
ROSDiscover: Statically Detecting Run-Time

Architecture Misconfigurations in Robotics Systems

Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, and Claire Le Goues

Carnegie Mellon University, Pittsburgh, PA, USA

{ctimperl, tdurschm, schmerl, garlan, clegoues}@cs.cmu.edu

Abstract—Robot systems are growing in importance and
complexity. Ecosystems for robot software, such as the Robot
Operating System (ROS), provide libraries of reusable software
components that can be configured and composed into larger
systems. To support compositionality, ROS uses late binding and
architecture configuration via “launch files” that describe how
to initialize the components in a system. However, late binding
often leads to systems failing silently due to misconfiguration, for
example by misrouting or dropping messages entirely.

In this paper we present ROSDiscover, which statically
recovers the run-time architecture of ROS systems to find such
architecture misconfiguration bugs. First, ROSDiscover con-
structs component level architectural models (ports, parameters)
from source code. Second, architecture configuration files are an-
alyzed to compose the system from these component models and
derive the connections in the system. Finally, the reconstructed
architecture is checked against architectural rules described in
first-order logic to identify potential misconfigurations.

We present an evaluation of ROSDiscover on real world, off-
the-shelf robotic systems, measuring the accuracy, effectiveness,
and practicality of our approach. To that end, we collected the
first data set of architecture configuration bugs in ROS from
popular open-source systems and measure how effective our
approach is for detecting configuration bugs in that set.

Index Terms—ROS, Software Architecture, Static Analysis

I. INTRODUCTION

Ensuring that robotics systems are free from defects is a

pressing research challenge. Robots are ubiquitous, with appli-

cations ranging from warehouses and autonomous delivery to

manufacturing vehicles and driving them. Since robots often

interact with humans during their tasks, defects in robotics

systems can cause significant safety hazards.

Robot systems are often component-based systems, and can

be comprised of hundreds of different components [1], [2].

To construct a robot system, developers define and configure

component parameters and connect components so that they

can communicate in a variety of ways, such as through topics

(publish-subscribe), service calls (synchronous call-return),

and actions (asynchronous call-return).

The most popular open-source framework for component-

based robotics systems, the Robot Operating System (ROS),

uses late binding mechanisms for dynamic composition of

components. To increase the reusability of the more than

6 0001 software packages in the ROS ecosystem, ROS uses

This work has been supported in part by NASA (Award 80NSSC20K1720),
AFRL (Award 19-PAF00747), and the NSF (Award CCF-1750116)

1https://index.ros.org/stats/ [Date Accessed: 4th November 2021]

configuration mechanisms and connectors that are not bound

during compile time [3]. These mechanisms include string-

based identifiers for topics, services, actions, and parameters,

as well as remappings between these identifiers [4].

While useful, the use of late binding for component compo-

sition is prone to misconfiguration of component connections,

such as mismatching names or types. This can result in mes-

sages being misrouted or dropped, configuration parameters

being silently ignored, or unexpected exceptions [5]. Such

bugs can be hard to find since they only manifest at run time.

Our key insight into identifying these bugs is that many of

them manifest as errors in the run-time architecture. That is,

they result from inconsistent composition or configuration of

components and connectors. We call this class of bugs archi-

tecture misconfiguration bugs. Run-time architectural models

contain components (incl. typed parameters and ports), and

connectors. Given a set of architectural well-formedness rules,

architectural checking could in principal identify many of

these bugs [6]. However, ROS run-time architectures are not

specified in one place. Instead, they are typically implicitly

defined by widely scattered pieces of source code and config-

uration files, rather than via formal architectural models [7].

This motivates the use of automatic techniques to reconstruct

run-time architectures to support automatic analysis and iden-

tification of architecture misconfiguration bugs.

General techniques to reconstruct arbitrary run-time archi-

tectures from source code are not accurate enough to reliably

capture component connections and configurations, especially

for publish-subscribe [8], [9]. Run-time architectures can

differ significantly from the source code structure, and the

variety of implementations makes it hard to infer connectors

absent domain-specific assumptions. This limits the accuracy

(i.e., the precision and recall of recovered elements) of generic

static reconstruction approaches. Existing ROS-specific tech-

niques [10]–[12] have achieved higher accuracy by exploiting

connections between ROS Application Programming Interface

(API) calls to connector usage. These prior approaches are

still inadequately accurate for reliable automatic identification

of misconfigurations, because they do not leverage sufficient

source level information. However, their initial success sup-

ports our intuition that such domain-specific knowledge is

critical to effective architectural recovery.

In this paper, we present ROSDiscover, an approach for

statically recovering run-time ROS architectures from source

code and configuration files to identify architectural miscon-

���

�����*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�"SDIJUFDUVSF�	*$4"

����������������������������¥�����*&&&
%0*���������*$4"����������������

2
0
2
2
 I

E
E

E
 1

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 S

o
ft

w
ar

e
A

rc
h
it

ec
tu

re
 (

IC
S

A
)

| 9
7
8
-1

-6
6
5
4
-1

7
2
8
-0

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
S

A
5
3
6
5
1
.2

0
2
2
.0

0
0
1
9

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

figuration bugs. First, ROSDiscover constructs component

models (typed ports and parameters) via static analysis that

focuses on a small set of calls to the ROS API. Second,

architecture configuration files are analyzed to compose the

system from these component models and derive the connec-

tions in the system. Finally, the reconstructed architecture is

checked against architectural rules described in predicate logic

to identify potential misconfigurations that could cause defects.

Our approach is effective, accurate, and scalable, exploit-

ing several key observations about component-based robotics

sytems in general and ROS systems in particular:

1) Component architectures are defined via API calls that

have well-understood architectural semantics [4].

2) The composition and configuration of components to

build larger systems is done in separate architecture

configuration files (i.e., launch files). Most of these result

in “quasi-static” systems. That is, architectures rarely

change following run-time initialization [4].

3) ROS systems rely on a small de facto core library of

components [13]. We provide a small number of hand-

written models for components from this library that are

too complex or dynamic to be statically recovered.

Overall, we make the following contributions:

• An approach to statically recover run-time architectures

in ROS systems based on symbolic execution of API calls

and static analysis of configuration files;

• An approach to use first-order logic to find architecture

misconfiguration bugs in recovered architectures;

• ROSDiscover, an open-source implementation of our

approach: https://github.com/rosqual/rosdiscover;

• The first available data set of 29 architecture misconfig-

uration bugs across 5 open-source ROS system;

• An evaluation on popular real-world open source ROS

systems and the bugs from our newly collected data set.

Our theoretical approach is generalizable to other ecosystems

for which above mentioned observations hold true, such as

flight systems [14] or microservice architectures [15]. The

corresponding artifact containing ROSDiscover, our data

set, Docker images, analysis scripts, and results can be found

here: https://doi.org/10.5281/zenodo.5834633.

II. ARCHITECTURE MISCONFIGURATION BUGS IN ROS

We begin by defining architectural misconfiguration bugs

and describe how they relate to the ROS framework.

A. Background on ROS

From a software perspective, a ROS-based system is com-

posed of components called nodes, which are processes that

perform computation.2 ROS 13 provides a ROS Master, a cen-

tralized hub that provides naming and registration for all nodes

in a ROS system and parameter server (a shared dictionary of

2See https://wiki.ros.org/Nodes. Nodelets are specialized nodes that can be
loaded to share memory; we include them under the umbrella term “Node”.

3We focus on ROS 1 because doing so gives us access to significantly more
systems and historical defects (ROS 2 was released in 2020)

names and values) that stores configuration parameters. Nodes

use the parameter server to configure themselves dynamically.

In our context, a component parameter is a value passed in

on component launch that can customize its behavior. For our

purposes, the most interesting uses of parameters focus on

configuring topic or service names, since those are relevant to

architectural interactions between nodes.

ROS nodes interact with each other through a set of ROS-

standard communication styles: topics, services, and actions.

