterpart of the standard LQR problem, and
hence is termed as the “MJLS LQR problem.” It is known that the
optimal cost for the MJLS LQR problem can be achieved by a linear
state feedback of the form

ut = −Kω(t)xt (4)

with K = (K1, . . . ,KNs) ∈ MNs
k×d. Combining the linear policy (4)

with (1), we obtain the closed-loop dynamics:

xt+1 =
(
Aω(t) −Bω(t)Kω(t)

)
xt = Γω(t)xt. (5)

1The mean square stability of MJLS is reviewed in sequel.

with Γ = (Γ1, . . . , ΓNs) ∈ MNs
d×d. Note that using this formulation,

we can write the cost (3) as

C = Ex0∼D,ω0∼π

[ ∞∑
t=0

xTt

(
Qω(t) +KT

ω(t)Rω(t)Kω(t)

)
xt

]
.

The optimal controller to the above MJLS LQR problem can be
computed by solving a system of coupled Algebraic Riccati Equations
(AREs) [43]. Specifically, define the operator E : MNs

d×d → MNs
d×d as

E(V ) := (E1(V ), . . . , ENs(V )) where V = (V1, . . . , VNs) ∈ MNs
d×d

and Ei(V ) :=
∑Ns
j=1 pijVj . Let P = (P1, . . . , PNs) be the unique

positive definite solution to the following AREs:

P = Q+AT E(P )A−AT E(P )B×(
R+BT E(P )B

)−1
BT E(P )A. (6)

Then, it is known that the optimal controller is given by

K∗ =
(
R+BT E(P )B

)−1
BT E(P )A. (7)

Notice that the existence of such a controller is guaranteed by the
stabilizability assumption. In this paper, we will revisit the above
MJLS LQR problem from a policy optimization perspective.

C. Policy Optimization for LTI Systems

Before proceeding to policy optimization of MJLS, we briefly
review some relevant results for LTI systems [12]. Consider the LTI
system xt+1 = Axt + But, where A ∈ Rd×d, and B ∈ Rd×k.
Let ut be determined by a static state feedback controller, i.e.
ut = −Kxt. We adopt the following standard quadratic cost function

C(K) = Ex0∼D

[ ∞∑
t=0

xTt Qxt + uTt Rut

]

= Ex0∼D

[ ∞∑
t=0

xTt (Q+KTRK)xt

]
, (8)

which is equal to Ex0∼D
[
xT0 P

Kx0

]
with PK being the solution to

the Lyapunov equation PK = Q+KTRK+ (A−BK)TPK(A−
BK). The following gradient formula [12], [44] is also well known

∇C(K) = 2
((
R+BTPKB

)
K −BTPKA

)
ΣK ,

where ΣK = Ex0∼D
[∑∞

t=0 xtx
T
t

]
. Based on this gradient formula,

there exists a unique K∗ such that ∇C(K∗) = 0 if Ex0∼D
[
x0x

T
0

]
is full rank [12]. In addition, one can optimize (8) using the gradient
method K′ ← K − η∇C(K), or the natural policy gradient method
K′ ← K̄ − η∇C(K)Σ−1

K . In [12], it has been shown that these
methods are guaranteed to converge to K∗ linearly if a stabilizing
initial policy is used. One advantage of these gradient-based methods
is that they can be implemented in a model-free manner. More
discussions on these methods and their model-free variants can be
found in [12].

D. Problem Setup: Policy Optimization for MJLS

In this section, we reformulate the MJLS LQR problem as a policy
optimization problem. Since the optimal cost for the MJLS LQR
problem can be achieved by a linear state feedback controller, it is
reasonable to confine the policy search to the class of linear state
feedback policies. Hence we set K = (K1, . . . ,KNs), and the
control action is determined as ut = −Kω(t)xt. This leads to the
following policy optimization problem whose decision variable is K.
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Problem: Policy Optimization for MJLS.

minimize: cost C(K), given in (3)

subject to: state dynamics, given in (1)

control actions, given in (4)

transition probabilities, given in (2)

stability constraint, K stabilizing (1) in the

mean square sense.

