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1. Introduction

Intrinsically disordered regions (IDRs) are segments in a protein
sequence that lack stable structure under physiological conditions
[1-4]. Intrinsically disordered proteins (IDPs) include one or more
IDRs, and they could be fully disordered when an IDR covers the
entire chain. IDPs are found across all domains of life, with a larger
abundance in eukaryotic proteomes [5-8]. They play important roles
in a plethora of cellular activities, complementing functions of the
structured proteins and domains [9-11]. Examples include cellular
signaling and its regulation, translation, transcription, and phase
separation [ 12-22]. Being involved in key regulatory pathways, mis-
regulation of IDPs and IDRs was shown to be associated with several
human diseases [23-26]. Many of functions of IDPs involve inter-
actions with a broad spectrum of partner molecules, including
proteins, nucleic acids, lipids, metals, ions, carbohydrates and small-
molecules [19,21,27-31]. In that context, conformational plasticity of
IDRs provides them with certain advantages compared to structured
regions, such as ability of a single IDR to interact with multiple
different partners, leading to an enrichment of IDPs among the hub
proteins in the protein interaction networks [32-35]. Multiple types
of interacting IDRs were categorized and characterized in the lit-
erature. Two of these types concern relative short sequences regions,
molecular recognition fragments (MoRFs) and short linear sequence
motifs (SLiMs). MoRFs are short IDRs that undergo disorder-to-order
transition when interacting with proteins and peptides, i.e., they
“morph” from disorder to order upon binding [36-38]. Their length
range varies across studies, with some works limiting their length to
between 10 and 70 residues [37,38], and other studies considering
much shorter, 5-25 residues long, regions [36,39]. MoRFs are sub-
divided into multiple classes including «-MoRFs, p-MoRFs, y-MoRFs
and complex-MoRFs, based on the type of the secondary structure
that they fold into upon binding, i.e., « -helix, p-sheet, irregular
structures, and mixed secondary structures, respectively. SLiMs are
relatively short sequence motifs represented by regular expressions
that are found across multiple proteins [40-42]. Majority of SLiMs
are between 3 and 15 residues in length and many of them are
disordered. They are associated with a variety of molecular inter-
actions, primarily being involved in interactions with proteins and
nucleic-acids [43]. Recent update of the ELM resource, a repository
of eukaryotic linear motifs, reports over 3500 SLiMs that were cu-
rated from literature [40]. Moreover, human proteome was predicted
to contain over 1 million binding motifs [44]. Another type of
binding IDR called protean segments is defined by the IDEAL data-
base [45]. These are short segments that are disordered in an un-
bound form and undergo folding upon binding with a partner
molecule. The protean segments overlap with MoRFs and SLiMs but
they are not limited in length like MoRFs, and do not have to be
defined by regular expressions like SLiMs. The above three classes of
binding IDRs are defined by their sequence features (length and
motifs), modes of interactions with the partner molecule (coupled
binding and folding), and binding to specific types of partners
(proteins, peptides and nucleic acids). However, some interacting
IDRs can be long, may not involve motifs, and may bind a variety of
other molecules [30,46]. For instance, IDRs longer than 30 residues
that bind proteins and peptides were classified as protein-binding
IDRs [47].

While a huge number of binding IDRs occur in nature, only a
relative handful of them has been annotated by biochemical ex-
periments. More specifically, a few hundred IDRs with binding in-
formation are available in the DisProt database, the largest
repository of functionally annotated IDRs [30]. Computational
methods can help with closing this annotation gap. The limited
collection of annotated binding IDRs can be used to develop and
evaluate computational predictors, which then can be utilized to
predict these regions for the millions of protein sequences that
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remain unannotated. This approach relies on the fact that the dis-
ordered nature of IDRs is intrinsic (i.e., encoded) in their underlying
sequences [4,48-50], making them predictable from the sequence.
This has motivated development of numerous methods that accu-
rately predict IDRs from the protein sequence [51-61], with over 100
methods that were developed to date [62]. Recent research has
shifted from building disorder predictors to developing methods
that predict binding IDRs. Similar to IDRs, recent study shows that
binding IDRs also have compositional bias in their sequences [48],
suggesting that they can be predicted directly from the sequence.
Significance of these predictors is reflected by the inclusion of the
assessment of the binding IDRs predictions in the recently com-
pleted community-organized Critical Assessment of Intrinsic dis-
order (CAID) experiment [63]. The CAID experiment evaluated 11
predictors of disordered binding regions; we discuss further details
later.