Topics implement a publish-subscribe style providing asyn-

chronous message-based, multi-endpoint communication be-

tween nodes. Nodes subscribe to topics using the string-

representation of their name and name space. Then they

receive any data published to the subscribed topics. There

can be multiple publishers and subscribers for a topic. Topics

are the main form of communication between nodes in ROS,

and are used for periodic information (e.g., sensor data or

positions) or sporadic requests, such as turning off a motor.

Services implement a synchronous call-return style of com-

munication between nodes. Nodes attempting to call a service

look up the service provider in a registry based on the string-

based name of the service. Because in ROS 1 they are

synchronous, services are intended for short queries, such as

the state of a node or short mathematical computation.

Actions implement an asynchronous call-return style for

long-lived requests to be performed by another node. Nodes

submit goals to other nodes (such as navigating to a particular

location), and can register callbacks to keep apprised of

feedback, and results. In ROS 1, actions are implemented as

a library that uses the other two communication mechanisms.

To initialize and configure a ROS system, ROS 1 allows

developers to specify launch files – Extensible Markup Lan-

guage (XML) files that specify which nodes to start, node

parameters, and topic name remaps when composing nodes.

Launch files often include other launch files and can contain

conditional logic. Note that launch files do not directly connect

nodes with each other, since this is done using ports defined

within components.

The configuration of nodes and their connections can be

observed during run time by traversing the ROS graph, a tool

to query the current run-time architecture of a running system.

B. Architecture Misconfiguration Bugs

We call bugs that result from an inconsistent composition

of software components architecture misconfiguration bugs. In

this context, composition refers to the parameterization or con-

figuration of components or connectors. Such a composition

can be inconsistent in the following ways:

• A connector fails to connect ports it is supposed to

connect (e.g., a topic name mismatch).

• A connector connects ports of inconsistent types (e.g.,

message type mismatch between what the publisher sends

versus what the subscriber receives).

• A mandatory component parameter has not been set.

• A component parameter has been set to an instance of an

incompatible type.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Component-connector views of a publish-subscribe connector
in Autoware.AI before (top) and after (bottom) a bug was introduced.
Renaming the topic line_class to line only in the publisher
disconnected publishers and subscribers accidentally. The publishers
and subscribers are dangling.

Architecture misconfiguration bugs often arise due to mis-

spellings or when large systems evolve inconsistently, as

Facebook’s multi-million-dollar incident in October 2021

shows [16]. For example, while developers change names or

types of parameters and topics in one part of the system, they

might forget to change them in other parts of the system. To

illustrate, consider Figure 1, illustrating a bug in Autoware.AI,

the most popular open-source framework for self-driving

vehicles. The system contains the vector_map_loader

node, which publishes the line_class, point_class,

area_class, pole_class, and box_class topics. The

nodes feat_proj, lane_rule, and velocity_set sub-

scribe to some of these topics, as shown at the top of the figure.

In one commit, the developers updated the topic names to

drop the “_class” suffixes.4 However, they forgot to change

these topic names in the feat_proj, lane_rule, and

velocity_set nodes, as illustrated in the bottom of the

figure; they therefore did not receive any data. It took the

developers two months to find and fix the bug.5

In general, to check whether a given version of the archi-

tecture has misconfiguration bugs, one needs to know which

components are in the systems and how they are connected.

A simple string search for API calls and their arguments is

usually not sufficient for this, because many arguments do not

get passed to the APIs inline or as literals and the context of

the API call is relevant to determine the name space [4].

Hence, we propose a static analysis approach to find bugs

like these, overcoming the limitations and expense of testing

complex robotics systems [17], [18]. Integrated into a continu-

ous integration pipeline, our tool could tell the developers that

their architecture is inconsistent when pushing a new commit.

C. A Data Set of Architecture Misconfiguration Bugs in ROS

To illustrate the variety of architecture misconfiguration

bugs and to foster more research on them, we construct and

provide a data set of bugs from real-world open-source ROS

systems. The data set can be found in the artifact.

4https://github.com/Autoware-AI/autoware.ai/commit/fc8f69
5https://github.com/Autoware-AI/autoware.ai/commit/c2a090

System Commits Contributors Releases Bugs in Data Set

AutoRally 615 21 11 8

Autoware 3570 74 16 12

MAVROS 2503 99 40 1

Husky 511 24 46 6

TurtleBot 1142 29 92 2

TABLE I: Statistics on the systems contained in our bug data set.

Selection Criteria: We collected documented bugs on

GitHub from repositories discussed in Malavolta et al. [19]

(as these repositories are well-studied and mature). For each

repository, we searched for the key words “topic bug”, “topic

fix”, “subscribe bug”, “subscribe fix”, “publish bug”, “publish

fix”, “topic rename”, “launch file fix”, and “launch file bug”

in commits, issues, and pull requests. Not all of the results

refer to run-time architecture misconfigurations, and so we

manually verified/filtered the bugs by inspecting the code,

change history, and documentation. We excluded bugs for

which we were unable to compile the software versions. As

shown in Table I, the data set contains 29 bugs across 5

systems. Note that this is not intended to be a complete list

of architecture misconfiguration bugs in those systems.

Collected Data: For bugs caused by a broken publish-

subscribe connector (i.e., inconsistent topic names or message

types), we identified the publisher, topic, subscriber, and a set

of launch files that launch the corresponding nodes. For bugs

caused by a wrong configuration (i.e., inconsistent parameter

names or parameter types), we identified the launch files and

the misconfigured nodes. To formally define the misconfigu-

ration types, we also list a corresponding architectural well-

formedness rule violated by the bug. To enable users of our

data set to verify their testing environment, each bug consists

of a bug-commit at which the bug is present, and a bug-fix

commit. Docker images for each bug containing the source

code, all its dependencies, and the compiled executables for

analysis can be found in the artifact.

Building Historic Project Versions: Some of the commits

related to the bugs are many years old and were built with

much older versions of their dependencies and much older

versions of ROS (the oldest bug dates back to March 2014

and was reproduced with ROS Indigo Igloo). To support

replicability, we created Docker images for each commit, each

containing the versions of their build- and run-dependencies

(including ROS packages, CUDA API version, external li-

braries, compilers, and the ROS distribution). If the project

documented which versions of a dependencies were used, we

installed these in the Docker image. Otherwise, we installed

the most recent version at the time of the corresponding

commit date.6 For versions for which we were unable to

construct the Docker images according to this methodology,

we forward-ported the bugs (i.e., applied the bug-introducing

change to a version of the software that we can build).

6Using https://github.com/rosin-project/rosinstall generator time machine

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

<launch>
<include file="$(find package)/node.launch"/>
<arg name="max_speed" default="30" />

<node pkg="driving_planner"

name="velocity_set" type="velocity_set">

<remap from="/drive_vel" to="/vel"/>

<param name="speed" value="$(arg max_speed)"/>

</node>
</launch>

<launch>
<include file="$(find package)/node.launch"/>
<arg name="max_speed" default="30" />

<node pkg="driving_planner"

name="velocity_set" type="velocity_set">

<remap from="/drive_vel" to="/vel"/>

<param name="speed" value="$(arg max_speed)"/>

</node>
</launch>

rule topicsMatchAdvertiser = invariant

forall r :! ROSTopicAdvertiserRoleT in

self.ROLES |

forall p :! TopicAdvertisePortT in

r.ATTACHEDPORTS |

(p.topic == topic AND
compatibleTopics(p.msg_type,
msg_type));

rule topicsMatchAdvertiser = invariant

forall r :! ROSTopicAdvertiserRoleT in

self.ROLES |

forall p :! TopicAdvertisePortT in

r.ATTACHEDPORTS |

(p.topic == topic AND
compatibleTopics(p.msg_type,
msg_type));

ros::Subscriber sub_line = nh.subscribe
("vector_map_info/line_class", […]);

ros::Publisher pub = n.advertise<[…]>
("vector_map_info/line", […]);

line_pub.publish([…]);

ros::Subscriber sub_line = nh.subscribe
("vector_map_info/line_class", […]);

ros::Publisher pub = n.advertise<[…]>
("vector_map_info/line", […]);

line_pub.publish([…]);

add_executable(velocity_set
nodes/velocity_set/velocity_set.cpp)

add_executable(velocity_set
nodes/velocity_set/velocity_set.cpp)

lane rulefeat proj velocity set_ _

/line class vector_map_loader

/line_
subscribes-to "/vector_map_info/line_class" LineArray

publishes-to "/vector_map_info/line" LineArry

assign s (reads-param "speed")

subscribes-to "/vector_map_info/line_class" LineArray

publishes-to "/vector_map_info/line" LineArry

assign s (reads-param "speed")

Fig. 2: Overview of the analysis stages (dark rectangles), data (rectangles), and data flow (arrows) of ROSDiscover. First, the component
interface models are inferred from source code. Then, these models are composed according to architectural configuration files. Finally the
architecture is checked against well-formedness rules specified in first-order logic.

