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Abstract—Testing plays an essential role in ensuring the safety and quality of cyberphysical systems (CPSs). One of the main
challenges in automated and software-in-the-loop simulation testing of CPSs is defining effective oracles that can check that a given
system conforms to expectations of desired behavior. Manually specifying such oracles can be tedious, complex, and error-prone, and
so techniques for automatically learning oracles are attractive. Characteristics of CPSs, such as limited or no access to source code,
behavior that is non-deterministic and sensitive to noise, and that the system may respond differently to input based on its context
introduce considerable challenges for automated oracle learning. We present Mithra, a novel, unsupervised oracle learning technique
for CPSs that operates on existing telemetry data. It uses a three-step multivariate time series clustering to discover the set of unique,
correct behaviors for a CPS, which it uses to construct robust oracles. We instantiate our proposed technique for ArduPilot, a popular,
open-source autopilot software. On a set of 24 bugs, we show that Mithra effectively identifies buggy executions with few false positives
and outperforms AR-SI, a state-of-the-art CPS oracle learning technique. We demonstrate Mithra’s wider applicability by applying it to

an autonomous racer built for the Robot Operating System.

Index Terms—Robotics and autonomous systems, cyberphysical systems testing, anomaly detection, oracle learning, clustering, Mithra
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INTRODUCTION

1

YBERPHYSICAL systems (CPSs) integrate physical (e.g.,
Csensors, actuators) and computational components (e.g.,
monitoring, perception, planning, control) to tackle prob-
lems that neither physical or computational parts alone
could solve [91]. CPSs are an important part of our everyday
lives and have many safety-critical applications in avionics,
medical operations, and transportation. Failures in these sys-
tems can be extremely expensive [2], [22] and even deadly
[75], [86] As a result, quality assurance is an essential part of
development for these systems.

Alongside formal verification [48], [69], testing plays an
essential role in ensuring the safety and quality of CPSs. Field
testing importantly serves to assess whole-system behavior
in realistic environments and is critical in identifying poten-
tially catastrophic failures before deployment. However,
field testing is inherently manual and time-consuming, and
is potentially expensive, dangerous, and prone to errors of
human judgment [8]. Automated testing, via software-in-
the-loop (SITL) simulation, presents a promising alternative
to testing whole-system behavior that is substantially faster,
cheaper, and safer than manual field testing [7], [36], [39],
[79], 1951, [96], [104], [106].
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Fully automated whole-system testing requires oracles
that can determine whether a given CPS behaves correctly
for a given set of inputs [15]. In this paper, we tackle the
problem of providing such an oracle for mature systems;
systems that are in the final stages of development, and are
ready to be tested at scale ahead of their deployment (e.g.,
technology readiness level of 4 or higher [72]). In research
and practice, domain experts manually provide CPS oracles
in the form of a set of partial specifications, or assertions to
automatically evaluate the correctness of the system’s
behavior [6], [56], [68], [71], [89], [120]. However, manually
writing such specifications is tedious, complex, and error-
prone [39], [69], [76].

An attractive alternative to manual oracle specification is
to automatically learn them, such as from CPS traces (e.g.,
[3], [27], [45], [50], [77]). Automatically learning oracles for
CPSs presents several key challenges: (1) CPSs often contain
proprietary third-party components (such as cameras or
other sensors) for which source code is unavailable, and so
techniques should minimize or avoid relying on source
code access [20], [62]. (2) CPSs are inherently non-determin-
istic due to noise in both their physical (e.g., sensors, actua-
tors, feedback loops) and cyber components (e.g., timing,
thread interleaving, random algorithms) and may react to a
given command in a potentially infinite number of subtly
different ways that are considered to be acceptable [63],
[117], as illustrated in Fig. 1. That is, for a given input and
operating environment, there is no single, discrete response
that is correct, but rather an envelope of responses that are
deemed correct. And so techniques should be robust to
small, inherent deviations in behavior. Finally, (3) the CPS
may respond differently to a given instruction based on its
environment, configuration, and other factors (i.e., its oper-
ating context) [21]. For example, in the scenario illustrated
in Fig. 1, the copter may refuse to fly to the specified point if
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Fig. 1. Different example trajectories a quadcopter might take to perform
the same set of instructions (flying from point A to point B). The black tra-
jectories show acceptable behavior with respect to the instructions; the
red trajectory shows erroneous behavior.

its battery is depleted. And so, techniques must be capable
of capturing contextual behaviors for a given command.
While these challenges individually are not unique to
CPSs, their combination is rarely observed in other systems,
making automated oracle inference for CPSs extremely
challenging.

