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Abstract

Proteins are key components in many processes in living cells, and physical interactions with other
proteins and nucleic acids often form key parts of their functions. In many cases, large flexibility of proteins
as they interact is key to their function. To understand the mechanisms of these processes, it is necessary
to consider the 3D structures of such protein complexes. When such structures are not yet experimentally
determined, protein docking has long been present to computationally generate useful structure models.
However, protein docking has long had the limitation that the consideration of flexibility is usually limited to
very small movements or very small structures. Methods have been developed which handle minor flex-
ibility via normal mode or other structure sampling, but new methods are required to model ordered pro-
teins which undergo large-scale conformational changes to elucidate their function at the molecular level.
Here, we present Flex-LZerD, a framework for docking such complexes. Via partial assembly multidomain
docking and an iterative normal mode analysis admitting curvilinear motions, we demonstrate the ability to
model the assembly of a variety of protein—protein and protein-nucleic acid complexes.

© 2022 Elsevier Ltd. All rights reserved.

called subunits, as input and assemble them into
atomic models of the protein complex. Many gen-
eral protein docking methods and specialized ver-
sions thereof have been publicly released, such
as ZDOCK,® HADDOCK,* ClusPro,” RosettaDock,®
HEX,” SwarmDock,® and ATTRACT.® Even 1protein
structure prediction methods like AlphaFold'® have
been tweaked to be able to output multimeric struc-

Introduction

Protein-protein interactions are fundamental to
many biological processes in living cells. To
understand in detail the mechanisms of these
processes, modeling the 3D structures of their
associated protein complexes is a critical step.
While protein complex structures are steadily

being determined by experiment and deposited in
the Protein Data Bank (PDB),' experiments are
costly both in time and expense. Moreover, struc-
tures of protein complexes are often extremely diffi-
cult to determine by experiments. Thus, when a
protein complex structure has not yet been experi-
mentally determined, computational tools can be
used to construct atomic models.” A so-called pro-
tein docking program can take component proteins,
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tures."" The rigid-body docking method LZerD'?""®
in particular has been consistently ranked highly in
the server category in CAPRI,'®""” the blind com-
munitywide assessment of protein docking
methods.

Often confounding to computational complex
modeling is the fact that proteins are flexible
molecules. Even with state-of-the-art
conformational sampling techniques, existing
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docking methods struggle to handle substantial
conformational changes beyond roughly 2 A
RMSD.'®*° Large scale conformational changes
near and above 10 A RMSD, though well above
2 A RMSD and thus difficult to model, are quite
common, and are often related to protein func-
tion.?' 2’ For example, in many cellular processes,
calmodulin, ubiquitous in eukaryotes, undergoes
such a conformational change when it binds to its
various target proteins, and its flexibility facilitates
recognition of a comparatively large number of tar-
gets in tandem with increases in Ca®* ion concen-
tration.?® In the case of the nuclear import cycle, a
crucial step is the release of the importing-beta-
binding domain of importin-alpha from importin-
beta by GTPase Ran. The binding of GTPase Ran
to importin-beta induces a large-scale change in
the helical conformation of importin-beta, allosteri-
cally inducing the importin subunits to dissociate.*”
It is then clear that techniques capable of modeling
such large conformational changes have the poten-
tial to elucidate many cellular processes in many
cellular contexts.

Computational techniques have been developed
which quantitatively predict the location, nature, or
degree of conformational change a given protein
might undergo,®*** including as part of complex
formation.®* While existing assembly methods gen-
erally struggle with a few angstroms root mean
squared deviation (RMSD) of conformational
change,'® experimentalists often observe far more
drastic conformational changes.”'?’ There are
many ways to consider lesser flexibility. The implic-
ity soft surface representation of LZerD'* ' can
handle side chain flexibility. When the backbone
must be moved, it can be sampled explicitly e.g.
by ClustENM?>*> with normal modes, by CABS-
Dock®® or RosettaDock®” with Monte Carlo simula-
tion, or by ATTRACT with molecular dynamics.**~
%9 Many explicit sampling methods require cross-
docking, which necessitates either precise sam-
pling or fast sample docking to prevent intractable
computation times.**™*' At the extreme end of the
flexibility spectrum, intrinsically disordered proteins
and protein regions can currently be docked by
IDP-LZerD,**** even at ligand disordered region
sizes of 69 residues. However, IDP-LZerD is speci-
fic for docking a disordered protein with no struc-
tured domains and relies on docking and knitting
together necessarily small peptide fragments to a
receptor protein and is thus not suitable for assem-
bling complexes with large, ordered ligand domains.
Despite substantial advancements, existing protein
docking methods cannot generally model large-
scale conformational changes of ordered ligand
proteins. Current methods can handle some lesser
flexibility,”® but cannot seem to break a barrier at
larger RMSDs of conformational change. In the
regime of conformational change > 10.0 A RMSD
even with coherent domains, current methods are
simply not adequate.

In this work, we target this > 10.0 A RMSD
coherent regime, and describe a new method
called Flex-LZerD. Flex-LZerD is comprised of a
novel method for normal mode-based flexible
fitting of an initial structure to docked partial
structure fragments, here domains, and a method
for selecting these partial docked structure
domains. This restriction of the expensive rigid-
body docking to the initial stage circumvents the
cross-docking problem and renders the large-
scale flexible docking tractable. Previous work by
Karaca and Bonvin showed multidomain docking
to be a promising route, but did not handle large
gaps and mainly considered benchmark targets
well below the 10.0 A RMSD regime.*® The novel fit-
ting by iterative projection along residue-level rigid
block normal modes to the docked domains and
geometry minimization, at multiple levels with and
without the receptor structure, then yields all-atom
models in the new putative bound states. Past work
in loop modeling has developed methods capable of
modeling typically up to 12-residue-long gaps in a
protein structure where both endpoints are
known.*® However, our benchmark in this work con-
tains domain pairs with dozens to hundreds of
unmodeled residues. These gaps are well outside
the range of loop modeling but are handled in this
context by the flexible fitting. We will directly show
that the examined flexibility regime is inaccessible
to rigid-body docking, that deep learning methods
like AlphaFold do not currently handle such struc-
tures which are observed in different conformations,
that flexible fitting is capable of modeling the confor-
mational differences within the regime, and that
Flex-LZerD as a whole is capable of flexibly assem-
bling ligand and receptor proteins and nucleic acids
into complex models. Interactions of both DNA and
RNA with proteins are handled in this framework.
Flex-LZerD vyielded acceptable models within the
top 10 models for 5 of the 9 unbound docking cases
where the receptor structure used was also
unbound, according to the CAPRI criteria. On a
broader unbound/bound benchmark set where the
receptor structure was in its bound form, Flex-
LZerD likewise yielded acceptable models within
the top 10 models for 17 of 23 total targets. These
successes break down into 9 of 15 protein—protein
complexes and 8 of 8 protein-nucleic acid com-
plexes modeled to acceptable quality. The Flex-
LZerD flexible fitting code is available from https://
github.com/kiharalab/Flex-LZerD.

Results and Discussion

Overview of Flex-LZerD

The docking procedure of Flex-LZerD is based on
observation that often the assembly of complexes
involving large-scale conformational change is
established by interactions of individual almost
rigid domains of the ligand protein with the
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receptor. Flex-LZerD builds full-complex models by The first step is to extract domains from the input
independently docking domains extracted from a  ligand structure. In cases where the ligand has clear
ligand structure, and then using an iterative fitting  globular domains connected by loops, the globular
procedure to dock the complete ligand structure. domains can be obviously split. In many cases,
The overall steps of this procedure are shown in  such as the interleukin-1 receptor, a flexible loop
Figure 1. appropriate to cut can be indicated by a local peak
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Figure 1. (a) Overall flow of the Flex-LZerD method. Green: the initial stage of the pipeline, which yields partially
assembled complex models. Two domains are extracted from the ligand, the domains are docked to the receptor, and
domain poses are selected via a consensus scoring function. Blue: the microcycle loop of the pipeline, where atom
coordinates are updated according to normal mode displacements and energy minimization of the ligand. The energy
minimization using PHENIX takes into account bonds and steric effects, but not long-range interactions. Purple: the
macrocycle loop of the pipeline, where atom coordinates are updated according to an otherwise identical energy
minimization of the ligand in the presence of the receptor. (b) A selection of frames from a flexible fitting run of target
Interleukin-1 receptor type 1 (PDB 1ITB). Gray: the receptor structure. Magenta: the docked domain models being
fitted to. Cyan: the unbound ligand model being deformed. Frame 0 is simply the input ligand unbound structure
superimposed to the docked domain models. The bulk of the conformational change was modeled early on while the
domain displacement vectors were large. After iteration 100 when the receptor was included in the geometry
minimization, the fit adjusted to conform to the receptor structure. Frame 500 is the output model for this docked
domain model pair, which has an [-RMSD of 3.9 A, an L-RMSD of 4.0 A, and an f.4 of 0.29.
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in the flexibility predict by FlexPred.*°>' A flexible
loop that links globular domains typically has a pre-
dicted fluctuation of over 3 A, which is higher than
the remainder of the protein chain. Domains were
also selected based on biological knowledge, such
as EF-hand domains in calmodulin, which are
exceptionally well-known in the literature*” or HEAT
repeats*® in importin-beta. There is no restricted
maximum sequence distance between the
domains. Details of the domain extraction for each
benchmark target are provided in Supplemental
Table S1. Once the domains were specified, they
were subsequently docked separately using
LZerD'?*°, a shape complementarity-based rigid-
body docking which uses a soft representation of
the molecular surface to achieve tolerance to some
small conformational changes. After truncating the
number of outputs to 50,000 as is usual with
LZerD," the generated domain docking poses
were clustered at 4.0 A RMSD to remove
redundancy.