III. ROSDISCOVER

A common approach to detect bugs that manifest in the run-

time architecture, is to check well-formdness rules on run-time

architectural models. This section describes the theoretical

foundation of static recovery of run-time architectures of ROS

systems to find architecture misconfiguration bugs.

Our architectural recovery must reconstruct the structural

connections between components, as well as component pa-

rameters. In architectural terms, structural connections corre-

spond to the ports and the connectors between them. Mean-

while, component parameters control (among other things) the

naming of component interfaces, such as topics or services.

Beyond being undecidable in general, effective static recovery

of run-time architectures is difficult. First, a system’s run-

time view can differ from the more accessible module view.

Moreover, architectural connectors and ports can be imple-

mented in a variety of ways, precluding a domain-independent

approach to identifying and modeling them. We overcome

these challenges for ROS by relying on three key observations:

1) Well-defined Component Framework API: ROS run-

time architectures are defined via a small set of API

calls that have simple and well-understood architectural

semantics [4]. Static analysis for component port recov-

ery can focus on a small space of ROS API calls.

2) Quasi-static Architectures: ROS uses separate archi-

tecture configuration files (launch files) to compose com-

ponents into larger systems. The resulting systems are

typically “quasi-static” [4], rarely changing after initial-

ization. Architectural recovery can thus focus on parsing

launch files rather than considering more complicated

behavioral change. For (rare) dynamic architectures, the

output contains elements than are not in the ground truth.

3) Small Core Library: ROS systems heavily rely on a

small de facto core library of packages, most from the

core library [13]. Core packages can be more difficult

to analyze statically because they often include complex

control flows and extension mechanisms to support gen-

erality. We support complex systems by providing a way

to specify reusable handwritten models for components

that are difficult to analyze statically.

Figure 2 provides an overview of the analysis process and

its inputs. The analysis consists of three parts:

1) The Component Model Recovery stage recovers a com-

ponent’s interface and internal behavior based on the

component’s source code (Section III-A).

2) The System Architecture Composition stage creates a

component-port-connector model of an entire system

configuration using the models from the previous stage

and the architecture configuration files (Section III-B).

3) The Bug Detection stage finds architecture misconfigu-

ration bugs by checking well-formedness rules specified

in first-order logic on the system model (Section III-C).

In this paper we focus on the recovery of topic, service,

and action ports for components and bugs that results from a

misconfiguration of their corresponding connectors. To reduce

implementation effort, we limit the analysis to C++ rather than

Python because C++ is the most used language in ROS [4].

Static analysis of this kind in Python is possible and part of

our future engineering effort. The inputs to ROSDiscover

consist of ROS launch files, CMake files, package descriptions,

and C++ source code files corresponding to a given system.

A. Component Model Recovery

The Component Model Recovery stage creates a symbolic

description of the interface of each individual component from

node source code. Each description, or component model,

specifies the ports (i.e., publish, subscribe, service calls, and

provided services) and parameters of its associated component.

This information is represented as a set of symbolic function

summaries. Each summary describes the architectural effects

of an associated function in terms of its arguments, represented

symbolically, as described below.

To find all calls to architecturally-relevant APIs in a com-

ponent, we use standard static analysis. ROSDiscover iden-

tifies the source files in a component by analyzing associated

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

PoseToTF(ros::NodeHandle nh, std::string rtopic)

{

std::string pose_topic_name;

nh.getParam("pose_topic", pose_topic_name);

nh.subscribe(pose_topic_name, 10,

&PoseToTF::callbackGetPose, this);

nh.advertise<std_msgs::Empty>(rtopic, 1);

}

(a) simplified C++ source code

func PoseToTF(nh: NodeHandle, rtopic: String) {

pose_topic_name := readParam(joinNamespace(nh,

"pose_topic"), "string");

subscriber(joinNamespace(nh, pose_topic_name),

"geometry_msgs/Pose");

call("PoseToTF::callbackGetPose");

publisher(joinNamespace(nh, rtopic)), "std_msgs/Empty");

}

(b) corresponding symbolic function summary

Fig. 3: ROSDiscover recovers component interfaces by producing and composing symbolic summaries for individual source code functions,
describing the architecturally relevant API and function calls within those functions.

CMake files and build output, and using off-the-shelf Clang

functionality to create/merge the Abstract Syntax Trees (ASTs)

for all component translation units. This AST can be traversed

to find calls to API functions defining the run-time compo-

nent interface. For publish-subscribe connectors (i.e., topics),

this includes the advertise, publish, and subscribe

API methods. For call-return connectors (i.e., services), this

includes call and advertiseService. For parameters,

this includes the param, getParam, and setParam.

However, this AST analysis is inadequate to fully describe

the component interface. Figure 3 illustrates: the code on the

left-hand side calls subscribe, an architecturally-relevant

API function. However, pose_topic_name, the topic name

passed to subscribe is defined by a parameter. The topic

name provided to the advertise API call on the following

line is given by a function argument, reset_topic. More-

over, the call is made through a node handle object, nh, which

specifies and controls the call’s namespace.

Thus, the full component model is composed of sum-

maries of all functions that can reach an architecturally-

relevant API call, thereby providing necessary context around

the parameters. Standard reachability analysis (supported by

Clang) identifies relevant functions (those that can reach a

relevant API call). ROSDiscover lifts each relevant API

or function call into a statement in the symbolic summary,

capturing architecturally relevant arguments to that call. Topic

names and message formats are recorded for publishers. For

function calls, only the arguments that are used in the callee’s

symbolic summary are captured. Our implementation captures

strings and node handles, but ignores other data types (e.g.,

integers, floats, vectors) as they are seldom used in API calls.

Call arguments are replaced with symbolic values computed

in relatively standard ways. String literals are converted to

literals in the summary; the effects of common ROS and

C++ operations and library functions (e.g., concatentation)

are modeled; variable references are traced to their reaching

definitions, where arguments to the function call and the results

of ROS parameter reads are represented symbolically.

Figure 3b provides an example of a recovered function

summary. The first statement models the effect of reading

a parameter, readParam(..), and storing its value to

pose_topic_name. The qualified parameter name is ob-

tained by resolving the unqualified name "pose_topic"

in its associated namespace (nh) via joinNamespace. For

example, if the namespace is /robot, then the qualified

name of the parameter accessed from the parameter server is

/robot/pose_topic.] The next statement uses the value

of the parameter to define a new subscriber via subscribe.

Finally, a call is made to an architecturally relevant function

via call, and a publisher is defined using a topic name

provided by a function argument, reset_topic.

Handwritten Models: Our symbolic execution implemen-

tation balances expressiveness with scalability and cannot

statically infer or model all behavior. For example, some ROS

systems specify custom configuration files with an application

specific format; this, among other sources of imprecision

(like dynamically linked libraries), is out of ROSDiscover’s

present scope. ROSDiscover by default represents such in-

formation using ⊤ (“top”), an overapproximation. We support

the ability to manually refine analysis results by providing

handwritten models. If a component is reusable because it is

part of the ROS core library, associated models can be reused

as well to minimize specification overhead; we specified 15

such models as part of our evaluation. They are written in

an embedded DSL for Python filling in a data structure. On

average, each model has 28.78 lines of code, ranging from 5

to 170. The models can be found in the artifact.