Predictors of intrinsic disorder have been comprehensively sur-
veyed and analyzed in a large number of studies [4,64-77]. They
were evaluated in a several comparative assessments, most notably
as part of the community-driven efforts including the Critical As-
sessment of techniques for protein Structure Prediction (CASP) ex-
periments [78-81] and more recently the CAID experiment [63].
Disorder prediction was part of CASP between CASP5 in 2002 that
evaluated six methods [81] and CASP10 in 2012 which assessed 28
predictors [78], compared to CAID that was performed in 2018 and
compared 32 disorder predictors. In contrast, only a few reviews
focus on prediction of binding IDRs while over three dozen of these
methods were developed. A survey that covered 12 predictors of
binding IDRs that were discussed together with over 30 disorder
predictors was published in 2017 [82]. Two articles were published
in 2019 [83,84]. The first overviews 20 predictors of binding IDRs
that target MoRFs, SLiMs, and other protein-binding IDRs, while
omitting methods that target other types of interactions [83]. The
second is a book chapter that describes 22 predictors of MoRFs,
SLiMs, protein and nucleic acid binding regions, largely overlapping
in scope with the other study [84]. We note that prediction of dis-
ordered binding region is gaining momentum in recent years, with
13 methods published since 2019. These factors motivate this sys-
tematic survey of predictors of binding IDRs. We provide a historical
perspective, comprehensively enumerate current tools, categorize
them based on architectures and their predictive targets, details
predictive architectures for several tools that secured best results in
the CAID experiment, highlight a few interesting observations con-
cerning availability and impact of these tools, and offer several re-
commendations. Moreover, we fill the gap created after the surveys
from 2019 and cover 38 methods that target a diverse set of ligands
including peptides, proteins, RNA, DNA and lipids.

2. Historical overview

We perform an exhaustive literature search to identify a com-
prehensive collection of predictors of binding IDRs. We consider
three main sources: i) extraction of methods that are covered in
articles that focus on the prediction of binding IDRs and disorder
functions [82-84,124]; ii) manual search of citations to these
methods; and iii) manual search of the results produced by a re-
levant and broad PubMed search: (((Intrinsically disordered pro-
teins) AND ((binding region) OR (binding residue)) AND
(identification)), (((Intrinsic disorder) AND (binding region) AND
(predictor)) OR ((MoRF) AND (prediction)), (((Intrinsic disorder)
AND (short linear motif) AND (prediction)), ((Intrinsically disordered
proteins) AND ((RNA binding) OR (DNA binding) OR (nucleotide
binding))) AND ((binding region) OR (binding residue)) AND ((pre-
diction) OR (identification)), ((Intrinsically disordered proteins) AND
(lipid binding)) AND ((binding region) OR (binding residue)) AND
((prediction) OR (identification)). We combine results from these
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Fig. 1. Timeline of the development of predictors of binding IDRs. Color-coded bars denote different prediction targets including MoRFs (blue), protein-binding regions (red),
SLiMs (yellow), protein/DNA/RNA-binding regions (grey) and lipid-binding (orange) regions. Dark green callouts show major events that drive the development of these pre-

dictors. Light green callouts identify the first predictor for each ligand type.

sources and remove duplicates, which results in a list of 38 methods
that were published between 2005 to June 2022 (Table 1)
[36,39,85-123]. We first provide a historical overview of this area of
research, which we follow by a discussion of several key aspects of
these computational tools including their predictive models, popu-
larity and availability.

2.1. Historical progress in coverage of different types of interacting IDRs

We summiarize historical overview in Fig. 1. The initial focus was
primarily confined to the prediction of MoRFs and SLiMs, with 10 out
of the 11 methods that were published before 2015 targeting these
two types of binding IDRs. The very first method is a-MoRFpred that
was developed by Keith Dunker’s group in 2005 [39]. It predicts a-
helix-forming MoRFs by relying on the PONDR VL-XT-generated
disorder predictions [58]. The main challenge at this point was lack
of annotated MoRF regions, which had to be manually compiled
from the data available in Protein Data Bank (PDB) [125,126]. The a-
MoRFpred was developed using a small dataset of 14 MoRFs from 12
proteins, which were unlikely to represent a broader population of
MOoRF regions. An improved version of this algorithm, a-MoRFpred-
II, was published two years later [85]. This predictor utilized a larger
training dataset (102 MoRF regions from 99 proteins) and a machine
learning algorithm, a shallow feed-forward neural network. How-
ever, implementation of the resulting predictor was not released,
limiting its potential applications. The year 2012 marks the release of
MoRFpred [87,88], the first predictor that tackles prediction of
generic MoRFs, irrespective of their type (as compared to a-MoRFs).
This method has a more advanced design compared to the earlier
tools. It uses a comprehensive sequence-derived input, which in-
cludes evolutionary profile and putative disorder, solvent accessi-
bility and B-factors, that is processed by a support vector machine
model. The model was trained on a large dataset of over 400 proteins
with MoRF regions and the resulting predictor was released as a
publicly accessible webserver, which is operational to this date.