When Ns = 1, the above problem reduces to the policy op-
timization for LTI systems [12]. We want to emphasize that the
above problem is indeed a constrained optimization problem. Recall
that given K, the resultant closed-loop MJLS (5) is mean square
stable (MSS) if for any initial condition x0 ∈ Rd and ω(0) ∈ Ω,
one has E

[
xtx

T
t

]
→ 0 as t → ∞ [27]. Since it is assumed

Ex0∼D
[
x0x

T
0

]
� 0, we can trivially apply the well-known equiv-

alence between mean square stability and stochastic stability for
MJLS [27] to show that C(K) is finite if and only if K stabilizes
the closed-loop dynamics in the mean square sense. Therefore, the
feasible set of the above policy optimization problem consists of all
K stabilizing the closed-loop dynamics (5) in the mean square sense.
For simplicity, we denote this feasible set as K. For K ∈ K, C(K)
can be calculated as

C(K) = Ex0∼D,ω0∼π
[
xT0 P

K
ω(0)x0

]
= Ex0∼D

xT0
∑
i∈Ω

πiP
K
i

x0

 , (9)

where PK = (PK1 , . . . , PKNs
) ∈ MNs

d×d and each PKi is solved via
the following coupled Lyapunov equations:

PKi = Qi +KT
i RiKi + (Ai −BiKi)T Ei(PK) (Ai −BiKi) .

(10)
The goal for policy optimization is to apply iterative gradient-based

methods to search for the cost-minimizing element K∗ within the
feasible set K. A fundamental question is how to check whether
K ∈ K for any given K. There are several ways to do this, and we
give a brief review here. We need to introduce a few operators which
are standard in the MJLS literature. Specifically, for any V ∈ MNs

d×d,
we define T (V ) = (T1(V ), . . . , TNs(V )) ∈ MNs

d×d, where Tj(V ) is
computed as

Tj(V ) :=
∑
i∈Ω

pij(Ai −BiKi)Vi(Ai −BiKi)T .

Recall that Ei(V ) :=
∑Ns
j=1 pijVj . We can also define L(V ) =

(L1(V ), . . . ,LNs(V )) ∈ MNs
d×d, where Li(V ) is given as

Li(V ) := (Ai −BiKi)T Ei(V )(Ai −BiKi).

The following property of Ei is quite useful

‖Ei(V )‖ ≤
∑
j∈Ω

pij‖Vi‖ ≤ ‖V ‖max

∑
j∈Ω

pij

 = ‖V ‖max. (11)

It is also easy to check that both T and L are Hermitian and
positive operators. From [27], we also know T is the adjoint
operator of L. The operator T is useful in describing the covariance
propagation of the MJLS (5). Specifically, if we define X(t) =

(X1(t), . . . , XNs(t)) with Xi(t) := E
[
xtx

T
t 1ω(t)=i

]
, then we

have X(t+ 1) = T (X(t)). In addition, we know
∑∞
t=0X(t) exists

if K ∈ K. We denote this limit as XK and we have

XK =

∞∑
t=0

T t(X(0)). (12)

The operator L is useful for value computation, since we have
PK = L(PK)+Q+KTRK (or equivalently PK =

∑∞
t=0 L

t(Q+

KTRK)) for any K ∈ K. Also notice L is actually a linear operator
and has a matrix representation A := diag

(
ΓTi ⊗ ΓTi

)
(P ⊗ IN2

s
)

where Γi = Ai−BiKi (see Proposition 3.4 in [27] for more details).
Now we are ready to present the following well-known result which
can be used to check whether K is in K or not.

Proposition 1 ([27]). The following assertions are equivalent:

1) System (5) is MSS.
2) ρ(A) < 1.
3) For any S ∈ MNs

n×n, S � 0, there exists a unique V ∈ MNs
n×n,

V � 0, such that V − T (V ) = S.
4) There exists V � 0 ∈ MNs

n×n such that V − T (V ) � 0.

The results above also hold when replacing T by L.

Based on the above result, a few basic properties of K can be
obtained. Clearly, we have K := {K ∈ MNs

k×d : ρ(A) < 1}. Since
ρ(A) is a continuous function of K, we know K is an open set and
Kc is a closed set. The boundary of the set K can also be formally
specified as ∂K := {K ∈ MNs

k×d : ρ(A) = 1}.
Finally, it is worth mentioning that both L and T depend on K.

Occasionally, we will use the notation LK and T K when there is a
need to emphasize the dependence of these operators on K.

III. OPTIMIZATION LANDSCAPE AND COST PROPERTIES

In this section, we study the optimization landscape of the MJLS
LQR problem and identify several useful properties of C(K). Based
on Lemma 1 in [40], the cost (9) is continuously differentiable with
respect to K, and the gradient ∇C(K) can be calculated as

∇C(K) = 2LKXK (13)

where LK = (LK1 , . . . , L
K
Ns

) ∈ MNs
k×d and LKi is given by

LKi =
(
Ri +BTi Ei(P

K)Bi

)
Ki −BTi Ei(P

K)Ai. (14)

Moreover, XK in the above gradient formula is given by (12). Since
K is a tuple of real matrices, we have ∇C(K) ∈ MNs

k×d. Next,
we present an explicit formula for the Hessian of the cost. To avoid
tensors, we restrict analysis with the quadratic form of the Hessian
∇2C(K)[E,E] on a matrix sequence E ∈ MNs

k×d.