B. System Architecture Composition

The System Architecture Composition stage uses the sys-

tem’s architecture configuration files to compose the inferred

component models (Section III-A) into a component-port-

connector model of the whole system. Overall, this involves

instantiating the symbolic values in the component models

by resolving them to their concrete values. To illustrate why

symbols in component models cannot be fully resolved prior to

composing them, consider topic remappings, a common prac-

tice [4]. A developer may provide code to implement a camera

processing node that subscribes to a topic called camera. A

robot may have that publish images to topics left_camera

and right_camera respectively. The resulting run-time

architectural model should contain two instances of the camera

processing node, for each set of images. The launch file will

remap the camera topic of the first camera instance to

subscribe to the left_camera, and the second instance

to right_camera. The one component can therefore be

configured multiple ways at run time.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

The composition stage thus recursively parses the system

launch files to determine (a) which nodes are run/loaded,

(b) how they are parameterized, and (c) how topics are

remapped at run time. We use the information from the node

tag in the launch files to identify the names and types of

launched/loaded nodes. Launch files also describe parameters

used to configure components and topics. Publish-subscribe

connectors are reconstructed based on the topic names from

component models. In ROS, topic names are unique. Hence,

for each publisher and subscriber that refer to a topic with

the same name, we create a publish-subscribe connector. Call-

return connectors are reconstructed based on the service calls

from the component models, each of which creates a call-

return connector. The caller role is set to the component

instance initiating the call. The service provider role is set

to the component instance that provides this service (a service

can only have one provider in ROS).

C. Bug Detection via Rule Checking

The Bug Detection stage takes the component-connector

model of the system architecture as an input and checks a

set of rules described in first-order logic. Each component-

connector system model is a typed directed graph that connects

component instances via connectors. A typical approach in

architectural checking describes predicates on those graphs

and defines assertions on those predicates describing the

architectural design intent [6], [20], [21].

We use Acme [22] to check the rules and report all rule

violations. We developed a ROS Acme style, which can be

found in the ROSFam.acme in the artifact, to describe a well-

formed ROS architecture. These have on average 2.6 lines of

code and are general to all of ROS, and so need to be defined

only once. It is possible for domain experts to define additional

rules for classes of robot system or at the system level, but

this has not been explored in this paper.

The main challenge of bug detection is to define rules that

find useful errors while minimizing false positives [23], [24].

To strike a balance, we picked these ROS style rules for

detecting misconfigured topics in ROSDiscover:

1) There should not be connectors that connect ports of

different message types (rule shown in Figure 2).

2) There should not be a dangling subscriber/publisher (i.e.,

a subscriber without publisher or vice versa) if there is

a publisher/subscriber that has the similar type and a

similar topic name.

3) There should not be a dangling publisher if there is a

dangling subscriber that has a similar type.

4) There should not be a dangling subscriber if there is a

publisher of a similar type.

To identify similar names or types we measure the edit

distance between identifiers. We use a variation of Dam-

erau–Levenshtein distance [25], [26] that considers that de-

velopers often use underscores in identifiers, and topic names

use slashes to denote name spaces. We adjust the cost of

insertion and substitution to be the distance metric between

the segments split by “/” and “_”.

D. Implementation

ROSDiscover works on containerized versions of robotics

systems, simplifying extensibility and replicability. A layer

called ROSWire manipulates ROS-specific files and processes

on ROS Docker containers. We provide basic scaffolding for

the static analysis (e.g., reachability). The system is written

in Python, comprising about 15 000 lines of code. In terms of

performance, node recovery is the most expensive operation

because it must do static analysis, taking 47 sec per node

on average. However, this only needs to be done once per

component. Component models are modeled using Acme [22].

Once recovered, constructing and checking that model takes

about two minutes.

IV. EVALUATION

We designed ROSDiscover to trade off between false pos-

itives, false negatives, and efficiency, with a goal of being prac-

tical for typical ROS systems. To evaluate ROSDiscover, we

address the following research questions:

• RQ1: How accurately does ROSDiscover statically

recover the interface of ROS nodes? This question ad-

dresses the accuracy of Component Model Recovery.

• RQ2: How accurately does ROSDiscover statically

recover run-time architectures of real ROS systems? This

question addresses the accuracy of the System Architec-

ture Composition.

• RQ3: How effectively does ROSDiscover find configu-

ration bugs in real ROS systems? This question evaluates

the practical use of our architectural recovery approach

as applied to finding architecture misconfiguration bugs

by measuring false positives and false negatives.

Data sets: RQ1 and RQ2 require a set of stable ROS

systems, while RQ3 requires a set of known buggy versions

of ROS systems. We evaluate RQ3 using the bug data set

presented in Section II-C. For RQs 1 and 2, we collected a

set of systems intended to be representative and realistic. Our

selection criteria were:

• Programming Language: We selected ROS systems

primarily comprised of C++ code. For systems with a few

Python components we manually created the models.

• Availability of a Simulator: Our methodology for RQ2

requires that we can execute the system in simulation.

• Popularity: We focused on systems that were highly

starred on GitHub as representative of the target audience

for ROSDiscover.

System Stars Lines of XML Lines of Code Bugs for RQ3

AutoRally 638 43 455 190 340 5

Autoware 4985 30 771 250 509 8

Fetch 126 149 664 434 022 0

Husky 264 54 699 876 405 5

TurtleBot 239 1 237 887 1 596 546 1

TABLE II: Systems used for evaluation with their stars on GitHub
(as of 8th November 2021), lines of XML configuration files, lines
of code including their dependent ROS packages, and the number of
bugs selected for RQ3.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

We used the data set from Malavolta et al. [19] as a basis

for the system selection. The resulting systems are: Au-

toRally [27], Autoware [28], Fetch [29], Husky, and Turtle-

Bot [30]. Table II provides an overview indicating lines of

code for each system, and the number of misconfiguration

bugs we considered for RQ3.

A. RQ1 – Component Model Recovery

Methodology: As described in Section III-A, com-

ponent interfaces cannot always be fully recovered by

ROSDiscover. Thus, to measure the accuracy of the com-

ponent model recovery we measure the percentage of API

calls that have at least one unknown argument (i.e., where

the analysis returns ⊤). This metric is can over-approximate

the accuracy by failing to distinguish dynamically loaded

source code that cannot be analyzed statically. Nodes with

unrecoverable API calls typically require handwritten models

for the recovered architecture to be sufficiently accurate.

Because understanding and modeling a node is not always

proprotional to the number of API calls they include, we also

measured the percentage of nodes with at least one “unknown”

call as an additional heuristic for modeling effort. We evaluate

these metrics on the five systems shown in Table II.

Results: Overall, ROSDiscover can recover all infor-

mation for 87.37% of the API calls across the systems we

analyzed, as summarized in Table III. Most of the nodes within

these systems can be fully recovered. Only 15.19% of the

nodes contain API calls with unknown arguments, requiring

(partially) handwritten models for these nodes.

Listing 1 shows an example of an API call that our approach

cannot recover because of the limitations of our symbolic

execution. A for-loop iterates over a member variable that

changes during execution; the body of the loop contains a

subscribe call. The topic name to which the node subscribes

depends on the content of the variable. Cases like this are rare

in ROS system [4]. To further reduce the specification effort,

ROSDiscover can provide partial models (i.e., component

models containing ⊤ among recovered information), indicat-

ing where in the source it failed to recover all information.

Finally, we note that these numbers exclude 29 nodes for

which the static analysis crashed. The crashes were caused by

Clang incompatibility issues and interface problems between

CUDA and Clang. However, these are only a limitation of the

implementation, not the general approach.

In summary, these results indicate that the Component

Model Recovery has high accuracy (> 85%) for real systems.