In the next stage, to select domain poses we used
a combined scoring function generalized from
methods used in the scoring of IDP-LZerD,* which
incorporates both statistical knowledge-based scor-
ing functions and model consensus features. We
incorporated the knowledge-based scoring func-
tions used in ranksum,'°°~>" which has performed
well in recent rounds of the Critical Assessment of
Prediction of Interactions (CAPRI),"'®'7:°27°* g plind
communitywide experiment evaluating protein com-
plex modeling methods. For each domain, the top
100 docked models were selected by the combined
score.

Once the 100 models are selected for each
domain, we subsequently considered them
pairwise and flexibly deformed them to dock
against the receptor via iterations of normal
mode analysis and energy minimization. Thus,
we consider 100*100 = 10,000 models. Herein
lies the core novelty of Flex-LZerD. Prior to
normal mode calculation, the ligand structure
was centered to minimize the RMSD to the
domain pose pair, corresponding to the
superimposition step in  Figure 1. This
superimposition step serves only to center and
orient the starting structure to remove the need
to consider mathematically degenerate normal
modes and does not itself deform the
structure—even in a protein—protein complex
where the domains were docked perfectly
matching the native structure, the superimposed
ligand would still have an unchanged RMSD to
the native structure, i.e. > 10.0 A with our
benchmark set. We calculated modes in a
reduced representation via the rotations and
translations of blocks (RTB)°° method, detailed
in “Rotations and translations of blocks” in “Mate-
rials and Methods”. RTB allowed us to define
blocks, here synonymous with residues, which
were considered as rigid bodies during normal

mode calculation. Neglecting the internal flexibility
of individual residues discouraged nonphysical
distortions and reduced the computational cost
of each normal mode calculation, which can
otherwise be problematic with large structures.®
Using the 20 lowest-frequency nondegenerate
normal modes, we displaced atom coordinates
of the ligand in straight lines in small increments
of collective motion to update the fitted state. A
cutoff of 20 modes is commonly used in the con-
text of protein complexes®°° and provides rea-
sonable confidence that even especially large
ligands will be reasonably well characterized.
These normal modes only allow displacement in
straight lines, even when adding multiple normal
modes simultaneously. To accomplish curvilinear
motion, modes were restricted to small amplitude
motion after being weighted by the projection of
the displacements that would transform the ligand
structure to exactly match the docked domains,
attenuated by a factor of 0.05, corresponding to
the projection step in Figure 1. Then, after such
a small displacement was applied, corresponding
to the update step in Figure 1, the ligand was re-
centered and the normal modes were re-
calculated, corresponding biophysically to the fact
that the intramolecular interactions have now
changed somewhat. Naturally, no exact displace-
ment can be blindly calculated here for regions of
the ligand, such as regions linking the domains,
which are not modeled in the domain docking.
Instead, these displacements were imputed from
the mode amplitudes obtained from the afore-
mentioned projection considering only the regions
modeled in domain docking. With this imputation,
displacements are obtained for all atoms in the
input ligand structure. Thus, using many line seg-
ments, curvilinear motion was accomplished,
modeling the transit between states. After each
of up to 500 fitting iterations, or fewer if a 4-
hour time limit is exceeded, the structure was
processed using the geometry minimization
library (in Python, “mmtbx.refinement.geometry
minimization”) from the PHENIX package®’ to
preserve the physicality of the model. This pro-
cess is detailed in “Minimization of geometric
restraints” in “Materials and Methods”. Despite
the small amplitudes applied, properties like cova-
lent bond lengths, Van der Waals strain, and tor-
sion angles can be distorted over many
unchecked iterations. Even the peptide bond
can be distorted by the normal mode displace-
ment, so this step was critical to producing
protein-like output. Subsequently, to incorporate
information from the receptor structure into the
geometry minimization, both the receptor and
ligand structures were included every 10 itera-
tions after 100 initial microcycles of fitting, corre-
sponding to the 40 macrocycles shown in
Figure 1 (outer cycle). On other iterations, only
the ligand structure was minimized, correspond-
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ing to the microcycles shown in Figure 1 (inner
cycle). The fitted model set was scored again
by the combined scoring function.

To llustrate the progression of the fitting
procedure, a series of frames from a fitting run
from benchmark target 1ITB are shown in
Figure 1(b), with a full video of the entire fitting
available as Supplemental Video S1. Each
subpanel of Figure 1(b) shows a frame labeled by
the frame number. Frame 0 is the initial input
structure superimposed to the docked domain
poses. At this stage, the unbound ligand structure
(cyan) was in essence merely centered without
yet considering flexibility, with an |-RMSD of
10.3 A, an L-RMSD of 5.9 A, and an f,; of 0.03.
At frame 10, the ligand began to open somewhat,
with an I-RMSD of 9.0 A. By frame 30, the ligand
was almost fully open, with an I-RMSD of 8.4 A.
At frame 50, the C-terminal end of the ligand,
which is the bottom domain in Figure 1(b), was
rotating in bulk towards the orientation of the
docked C-terminal domain, with an I-RMSD of
7.7 A. At frame 80, the rotation was nearly
complete, with an I-RMSD of 5.6 A, an L-RMSD of
42 A, and an f,u of 0.29. The rotation was
essentially complete at frame 100, with an |-
RMSD of 4.7 A, but the interface structure does
not yet sterically complement the receptor. By
frame 300, the ligand now fit around the receptor,
and the fitting has essentially plateaued, with an I-
RMSD of 3.8 A. The ligand reaches its final fitted
pose accommodating the receptor at frame 500,
with an I-RMSD of 3.9 A, an L-RMSD of 4.0 A,
and an fy of 0.29.

Overall docking results

We benchmarked Flex-LZerD on a nonredundant
set of 23 targets. Of these, 15 are protein—protein
interactions and 8 are protein-nucleic acid
interactions. Potential targets were found by
searching PDB for complex structures with
corresponding unbound ligands, where the bound
and unbound ligand structures differed by at least
10.0 A RMSD for protein receptors and 7.0 A
RMSD for nucleic acid receptors. Candidates
were then individually screened, including to
select for targets where the 10.0 A conformational
difference was due to large scale changes in the
ligand protein and not, for example, due to
differently packed tails or domain swapping. The
construction process is detailled in “Dataset
construction” in “Materials and Methods”. We note
that this dataset is aimed for complexes with a
ligand protein that undergoes a large
conformational change and thus different from a
general docking benchmark dataset such as the
ZDOCK dataset.”® ZDOCK benchmark 5.5 has
271 targets, pairs of bound and unbound conforma-
tions. The average RMSD between bound and
unbound an RMSD of 1.7 A with the minimum and
the maximum RMSD values of 0.0 A and 32.1 A,

respectively. There are 9 targets in ZDOCK that
have over 10 A difference between bound and
unbound, which are in the scope of the current
work, and indeed all of them were either already
used in our dataset or redundant with our dataset.
Specifically, 11RA, 1Y64, 1ZLI, 1H1V are included
in our training set, and 5C7X, 6B0S, 5WUX, 4FQl,
and 1BGX, are all immunoglobulin and redundant
with immunoglobulin, 1DCL, in our dataset.