Lemma 1. For K ∈ K, the Hessian of the MJLS LQR cost C(K)
applied to a direction E ∈ MNs

k×d is given by

∇2C(K)[E,E] = 2〈(R+BT E(PK)B)EXK , E〉
− 4〈BT E((PK)′[E])ΓXK , E〉, (15)

where

(PK)′[E] =

∞∑
t=0

Lt
(
ETLK + (LK)TE

)
. (16)

Proof. Recall that Γi := Ai − BiKi with Γ = (Γ1, . . . , ΓNs).
Applying the Taylor series expansion about E [45], we have that
the quadratic form of the hessian ∇2C(K) on E is given by

∇2C(K)[E,E] =
d2

dt2

∣∣∣∣
t=0

C(K + tE). (17)
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Writing (9) as C(K) = 〈PK , X(0)〉, we then have

∇2C(K)[E,E] = 〈 d
2

dt2

∣∣∣∣
t=0

PK+tE , X(0)〉. (18)

Denote (PK)′[E] := d
dt

∣∣∣
t=0

PK+tE . The following equation holds

(PK)′[E] =

∞∑
t=0

Lt
(
ET (RK −BT E(PK)Γ )

+ (RK −BT E(PK)Γ )TE
)
.

We can show that

d2

dt2

∣∣∣∣
t=0

PK+tE =

∞∑
t=0

Lt
(
S
)
, (19)

where S is given as

S = −2
(
ETBT E((PK)′[E])Γ + ΓE((PK)′[E])BE

)
+ 2ET (R+BT E(PK)B)E. (20)

Since T is the adjoint operator of L, we have

∇2C(K)[E,E] = 〈
∞∑
t=0

Lt
(
S
)
, X(0)〉

= 〈S,
∞∑
t=0

Lt
(
X(0)

)
〉 = 〈S, XK〉.

Plugging (20) into the above, we get

∇2C(K)[E,E] = 2〈ET (R+BT E(PK)B)E, XK〉
− 2〈ETBT E((PK)′[E])Γ, XK〉
− 2〈ΓE((PK)′[E])BE, XK〉

= 2〈ET (R+BT E(PK)B)E, XK〉
− 4〈ETBT E((PK)′[E])Γ, XK〉.

We can get the desired result by noting that each block in XK is
symmetric and using the cyclic property of the trace.

Optimization Landscape for MJLS. Now we discuss the op-
timization landscape for the MJLS LQR problem. Notice that LTI
systems are just a special case of MJLS. Since policy optimization for
quadratic control of LTI systems is non-convex, the same is true for
the MJLS case. By examining the gradient formula (13), it becomes
clear that as long as Ex0∼D

[
x0x

T
0

]
is full rank and πi > 0 for all

i, any stationary point given by ∇C(K) = 0 has to satisfy

LKi =
(
Ri +BTi Ei(P

K)Bi

)
Ki −BTi Ei(P

K)Ai = 0.

Substituting the above equation into (10) leads to the global solution
K∗ defined by the coupled AREs (6), and hence the only stationary
point is the global optimal solution. When the initial mode is
sufficiently random, i.e. πi > 0 for all i, the optimization landscape
for the MJLS case becomes quite similar to the classic LQR case.
Based on such similarity, it is reasonable to expect that gradient-
based methods will work well in the MJLS LQR setting despite the
non-convex nature of the problem. Compared with the LTI case, the
characterization of K is more complicated for MJLS. Hence one main
technical issue is how to show gradient-based methods can handle the
feasibility constraint K ∈ K without using projection.

Key Properties of the MJLS LQR Cost. To analyze the per-
formance of gradient-based methods for the MJLS LQR problem,
a few key properties of C(K) will be used. By assumption, we
have µ := mini∈Ω(πi)σmin

(
Ex0∼D

[
x0x

T
0

])
> 0. Then, we can

identify several key properties of C(K) as follows.

Lemma 2. The cost (9) satisfies the following properties:

1) Coercivity: The cost function C is coercive in the sense that for
any sequence {Kl}∞l=1 ⊂ K we have

C(Kl)→ +∞

if either ‖Kl‖2 → +∞, or Kl converges to an element K in
the boundary ∂K.