1490

Tools that extract/predict SLiMs were being developed in parallel
to the efforts that target prediction of MoRFs. SLiMFinder, the first
predictor of SLiMs, was published by Denis Shields’s lab in 2007
[109]. This method utilizes the SLiMBuild algorithm that constructs
motifs, ranks them by their probability, and estimates their statis-
tical significance. SLiMFinder offers options to restricts motif finding
to specific regions of the protein sequence, such as IDRs that it
predicts with the IUPred method [59], and is available in the form of
a convenient webserver. Several other methods that produce SLiMs
were developed subsequently, with majority of them including
SLiMSearch 1.0 [110], SLiMSearch 2.0 [111], SLiMPred [112], SLiM-
Prints [113], PepBindPred [114] and SLiMSearch 4.0 [117] developed
by the labs of Denis Shields and Norman Davey.

With growing interest in prediction of binding IDRs, the focus has
gradually shifted towards prediction of IDRs that interact with spe-
cific ligands, such as proteins, RNA, DNA, and lipids. ANCHOR, which
was published by Zsuzsanna Dosztanyi's lab in 2009, is the first
method that predicts protein-binding IDRs [105,106]. ANCHOR is
based on a scoring function that was derived by comparing dis-
ordered binding residues between their bound and unbound states.
The prediction process is very fast and this method is available as a
source code and a webserver. These factors undoubtedly contribute
to high levels of popularity of this tool. DisoRDPbind, which was
released by Lukasz Kurgan’s lab in 2015, is the first method that
predicts nucleic acid binding IDRs [118,119,127]. This tool relies on
three relatively simple logistic regressions that are used to predict
protein-binding, RNA-binding, and DNA-binding IDRs. The only
other tools that target prediction of the nucleic acid-binding IDRs are
fIDPnn and DeepDISOBind that were released very recently
[120,121]. They improve over the DisoRDPbind’s model by utilizing
more sophisticated deep neural networks. The newest addition to
the toolbox of predictors of binding IDRs are the two tools that
predict lipid-binding IDRs, DisoLipPred [122] and MembDis [123],
which were released in 2021. Interestingly, they complement each
other since MemDis focuses on IDRs in trans-membrane proteins
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while DisoLipPred predicts lipid-binding IDRs that specifically ex-
clude trans-membrane regions. Lastly, we note that there are no
predictors for the protean regions.

2.2. Major events

The timeline in Fig. 1 can be divided into two distinct periods, a
first-generation period before 2015 and a second-generation period
that started in 2015. The first-generation period is characterized by a
relatively slower pace of the development efforts, with on average
1.1 new methods published per year, and focus on a small subset of
the binding IDR types, such as MoRFs and SLiMs. The efforts in-
tensified in the second-generation period, with on average 3.4
methods published per year and a broader coverage of binding IDR
types, which include MoRFs, SLiMs, protein-binding, nucleic acid-
binding, and lipid-binding IDRs. This increase results from an im-
proved availability of ground-truth annotations of binding IDRs. The
early methods, such as a-MoRFpred, a-MoRFpred-II, MoRFpred, and
MORFcy;g;, primarily relied on parsing data from PDB, which is rather
difficult since it requires processing atomic-level data, aggregation at
residue level and comparing across multiple structures given that
PDB files are redundant and often cover fragments of protein se-
quences. Moreover, these data are also limited since PDB centers on
providing access to structured proteins and regions. The first data-
base of disordered proteins, DisProt, was established in 2005
[128,129]. It started with a few hundred IDPs that were annotated
based on published experimental data. It took several years before
the annotations of binding were added and a sufficiently large
number of these annotations was collected. By early 2010s the
amount of the accumulated binding IDRs was sufficient to develop
and test predictive tools, and the second-generation tools, such as
DisoRDPbind, fIDPnn, DeepDISObind, DisoLipPred, and MemDis, rely
on DisProt to source training and test datasets. These annotations are
easier to collect compared to PDB data since they are reported at the
residue level and mapped into full protein sequences. Moreover,
they are more diverse, allowing to collect data to develop methods
for more types of binding IDRs.