To evaluate models, we adopted the CAPRI
criteria,’” where models are graded according to
their interface RMSD (I-RMSD), which considers
only interface backbone atoms, their ligand RMSD
(L-RMSD), which considers the RMSD for one sub-
unit when the other subunit is superimposed, and
their fraction of native contacts (f.a), which consid-
ers the number of residue pairs in contact in the
native structure that are also in contact in the model.
Past work done on modeling of disordered proteins,
which can be considered as the most flexible protein
docking context, has considered an I-RMSD thresh-
old of 6.0 A to indicate successful fragment docking,
which incorporates a tolerance for interface flexibility
while still requiring the presence of native interac-
tions at the protein—protein interface.** However, in
the context of multidomain docking® and flexible fit-
ting for large scale conformational change, the stan-
dard CAPRI I-RMSD, L-RMSD, and f 4 thresholds
of 4.0 A, 10.0 A, and 0.10 still capture the quality of
docking results, with models exhibiting 1-RMSDs
between 4.0 A and 6.0 A often still satisfying the
standard L-RMSD threshold.

The docking results of individual targets are
summarized in Table 2. Before examining actual
modeling results, we first discuss results in the
Flex(ible)-fitting-to-native column in Table 2,
where for each target the unbound ligand was
superimposed to the bound ligand in its native
structure with the receptor and put through the
flexible fitting procedure. This experiment
examines how the proposed flexible fitting protocol
performs in the best-case scenario where two
domains of a target are placed in the correct pose.
For all but one case (2F23), the Flex-LZerD
protocol was able to produce models of CAPRI-
acceptable quality. For 16 cases (69.6%), the
resulting I-RMSD was less than 3.0 A. In the case
of 2F283, an acceptable quality model was not
yielded mainly due to a narrow binding site of the
receptor (RNA polymerase), which caused steric
clashes during the fitting process and made it
difficult to fit the ligand (GreA factor homolog 1) to
the correct pose. Overall, the results demonstrate
that the protocol has ability to construct
reasonably accurate models for the targets that
need to consider the extreme flexibility of ligands.

Turning our attention to the actual modeling
results, Flex-LZerD was broadly able to model the
assembly of the targets in our benchmark set. To
include the effects of potential flexibility in the
receptor in addition to the ligand, we ran Flex-
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LZerD using unbound experimental structures of
the receptor proteins when available cataloged in
PDB. Of the 9 benchmark targets where such
structures were available (Table 2, the “Unbound
best in top10” column), 5 were successfully
modeled to at least CAPRI-acceptable quality
(had at least one CAPRI-acceptable model within
the top 10 by the final consensus score). Of the 4
unsuccessful cases, there was 1 case, 20KS5,
where an acceptable model was yielded within top
10 when the bound receptor structure was used.
In 2 of the successful cases in unbound docking,
3ND2 and 1GO0Y, the receptors were single-
domain globular proteins. As discussed later,
these can be considered the easiest type of target
for Flex-LZerD to handle. The remaining
successful cases, 2MCG and 1UFK, have two-
domain receptors, but the individual domains are
both nearly rigid. In the case of 2MCG, the
unbound receptor overall has a conformational
difference of 2.6 A RMSD, while for 1UFK the
RMSD was 9.18 A. 1 case which failed, target
PDB 20KS5, can be clearly attributed to the effect
of receptor-side differences on the rigid-body
domain docking. Here, the unbound receptor PDB
2A74 differed by 1.7 A RMSD in the modeled
regions. However, a small domain of the receptor,
which contains part of the interface with the C-
terminal domain of the ligand, is not modeled in
the unbound receptor structure. While the best C-
terminal domain pose selected had an I-RMSD of
only 3.7 A I-RMSD to the modeled regions, the
missing domain interfered with the quality of the
shape complementarity achieved, resulting in an
L-RMSD of 17.4 A. This, combined with the shape
of the interface when considering both ligand
domains, combined for an unsuccessful final |-
RMSD of 6.2 A and L-RMSD of 14.0 A. Searching
all sampled C-terminal domain poses found a
pose with an L-RMSD of 14.9 A, but none below
10 A L-RMSD. Past work has noted that clustering
can sequester sampled acceptable poses,'® but
even exhaustively considering non-representative
poses for this unbound target did not yield domain
poses below 10 A L-RMSD.

To explore the modeling potential of flexible fitting
on a broader range of protein complexes mainly
considering ligand flexibility, we additionally ran
Flex-LZerD using bound-state receptor structures.
Again in Table 2, we see that 17 of our 23 targets
(73.9%) were modeled successfully in this context
(“Best in top 10” column). Out of 15 protein—
protein complexes, 9 (60.0%) were successful,
while for the protein-nucleic acid targets all 8
(100%) were successful. These results by Flex-
LZerD were clearly better than by ordinary rigid-
body docking. With the rigid-body docking
method, LZerD, no acceptable models were
obtained within the entire pipeline output of tens of
thousands of models for all the targets, despite
the use of bound receptor structures. Obviously, a

rigid-body procedure is insufficient to model
systems with the magnitude of ligand
conformational difference studied in this work. The
particular nature of this expected failure varies by
case, for example inaccessibility or elongation of
either ligand domain’s interaction site. On our
benchmark set of complexes, only PDB 1GV2, a
nucleic acid-binding protein, came close to an
adequate structure via rigid-body docking, at 6.1 A
[I-RMSD. However, the remainder of the targets
ran the gamut from 8.1 A I-RMSD to 19.4 A |-
RMSD. Our dataset has two entries that overlap
with past multidomain docking work by Karaca
and Bonvin,** interleukin and importin, for which
both methods yielded CAPRI-acceptable models.
We note that this past work modeled importin from
a conformational change of 2.9 A RMSD, while
Flex-LZerD modeled from a conformational change
of 10.1 A.

In terms of the model selection, the combined
scoring function was usually able to select CAPRI-
acceptable models from among the pairwise
domain fitting output structures. By comparing the
results in the two columns, the Top-scored models
and Best in all models, we see that the average
difference of |I-RMSD of the top-scored model
relative to the Best in all model was only 1.28 A.
For 2 cases (8.7%) the score was able to select
the best (lowest I-RMSD) model from all the
generated 10,000 models. These results by the
consensus score we used in this study are
substantially better than the ranksum,'®~'**" which
we use typically in rigid-body docking. With rank-
sum, we could select CAPRI-acceptable hits for
only 3 protein—protein targets (20.0%) and failed
completely and selected no hits for protein-nucleic
acid targets (Supplemental Figure S1).

Domain docking quality

The quality of the flexibly-fit models of course
depended on the accuracy of the domain pose
selection. As is shown in Figure 2, clear
relationships can be observed between the
docked domain model quality and the final model
quality in terms of each of the component
measures of the CAPRI criteria. The relationship
between domain pose selection quality and final
model quality is most noticeable with I-RMSD and
foat, Where the outlying failed cases are clearly
visible. The relationship is less clear for L-RMSD.
Especially due to differences in receptor and
ligand size, I-RMSD can be small despite a large
L-RMSD."® Here however, due to the bound nature
of the receptor structures, models with small L-
RMSDs tend to likewise have small I-RMSDs.
When the domain poses are modeled with high
fnat, low [-RMSD, and low L-RMSD, the fitting tends
to yield acceptable models. For example, of the 19
targets where the worst (by I-RMSD) modeled
domain in the first CAPRI-acceptable hit (or best I-
RMSD model if no hits) was modeled to within
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Figure 2. Relationship between domain modeling quality and fitted model quality. Each subplot shows CAPRI
statistics for the worst (by I-RMSD) domain from the highest-ranked model (the first hit) of acceptable quality (or from
the best I-RMSD model if no models of acceptable quality) vs the same fitted model statistics for each target. (a), I-
RMSD. (b), L-RMSD. (c¢), f,.s the fraction of native contacts.

6.0 A I-RMSD (Figure 2(a)), the fitted model was
also modeled to within 6.0 A [-RMSD for 14
(73.7%). Similarly, 12 out of 12 targets (100%) by
L-RMSD using the CAPRI cutoff of 10.0 A and 18
of 18 targets (100%) for f . using the CAPRI cutoff
of 0.1.