B. RQ2 – System Architecture Recovery

Methodology: Measuring the accuracy of static architec-

tural recovery requires a ground truth architecture to compare

to the recovered architecture. However, our systems do not

provide a reliable, up-to-date ground truth for their architecture

(motivating ROSDiscover in the first place!). We therefore

aimed to run full configurations of the robots and observe their

run time architectures. We used the same launch files used

for recovery to launch the robot systems, and then observed

System
API
Calls

% of Unknown
API Calls

Nodes
% of Nodes with

Unknown API Calls

AutoRally 75 13.33 25 16.00

Autoware 882 14.51 209 32.06

Fetch 103 1.94 93 1.08

Husky 223 2.69 105 2.86

TurtleBot 130 14.62 104 1.92

All 1306 12.63 507 15.19

TABLE III: Accuracy of static node recovery per system. Unknown
API calls are architecturally relevant ROS API calls for which the
static recovery cannot resolve all arguments. “All” describes the union
of all nodes, hence includes reused nodes only once.

for (auto& mapIt : chassisCommands_)

{

std::string topic = mapIt.first+"/chassisCommand";

ros::Subscriber sub = nh.subscribe(topic, 1,

&AutoRallyChassis::chassisCommandCallback, this);

chassisCommandSub_[mapIt.first] = sub;

}

Listing 1: Example of an API call that is too dynamic to recover
using static analysis. chassisCommands_ is the map of the most
recent command from each commander. Source: https://github.com/
AutoRally/autorally/blob/c2692f2/autorally core/src/autorally
chassis/AutoRallyChassis.cpp#L94-L100

the architecture dynamically by analyzing the directory of

launched nodes, and observing sent messages and topics.

Where appropriate we ran the robots through a mission and

made multiple observations, merging the observed architec-

tures to have a more complete picture of any changes that

occurred over the execution lifetime. We ended up being able

to observe only a subset of the systems: AutoRally, Husky,

and TurtleBot; we excluded Fetch, because nodes that were

different to the other systems examined are written in Python

(e.g., ”moveit” and ”demo” leaving not much additional code

for ROSDiscover to analyze, and Autoware, because all

Docker images provided by the developers resulted in some

nodes crashing during the execution of a typical scenario.

We use two metrics to compare the recovered architecture

with the observed architecture. Over-approximation measures

the percentage of elements (nodes, connectors) in the recov-

ered architecture that do not appear in the observed architec-

ture. This would occur if the observations did not cover the

same code that was covered by the static analysis. Under-

approximation measures the reverse – the degree to which

static recovery did not capture as much as was observed.

This is more serious than over-approximation because it would

indicate that our analysis has poor coverage of the architecture.

We did not use any graph differencing algorithms that might,

for example, take into account node or topic renames (i.e.,

nodes or connections where we recovered names incorrectly)

– in our measure, these are marked as deviations. Therefore,

our measure is a worst-case comparison that nonetheless gives

some indication of accuracy.

We use the fraction of nodes requiring handwritten models

that are in the core library as a proxy for modeling effort.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

System observed recovered % over approx. % under approx.

AutoRally 13 13 0.00 0.00

Husky 19 17 5.26 15.79

TurtleBot 12 13 16.67 8.33

All 44 43 6.82 9.09

TABLE IV: Accuracy of static recovery per system. Observed and
recovered contains publishers, subscribers, service providers, and
action servers. Our systems do not use action clients. “All” contains
all configurations, with reused nodes showing up multiple times.

Kind of Arch. El. obs. rec. % over approx. % under approx.

Providers 8 8 0.00 0.00

Publishers 20 20 10.00 10.00

Subscribers 16 15 6.25 12.50

TABLE V: The data from Table IV per architectural element.

Results: Table IV summarizes results. ROSDiscover

under-approximates system architectures to 9.09%, compared

to the dynamic analysis. This means that 9.09% of the

architectural elements (i.e., nodes, publishers, subscribers,

service providers, action clients, and action servers) that

are in the observed architecture are not in the recovered

architecture. The overall over-approximation rate is 6.82%.

Over-approximations come mainly from the handwritten mod-

els reporting topics that are not used at run time; under-

approximations come from plugins and linked libraries loaded

at run time that the static analysis does not reach.

ROSDiscover does not perform equally well on all archi-

tectural elements, as Table V shows. This is usually caused by

conditionally launching nodes depending on parameters that

cannot be recovered statically. Overall, ROSDiscover misses

12.5% of the subscribe relationships, and 10% of the publish

relationships in recovered nodes. This usually results from

the inaccuracies in the component models. For the recovered

nodes we have 100% accuracy for service providers. The

studied systems did not have any action clients.

We wrote eight nodes by hand for each of AutoRally, Husky,

and TurtleBot. Due to node reuse, these numbers overlap. For

all systems, a total number of 15 nodes required handwritten

models. Ten of these are nodes are associated with the Gazebo

simulator, which is a complex third party library with its own

extension mechanism. Hence, they are out of scope of a static

recovery approach. Four node models are reusable because

they are part of the ROS core library. Moreover, our handwrit-

ten nodes are generally accurate (11.30% over-approximated

and 5.02% under-approximated across all system; Publishers

are under-approximated in 6.02% of the cases, subscribers in

6.25%, service providers in 3.74%). Although we are not

active developers on the corresponding ROS packages, we

were generally able to create accurate models.

Overall, these results suggest that the System Architecture

Composition has high accuracy (90%) while keeping the spec-

ification effort tractable with 3.67 non-reusable node models

per system and 28.78 lines of code per model on average.

C. RQ3 – Bug Detection

Methodology: To measure ROSDiscover’s ability to

detect architecture misconfiguration bugs, we began from the

data set from Section II-C to construct a corpus of bugs. We

filtered the data set to focus on systems primarily written in

C++ and bugs that relate to topics, services, and actions, since

this is the class of architectural elements ROSDiscover was

designed to recover. For example, we discarded misconfigura-

tions of component parameters. This left 19 misconfiguration

bugs that ROSDiscover could potentially catch (Table II).

Recall from Section III-C that to reduce false positives,

we flag interfaces as potentially misconfigured only if an-

other node is trying to use that interface (i.e., the interface

cannot just be dangling). In some of systems, we could

not find such nodes, even when it was fixed. For example,

the topic pose_estimate for gps_imu was incorrectly

remapped to as pose_estimate_new in the buggy version

of autorally-01. However, we could not find a subscriber to

pose_estimate in any configuration in the container (e.g.,

perhaps because a third party outside the system is expected

to subscribe to it). To mimic potential use of the buggy topic

in such cases, we introduced a node that subscribes to it

(pose_estimate, in our example).

To evaluate success, we ran bug detection on the buggy

system and checked that the misconfiguration in question was

reported (we also confirmed that the error disappeared in the

fixed system). To approximate false positives, we assessed the

number of errors produced by bug finding on the (otherwise

unmodified) systems evaluated in Section IV-B. We assume

these architectures to be correct and treat any reported errors

as a false positive, as a potential overapproximate measure.

Results: Table VI shows results. We detect eight bugs

outright. Further, eight bugs are detectable in principle, but

ROSDiscover failed to recover the architecture fully. Of

these, our static analysis did not work on three (autorally-02,

autorally-05, and husky-01) due to implementation limitations;

two (autoware-03, husky-03) were afflicted by complicated

control flows like those in Listing 1; and two (autoware-05,

autoware-09) appeared to be in parts of the software that were

not intended to be built. We marked three misconfiguration

bugs as undetectable by our approach because they either

involve multiple robot configurations, which we do not handle

yet (autoware-04), or the bugs involved the removal of dan-

gling interfaces that were never meant to be used (autoware-02,

autoware-10). In summary, a rule-based approach on run-time

architecture is applicable to architecture misconfiguration bugs

in our dataset, and ROSDiscover can detect 8 of 19.

Finally, we consider false positives, a key concern in

static analysis usability. Because the misconfiguration bugs

are reproduced as partial architectures, we instead counted the

number of false positives in the complete configurations from

RQ2, because these configurations should be complete. For

the AutoRally system, the rules result in eight false positives.

Husky has five, while TurtleBot has two.