Besides the development and growth of DisProt, the other sig-
nificant event that stimulates efforts to develop predictors of binding
IDRs is the CAID experiment, which was held in 2018 and included
evaluation of the these predictors [63]. CAID is the first community-
driven evaluation of accuracy of predictions of binding IDRs, which
suggests growing interest in this area. Several best-performing
methods secured area under the ROC curve (AUC) values > 0.7, in-
cluding ANCHOR2 [107] with AUC =0.742, DisoRDPbind’s model for
the protein-binding IDRs [ 118] with AUC = 0.729, MoRFcigi_ight [93]
with AUC =0.720, and MoRFcy;g;i web [92] with AUC =0.702. Overall,
among the 11 methods which participated in the CAID’s binding IDR
prediction assessment, five perform above a baseline level: AN-
CHOR?2, DisoRDPbind, the two versions of MoRFcy;g;, and OPAL [97].
We refrain from reporting predictive performance of individual
methods based on their respective publications since these results
should not be directly compared due to differences in the datasets,
metrics and test procedures used. We also note several drawbacks of
CAID. It performs evaluation of binding predictions in a ligand ag-
nostic way, i.e., different types of binding IDRs were clumped to-
gether. We note that the five above-baseline methods target
prediction of protein-binding IDRs, benefitting from the fact that 72%
of the binding annotations in the CAID dataset are protein-binding.
Overall, this challenge shows substantial potential for future im-
provements. Interestingly, some of these limitations are being ad-
dressed in the currently pending CAID2 experiment (https://
idpcentral.org/caid). CAID2 expands the assessment of predictions of
binding IDRs by introducing assessment of ligand-specific prediction
that cover protein-binding and nucleic-acid binding. This will likely

1491

Computational and Structural Biotechnology Journal 21 (2023) 1487-1497

result in a further growth in the efforts to generate more diverse and
more accurate methods.

3. Predictors of disordered binding regions

Table 1 covers several important aspects of the 38 predictors of
binding IDRs, such as their predictive architectures, modes of
availability, and popularity quantified with citations. We categorize
these methods into five groups based on the target of their predic-
tions: MoRFs, SLiMs, protein-binding regions, lipid binding regions,
and protein/DNA/RNA-binding regions. The methods in the latter
category identify three types of binding IDRs, those that interact
with proteins, with DNA, and with RNA.

3.1. Predictors of MoRFs

The largest group of predictors of binding IDRs focuses on the
MOoRF regions, with 21 out of the 38 methods (55%) in this category
(Table 1). The defining feature of MoRFs is their ability to transition
to structured conformation upon binding to proteins and peptides,
which implies that the underlying interaction-dependent structure
differentiates them from other binding IDRs. While the first MoRF
predictor targeted a-MoRFs, majority of the subsequent tools were
designed to target all types of MoRFs, irrespective of how they fold
upon binding.

The most popular (i.e., based on annual number of citations listed
in Table 1) and available to the end users MoRF predictors include
MoRFpred [87], MoRFcyjg; [90], DISOPRED3 [91], fMoRFpred [36] and
OPAL [97]. We briefly summarize MoRFpred in Section 2.1. MORFcy;g;
was first published in 2015 and has been successively improved by
the same authors [90,92,93], ultimately resulting in the MoRFcy;p;
SYSTEM that is composed of three predictors: MoRFcy;si,
MoRFcigi Lighe and  MoRFcuii web  [93].  MORFcipi Lighe and
MoRFcyigi_web rely on predictions from MoRFcy;gi, but MORFcyii_tight
does not utilize computationally expensive PSSM profiles, which
makes it much faster than MoRFcyp; wep. Thus, users of the
MORFcyigi SYSTEM have an option to apply a fast MoRFcuigi_Light
version or slower and more accurate MoRFcyip; web Version.

DISOPREDS3 is a popular predictor of disorder that includes an
option to predict MoRF regions [91]. The disorder predictor uses a
small neural network to combine SVM-based DISOPRED2 model
[130], neural network specialized to predict long IDRs, and a nearest
neighbor-based classifier that takes advantage of similarity to an-
notations in a training dataset. DISOPRED3 applies a separate SVM-
based model that uses information extracted from the input se-
quence and its PSSM profile to predict MoRFs.

Another popular MoRFs predictor is OPAL [97]. This is a meta-
predictor that averages results produced by two MoRF predictors:
MOoRFcy;ig; and a relatively slow PROMIS [97]. The fMoRFpred tool
represent an opposite approach, with a simpler architecture and fast
runtime [36]. This method utilizes a basic SVM-based model that
relies on fast-to-compute putative disorder predicted with [UPred
[131] and putative secondary structure generated with the fast
single-sequence version of PSIPRED [132].