As seen in Table 2, all targets with at least one
domain without a CAPRI-acceptable model failed
to produce an acceptable model at the end of the
pipeline, with the exception of target PDB 5MGU.
In that case, domain models with sufficiently high
fnat combined in the flexible fitting to yield a
CAPRI-acceptable model with a barely-acceptable
L-RMSD of 9.50 A. While acceptable domain
poses were a nearly-necessary condition for final
modeling success, they were not a sufficient
condition. One target, PDB 30JW, had 3
combinations of acceptable domain poses
available. Indeed, one of the 10,000 fitted models
generated was of acceptable quality, with an I-
RMSD of 7.4 A, an L-RMSD of 9.3 A, and an {4
of 0.18. However, this model was not present in
the top 10 models selected by the consensus
scoring function. While the interacting regions of a
lightly interacting domain model, in this case of the
N-terminal domain, may have a low I-RMSD in
isolation, the combined interacting regions of both
domains do not necessarily superimpose as well.
Thus, one particularly misoriented docked domain
can spoil the fitted model in terms of the
superimposition-based evaluation measures |-
RMSD and L-RMSD.

From this result, a broad performance
characteristic of Flex-LZerD can be understood.
Targets where both domains interact with a single-
domain globular receptor via broad interfaces,
such as target 1GOY as shown in Figure 3(b), can
be considered “easy”, as they are naturally
amenable to the rigid-body docking stage on
which the flexible fitting depends. On the other

hand, targets where at least one domain interacts
with confounding sparsity, such as in target 30JW
as previously discussed, can be considered
difficult since the flexible fitting cannot fix a
misdocked domain. Finally, targets where near-
rigid domains cannot be extracted, such as the
proteins with intrinsically disordered regions
analyzed in the benchmark of IDP-LZerD,*? is out
of scope for this protocol. The approach proven in
that work for such cases was to divide the ligand
protein into many pieces depending on the
sequence length and perform rigid-body docking
on many fragment models. Thus, such cases are
intractable for Flex-LZerD, the current formulation
of which only takes two pieces from the ligand.

Protein-nucleic acid targets

Among the protein-nucleic acid targets, we note
that all targets produced an acceptable model
within the top 10. Even the worst-off two of these
targets, 3FDS and 5MGU, were successful
yielding CAPRI-acceptable models. Target 3FDS
had only a single acceptable pose for each
domain to work with, and the final output model
had an L-RMSD of 9.4 A, although it had a high
frat Of 0.32. Target SMGU was similar, with an L-
RMSD of 9.5 A, although it had a high f., of 0.34,
despite technically having no acceptable domain
poses to work with. However, two domain poses
with sufficiently high f,;; combined in the flexible
fitting to yield this barely-acceptable full-complex
model. This high success rate merits discussion of
possible explanations. Proteins which bind nucleic
acids tent do interact with the major or minor
groove,”® implying a level of molecular shape com-
plementarity regardless of whether the protein is
recognizing a specific nucleic acid sequence or
nucleic acids more generally. In the initial domain
docking pose sampling, LZerD was able to find
acceptable positions via its soft surface representa-
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Figure 3. Example modeling of protein—protein complexes. Gray: the receptor structure. Brown: the potions of the
native ligand structure corresponding to the extracted domains used for rigid-body domain docking. Yellow: the
potions of the native ligand structure which do not correspond to extracted domains. Magenta (left): the lowest I-
RMSD Flex-LZerD model output within the top 10. Cyan (right): the lowest I-RMSD model from entirely rigid-body
docking. (a) Calmodulin (PDB 58Y1). Flex-LZerD yielded a model with an I-RMSD of 4.5 A, an L-RMSD of 7.3 A, and
an foy of 0.33, while rigid-body docking could at best sample a model with an I-RMSD of 11.4 A, an L-RMSD of
19.3 A, and an fy, of 0.14. (b) Interleukin-1 receptor type 1 (PDB 11TB). Flex-LZerD yielded a model with an I-RMSD
of 3.9 A, an L-RMSD of 4.0 A, and an f of 0.29, while rigid-body docking could at best sample a model with an I-
RMSD of 14.1 A, an L-RMSD of 27.9 A and an fyy of 0.01. (c) Importin subunit beta-1 (PDB 3EAS). Flex-LZerD
yielded a model with an I-RMSD of 2.9 A, an L-RMSD of 4.3 A, and an f,4 of 0.50, while rigid-body docking could at
best sample a model with an I-RMSD of 10.0 A, an L-RMSD of 17.4 A, and an f., of 0.11. (d) Human complement
factor B (PDB 2XWB). Flex-LZerD yielded a model with an I-RMSD of 4.9 A, an L-RMSD of 5.8 A, ando an fn, of 0.35,
while rigid-body docking could at best sample a model with an I-RMSD of 19.4 A, an L-RMSD of 26.9 A, and an f,,,; of
0.00.
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tion and complementarity-based scoring function.
The combined scoring function used for domain
and full model scoring in Flex-LZerD also general-
ized favorably on account of the consensus-based
scoring terms used. Unlike in the protein—protein
complex case, where many sorts of interfaces and
interface geometries exist, docking to a nucleic acid
generally requires localization at and orientation to
a groove, and shape complementarity is likely les-
ser in docked models not oriented to a groove.
The tendency of the top domain models to be more
accurately oriented in the nucleic acid targets than
the protein targets can be seen through their typi-
cally higher docked-domain f,y scores as shown
in Table 2. While this sort of self-selection may be
more difficult to take advantage of with less accu-
rate knowledge of the bound structure of the nucleic
acid, it demonstrates the ability of Flex-LZerD to
take advantage when the nucleic acid of interest is
accurately modeled.

Comparison with AlphaFold

In addition to the LZerD protein docking tool, we
also considered the potential of AlphaFold-
Multimer in this arena. As other protein docking
methods specialized for such large conformational
changes are not yet developed, this emerging
technique may be a future primary alternative.
Thus, as part of our evaluation, we used
AlphaFold-Multimer'" to generate models for each
target in the benchmark set. Note that the
AlphaFold-Multimer models here are not blind pre-
dictions. The pretrained models distributed with
AlphaFold-Multimer are trained on the entire PDB
up to 2018 April 30, and the entirety of the bench-
mark set was deposited before that date. Thus,
the training set of AlphaFold-Multimer included our
benchmark set, and the structures in the bench-
mark set can largely be considered encoded
therein. Nonetheless, we consider it a useful
forward-looking point of comparison and include it
in our analysis (Table 2).

Overall, for the 15 protein—protein targets,
AlphaFold-Multimer yielded 9 protein—protein
targets with at least CAPRI-acceptable models, for
the same number as with Flex-LZerD when the
bound receptor was used. Despite the inclusion in
its training set of the native structures for all the
protein—protein benchmark targets, AlphaFold-
Multimer vyielded no additional net CAPRI-
acceptable hits over Flex-LZerD. However, the
hits yielded by AlphaFold-Multimer were usually of
overall better quality than the acceptable or better
models yielded by Flex-LZerD. In fact, all but 2 of
the hits were of at least medium CAPRI quality. In
the case where Flex-LZerD modeled a target
which AlphaFold-Multimer could not, target PDB
B6APX, the receptor was a synthetic monobody. In
such a scenario, where there is no coevolutionary
interface information to be extracted from multiple
sequence alignments, docking-based approaches

can still be applied. Here, AlphaFold-Multimer did
not even generate any models near the correct
interface, and examination of the crystal lattice
confirmed that the incorrect models also did not
correspond to any crystal packing contacts. The
peer-reviewed monomer version of AlphaFold was
also tested on our protein—protein benchmark
targets by connecting chains with 60-glycine
linkers and treating them as a single chain. As
shown in Table 2, this treatment yielded far worse
modeling accuracy, with CAPRI-acceptable or
better hits for only 5 targets. A noticeable
limitation of AlphaFold-Multimer were the GPU
memory requirements for larger residue counts.
Two targets did not run due to this requirement.
Furthermore, AlphaFold and AlphaFold-Multimer
were completely unable to handle nucleic acids
(the bottom half of Table 2).