2) Almost smoothness: Given elements K, K′ ∈ K, the cost
function C(K) defined in (3) satisfies

C(K′)− C(K)

=
∑
i∈Ω

(
−2 tr

(
XK′
i ∆KT

i L
K
i

)
+ tr
(
XK′
i ∆KT

i

(
Ri +BTi Ei(P

K)Bi

)
∆Ki

))
= −2〈∆KTLK , XK′〉+ 〈∆KTΨ∆K, XK′〉,

where ∆Ki = (Ki −K′i) and Ψ := R+BT E(PK)B.
3) Gradient dominance: Given the optimal policy K∗, the following

sequence of inequalities holds for any K ∈ K:

C(K)− C(K∗) ≤ ‖XK∗‖max〈Ψ−1LK , LK〉

≤ ‖X
K∗‖max

Λmin(R)
‖LK‖22

≤ ‖X
K∗‖max

4µ2Λmin(R)
‖∇C(K)‖22.

4) Compactness of the sublevel sets: The sublevel set defined as
Kα := {K ∈ K : C(K) ≤ α} is compact for every α ≥
C(K∗).

5) Smoothness on the sublevel sets: For any sublevel set Kα, choose
the smoothness constant as

L = 2

(
‖R‖max + ‖B‖2max

(
1 +

2ξ

‖B‖max

)
α

µ

)
α

Λmin(Q)
,

where ξ is calculated as

ξ =
1

Λmin(Q)

(
1 + ‖B‖2max

µ
α+ ‖R‖max

)
− 1.

Then for any K ∈ Kα, we have ‖∇2C(K)‖ ≤ L. In addition,
for any (K,K′) satisfying tK + (1 − t)K′ ∈ Kα ∀t ∈ [0, 1],
the following inequality holds

C(K′) ≤ C(K) + 〈∇C(K), K′ −K〉+
L

2
‖K′ −K‖22.

(21)

Proof. To prove Statement 1, first notice that we have

C(Kl) ≥ Ex0∼D

∑
i∈Ω

πix
T
0 (Qi + (Kl

i)
TRiK

l
i)x0


≥ µΛmin(R)‖Kl‖22.

This directly shows that C(Kl) → +∞ as ‖Kl‖2 → +∞. Next,
we assume Kl → K ∈ ∂K. Based on Proposition 1, we know that
for all l, there exists Y l � 0 such that

Y l − LK
l
(Y l) = Q+ (Kl)TRKl,

where the dependence of L on K is emphasized by the superscript.
We now want to show that the sequence {Y l} is unbounded, and
will use a contradiction argument. Suppose that {Y l} is bounded.
By the Weierstrass-Bolzano theorem, {Y l} admits a subsequence
{Y ln}∞n=0 which converges to some limit point denoted as Y .
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Clearly, we have Y � 0. For the same subsequence {ln}∞n=0, we
have limn→∞Kln = K ∈ ∂K. For all ln, we still have

Y ln − LK
ln

(Y ln) = Q+ (Kln)TRKln .

Now letting n go to ∞, by continuity, leads to the equation Y −
LK(Y ) = Q + KTRK. Since Q � 0, R � 0, and LK(Y ) �
0, we conclude Y � 0. By Proposition 1, we have K ∈ K, and
this contradicts the fact that K ∈ ∂K. Therefore, {Y l} must be
unbounded. Since Y l is positive definite, we can further conclude
that { tr

(
Y l
)
} is unbounded and C(Kl)→∞. This completes the

proof of Statement 1.
Next, we prove Statement 2. Recall that we have Γi = Ai−BiKi.

For simplicity, we denote Γ ′i := Ai −BiK′i. By definition, we have
C(K′)−C(K) = 〈PK

′
−PK , X(0)〉. Based on (10), we can show

PK
′
− PK =

∞∑
t=0

(LK
′
)t
(

∆KT (R+BT E(PK)B)∆K

+∆KTLK + (LK)T∆K
)
.

Here the notation LK
′

emphasizes that this is the operator associated
with K′. Now we can prove Statement 2 by applying the above
equation and the fact that T K

′
is the adjoint operator of LK

′
.

To prove Statement 3, we rewrite the almost smoothness condition
and complete the squares as follows

C(K′)− C(K) = −〈(LK)TΨ−1LK , XK′〉

+ 〈
(
−∆K + Ψ−1LK

)T
Ψ
(
−∆K+ Ψ−1LK

)
, XK′〉,

which leads to C(K′)− C(K) ≥ −〈(LK)TΨ−1LK , XK′〉. Then
we can set K′ = K∗ to prove Statement 3.