3.2. Predictors of SLiMs

Majority of predictors that target SLiMs rely on regular expres-
sions to identify these motifs in protein sequences. This is the second
most populous category of predictors, with 9 methods published to
date (Table 1). The most popular and available to the end users SLiMs
predictors include SLiMFinder [109], which we described in Section
2.1, and SLiMSearch 4.0 [117]. The latter tool is a successor of the
SLiMSearch 1.0 [110] and SLiMSearch 2.0 [111] methods. SLiMSearch
4.0 is an advanced framework that identifies SLiMs using likelihood-
based scoring of motifs, sequence conservation, functional
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enrichment analysis using Gene Ontology (GO) terms, and filters
that consider putative disorder generated with IUPred, surface ac-
cessibility when structure is available, and overlap with Pfam do-
mains [117]. Moreover, SLiMSearch 4.0 identifies SLiMs in a
taxonomy-aware manner, focusing on around 70 model species that
include human, yeast, mouse, fruit fly, C. elegans, and A. thaliana. We
also note a recently released SLiMSuite package [133], which pro-
vides convenient access to multiple tools for discovery and char-
acterization of SLiMs: SLiMProb [110](also known as SLiMSearch
1.0), SLiMFinder [109] and QSLiMFinder [115]. Besides these regular
expression-based tools, there are two methods that utilize machine-
learning models to predict SLiMs: SLiMPred [112] and PepBindPred
[114]. Both methods apply bidirectional recurrent neural network
models and rely on information extracted from sequence-derived
predictions of secondary structure, intrinsic disorder and solvent
accessibility. PepBindPred additionally performs docking between
the interacting molecules.

3.3. Predictors of protein, RNA, DNA and lipid-binding regions

There are three predictors which target protein-binding IDRs:
ANCHOR [105,106], which we discussed in Section 2.1, ANCHOR2
[107] and IDRBind [108]. The two ANCHOR methods are arguably the
most popular predictors of binding IDRs. ANCHOR2 improves over
ANCHOR by extending its scoring function with additional terms,
which results in a more accurate model.

Recent years observed the push to develop methods that predict
IDRs that interact with nucleic acids and lipids. There are three tools
that predict DNA/RNA/protein-binding IDRs: DisoRDPbind [118,119],
fIDPnn [120], and DeepDisoBind [121], and two tools that predict
lipid-binding IDRs: DisoLipPred [122] and MembDis [123]. These
methods, with the exception of DisoRDPbind, apply state-of-the-art
deep learning models that we explore in Section 3.4,

3.4. Predictive architectures

We identify five categories of predictive architectures that are
used to implement predictors of binding IDRs: scoring functions
(SF), regular expressions (regex), shallow machine learning (ML)
algorithms, deep-learning (DL) algorithms and meta-predictors; see
“predictive architecture” column in Table 1. These categories are in
line with similar analyses for the disorder predictors [67,71,72,74].

The SF-based models use pre-defined functions to combine
evolutionary and biochemical features that are estimated from
protein sequences. Key characteristics of these functions are that
they utilize relatively few parameters and rely on explicit formulas
that are typically derived from biophysical principles underlying
interactions. Examples include retro-MoRF [86] and SLiMPrints [ 113]
that utilize scoring functions based on the conservation extracted
from multiple sequence alignments, and ANCHOR and ANCHOR2
that use interaction energy-based features [105,107].

Regex-based models are exclusively used for the prediction of
SLiMs [109-111,115,117]. Regex is a sequential combination of sym-
bols and characters that represents a pattern for a short string that
can be efficiently searched in a longer string (i.e., amino acid se-
quence). Using regex, prediction of SLiMs boils down to search for
short motifs in a given protein sequence, followed by ranking to find
statistically significant hits, and filtering to identify motifs in a
specific part of the sequence, e.g., disordered region. Prominent ex-
amples of the regex-based predictors include SLiMFinder [109] and
SLiMSearch 4.0 [117].

ML and DL, the two most numerous categories, utilize machine
learning algorithms to generate predictive models from training
datasets. There are 28 of them in total including 9 DL models and
19 ML models. These algorithms depend on the quality and size of
the training datasets since they utilize the ground truth from these
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datasets to optimize predictive models, such that they minimize
differences between predictions and the corresponding grounds
truth. Shallow ML algorithm are the traditional classifiers that in
general produce smaller models and require less training data than
the deep learning algorithms. Over a half of the shallow ML
methods (i.e., 10 out of 19) utilize models produced with the sup-
port vector machine (SVM) algorithm [36,87,89-91,94-98]. Other
algorithms include linear regression [118,119], naive Bayes [92,93],
XGBoost [108], minimax probability machine [100], and shallow
neural networks [39,85,112,114]. The DL algorithms are neural net-
works with topologies that include multiple/many hidden layers
and which also typically use more sophisticated types of neurons
and utilize modern types of architectures, such as convolutional and
recurrent networks. These models usually involve a large number of
parameters (i.e., weights associated with the connections between
neurons in the network) and thus they need large datasets to
properly train these parameters. The DL-based predictors of binding
IDRs apply a variety of architectures including convolutional
[99,101,104,121], bidirectional recurrent [122], recurrent Long
Short-Term Memory (LSTM) [103], hybrid of convolutional and re-
current LSTM [123], as well as deep fully-connected perceptron
network [102,120]. We note that methods developed since 2020
exclusively utilize the DL models. Part of the reason why these
models could be developed is that a sufficient amount of training
data has become available in recent years, driven mostly by the
substantial growth of the DisProt database. When a sufficient
amount of training data became available and given the break-
throughs in the designs of deep network architectures in the past
decade and the resulting high-levels of their predictive perfor-
mance, unsurprisingly, researchers in this field have shifted to adopt
DL algorithms instead of traditional ML. This is likely also motivated
by the recent influx and success of DL-based predictors of intrinsic
disorder. Notably, the top-performing disorder predictors in CAID
[134] include fIDPnn [51], SPOT-Disorder2 [52], rawMSA [53] and
AUCpred [54], all of which rely on the DL models. Furthermore,
recent empirical study finds that the DL models in general produce
more accurate disorder predictions when compared to the shallow
ML models [64], which provides a strong justification to develop
these models for prediction of binding IDRs.