Overall, the results show that ROSDiscover finds 42%

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

Bug-ID Detected In Theory Description

autoware-02 Dangling connector
autoware-10 Dangling connector
autorally-01 * Inconsistent topic names
autoware-01 Inconsistent topic names
autoware-04 Inconsistent topic names
autoware-05 Inconsistent topic names
autoware-11 Inconsistent topic names
husky-02 * Inconsistent topic names
husky-03 Inconsistent topic names
husky-04 * Inconsistent topic names
husky-06 * Inconsistent topic names
autorally-05 Incorrect parameter path
autorally-03 * Incorrect topic remapping
autorally-04 * Incorrect topic remapping
husky-01 Incorrect topic remapping
turtlebot-01 Incorrect topic remapping
autoware-03 Topic name typo
autoware-09 Topic name typo
autorally-02 Topic name variable ignored

TABLE VI: Overview of the architectural misconfiguration bugs
and whether ROSDiscover has detected the bug with the given
rules (“Detected”) or whether it is only detectable in theory due to
static recovery limitations (“In Theory”). A star (“*”) after the bug
name means the bug was detected using forward-porting. The bug-ids
reference the folders in /experiments/detection/subjects in our artifact.

of the bugs from our real-world data set while keeping the

absolute number of false positives per system tractable (< 10).

D. Threats to Validity

Regarding potential threats to External Validity, note that

our evaluation has only been conducted on open source

software. We attempted to include a diverse range of systems;

Autoware is by far the largest open-source ROS system.

However, the results may not generalize to proprietary systems

developed in different ways, or with less reuse.

Considering threats to Internal Validity, first, the analysis

in RQ2 focuses on a portion of each system corresponding

to the bug in question. Hence these results only measure

the accuracy for these configurations. Second, the dynamic

reconstruction of the architecture for RQ2 can only observe a

finite set of executions can be tested. Hence, we might miss

architectural elements that were not executed. To mitigate this

threat, we manually resolved disagreements between the static

and dynamic analyses. However, missing ground truth that

manifests in neither analysis still poses a threat that cannot

be easily addressed for complex systems, since real ground

truth data is unavailable.

Regarding Construct Validity, first, the evaluation of node-

level accuracy for RQ1 is limited to counting API calls

containing arguments designated ⊤; this over-approximates ac-

curacy by failing to distinguish information from dynamically

linked libraries. Note however that unknown API calls are part

of the evaluation of RQ2 that compares static to dynamically

covered architectures, which include code unknown to static

analysis. Finally, it is not possible to measure practicality

without the tool being used in a real development setting.

Our metrics were designed to approximate effort, but truly

evaluating usability requires evaluation in context.

V. RELATED WORK

Static Analysis & Bug Detection for Robotics: Static

analysis has been used to automatically find bugs in robot

systems before. The systems Phriky [31], Phys [32], and

Physframe [33] use type checking to find inconsistencies in

assignments based on physical units or 3D transformations in

ROS code. Thanks to accounting for inter-component dataflow

via publish-subscribe, they can also be used to identify in-

consistencies of message types. They could be combined

with ROSDiscover since ROSDiscover collects different

information and finds different kinds of bugs.

Furthermore, Swarmbug [34] finds configuration bugs in

robot systems that result from misconfigured algorithmic

parameters, causing the system to behave unexpectedly. In

contrast to the misconfiguration bugs that ROSDiscover

can find, these misconfigurations do not result from incorrect

composition or connection of components. Hence, they are not

architectural misconfiguration bugs.

Module View Recovery: Initial approaches to statically

recover architectures relied on clustering software parts based

on modularity metrics [35]–[43]. More recent approaches for

static recovery of architectures use lexical information [44],

concerns [45], and interactive support for architects [46],

[47]. The results from these approaches can be used to show

architects the relative location of a piece of code in the module

view of the architecture [47], [48]. However, in contrast to

component-connector views, module views cannot be used

to detect architecture configuration bugs, since they do not

capture the interactions and composition of components. To

this end run-time architectures are needed.

Dynamic Recovery of Run-Time Architectures: In exist-

ing work, run-time architectures have mostly been recovered

using dynamic analysis. DiscoTect constructs state machines

from event traces to reconstruct run-time architectures [49].

Domain-specific reconstructions include Remote Procedure

Call (RPC) connectors of CORBA systems based on execution

traces [50] and reconstruction of telecommunication systems

using traffic case tracing of execution traces [51]. However,

for dynamic recovery a large number of system executions

have to be performed, which, especially for robotic systems,

is time-intensive and might require access to special hardware.

Furthermore, dynamic execution might miss cases in rarely ex-

ecuted software. In contrast, our approach uses static analysis,

which only assumes that the software can be compiled.

Static Recovery of Run-Time Architectures: The first

techniques for static connector recovery operated on abstract

syntax trees to find function calls using tree marching [8]

or data flow analysis [9]. There are domain-specific recovery

techniques for other domains, such as distributed systems [52],

However, they are not designed to recover publish-subscribe

architectures, such as ROS architectures.

In contrast, our work focuses only on ROS architectures,

which enables us to make assumptions on the definition of

components and the usage of connectors. Hence, components

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

can be directly mapped to ROS nodes. Connectors such as

publish-subscribe can be inferred from calls to the ROS API.

Existing static recovery of run-time architectures for ROS,

such as HAROS [10], [11] and Witte et al. [12] are the most

closely related to our work. They are limited to API calls

that include literals rather than variables. According to Santos

et al. [4] about 75% of the topic names in API calls are

literals. Even if they find all of them, their accuracy is still

significantly below our 86.83% API call recovery accuracy

and 90% system-level accuracy, which we achieve through

a combination of handwritten models, variable and parameter

resolution, and remap parsing.

Architecture Validation: Architecture validation has been

used for compliance checking in many domains [6], [53], [54].

Constraint checking is a common way to validate architectural

structure [22], [55]. We build on this work to express and

check rules for well-formedness in ROS architectures.

VI. DISCUSSION

In this paper we have shown that run-time architectures for

ROS systems can be accurately recovered statically and that

they can be used to detect common misconfiguration bugs. Our

approach exploits the fact that static analysis only needs to

focus on architecturally relevant APIs calls and configuration

files to recover run-time architectures. While conducting this

research, we have made a number of observations.

Static analysis needs variable resolution and path sen-

sitivity: We provide support for variable resolution in our

static analysis, unlike other approaches [10]–[12]. On the other

hand, these approaches include path sensitivity analysis for

conditional API calls. To maximize accuracy, we believe future

work should combine these approaches. In fact, the data that

we have collected as part of this study can be used to focus

improvements to where they would provide the most benefit.

The approach can be used for complex systems: Systems

that heavily rely on dynamically linked libraries and custom

plugin mechanism are a challenge for every static analysis.

This is because during compile time it is unknown which

piece of software will be loaded. Since many ROS packages,

such as move_base or Gazebo, make heavy use of these

dynamic linking mechanism, static analysis alone is not a

viable solution for realistic systems. These components are

also some of the most reused across ROS projects. In con-

trast to existing work for ROS [10]–[12], we let developers

provide handwritten models for pieces of the system that

static analysis cannot handle. This enables the analysis of

entire ROS systems, which would be impractical otherwise.

Furthermore, since the average time to statically recover the

API calls from the source code is only 47 sec per node across

all of our studied systems, this approach does scale to more

complex systems having hundreds of thousands lines of code.

Hence, our approach makes automated architectural analysis

more practical for complex systems than existing approaches.

Future work is needed to provide more tailored methods for

developers to evolve partially handwritten component models,

to specify which plugins and libraries are loaded dynamically

to support static analysis where code is available, and to handle

component communication via parameters.