Statement 4 can be proved using the continuity and coercivity of
C(K). With the coercive property in place, we can continuously
extend the function domain from K to MNs

k×d by allowing ∞ as a
function value. Based on Proposition 11.12 in [46], we know that
Kα is bounded for any finite α. Since C(K) is continuous on K, the
set Kα is also closed. Hence Statement 4 holds as desired.

Finally, to prove Statement 5, we only need to bound the norm of
∇2C(K). Then the desired conclusion follows by applying the mean
value theorem. Since ∇2C(K) is self-adjoint, its operator norm can
be characterized as

‖∇2C(K)‖ = sup
‖E‖2=1

|∇2C(K)[E,E]|.

Based on the Hessian formula (15), we have

sup
‖E‖2=1

|∇2C(K)[E,E]|

≤ 2 sup
‖E‖2=1

|〈(R+BT E(PK)B)EXK , E〉|

+ 4 sup
‖E‖2=1

|〈BT E((PK)′)ΓXK , E〉|.

(22)

Now we only need to provide upper bounds for the two terms on
the right side of the above inequality. For simplicity, we denote
q1 := sup‖E‖2=1 |〈(R + BT E(PK)B)EXK , E〉| and q2 :=

sup‖E‖2=1 |〈BT E((PK)′)ΓXK , E〉|. As a matter of fact, q1 and
q2 can be bounded as follows

q1 ≤
(
‖R‖max + ‖B‖2max

C(K)

µ

)
C(K)

Λmin(Q)
(23)

q2 ≤
ξ‖B‖maxC(K)2

µΛmin(Q)
(24)

The proofs of (23) and (24) are tedious and hence are deferred
to the appendix for readability. Now we are ready to prove the
L-smoothness of C(K) within the set Kα. Notice C(K) ≤ α
for any K ∈ Kα. Hence we can combine (23) and (24) to show
2q1 + 4q2 ≤ L where L is given in Statement 5. Based on the
mean value theorem, this leads to the desired conclusion. It is worth
emphasizing that (21) only holds when the line segment between K
and K′ is in Kα. Since Kα is non-convex in general, it is possible
that there exists K,K′ ∈ Kα such that (21) does not hold.

Now we briefly explain the importance of the above properties.
When applying the gradient method to search for K∗, two issues
need to be addressed and our techniques will heavily rely on the
above cost properties.

1) Feasibility: One has to ensure that the iterates generated by the
gradient method always stay in the non-convex feasible set K.
The coercivity implies that the function C(K) serves as a barrier
function on K. Based on the coercivity and the compactness of
the sublevel set, one can show that the decrease of the cost
ensures the next iterate to stay inside K.

2) Convergence: After ensuring the feasibility, one next needs to
show that the iterates generated by the optimization method con-
verge to K∗. The smoothness and gradient dominance properties
will play a key role in the convergence proof when there is an
absence of convexity.

IV. GRADIENT METHOD AND CONVERGENCE

In Section II-C, we have reviewed policy optimization for the LTI
case. In this section, we will consider the gradient method in the
MJLS LQR setting and provide new global convergence guarantees.
In the MJLS LQR setting, the gradient method iterates as

Kn+1 = Kn − η∇C(Kn), (25)

where K0 is required to be in K. The stepsize η is a hyperparameter
to be tuned. When the parameters (A,B,Q,R) are exactly known,
the gradient ∇C(Kn) can be evaluated using the formula (13).
If the model parameters are unknown, one can still estimate the
gradient from data using either zeroth-order optimization [41] or
policy gradient theorem [47]. Now we present the convergence theory
for the update rule (25) with exact gradient information. We first need
to ensure that the iterates generated by (25) are always in K. Consider
the one-step gradient update K′ ← K− 2ηLKXK . We will use the
coercivity of C(K) and the compactness of Kα to show that for all
K ∈ K, we can choose η such that K′ will also be in K.

Lemma 3. Suppose K ∈ Kα and K′ = K − η∇C(K). Set L as
described in Statement 5 of Lemma 2. If 0 < η ≤ 1

L , then we have
K′ ∈ Kα ⊂ K and

C(K′) ≤ C(K)− η

2
‖∇C(K)‖22. (26)

Proof. We define the interior set of Kα as Ko
α := {K ∈ K :

C(K) < α}. The complement of Ko
α is denoted as (Ko

α)c. Notice
‖∇2C(K)‖ ≤ L for all K ∈ Kα. By continuity, there exists ε > 0
such that ‖∇2C(K)‖ ≤ 1.1L for all K ∈ Kα+ε.