Finally, there are several meta-predictors which are defined as
methods that combine predictions of binding IDRs produced by
multiple predictors. The underlying objective is to provide more
accurate results when compared to the results produced by the input
predictors. This approach was used to develop several popular and
accurate disorder predictors [135-141]. We identify four meta-pre-
dictors, all of which predict MoRFs, including MoRFcyigi webs
MOoRFcyipi SYSTEM, OPAL and OPAL+[90,93,97,98]. The focus on
MOoRFs can be explained by the fact that the most and large number
of predictors target this category of binding IDRs, providing a deep
pool of input predictions for the meta-method.

Lastly, we detail predictive models of the five methods that
performed well in the CAID experiment [63]: ANCHOR2, Dis-
oRDPbind, two versions of MoRFcy;z; method, and OPAL. ANCHOR2
[107] is the SF-based model that improves over its predecessor,
ANCHOR [105,106]. ANCHOR implements SF that quantifies differ-
ences in basic biophysical properties of disorder binding residues
between their bound and unbound state. It combines the putative
disorder information generated by IUPred with estimates of pairwise
interaction energy of disordered residues with globular proteins and
local disordered sequence segments. ANCHOR2 uses a computa-
tionally efficient linear function to combine the interaction energy
estimation from ANCHOR with two new terms that estimate energy
for interaction with binding surface of globular proteins and pre-
sence of a disordered sequence. This results in a more accurate
model that still retains the small computational footprint of
ANCHOR.
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DisoRDPbind [118] is a shallow ML method that utilizes three
logistic regression models to predict RNA-binding, DNA-binding and
protein-binding propensities, one regression for each ligand type.
These regressions use a common input profile generated from the
sequence that includes information about hydrophobicity and net
charge, putative disorder produced with IUPred [59], putative sec-
ondary structure generated by a single-sequence version of PSIPRED
[142], and sequence complexity computed by the SEG algorithm
[143]. This profile is processed to generate inputs for the regressions
using sliding-windows with sizes that are optimized for specific li-
gand types.

MOoRFcyip; SYSTEM [93] is also a shallow ML predictor but it
features a multi-layer architecture. The bottom layer implements the
base MoRFcyjg; model that uses a Bayes rule to combine MoRF
predictions from two SVM models, one that is trained directly on
sequences and the other that relies on similarities between se-
quences. The second layer implements the MoRFcigi_tigh: Prediction
[93] by using a Bayesian model to fuse predictions from the base
MOoRFcyip; with the predictions of disorder from ESpritz-DisProt [55].
The third layer implements the MoRFcyip; wep prediction [93] that
again uses a Bayesian model to combine the base MoRFcy;g;, the
ESpritz-DisProt predictions and the conservation derived from the
sequence using PSI-BLAST [144]. Benchmarking done by the authors
suggests that MoRFcyigi_Lighe Produces more accurate predictions
than the base MoRFcy;p;, while MoRFcy;pi web further increases ac-
curacy but at substantially higher computational cost due to the
calculation of the conservation [93].

OPAL [97] is a meta-predictor that averages results produced by
the base MoRFcy;g; model and PROMIS, a relatively slow MoRF pre-
dictor developed by the authors of OPAL. PROMIS predicts MoRFs
using an SVM model based on putative solvent accessibility, sec-
ondary structure and torsional angles predicted from the input se-
quence with SPIDER2 [145] and a PSSM profile generated from the
sequence with PSI-BLAST. The need to compute the PSSM profiles
results in a relatively long runtime.

We highlight the fact that these models are rather diverse. They
utilize a variety of predictive architectures and different inputs that
are derived from the sequence. They also vary in terms of their
runtime. The CAID experiment reports that ANCHOR2 and
DisoRDPbind take around 1second to predict one protein,
MORFcwii_Ligh takes a few seconds, and the other two methods re-
quire two order of magnitude more runtime due to the use of PSI-
BLAST, i.e., about 100 seconds for MoRFcy;ig; wep and over 500 sec-
onds for OPAL [63].