Modeling examples

Modeling examples of four protein—protein
complexes and protein-nucleic acid complexes are
provided in Figures 3 and 4, respectively. Among
the examples highlighted in Figure 3 is calmodulin,
which characteristically wraps around the binding
site on its interaction partner®® to bind via its EF-
hand domains and effect a wide variety of down-
stream functions. Figure 3(a) shows calmodulin
bound to receptor for retinol uptake STRA6 (PDB
58Y1), which requires a large conformational
change of 13.8 A. Using rigid-body docking (right
subpanel, cyan), the lowest I-RMSD sampled was
11.4 A, while Flex-LZerD found a CAPRI-
acceptable hit_(left subpanel, magenta) with an I-
RMSD of 4.5 A. Rigid body docking could localize
calmodulin at the binding site but was naturally inca-
pable of properly orienting both EF-hands and
wrapping the binding site. On the other hand,
Flex-LZerD did exactly that, generating the kink
necessary to bend calmodulin in half and wrap
around the binding site on STRAB6. Shown next in
Figure 3(b) is interleukin-1 receptor type 1 (IL-1R)
bound to interleukin-1 beta (IL-1 beta) (PDB
11TB),°" which requires a conformational change
of 18.2 A. In this target, IL-1R is initially closed rela-
tive to the bound structure. In fact, the binding site is
totally inaccessible, with rigid-body docking unable
to attain an I-RMSD better than 14.1 A (right sub-
panel, cyan). Here, Flex-LZerD was able to open
up IL-1R to admit IL-1 beta, yielding a CAPRI-
acceptable hit with an I-RMSD of 3.9 A (left sub-
panel, magenta). The progression of fitting IL-1R
is illustrated in Figure 1(b) and Supplemental Video
S1. In the beginning, IL-1R is merely centered on
the docked domains. IL-1R then quickly opens up
in the early iterations. Next, the C-terminal end of
the ligand rotates, reorienting following the docked
C-terminal domain. As IL-1b enters the equation,
the steric complementarity at the interface
emerges. Finally, the model described above
results as the fitting finishes. This example



C. Christoffer and D. Kihara

Journal of Molecular Biology 434 (2022) 167820

Figure 4. Example modeling of protein-nucleic acid complexes. Gray: the receptor structure. Brown: the potions of
the native ligand structure corresponding to the extracted domains used for rigid-body domain docking. Yellow: the
potions of the native ligand structure which do not correspond to extracted domains. Magenta (left): the lowest I-
RMSD Flex-LZerD model output within the top 10. Cyan (right): the lowest -RMSD model from entirely rigid-body
docking. (a) Transcription initiation factor 11B (PDB 1C9B). Flex-LZerD yielded a model with an I-RMSD of 4.1 A, anlL-
RMSD of 9.9 A, and an f,,5; of 0.23, while rigid-body docking could at best sample a model with an I-RMSD of 8.7 A, an
L-RMSD of 16.5 A, and an f,5 of 0.03. (p) Antiviral innate immune response receptor RIG-I (PDB 7JL1). Flex-LZerD
yielded a model with an I-RMSD of 4.7 A, an L-ORMSD of 5.5 A, and an frat Of 0.19, while rigid-body docking could at
best sample a model with an I-RMSD of 11.2 A, an L-RMSD of 7.4 A, and an f, of 0.02.

demonstrated that flexible fitting could start from a
closed conformation model of a protein, could open
the model in a way that accepts the protein’s binding
partner, and could produce a model close to the
native structure. Figure 3(c) shows importin subunit
beta-1 binding to GTP-binding nuclear protein Ran
(PDB 3EA5), a key stage in the nuclear import
cycle,“sowhich requires a conformational change
of 10.1 A. From the unbound state of importin, rigid
body docking was unable to attain an I-RMSD better
than 10.0 A (right subpanel, cyan). Though the bind-
ing site is not outright blocked, the solenoid in its
unbound state is still closed relative to the bound.
Flex-LZerD was able to open importin to accommo-
date Ran, yielding a CAPRI-acceptable hit with an |-
RMSD of 2.9 A (left subpanel, magenta). The pro-
gression of fitting importin is illustrated in Supple-
mental Video S2. In the beginning, importin is
merely centered on the docked HEAT domains.
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Then, importin’s twisted shape quickly opens up,
creating enough steric void to admit Ran. As the
structure of Ran is included in the fitting, we quickly
obtain our final structure. this example demon-
strated that even when the domains used are not
globular, flexible fitting could start from a closed
conformation model of a protein, could open the
model in a way that accepts the protein’s binding
partner, and could produce a model close to the
native structure. Finally, Figure 4(d) shows human
complement factor B (CFB) binding complement
C3 (PDB 2XWB), a core part of amplification in
the complement system®° which requires a confor-
mational change of 20.2 A. Here the binding site
is not blocked, but still must take on a different con-
formation to actually form an interface. Rigid-body
docking was only able to reach an I-RMSD of
19.4 A (right subpanel, cyan), but Flex-LZerD was
able to fit the interface and generate a
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CAPRI-acceptable hit with an I-RMSD of 5.0 A (left
subpanel, magenta).

Flex-LZerD was also able to model a variety of
conformational changes in nucleic acid-binding
targets (Figure 4). Nucleic acids are not generally
handled by current state-of-the-art deep learning
methods for macromolecular structure prediction.
Highlighted fin Figure 4(a) is transcription initiation
factor 1IB (TFIIB), essential for transcription
initiation® bound to DNA. TFIIB must form interac-
tions with both the major and minor groove of the
DNA to bind. For the blind ligand input, we used a
structure of transcription initiation factor IIB that
was solved in isolation (PDB 5WH1). Domains were
cut from the unbound structure by separating its two
cyclin-like domains, removing their flexible linker®®
from Ala201 to Asp210. This binding consequently
requires an overall conformational change of
12.2 A. The rigid-body docking was only able to
reach 8.7 A I-RMSD (right subpanel, cyan). Flex-
LZerD on the other hand was able to conform TFIIB
to both the major and minor grooves with an I-
RMSD of 4.1 A (left subpanel, magenta) using N-
terminal and C-terminal domain poses modeled to
25 A I-RMSD and 2.6 A I-RMSD, respectively.
The progression from the input unbound TFIIB
structure to this fitted model is illustrated in Supple-
mental Video S3. Due to the simple TFIIB structure
and the absence of bulky receptor structure taking
up volume around the interface, this fitting was par-
ticularly smooth. Both domains quickly reorient to
match their separately docked counterparts. Steric
complementarity with the receptor is quickly
achieved as well. This example demonstrated that
even when the receptor is not a protein, flexible fit-
ting could start from a closed conformation model of
a protein, could close the model in a way that
accepts the protein’s binding partner, and could pro-
duce a model close to the native structure. Other
protein-nucleic acid interactions can feature flexible

interfaces encompassing more of the nucleic acid.
Figure 4(b) shows the antiviral innate immune
response receptor RIG-I (RIG-Ig, part of the innate
immune system in vertebrates,”* bound to dsRNA
through a conformational change of 13.2 A. To
properly bind the dsRNA, RIG-I must close around
the double helix. Rigid body docking was able to
sample a conformation with 11.2 A I-RMSD (right
subpanel, cyan), which places RIG-I at the correct
location, but fails to form most of the interface.
Flex-LZerD on the other hand yielded a model with
an I-RMSD of 4.7 A, which successfully wrapped
around the dsRNA.

Computational requirements

Flex-LZerD was tested on a cluster of compute
nodes (“Bell” at Purdue University) each with two
AMD EPYC 7662 64-core CPUs and 256 GB of
RAM. The running time of the pipeline increases
with the length of the input flexible ligand protein,
in particular the time required for the normal mode
calculations and the energy minimization. At the
low end, the running time is dominated by the
energy minimization. However, the normal mode
calculations have a higher growth order and begin
to surpass the energy minimization in running time
roughly in the regime of greater than 500 residues
(Figure 5). To manage the resources required, we
limited the fitting with each individual domain pair
to 4 hours each, the time limit for the readily
available standby scheduling on the Bell cluster.
Under typical cluster usage conditions where we
could use about 10-20 nodes, a single target
would finish all 10,000 fitting runs in 1 to 2 days.
The fastest ligand in the benchmark was PDB
1GV2 with 159 residues, which took 10,037 CPU
core-hours (took us about 1 day on the cluster).
On the other hand, the slowest ligand was PDB
3ND2, which exceeded the 4-hour time limit.
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Figure 5. The size of the flexible ligand protein vs the running time of Flex-LZerD across all targets, broken down by
pipeline stage. Flexible Fitting, Energy Minimization, and Domain Docking indicate the total running time for a target
spent on normal mode calculation and deformation, Phenix energy minimization, and domain docking using LZerD,
respectively. Running times were linearly extrapolated to the full 500 iterations where necessary. Since component
running times were stable across all iterations, simple linear extrapolation was suitable.
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Sufficient timing data was generated, however, to
calculate that running 3ND2 for all 500 iterations
would have taken a total of 157,490 CPU core-
hours (which took us about 2 days with the time
limit on the cluster). The computational time could
be shortened with tricks such as increasing the
RTB block size to span multiple residues,
although this would require careful tuning.

Discussions

In this work, we have shown that flexible fitting is
capable of modeling large scale conformational
changes in complex assembly, including in
protein-nucleic acid docking that is not handled by
state-of-the-art deep learning methods. The highly
generalizable nature of this form of modeling is
expected to enable its application to other
modeling categories not covered by this work,
especially in integrative contexts.