Clearly (Ko
α+ε)

c is a closed set and (Ko
α+ε)

c ∩ Kα = ∅. Since
Kα is compact, we know the distance between Kα and (Ko

α+ε)
c

is strictly positive. We denote this distance as δ. Let us choose
τ = min{0.9δ/ ‖∇C(K)‖ , 1/1.1L}. Obviously, the line segment
between K and (K − τ∇C(K)) is in Kα+ε. Notice ‖∇2C(K)‖ ≤
1.1L for all K ∈ Kα+ε, and hence we have

C(K− τ∇C(K)) ≤ C(K) + 〈∇C(K), K− τ∇C(K)−K〉

+
1.1L

2
‖K − τ∇C(K)−K‖22
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which leads to

C(K − τ∇C(K)) ≤ C(K) +

(
−τ +

1.1Lτ2

2

)
‖∇C(K)‖22

As long as τ ≤ 2/(1.1L), we have −τ + 1.1Lτ2

2 ≤ 0 and C(K −
τ∇C(K)) ≤ C(K). Hence we have K−τ∇C(K) ∈ Kα. Actually,
it is straightforward to see that the line segment between K and
(K − τ∇C(K)) is in Kα.

The rest of the proof follows from induction. We can apply
the same argument to show that the line segment between (K −
τ∇C(K)) and (K − 2τ∇C(K)) is also in Kα. This means that
the line segment between K and (K − 2τ∇C(K)) is in Kα. Since
τ > 0, we only need to apply the above argument for finite times
and then will be able to show that the line segment between K
and (K − η∇C(K)) is in Kα for any 0 < η ≤ 1

L .2 Since
‖∇2C(K)‖ ≤ L for all K ∈ Kα, we have

C(K′) ≤ C(K) + 〈∇C(K), K′ −K〉+
L

2
‖K′ −K‖22

= C(K) +

(
−η +

Lη2

2

)
‖∇C(K)‖22

≤ C(K)− η

2
‖∇C(K)‖22,

where the last step follows from the fact that we have 0 < η ≤ 1
L .

This completes the proof.

Next, we can combine (26) with the gradient dominance property
to show that the cost associated with the one-step progress of the
gradient descent method is decreasing. This step is quite standard.

Lemma 4. Suppose K ∈ Kα and K′ = K − η∇C(K). Set L
as described in Statement 5 of Lemma 2. If 0 < η ≤ 1

L , then the
following inequality holds

C(K′)− C(K∗) ≤
(

1− 2µ2Λmin(R)

‖XK∗‖max
η

)(
C(K)− C(K∗)

)
.

Proof. By Lemma 3, we know K′ is stabilizing. We can combine (26)
with Statement 3 in Lemma 2 to show

C(K′)− C(K) ≤ −η
2
‖∇C(K)‖22

≤ −2µ2Λmin(R)η

‖XK∗‖max

(
C(K)− C(K∗)

)
which directly leads to the desired conclusion.

Now we are ready to prove the global convergence of the policy
gradient method (25).

Theorem 1. Suppose K0 ∈ K. Choose α = C(K0) and set L as
described in Statement 5 of Lemma 2. For any step size 0 < η ≤ 1

L ,
the iterations generated by the gradient descent method (25) always
stay in K and converge to the global minimum K∗ linearly as follows

C(Kn)− C(K∗) ≤
(

1− 2µ2Λmin(R)

‖XK∗‖max
η

)n
×(

C(K0)− C(K∗)
)
. (27)

Proof. We will use an induction argument. Since α = C(K0), we
have K0 ∈ Kα. By Lemma 4, we know (27) holds for n = 1. Since
C(K1) ≤ C(K0), we have K1 ∈ Kα. We can apply Lemma 4 again
to show (27) holds for n = 2. Now it is clear that we can repeatedly
apply the above argument to show (27) holds for any n.

2The argument even works for any η ≤ 2
1.1L

. Since the step size leading
to the fastest convergence rate is 1

L
, we state our result only for η ≤ 1

L
.