Rule selection can tailor the approach to use cases:

The accuracy of bug detection strongly depends on the rules

used for architectural checking. Different rules may be suitable

depending on the properties germane to a particular use case

or domain. For example, in a continuous integration pipeline,

rules that are optimized for minimizing false positives are more

practical to avoid disrupting the development process [23],

[24]. However before the release of a product, rules that

minimize false negatives (e.g., checking for all dangling sub-

scribers) can be used while taking more time to go through a

longer list of potential issues. Specific rule violation instances

can be whitelisted if they are identified as false positives to

avoid checking them again. Future work can identify which

specific ruleset is suited for the relevant use cases. One of the

challenges in crafting these rules is the simple fact that we

are really trying to identify those interfaces that are critical

to component functionality. If ROS provided mechanisms to

encourage developers to supply this information, perhaps in

the existing package specification, then architectural checking

could be much simplified. Machine learning over a large

corpus of ROS examples might also be able to further tailor

these rules based on common usage patterns.

The approach is generalizable: We believe that the

approach to analyze API calls of component-based architec-

tural frameworks to statically recover run-time architectures

applies to other ecosystems in which the framework APIs have

well-defined architectural semantics, as well as configuration

files that define the run-time deployment of the systems. For

example, NASA’s component framework F
′ uses XML-based

architectural description and configuration and provides an

API for using architectural connectors similar to ROS [14].

Furthermore, the microservice framework Kubernetes uses

Representational State Transfer (REST) APIs for letting ser-

vice components communicate with each other. Another aspect

of our approach is that it relies on a quasi-static architecture

that changes little as the program runs. We suspect that many

frameworks (e.g., Spring, Kafka) have a similar characteristic.

This opens up future work on applying this approach to other

domains, and other frameworks. A small step in this direction

would be to extend ROSDiscover to support Python, as well

as to support ROS 2, which is similar but has certain key

architectural differences as compared to ROS 1.

Architectural recovery supports reverse engineering:

While in this paper we focused on architecture recovery as

a means for detecting bugs, it can be used more generally.

For example, it can be used to get up-to-date architectural

documentation that can help developers to quickly understand

a package they are planning to reuse. Further, new developers

joining the team can use the architecture to become familiar

with the project by inspecting the interface of components and

understanding major connectors. So architectural information

can help with the broader task of understanding how to

correctly use complex frameworks. Future work is needed to

tailor architectural recovery to reverse engineering tasks.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in International Conference on

Intelligent Robots and Systems (IROS ’05), IEEE, 2005, pp. 163–168,
DOI: 10.1109/IROS.2005.1545523.

[2] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2,
pp. 101–132, 2007, DOI: 10.1007/s10514-006-9013-8.

[3] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry, “The Robot Operating
System: Package reuse and community dynamics,” Journal of Systems

and Software (JSS), vol. 151, pp. 226–242, 2019, DOI: https://doi.org/
10.1016/j.jss.2019.02.024.

[4] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos,
“Mining the usage patterns of ROS primitives,” in International

Conference on Intelligent Robots and Systems (IROS ’17), IEEE, 2017,
pp. 3855–3860, DOI: 10.1109/IROS.2017.8206237.

[5] C. Timperley and A. Wasowski, “188 ROS bugs later: Where do we
go from here?” In ROSCon Macau 2019, Open Robotics, Oct. 2019,
DOI: 10.36288/ROSCon2019-900898.

[6] J. Knodel and D. Popescu, “A Comparison of Static Architecture Com-
pliance Checking Approaches,” in Working Conference on Software

Architecture (WICSA ’07), IEEE, 2007, pp. 12–12, DOI: 10 . 1109 /
WICSA.2007.1.

[7] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan, “Mining
guidelines for architecting robotics software,” Journal of Systems and

Software (JSS), vol. 178, p. 110 969, 2021, DOI: https://doi.org/10.
1016/j.jss.2021.110969.

[8] D. Harris, H. Reubenstein, and A. Yeh, “Recognizers for extracting
architectural features from source code,” in Working Conference on

Reverse Engineering (WCRE ’95), IEEE, 1995, pp. 252–261, DOI: 10.
1109/WCRE.1995.514713.

[9] R. Fiutem, P. Tonella, G. Anteniol, and E. Merlo, “A cliche-based
environment to support architectural reverse engineering,” in Work-

ing Conference on Reverse Engineering (WCRE ’96), IEEE, 1996,
pp. 277–286, DOI: 10.1109/WCRE.1996.558936.

[10] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ros repositories,” in International Conference on

Intelligent Robots and Systems (IROS ’16), IEEE, 2016, pp. 4491–
4496, DOI: 10.1109/IROS.2016.7759661.

[11] A. Santos, A. Cunha, and N. Macedo, “Static-Time Extraction and
Analysis of the ROS Computation Graph,” in International Conference

on Robotic Computing (IRC ’19), IEEE, 2019, pp. 62–69, DOI: 10.
1109/IRC.2019.00018.

[12] T. Witte and M. Tichy, “Checking Consistency of Robot Software
Architectures in ROS,” in International Workshop on Robotics Software

Engineering (RoSE ’18), IEEE, 2018, pp. 1–8, [Online]. Available:
https://ieeexplore.ieee.org/document/8445812.

[13] S. Kolak, A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “It
Takes a Village to Build a Robot: An Empirical Study of The ROS
Ecosystem,” in International Conference on Software Maintenance and

Evolution (ICSME ’20), IEEE, 2020, pp. 430–440, DOI: 10 . 1109 /
ICSME46990.2020.00048.

[14] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison, “F
Prime: An Open-Source Framework for Small-Scale Flight Software
Systems,” in Small Satellite Conference, 2018, [Online]. Available:
https://digitalcommons.usu.edu/smallsat/2018/all2018/328/.

[15] N. Alshuqayran, N. Ali, and R. Evans, “Towards Micro Service Ar-
chitecture Recovery: An Empirical Study,” in International Conference

on Software Architecture (ICSA ’18), IEEE, 2018, pp. 47–4709, DOI:
10.1109/ICSA.2018.00014.

[16] Update about the october 4th outage, Accessed 11-Oct-2021, [Online].
Available: https://engineering.fb.com/2021/10/04/networking- traffic/
outage/.

[17] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A Study on
Challenges of Testing Robotic Systems,” in International Conference

on Software Testing, Validation and Verification (ICST ’20), IEEE,
2020, pp. 96–107, DOI: 10.1109/ICST46399.2020.00020.

[18] A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley, “Simulation
for Robotics Test Automation: Developer Perspectives,” in Conference

on Software Testing, Verification and Validation (ICST ’21), IEEE,
2021, pp. 263–274, DOI: 10.1109/ICST49551.2021.00036.

[19] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan, “How
Do You Architect Your Robots? State of the Practice and Guidelines

for ROS-Based Systems,” in International Conference on Software En-

gineering: Software Engineering in Practice (ICSE-SEIP ’20), ACM,
2020, pp. 31–40, DOI: 10.1145/3377813.3381358.

[20] G. D. Abowd, R. Allen, and D. Garlan, “Formalizing Style to Un-
derstand Descriptions of Software Architecture,” 4, vol. 4, ACM, Oct.
1995, pp. 319–364, DOI: 10.1145/226241.226244.

[21] B. Schmerl and D. Garlan, “AcmeStudio: Supporting Style-Centered
Architecture Development (Research Demonstration),” in International

Conference on Software Engineering (ICSE’04), 23-28 May 2004,
pp. 704–705, DOI: 10.1109/ICSE.2004.1317497.

[22] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural De-
scription of Component-Based Systems,” pp. 47–68, 2000, [Online].
Available: https : / /www.cs . cmu.edu /afs / cs /project / able / ftp / acme-
fcbs/acme-fcbs.pdf.

[23] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” In
International Conference on Software Engineering (ICSE ’13), IEEE,
2013, pp. 672–681, DOI: 10.1109/ICSE.2013.6606613.

[24] M. Christakis and C. Bird, “What Developers Want and Need from
Program Analysis: An Empirical Study,” in International Conference

on Automated Software Engineering (ASE ’16), ACM, 2016, pp. 332–
343, DOI: 10.1145/2970276.2970347.

[25] F. J. Damerau, “A technique for computer detection and correction of
spelling errors,” Commun. ACM, vol. 7, no. 3, pp. 171–176, Mar. 1964,
DOI: 10.1145/363958.363994.