This work provides a method for specific docking
cases where the ligand protein has structured
domains that can dock as rigid fashion and
expected to have a large conformational change
upon docking, which was not properly addressed
before. In realistic application of protein docking,
different types of docking methods developed by
the community would need to be combined in a
pipeline. In the most generic case with no
information beyond initial subunit structures,
regular docking methods with as LZerD'? or HAD-
DOCK can be used to model a complex. However,
the more information is known about the protein
complex, the more comprehensive the modeling
can be. If distance restraints between interacting
or non-interacting residue pairs are known from
experiments such as nuclear magnetic resonance
(NMR) or electron paramagnetic resonance
(EPR), they can be applied in methods such as
the LZerD webserver,"'® ClusPro,° and
HADDOCK.®®> When symmetry information is
known, tools such as the LZerD webserver, M-
ZDOCK,’® and SAM®%® can take advantage.
IDP-LZerD* can be used when one subunit is
known to be intrinsically disordered, while for
shorter peptide chains, MDockPeP®® can be used.
For higher-order heteromers, multiple dockin
method such as Multi-LZerD’® or RL-MLZerD’
can be used, which can even predict assembly
order.”? Finally, in cases where enough information
is available to determine domains of flexible pro-
teins, methods such as Flex-LZerD, presented
here, can be applied. Ligand conformational change
can feasibly be ascertained by spectroscopic, fluo-
rescence, or other biophysical techniques. In the
event of uncertain information, multiple tools can
be run simultaneously as part of the modeling work-
flow. However, they are generally developed and
employed independently from each other.

Protein docking is also indispensable step in
modeling atomic structures from cryo-electron
microscopy density maps,’®’* where expert micro-
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scopists and many modern automated methods
consider the modeling of domains and fragments
to highly-resolved regions.”>"’® The flexible fitting
in this work can be readily fed such fragments, as
in principle the size of domains input does not mat-
ter. Methods for modeling intrinsically disordered
proteins also often work with individually modeled
fragments.”® Thus, we anticipate future develop-
ment along these directions.

Materials and Methods

Dataset construction

Two datasets were constructed for this work. The
testing benchmark set was constructed by running
a BLAST’’ query of all sequences found in com-
plexes in PDB against all sequences found in PDB
to find unbound structures. Then, hits with at least
90% sequence identity and at least 10.0 A RMSD
of conformational difference were retained. This
cutoff was relaxed to 7.0 A for nucleic acid targets.
Benchmark examples were then selected by expert
manual inspection, selecting for examples where
the 10.0 A conformational difference was due to
large scale changes in the ligand protein and not,
for example, due to differently packed tails or
domain swapping. Duplicate hits were filtered out.
The final benchmark set of 23 targets is detailed
in Table 1. It includes 15 protein—protein complexes
and 8 protein-DNA complexes. Among the 15 pro-
tein—protein docking cases, 9 of them have
unbound receptor structure. The training set was
taken from the benchmark set of a ClustENM-
HADDOCK work®*®> which examined docking at
lower scales of conformational change. Two exam-
ples, PDB 1IRA and PDB 1IBR, were excluded from
the training set because they were already present
in the benchmark set. The 9 training set targets are
detailed in Supplemental Table S2.

Rigid-body docking of domains

Each ligand protein structure domain was docked
with the receptor structure using LZerD.'**° LZerD
is a shape complementarity-based rigid-body dock-
ing which uses a soft representation of the molecu-
lar surface to achieve tolerance to some small
conformational change. Using geometric hashing,
LZerD rapidly generates many docking poses,
which are then scored according to their surface
shape complementarity. For each target complex,
domain models were manually generated for the
ligand by identifying rigid regions and removing
the intervening residues. For each input domain,
the set of docked models generated by LZerD
was ordered by the LZerD shape score and trun-
cated to a set of 50,000 models. Then, each set
was clustered with an RMSD cutoff of 4.0 A.
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Table 1 The benchmark set used to evaluate Flex-LZerD. N/a indicates that an unbound structure was not available in PDB.

Ligand protein name Native Total Unbound Unbound Ligand conformational Ligand Receptor Nondomain

complex PDB complex receptor ligand PDB difference (RMSD) #residues #residues #residues
#residues PDB Co/full

Calmodulin 5S8Y1 (A:C) 819 n/a 1CLL (A) 13.8/14.1 149 670 28

Interleukin-1 receptor type 1 1ITB (A:B) 468 1HIB 1GOY (R) 18.2/18.4 315 153 14

Importin subunit beta-1 3EA5 (A:B) 1077 2MMC 3ND2 (A) 10.1/10.2 861 216 465

Transcription inhibitor protein Gfh1 3A0I 3540 n/a 2F23 (A) 13.4/13.5 156 3384 10
(ABCDEPQ:X)

Dual specificity protein phosphatase 1 6APX (B:A) 616 n/a 6D66 (A) 11.6/11.9 520 96 45

Immunoglobulin lambda variable 2-8  1DCL (B:A) 432 6P95 2MCG (1) 12.9/13.0 216 216 11

Ribosomal protein L11 2NXN (B:A) 401 2E36 1UFK (A) 11.0/11.2 254 147 10

methyltransferase

Protein SdcA 6CP2 (B:A) 696 1C4zZ 4TRG (A) 10.6/10.8 542 154 30

Protein SdcA 6CP2 (C:A) 620 30J3 4TRG (A) 10.6/10.8 542 78 30

NADPH-cytochrome P450 reductase =~ 3WKT (C:A) 885 1DVE 30JW (A) 11.5/11.7 618 267 15

Fibroblast growth factor receptor 2 1EV2 (A:E) 352 1BAS 1E00 (E) 12.0/11.9 220 132 13

HIV p51 subunit 6BSJ (ADR:B) 1044 n/a 4KSE (B) 13.5/13.3 442 602 29

Human complement factor B 2XWB (AB:F) 2286 2A74 20K5 (A) 20.2/20.3 732 1554 21

Carbon monoxide dehydrogenase 4C1N (DJ:C) 1260 n/a 2YCL (A) 13.9/14.0 442 818 15

corrinoid/iron-sulfur protein,
gamma subunit

Cullin-5/E3 ubiquitin-protein ligase 4F52 (AB:E) 984 n/a 3DQV (CR) 20.7/20.4 388 596 9
RBX1
Nucleic acid-binding targets
Transcription initiation factor IIB 1C9B (BCD:A) 421 n/a 5WH1 (A) 12.2/12.4 207 214 10
Transcriptional activator Myb 1H89 (ABDE: 337 n/a 1GV2 (A) 7.1/7.5 159 178
C)
RP-A 70 kDa DNA-binding subunit 1JMC (B:A) 256 n/a 1FGU (A) 8.3/8.5 246 8 22
Elongation factor TU 1TTT (D:A) 482 n/a 1AIP (A) 11.4/11.5 405 77 12
DNA polymerase IV 2IMW (ST:P) 379 n/a 3FDS (A) 16.3/17.0 353 26 25
DNA polymerase beta 6NKZ (DPT:A) 366 n/a 1BPD (A) 11.9/11.9 335 31 18
Antiviral innate immune response 7JL1 (XY:A) 750 n/a 40N9 (A) 13.2/13.3 722 28 22
receptor RIG-|
Phenylalanine-tRNA ligase, 3TUP (T:A) 491 n/a 5MGU (A) 18.7/18.9 415 76 24

mitochondrial

BIBUIY " PUB JOHOISUYD "D
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Domain scoring

For selecting docked domain poses, we
constructed a combined scoring function
generalized from methods used in the scoring of
IDP-LZerD.*? This scoring function uses logistic
regression to combine the knowledge-based scor-
ing functions GOAP,”® DFIRE,”® and ITScorePro,*°
which are the three scoring functions combined in
the usual ranksum score for docking,'®°°°" as well
as LZerD shape complementarity score, the num-
ber of docking decoys in the cluster from 4 A RMSD
clustering, binding site consensus terms (BSCg5s,
BSCL75. BSCRL75. BSCF;Jo, BSCLJO, BSCR[_jO) rep-
resenting residue interaction agreement within the
docking pool, and order statistic terms (OS(y),
OS2, and OS() highlighting extreme values
among the other scoring terms for each model.