From the above proof, one can see that without using projection,
one can still guarantee the gradient method will stay in the feasible
set and converge to the global minimum. When the model parameters
are known, there are many other methods which can be used to
solve K∗ [27], [48]. We do not claim that the gradient method
is more desirable than other methods when the model information
is known. The purpose of our study is to bring new insights for
understanding policy-based RL methods in the MJLS setting. When
the model is unknown, one can still apply model-free techniques
such as zeroth-order optimization [49], [50] to estimate the gradient
∇C(K) from data. Then the gradient estimation errors have to be
explicitly addressed, and this has recently been done in a follow-up
work [41]. The analysis in [41] combines the theory in our paper
with some estimation error bounds to handle the model-free case.

Remark 1. The above proof technique is more general than the
implicit regularization arguments in our previous conference pa-
per [40] which addresses the convergence of the natural gradient
method3which iterated as Kn+1 = Kn − η∇C(Kn)(XKn

)−1.
In [40], it has been shown that the natural gradient method with

any 0 < η ≤ 1
2

(
‖R‖max +

‖B‖2maxC(K0)
µ

)−1

always stays in K

and will converge to the global minimum K∗ linearly as follows

C(Kn)− C(K∗) ≤
(

1− 2µΛmin(R)

‖XK∗‖max
η

)n
(C(K0)− C(K∗)).

The proof in [40] relies on an implicit regularization argument
where PK is used to construct a Lyapunov function for K′ and
then guarantee K′ ∈ K. Similar ideas have been used to show
the convergence properties of policy optimization methods for the
mixed H2/H∞ state feedback design problem [23]. However, such
an implicit regularization proof idea does not work for the gradient
method. For the gradient method, the value function at step n cannot
be directly used as a Lyapunov function at step (n+1). A similar fact
has also been observed for the mixed H2/H∞ control problem [23].
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APPENDIX

A. Proof of the Bound (23)

The proof of (23) is straightforward. Notice that we have

〈(R+BT E(PK)B)EXK , E〉

=
∑
i∈Ω

tr
(
ETi (Ri +BTi Ei(P

K)Bi)EiX
K
i

)
≤
∑
i∈Ω

‖ETi (Ri +BTi Ei(P
K)Bi)Ei‖ tr

(
XK
i

)
≤
∑
i∈Ω

‖Ei‖2‖Ri +BTi Ei(P
K)Bi‖ tr

(
XK
i

)
≤ ‖E‖2max‖R+BT E(PK)B‖max

∑
i∈Ω

tr
(
XK
i

)
≤ ‖E‖22

(
‖R‖max + ‖B‖2max‖PK‖max

)∑
i∈Ω

tr
(
XK
i

)
where the last step follows from (11). Hence we immediately have

q1 ≤
(
‖R‖max + ‖B‖2max‖PK‖max

)∑
i∈Ω

tr
(
XK
i

)
. (A.1)
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Now what we need to bound ‖PK‖max and
∑
i∈Ω tr

(
XK
i

)
. Recall

C(K) = Ex0∼D
[

tr
((∑

i∈Ω πiP
K
i

)
x0x

T
0

)]
. Therefore, we have

C(K) ≥ tr

∑
i∈Ω

πiP
K
i

σmin

(
Ex0∼D

[
x0x

T
0

])

≥

∑
i∈Ω

tr
(
PKi

)min
i∈Ω

(πi)σmin

(
Ex0∼D

[
x0x

T
0

])
which leads to the following upper bound

‖PK‖max ≤
∑
i∈Ω

tr
(
PKi

)
≤ C(K)

µ
. (A.2)

Notice T is the adjoint operator of L. Hence we also have

C(K) = 〈PK , X(0)〉 = 〈
∞∑
t=0

Lt(Q+KTRK), X(0)〉

= 〈Q+KTRK,

∞∑
t=0

T t(X(0))〉

= 〈Q+KTRK, XK〉

≥
∑
i∈Ω

σmin(Qi) tr
(
XK
i

)
≥ Λmin(Q)

∑
i∈Ω

tr
(
XK
i

)
,

which leads to another useful bound∑
i∈Ω

tr
(
XK
i

)
≤ C(K)

Λmin(Q)
. (A.3)

Substituting (A.2) and (A.3) into (A.1) leads to (23).

B. Proof of the Bound (24)
For simplicity, we shorten the notation (PK)′[E] as (PK)′. To

prove (24), first notice that we can use the Cauchy-Schwarz inequality
to show

〈BT E((PK)′)ΓXK , E〉

= 〈ETBT E((PK)′)Γ (XK)1/2, (XK)1/2〉

≤ ‖ETBT E((PK)′)Γ (XK)1/2‖2‖(XK)1/2‖2.