3.5. Availability and impact

Availability of these predictors to a broad scientific user-group is
an important factor to facilitate research on binding IDRs. Table 1
provides details on implementations and whether they are currently
available, i.e., as of July 2022 when we collected these data. There are
two types of implementations: webserver (WS) and source code
(SC). WS is available online via a web browser or programmable
interface, typically does not require installation of any software, and
performs all computations on the server side. While webservers are
usually accessed via webpages, in a few cases (e.g., SLiMPred,
SLiMPrints and QSLiMFinder) the access is based on the re-
presentational state transfer (REST) interface. SC have to be down-
loaded, installed/compiled and run on user’s hardware. While WSs
are easier to use, they are typically limited to prediction of a single or
a few proteins at the time and could be difficult to embed into other
bioinformatics platforms if they lack programmable interface. On the
other hand, SC usually can be setup to perform predictions on a
larger scale and is easier to incorporate into other bioinformatics
software, but it can be challenging to install and requires hardware
to run. We collect the location of these WS and SC resources as per
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information given in the respective publications and check their
availability. We find 27 methods that have working WS and/or SC
implementations. Among them 13 methods are available solely as
WS, 3 as SC and 11 as both WS and SC. There are 4 methods which
were once functional but as of July 2022 did not work, and 7
methods that were never implemented for public use. The corre-
sponding 71% rate of availability (27 out of 38 methods) is relatively
high, higher than the 65% availability rate for disorder predictors
[62], and much higher than the approximately 40% rate for other
related predictors of protein-binding and nucleic acid binding re-
sidues [146,147].

We analyze impact/use of these methods, which we quantify in
using citations collected from Google Scholar as of July 2022
(Table 1). We provide total number of citations as well as an annual
count, where the latter is a better metric to compare impact/use of
different methods. The predictors published from 2020 onwards are
too new to reliably measure their citation data, hence, we exclude
them from the below analysis. We find that methods which offer WS
and/or SC implementation are cited much more often (median an-
nual citations = 12), compared to methods which were never made
available (median annual citations = 3). Moreover, among the
methods which are currently functional, the tools that provide both
WS and SC are cited more (median annual citations = 16) compared
to the methods that provide only WS (median annual citations = 12)
and only SC (median annual citations = 4). The higher popularity of
predictors implemented as WSs is because they are arguably more
convenient for majority of users who have limited computational
resources and are less computer savvy to be able to install and run
software locally. Methods with no implementations suffer low ci-
tations, revealing that availability directly influences the level of use
and impact. These observations suggest that future methods should
be made available as both WS and SC to maximize impact. Moreover,
we find that among the methods which have/had WS and/or SC
implementations, the ones which are currently non-functional re-
ceive median annual citations of 4, which is 4 times lower than the
functional methods. This means that it is vitally important to
maintain availability after methods are released.

We briefly discuss impact/use of individual tools. Predictor of
protein-binding IDRs, ANCHOR?2, is the most highly cited method,
both in terms of annual citations (189) and total citations (754). We
note that ANCHOR2's publication also introduces a popular disorder
predictor, [UPred2, which likely inflates the above number; this is
also why we use median annual citations to compare groups of tools.
There are 9 predictors that were cited over 100 times and 4 of them
were cited over 500 times. These observations should be considered
with a pinch of salt, since these tools were published in 2016 or
earlier and had more time to accumulate citations when compared
to newer methods. However, this reveals a significant amount of
interest in using these methods.

4. Summary and outlook

IDRs interact with many different molecular partners including
proteins, DNA, RNA, lipids, small molecules, carbohydrates, and
metals. The knowledge of these interactions is rather limited, which
motivates development of computations tools that predicts them
from the readily available protein sequences. This comprehensive
survey of sequence-based predictors of binding IDRs covers a wide
range of interacting partners. We identify and summarize a large
collection of 38 predictors that consider 5 different types of inter-
acting IDRs. The MoRF predictors are the largest category with 21
methods, followed by 9 SLiM predictors, 3 predictors of protein-
binding IDRs, 3 methods that predict protein/DNA/RNA binding IDRs
and 2 predictors of lipid-binding IDRs. We find that these methods
rely on a diverse range of predictive architectures that include
scoring functions, regular expressions, machine learning models and
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meta-predictors, where about three-quarters of them utilize ma-
chine learning algorithms. We observe a couple of recent trends to
develop deep network-based models and to extend coverage to new
types of interacting IDRs, such as RNA, DNA and lipid binding re-
gions. We also note a high rate of availability of these methods, with
over 70% that are provided to the end users as either webservers
and/or standalone code. Furthermore, we analyze relation between
availability and impact/use of these methods. We find that methods
which are more broadly available, as both webserver and source
code, are substantially more cited/used when compared to those
that are available in either format, while methods that do not offer a
publicly available implementation suffer low use/citations.
Moreover, we also find that the availability should be maintained
since tools that were originally made available and are currently not
functional observe a large drop in the use/citations. The latter ob-
servations strongly suggest that future predictors should be made
available in both formats upon publication and should be main-
tained after publication.