The LZerD shape complementarity scores and
the cluster sizes are taken from the previous initial
docking stage. The binding site consensus terms
BSC,, quantify the frequency of residue-residue
interactions observed in docking models
generated in the domain docking. There are six
binding site consensus terms in total, calculated
from the combinations of two interaction distance
cutoffs (5.0 A and 10.0 A) and three sets of
interface residues considered (receptor, ligand,
and both). 5.0 A and 10.0 A were used as cutoffs
following the definitions of protein—protein
interactions in the CAPRI evaluation criteria. For
example, BSCg s considers interface residues in
the Receptor using a 5.0 A distance cutoff. More
specifically, they are defined as follows: given a
docked model pool P (here typically 10,000 to
50,000 docking decoys) and an interaction
distance cutoff R, (here 5.0 A and 10.0 A) we
define a By g, [M] to be the residues in model m
which interact with x, in other words the set of
residues in model m in a the opponent molecule
from residue x that are within distance R.x of x.
For example, if x is from the receptor, residues
are counted from the interacting protein domain.
Then, each residue x in the in all subunits (both
receptor and ligand) is assigned an occupancy
score Occ[x] indicating the frequency with which
that residue appears as part of a residue-residue
contact pair across the interface in the model pool
P, calculated by simply counting the encountered
interactions:

Occ(x] = 1 p#Bx.Rmaml (1)

where # counts the number of binding residues
(B) with x within the Ry, distance. Then, to
calculate the binding site consensus score for a
docking model, the interface residues being
considered in the model are counted, weighted by
the occupancy that was just calculated. Formally,
denoting as Q the receptor side, the ligand side,
or both sides of the interface as determined by
Rnax, €ach model m € P is assigned the binding
site consensus score BSCq g, [M]:
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BSCQ R [M] = >0 O0cCC[X] @)

The order statics terms are to consider if any
score prefers a model with a high significance or
not even if it is not the consensus among all the
scoring terms To prepare, first, each score was
normalized to a Z-score. A Z-score of a raw score
is defined as: (Raw_score Average)/
Standard_Deviation. The average and the
standard deviation are computed from the score
distribution of decoys of the target. Scoring terms
where more positive values should be more
favorable, i.e. LZerD shape complementarity
scores, cluster sizes, and binding site consensus
scores, were each multiplied by —1 so that lower
is more favorable for all component scores. Thus,
for all the scoring terms a negative large Z-score
is favorable. From these, order statistic terms
were calculated for the Z-scores of the scoring
terms. To compute the order statistics of OS(7) of
a model, we first check the Z-sores of all the
scoring terms for the model, and select the
smallest (the most significant) Z-score. In the
same way, OS5(2) and OS(3) are the second and
the third smallest Z-scores among all the Z-scores
of all the scoring terms. A first-order term of this
form, OS(1), was previously used successfully in
IDP-LZerD,** and here we expanded it to include
0OS(2) and OS(3). For example, if a model has Z-
scores of —1.6, —2.3, and —0.4 for the cluster size,
BSCgs, and ITScorePro, respectively, and some
arbitrary positive-valued Z-scores (i.e. insiginificant
scores) for the nine other scoring terms, then OS
(1), OS(2), and OS(3) that model will be —2.3,
—1.6, and —0.4, respectively. In this work, we gen-
eralized up to the third order by including OSy),
OS2, and OS5, in the combined scoring function.

The component scores GOAP, DFIRE,
ITScorePro, ranksum, the LZerD shape score,
LZerD cluster size, BSCgrs, BSC,s. BSCgis.
BSCF;Jo, BSCLJO, BSCRLjo, OS(1), OS(Q), and
OS5, were then finally combined in a logistic
regression model. To optimize the logistic
regression weights, docked models were
generated for each target in the training dataset
using the same procedure as above. CAPRI
statistics were then calculated for each model.
Each model was labeled positive if it was of
acceptable CAPRI quality, and negative if it was
not. Each model was then weighted to balance the
number of positive and negative cases within each
target. Then, the logistic regression model was
trained using all the models for all the training
targets. The resulting scoring function was used to
rescore the docked domain models after the
clustering stage. The training set performance is
shown in Supplemental Table S3.

Anisotropic network model

In Flex-LZerD, we use an elastic network model
to deform the ligand structure into agreement with
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the docked domains, in particular the anisotropic
network model (ANM).?"*% In an ANM, atoms are
considered as point masses with a simple harmonic
potential constructed by considering initial dis-
tances between atoms. The general idea is that
principal components of possible large-scale
motions can be extracted by coupling the system
in this way. Here, atoms are connected if they are
within 15.0 A of each other. Thus, for each pair of
atoms i and j among the total n atoms, we build
up a potential U as follows:

2
1y(g. _ &0 P
U = {gV(S,, s,j) i, jconnected 3)
0

otherwise

with the overall potential computed as the sum of
the pairs:

U= Zi.jeatoms Ui/ (4)

where y is a Hookean spring constant, which is
set to 1, s; is the distance between two atoms,
and sﬁ.j). is the initial distance between two atoms.

To generalize the 1D single-spring case with
potential U =7(As)®> and restoring force
F = —yAs, we generalize the stiffness to the
Hessian H of the potential and the 1D
displacement As to the 3D multi-point
displacement s:

(%)

where H is 3n x 3n. We are not interested in
particular values of force. Instead, we want to
extract the normal modes of this system, the
directions and relative displacements that will set
the masses oscillating in simple harmonic motion
in phase with each other. This requires that each
atom be moving along a patrticular line with forces
and displacements parallel. Thus, we can
formulate the normal mode extraction as an
eigendecomposition problem:

F—Hs

(6)

The eigendecomposition will give us 3n—6
normal modes v; (6 eigenvectors are lost as
degenerate to the bulk translational and rotational
degrees of freedom) each with a corresponding
frequency w; = /Z;. By convention, the normal
modes are arranged in order of nondecreasing
frequency. Following common practice, the 20
slowest modes were taken for use in the iterative
flexible fitting.

Hs=/s

Rotations and translations of blocks

Instead of using the basic ANM, we used the
rotations and translations of blocks (RTB)>®
method, which is capable of treating individual
amino acids rigid bodies, which preserves the low-
frequency behavior and is less computationally
expensive. Instead of the above full formulation
(Egs. 3-6), which requires an expensive
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computation of 3n x 3n Hessian matrix, RTB lin-
earizes SE(3) transformations of N blocks (resi-
dues). Based on the mass of each block and atom
and inertia tensor of each block, projection matrices
are constructed to convert the blocks into rigid bod-

ies engaged in infinitesimal translations and
rotations:
1 00
Pu= /|0 1 0 )
0 0 1
P = *vmk(l)%[Qk* ngM}x (8)

Where k identifies a particular atom, b identifies a
particular block, 3 x3 matrices P; and P,
correspond to translation and rotation projections
for atom k, m, and g, are the mass and
coordinates of atom k, M, and g¢°M are the mass
and center-of-mass coordinates of block b.
Stacking these atom-wise projections into block-
wise projections row-wise yields 3N, x 3 matrices
P, and P, where N, is the number of atoms in
b. These block projections are assembled into a
3n x 6N block-diagonal matrix as follows:

P,t P,

P= ©9)

Pun P

This whole-structure projection matrix is then
used to project the mass-weighted Hessian into
the RTB subspace. Thus, the 3n x 3n original
Hessian is reduced to a merely 6N x 6N
substitute. It is subsequently diagonalized to

extract normal modes L within the subspace:

H=PTHP=LALT (10)

This enables a faster diagonalization while
preserving the large-scale properties of the whole
elastic network. To recover these modes in the
form of all-atom displacements, we simply take

PL In this work, calculation of and projection to
RTB normal modes using partial structures was
implemented using the ProDy framework.®*

Iterative fitting to docked domains

As previously stated, normal modes only allow
displacement in straight lines. Even adding
multiple normal modes simultaneously, normal
modes alone here do not allow curvilinear motion.

Extremely large  conformational  changes,
however, require  curvilinear motion. To
accomplish  curvilinear motion, modes are

restricted to small amplitude motion. Then, after

such a small displacement, the Hessian is
recalculated and re-diagonalized. Thus, using
many line segments, curvilinear motion is

accomplished. This iterative pipeline is illustrated
in Figure 1. In the context of Flex-LZerD, mode
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Table 2 Docking performance of individual targets. Targets are identified by their ligand PDB IDs. “/” indicates that the two numbers given are for the first and second
domains, respectively. Domain hits, the number of CAPRI-acceptable quality domains within the top 100 by the combined scoring function. Numbers given in parentheses
indicate models which did not meet the CAPRI-acceptable quality criteria. (n/a) indicates that the method would not take the target as input, i.e. because AlphaFold does not
handle nucleic acids, or that an unbound structure was not available for comparison. (error) indicates that the method accepted the input but crashed. Flexible-fitting-to-
native results are for the single output model generated when performing flexible fitting of the unbound structure directly to the bound native structure. Rigid-body LZerD
results show the best I-RMSD in the entire rigid-body LZerD pipeline output set using the unbound ligand conformation, typically tens of thousands of models. AlphaFold
results are out of the 5 models generated by AlphaFold v2.1.0 by default. a) Target 4TRG had two distinct protein—protein interfaces with two different partners in the bound
full-complex native structure, which were considered as separate targets.