[26] G. V. Bard, “Spelling-error tolerant, order-independent pass-phrases via
the damerau-levenshtein string-edit distance metric,” in Australasian

Symposium on ACSW Frontiers (ACSW’07), Australian Computer
Society, Inc., 2007, pp. 117–124, [Online]. Available: https://eprint.
iacr.org/2006/364.pdf.

[27] B. Goldfain, P. Drews, C. You, et al., “AutoRally: An Open Platform
for Aggressive Autonomous Driving,” IEEE Control Systems Maga-

zine, vol. 39, no. 1, pp. 26–55, 2019, DOI: 10 . 1109 / MCS . 2018 .
2876958.

[28] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T.
Hamada, “An Open Approach to Autonomous Vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015, DOI: 10.1109/MM.2015.133.

[29] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
and freight: Standard platforms for service robot applications,” in
Workshop on autonomous mobile service robots, 2016, [Online]. Avail-
able: http://docs.fetch3staging.wpengine.com/FetchAndFreight2016.
pdf.

[30] D. Singh, E. Trivedi, Y. Sharma, and V. Niranjan, “TurtleBot: Design
and Hardware Component Selection,” in International Conference on

Computing, Power and Communication Technologies (GUCON ’18),
IEEE, 2018, pp. 805–809, DOI: 10.1109/GUCON.2018.8675050.

[31] J.-P. Ore, C. Detweiler, and S. Elbaum, “Lightweight Detection of
Physical Unit Inconsistencies without Program Annotations,” in SIG-

SOFT International Symposium on Software Testing and Analysis

(ISSTA ’17), ACM, 2017, pp. 341–351, DOI: 10 . 1145 / 3092703 .
3092722.

[32] S. Kate, J.-P. Ore, X. Zhang, S. Elbaum, and Z. Xu, “Phys: Probabilistic
Physical Unit Assignment and Inconsistency Detection,” in Joint Meet-

ing on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’18), ACM,
2018, pp. 563–573, DOI: 10.1145/3236024.3236035.

[33] S. Kate, M. Chinn, H. Choi, X. Zhang, and S. Elbaum, “PHYS-
FRAME: Type Checking Physical Frames of Reference for Robotic
Systems,” in Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’21), ACM, 2021, pp. 45–56, DOI: 10 . 1145 / 3468264 .
3468608.

[34] C. Jung, A. Ahad, J. Jung, S. Elbaum, and Y. Kwon, “Swarmbug:
Debugging Configuration Bugs in Swarm Robotics,” in Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’21), ACM, 2021,
pp. 868–880, DOI: 10.1145/3468264.3468601.

[35] R. W. Schwanke, “An Intelligent Tool for Re-Engineering Software
Modularity,” in International Conference on Software Engineering

(ICSE ’91), IEEE, 1991, pp. 83–92, DOI: 10.1109/ICSE.1991.130626.
[36] S. Patel, W. Chu, and R. Baxter, “A Measure for Composite Module

Cohesion,” in International Conference on Software Engineering (ICSE

’92), ACM, 1992, pp. 38–48, DOI: 10.1145/143062.143086.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

[37] L. Belady and C. Evangelisti, “System partitioning and its measure,”
Journal of Systems and Software (JSS), vol. 2, no. 1, pp. 23–29, 1981,
DOI: 10.1016/0164-1212(81)90043-1.

[38] D. Hutchens and V. Basili, “System Structure Analysis: Clustering with
Data Bindings,” Transactions on Software Engineering (TSE), vol. SE-
11, no. 8, pp. 749–757, 1985, DOI: 10.1109/TSE.1985.232524.

[39] D. Doval, S. Mancoridis, and B. Mitchell, “Automatic clustering of
software systems using a genetic algorithm,” in International Workshop

on Software Technology and Engineering Practice (STEP ’99), IEEE,
1999, pp. 73–81, DOI: 10.1109/STEP.1999.798481.

[40] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner, “Bunch: A
clustering tool for the recovery and maintenance of software system
structures,” in International Conference on Software Maintenance

(ICSM ’99), IEEE, 1999, pp. 50–59, DOI: 10.1109/ICSM.1999.792498.
[41] O. Maqbool and H. Babri, “The weighted combined algorithm: A

linkage algorithm for software clustering,” in European Conference on

Software Maintenance and Reengineering (CSMR ’04), IEEE, 2004,
pp. 15–24, DOI: 10.1109/CSMR.2004.1281402.

[42] ——, “Hierarchical Clustering for Software Architecture Recovery,”
Transactions on Software Engineering (TSE), vol. 33, no. 11, pp. 759–
780, 2007, DOI: 10.1109/TSE.2007.70732.

[43] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik, “LIMBO:
Scalable Clustering of Categorical Data,” in International Confer-

ence on Extending Database Technology (EDBT ’04) - Advances in

Database Technology, Springer, 2004, pp. 123–146, DOI: 10.1007/978-
3-540-24741-8 9.

[44] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, “Investi-
gating the use of lexical information for software system clustering,”
in European Conference on Software Maintenance and Reengineering

(CSMR ’11), IEEE, 2011, pp. 35–44, DOI: 10.1109/CSMR.2011.8.
[45] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,

“Enhancing architectural recovery using concerns,” in International

Conference on Automated Software Engineering (ASE ’11), IEEE,
2011, pp. 552–555, DOI: 10.1109/ASE.2011.6100123.

[46] L. Chouambe, B. Klatt, and K. Krogmann, “Reverse Engineering
Software-Models of Component-Based Systems,” in European Confer-

ence on Software Maintenance and Reengineering (CSMR ’08), IEEE,
2008, pp. 93–102, DOI: 10.1109/CSMR.2008.4493304.

[47] Z. T. Sinkala and S. Herold, “InMap: Automated Interactive Code-to-
Architecture Mapping Recommendations,” in International Conference

on Software Architecture (ICSA ’21), IEEE, 2021, pp. 173–183, DOI:
10.1109/ICSA51549.2021.00024.

[48] D. R. Harris, H. B. Reubenstein, and A. S. Yeh, “Reverse Engineering
to the Architectural Level,” in International Conference on Software

Engineering (ICSE ’95), IEEE, 1995, pp. 186–186, DOI: 10 . 1145 /
225014.225032.

[49] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan, “Discov-
ering Architectures from Running Systems,” Transactions on Software

Engineering (TSE), vol. 32, no. 7, Jul. 2006, DOI: 10.1109/TSE.2006.
66.

[50] J. Moe and D. A. Carr, “Understanding distributed systems via execu-
tion trace data,” in International Workshop on Program Comprehension

(IWPC ’01), IEEE, 2001, pp. 60–67, DOI: 10.1109/WPC.2001.921714.
[51] A. Marburger and D. Herzberg, “E-CARES research project: Under-

standing complex legacy telecommunication systems,” in European

Conference on Software Maintenance and Reengineerin (CSMR ’01),
IEEE, 2001, pp. 139–147, DOI: 10.1109/CSMR.2001.914978.

[52] N. C. Mendonça and J. Kramer, “An approach for recovering dis-
tributed system architectures,” Automated Software Engineering, vol. 8,
no. 3, pp. 311–354, Aug. 2001, DOI: 10.1023/A:1011217720860.

[53] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonça, “Static
Architecture-Conformance Checking: An Illustrative Overview,” IEEE

Software, vol. 27, no. 5, pp. 82–89, 2010, DOI: 10.1109/MS.2009.117.
[54] A. Shokri, J. C. S. Santos, and M. Mirakhorli, “ArCode: Facilitating the

Use of Application Frameworks to Implement Tactics and Patterns,” in
International Conference on Software Architecture (ICSA ’21), IEEE,
2021, pp. 138–149, DOI: 10.1109/ICSA51549.2021.00021.

[55] D. Hou and H. Hoover, “Using SCL to specify and check design intent
in source code,” Transactions on Software Engineering (TSE), vol. 32,
no. 6, pp. 404–423, 2006, DOI: 10.1109/TSE.2006.60.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 01:56:30 UTC from IEEE Xplore. Restrictions apply.