Next, we bound ‖ETBT E((PK)′)Γ (XK)1/2‖2 as follows

‖ETBT E((PK)′)Γ (XK)1/2‖22
=
∑
i∈Ω

tr
(
Ei((PK)′)BiEiE

T
i B

T
i Ei((P

K)′)ΓiX
K
i Γ

T
i

)
=
∑
i∈Ω

‖Bi‖2‖Ei‖2 tr
(
Ei((PK)′)Ei((PK)′)ΓiX

K
i Γ

T
i

)
≤ ‖B‖2max‖E‖2max

∑
i∈Ω

tr
(
Ei((PK)′)Ei((PK)′)ΓiX

K
i Γ

T
i

)
≤ ‖B‖2max‖E‖22

∑
i∈Ω

tr
(
Ei((PK)′)Ei((PK)′)ΓiX

K
i Γ

T
i

)
(B.1)

Since Ei((PK)′)Ei((PK)′) is positive semidefinite, we have∑
i∈Ω

tr
(
Ei((PK)′)Ei((PK)′)ΓiX

K
i Γ

T
i

)
≤
∑
i∈Ω

‖Ei((PK)′)‖2 tr
(
ΓiX

K
i Γ

T
i

)
≤ ‖(PK)′‖2max

∑
i∈Ω

tr
(
ΓiX

K
i Γ

T
i

)

If K ∈ K, we know T (XK) −XK ≺ 0 and hence the following
also holds∑

i∈Ω

tr
(
ΓiX

K
i Γ

T
i

)
=
∑
j∈Ω

tr

∑
i∈Ω

pijΓiX
K
i Γ

T
i


≤
∑
j∈Ω

tr
(
Tj
(
XK

))
≤
∑
j∈Ω

tr
(
XK
j

)
Therefore, substituting the above bounds into (B.1) leads to

‖ETBT E((PK)′)Γ (XK)1/2‖22
≤ ‖B‖2max‖E‖22‖(PK)′‖2max

∑
j∈Ω

tr
(
XK
j

)
Since ‖(XK)1/2‖22 =

∑
j∈Ω tr

(
XK
j

)
, we finally have

〈BT E((PK)′)ΓXK , E〉

≤ ‖B‖max‖E‖2‖(PK)′‖max

∑
j∈Ω

tr
(
XK
j

)
(B.2)

Based on (B.2), proving (24) only requires showing that the following
bound holds for any ‖E‖2 = 1 and K ∈ K,

‖(PK)′[E]‖max ≤ ξ‖PK‖max, (B.3)

where ξ is given as

ξ =
1

Λmin(Q)

(
1 + ‖B‖2max

µ
C(K) + ‖R‖max

)
− 1.

Once (B.3) is proved, it can be combined with (B.2), (A.2), and (A.3)
to verify (24) easily.

Now the only remaining task is to prove (B.3). Let us first show
(PK)′[E] ≤ ξPK given ‖E‖2 = 1. We will use Corollary 2.7
in [27] which states that X̃ � X if (X, X̃) satisfy X − L(X) = S
and X̃ − L(X̃) = S̃ with S̃ � S and K ∈ K. Since E(PK) � 0
and R � 0, we have

(PK)′[E]− L((PK)′[E])

=(−BE)T E(PK)Γ+ ΓT E(PK)(−BE)+ ETRK+KTRE

�L(PK) + (BE)T E(PK)BE +KTRK + ETRE

=PK−Q+ (BE)T E(PK)BE + ETRE

=:W

If we can show W � ξ(Q+KTRK), then Corollar 2.7 in [27] can
be directly applied to show (PK)′[E] ≤ ξPK . Note that we have
the following upper bound,

‖PKi + ETi B
T
i Ei(P

K)BiEi‖
≤ ‖PKi ‖+ ‖ETi B

T
i Ei(P

K)BiEi‖
≤ ‖PK‖max + ‖E‖2max‖B‖2max‖PK‖max

≤ (1 + ‖B‖2max)
C(K)

µ

which directly leads to the following result

W �
(

(1 + ‖B‖2max)
C(K)

µ
+ ‖R‖max

)
I −Q

� 1

Λmin(Q)

(
(1 + ‖B‖2max)

C(K)

µ
+ ‖R‖max

)
Q−Q

= ξQ

where I := (I, . . . , I) ∈ MNs
d×d Notice the bound makes sense since

we know C(K) ≥ Λmin(Q)µ. Therefore, we have (PK)′[E] �
ξPK . This directly leads to (B.3). Now we can complete the proof
by combining (B.3), (B.2), (A.2), and (A.3).
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