While IDPs interact with a broad range of molecular partners, we
show that the current predictors are largely focused on two types of
binding IDRs, MoRFs and SLiMs. A particularly acute situation con-
cerns prediction of nucleic acid and lipid-binding IDRs, where only a
handful of methods are available. The prediction of small molecules-,
carbohydrates-, and metal-binding IDRs is not feasible at the mo-
ment, given a very small amount of ground truth data. The need to
develop new predictors of DNA and RNA binding regions is further
motivated by the inclusion of this prediction category in the pending
CAID2 experiment. Consequently, one of the key future directions
would be to diversify the development efforts to more uniformly
cover different types of binding IDRs.

Results of the recently completed CAID assessment show that
predictors of binding IDRs offer modest levels of predictive perfor-
mance [63], suggesting that there is a large room for improvement.
We observe that none of the methods that participated in this eva-
luation use deep learning models. The recent influx of the deep
learning-based predictors of binding IDRs will likely result in im-
proved predictive quality. This claim stems from a recent study that
empirically demonstrates that deep learning-based predictors of
intrinsic disorder significantly outperform other types of models
[64]. The drive to use deep learning models is also motivated by the
growing and successful use of these models in related areas of
bioinformatics [148], such as prediction of protein-protein interac-
tions [149-151] and protein function [152-154]. We envision that
majority of future predictors of binding IDRs will likely rely on deep
neural networks. We encourage the developers to consider modern
network topologies, such as the recently developed transformers
[155], that were used to very accurately predict protein struc-
tures [156].

Some IDPs include IDRs that interact with different types of li-
gands and yet most of the current methods cover a single ligand
type. Consequently, users are forced to use multiple methods and
convert between different output formats to obtain a complete
prediction. These difficulties could be alleviated with solutions that
bundle multiple predictors, however, the only such solution to date
is the DEPICTER webserver [157]. Moreover, there are only a handful
of methods that predict IDRs that bind to multiple ligand types, such
as DisoRDPbind, fIDPnn and DeepDISObind, that target protein, RNA
and DNA-binding IDRs. Consequently, we advocate for the devel-
opment of new tools that address predictions of multiple and many
different types of binding IDRs. Furthermore, some IDRs can bind
multiple partner types, which corresponds to multi-label (multi-
output) learning. Prediction of such multifunctional IDRs is possible
with the DMRpred method, although this tool does not provide
types of binding partners [158]. Thus, new tools that would cast this
prediction as multi-labels problem should be developed. We note
that multi-labels predictors are widely used in related areas, such as
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prediction of subcellular localization [ 159-162], nucleic acid binding
proteins [163], enzymatic functions [164], and ion channel
types [165].

Prediction of the binding IDRs in protein sequences should be
followed by modelling structures of the corresponding complexes
(i.e., IDRs fold upon binding). While computational protein docking
has been extensively pursued over the past several years [166],
studies that investigate docking with IDPs are lagging behind since
IDPs are difficult to model. Daisuke Kihara’s lab developed a pio-
neering approach for IDP-protein docking, IDP-LZerD [167,168]. This
method produces a docking model from the 3D structure of the
receptor and the sequence of interacting IDP. Docking an IDP is
conceptually similar to protein-small peptide docking, but techni-
cally more challenging because conformation of the IDP on the re-
ceptor’s surface has to be predicted. In IDP-LZerD, this is done by
docking and stitching short protein fragments taken from the
binding IDR. Moreover, a recent benchmark study that evaluates
three methods capable of docking with IDPs, IDP-LZerD [167,168],
CABS-Dock [169] and AlphaFold-Multimer [170], shows that they
accurately identify location of the binding site but struggle with
atomic-levels details of the structure [171], suggesting that further
research is needed.

Lastly, databases like D?P? [172], MobiDB [173-176] and De-
scribePROT [177] provide convenient access to pre-computed pre-
dictions of disorder for millions of proteins. However, they typically
contain a limited number of binding IDR predictions, with De-
scribePROT covering the most diverse range that includes putative
protein, RNA and DNA-binding IDRs. This coverage should be ex-
tended in the future as more methods that cover a broader range of
binding IDRs will be developed. In turn, this effort motivates the
development of runtime-efficient predictors that can be used to
perform predictions on such large scale. Examples of current fast
tools include ANCHOR2, DisoRDPbind and fMoRFpred, that were
shown to produce predictions in about 1 second per protein in the
CAID experiment [63].
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