Domain level

Complex level I-RMSD, (A)

AlphaFold I-RMSD, (A)

Ligand PDB CAPRI- Best f,.: BestI- Best L- Flex- Rigid- Top- Bestin Bestin Unbound Monomer Multimer

acceptable its intop10 RMSDin RMSD in fitting-to- body scored top10 All best in top 10  with linker

top10 (A) top10 (A) native LZerD

1CLL 3/3 0.24/0.11 1.72/2.86  3.55/6.22 1.95 (11.39) 4.70 4.70 4.48 n/a (19.67) 2.51
1GOY 1/4 0.14/0.39 3.62/1.57 8.59/3.74 3.06 (14.10) 3.89 3.89 3.89 3.95 (16.65) 1.50
3ND2 6/1 0.38/0.21 0.60/2.19  1.17/4.20 1.62 (9.98) 2.88 2.73 2.47 4.76 3.24 2.18
2F23 0/0 0.04/0.01 4.25/6.21 10.23/22.66 (7.24) (8.73) (17.20) (15.97) (6.56) n/a (error) (error)
6D66 2/5 0.23/0.21 3.37/3.25  9.96/7.45 8.62 (8.78) 6.96 (6.89) 6.42 n/a (15.82) (20.85)
2MCG 4/4 0.30/0.33 0.99/1.89  1.83/4.04 1.76 (9.30) 2.97 2.64 2.64 3.98 2.96 3.46
1UFK 3/2 0.48/0.15 1.08/3.60 2.40/11.17 1.45 (9.87) 4.88 4.79 4.79 5.71 5.06 1.53
4TRG(B)® 2/0 0.18/0.09 2.23/4.15 6.28/10.68 1.81 (10.80) (7.06) (7.04) (6.44) (7.84) (14.06) (17.46)
4TRG(C)? 2/0 0.43/0.06 1.72/4.32  6.16/10.20 1.97 (9.28) (7.19) (7.19) (7.17) (8.22) (8.57) (24.93)
30JW 1/3 0.12/0.62 3.34/1.60 17.66/5.82 2.71 (8.27) (8.73) (7.19) (6.80) (8.50) (16.56) 6.18
1E0O 3/3 0.17/0.36 2.86/1.69  16.20/2.62 5.60 (8.11) 4.43 4.43 4.16 4.51 (9.40) 0.70
4KSE 0/0 0.02/0.08 7.20/2.38  18.44/7.87 1.73 (13.23) (24.87) (20.86) (18.58) n/a (19.16) (21.44)
20K5 2/1 0.21/0.11 2.70/2.03  4.40/11.82 4.03 (19.41) 5.00 5.00 4.89 (6.19) (error) (error)
2YCL 0/0 0.08/0.08 7.70/1.91 10.29/4.82 2.1 (11.87) (13.15) (10.28) (9.06) n/a 5.69 1.52
3DQvV 1/3 0.21/0.21 2.92/1.38 2.87/3.11 2.00 (8.85) 2.07 1.98 1.98 n/a 21.77 2.21
Nucleic acid-binding targets
5WH1 8/3 0.16/0.11 2.20/0.12  5.55/1.98 2.45 (8.73) 4.08 4.08 4.08 n/a (n/a) (n/a)
1GV2 2/3 0.81/0.76  1.92/0.92  4.14/1.90 2.08 (6.13) 3.39 3.31 3.03 n/a (n/a) (n/a)
1FGU 7/3 0.70/0.45 1.71/3.86  3.74/7.57 1.62 (9.56) 5.91 5.43 5.40 n/a (n/a) (n/a)
1AIP 1/4 0.89/0.77 3.74/1.86  15.98/4.52 2.75 (8.30) 4.09 4.09 4.08 n/a (n/a) (n/a)
3FDS 1Al 0.59/0.43 1.99/4.92 4.39/5.68 5.54 (15.33) 11.04 11.04 9.58 n/a (n/a) (n/a)
1BPD 5/6 0.50/0.29 2.69/2.94 7.46/5.18 2.04 (11.58) 4.54 4.48 4.48 n/a (n/a) (n/a)
40N9 6/2 0.69/0.17 2.15/5.78 5.18/8.98 2.51 (11.22) 4.69 4.68 4.59 n/a (n/a) (n/a)
5MGU 0/0 0.41/0.11  4.99/6.45 19.77/16.99 4.99 (14.22) 8.26 6.92 6.92 n/a (n/a) (n/a)

BIBYIY " PUB JOHOISUYD "D
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amplitudes are selected to follow the displacements
that would bring atom positions in the unbound
ligand structure to coincide with the docked
domains. The twist of course is that no such
displacements are defined for the atoms which are
present in the unbound structure but not in the
docked domains. To impute displacements for the
regions not modeled by domains, the normal
modes are masked to exclude unmodeled atoms
prior to projecting the displacements thereon.
Once amplitudes have been obtained for the
modes in this way, the amplitudes are attenuated
by a factor of 0.05 and applied to the unmasked
modes. An attenuation of 0.05 was chosen to
produce few violations over 0.1 A of the typical
Co-Ca distance of 3.8 A. Thus, guided by the
information from partial complex assembly by
domains, the entire assembly can be modeled.

Minimization of geometric restraints

Minimization of molecular geometry violations,
such as from bond lengths, van der Waals
interactions, and torsion angles, during each
iteration was accomplished within the PHENIX®®
software framework using an L-BFGS minimizer
within ~ the  “mmtbx.refinement.geometry_mini
mization” library. This minimization was always
applied to the ligand structure. Additionally, every
10th iteration after the 100th, the receptor structure
was also included in the minimization. The periodic
inclusion of the receptor is meant to help the ligand
conform to the receptor surface, while the 100-
iteration delay is meant to accommodate any steric
overlap in the initial positioning of the ligand.

Fitted model scoring

Fitted models are scored using the same scoring
function as in the docked domain scoring stage.
Here, instead of the binding site consensus terms
being freshly calculated, the values from the
docked domain scoring stage are used.

LZerD rigid-body docking

For comparison with the flexible docking, each
target was docked without considering flexibility
using LZerD,'?*° which can be downloaded from
https://kiharalab.org/proteindocking/Izerd.php.
LZerD, just as in the rigid-body docking of domains
described above, is a shape complementarity-
based rigid-body docking which uses a soft repre-
sentation of the molecular surface to achieve toler-
ance to some small conformational change. Using
geometric hashing, LZerD rapidly generates many
docking poses, which are then scored according
to their surface shape complementarity. For each
target, the set of docked models generated by
LZerD was ordered by the LZerD shape score and
truncated to a set of 50,000 models. Then, each
set was clustered with an RMSD cutoff of 4.0 A.
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Ordinarily, LZerD models are scored by rank-
sum.'®"*>" However, to highlight the inaccessibility
of the benchmark set to rigid-body docking, we
instead simply selected the model with the lowest
I-RMSD (i.e. the best model among generated
docking poses). The results of these rigid-body
docking runs, which had a 100% failure rate as
expected, are shown in Table 2.

AlphaFold and AlphaFold-Multimer

AlphaFold'® and AlphaFold-Multimer'' models
were generated using version 2.0.1 (https://github.-
com/deepmind/alphafold/releases/tag/v2.0.1) and
version 2.2.2 (https://github.com/deepmind/al-
phafold/releases/tag/v2.2.2), respectively,  of
DeepMind’s released AlphaFold software package.
For all required databases, the default versions
linked to by AlphaFold’s install script were used.
For all applicable targets, AlphaFold was run with-
out the use of templates. When using the original
monomeric version of AlphaFold, the ligand
sequence was concatenated to the receptor
sequence with a 60-glycine linker. Other config-
urable parameters were left at their default values.
For each applicable target, 5 models were thus gen-
erated and ranked according to AlphaFold-
Multimer’s output score. CAPRI statistics were then
calculated to evaluate model accuracy, and the
accuracy of the first CAPRI-acceptable model was
reported (see Table 2).
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