We present Mithra,' a novel oracle learning approach,
based on anomaly detection, that tackles all of the above
challenges. By observing many executions, Mithra identifies
common behaviors, which it uses to construct its oracle.
Without the need for source code access, Mithra accepts
existing unlabeled telemetry logs as its input, which are typi-
cally produced by CPSs over the course of their operation.
Mithra applies unsupervised multi-step clustering to its
input data (i.e., traces) to construct a set of behavioral clusters,
each representing a unique contextual behavior. Mithra
determines whether a given execution trace (i.e., telemetry
log) exhibits anomalous behavior, which is treated as errone-
ous [32], based on its similarity to identified behavioral clus-
ters. Mithra tackles all three above-mentioned challenges as
it does not require source code access, avoids overgeneraliza-
tion and is robust to small deviations from expected behav-
ior, and identifies contextual behaviors.

We evaluate Mithra on a dataset of 24 real bugs from the
popular ArduPilot system. Our results show that Mithra
effectively generates CPS oracles, and is more successful at
doing so than prior work: Mithra correctly labels 69.3% of
execution traces, outperforming AR-SI [45] (the previous
state-of-the-art) by 11.5%. To demonstrate the wider appli-
cability of Mithra, we evaluate it on a dataset of 153 artificial
bugs in F1/10, an autonomous racer built on top of the pop-
ular Robot Operating System [92].

To the best of our knowledge, none of the prior work
effectively tackles all three of the key challenges to CPS
oracle learning. Some are not fully automated [27], [77],
[116], or require access to source code [25], [33], [83];
others are affected by noise and non-deterministic behav-
ior [11], [40], [65], [114], or cannot capture contextual
behaviors [3], [12], [45]. One of the most recent techniques
introduced by Chen et al. [25] tackles challenges 2 and 3 by
learning behavioral models of the CPS, but requires source
code access to generate labeled data for their supervised
learning approach. AR-SI [45] tackles challenges 1 and 2
by checking the smoothness of the CPS’s execution in
terms of its sensor values. We provide a more detailed dis-
cussion of related work in Section 8.

1. Zoroastrian divinity of contracts, who is undeceivable, infallible,
and eternally watchful: https://en.wikipedia.org/wiki/Mithra
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This paper makes the following contributions:

e We present a novel oracle generation approach for
CPSs, based on anomaly detection via multi-step
multivariate time series clustering, that does not
assume source code access, is robust to imperfect
traces [94], and can be applied to any system that
logs telemetry data, as is standard for CPSs.

e We evaluate our technique on ArduPilot, a popular,
open-source autopilot. We collect a dataset of 24
bugs, and thousands of traces for ArduPilot. The
dataset is publicly available to be used by research-
ers in the future.

e We demonstrate the wider applicability of our tech-
nique by applying it to a dataset of 153 artificial bugs
for F1/10 system, a ROS-based autonomous racer.
We make the dataset publicly available as part of our
replication package.

e We evaluate Mithra's effectiveness by comparing
against AR-SI [45], a state-of-the-art technique. We
show that our technique performs significantly bet-
ter in predicting correctness of traces.

e We provide a replication package for our study,
complete with evaluation datasets, and source code
for our prototype implementation: https://doi.org/
10.6084 /m9.figshare.14619177.

2 CASE STuDY

As a running example, we describe ArduPilot, an autopilot
software for a diversity of vehicles, including conventional
airplanes, multirotor helicopters, and submarines, that is
used by over a million vehicles across the world. At the
time of writing, the ArduPilot codebase is primarily written
in C++ and contains over 300,000 lines of code (measured
using sLoc). ArduPilot has been widely used in studies on
CPSs as it represents a fairly complex open-source CPS [5],
[45], [66], [109], [120].

2.1 Motivating Scenario

ArduPilot is a mature autopilot software for CPSs that is used
in a wide variety of vehicles and environments that are either
in, or approaching, deployment. Although ArduPilot is func-
tionally stable and used by over one million vehicles [1], it
continues to evolve, and new issues and erroneous behaviors
are continually discovered and reported over time. In 2019
alone, 722 new issues were filed on ArduPilot’s issue tracker,
of which 130 were labeled as bugs. Many of these bugs, such
as the one described in Issue #9657, occur only under specific
conditions and may result in behavioral changes that may
have not been considered by ArduPilot’s testing team.” In the
case of Issue #9657, the vehicle misbehaves when instructed
to navigate a series of waypoints that includes a spline path.
By default, the vehicle will travel along a straight line
between waypoints. However, operators may also instruct
the vehicle to traverse a smooth path between waypoints
along a spline. In the relatively rare event that a series of

2. Issue: https:/ /github.com/ArduPilot/ardupilot/issues /9657 fixed
by pull request https://github.com/ArduPilot/ardupilot/pull /10338
[Date Accessed: September 2, 2020].
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Fig. 2. A simplified depiction of the motivating example (ArduPilot’s Issue
#9657). The left figure illustrates the intended path of the vehicle from A
to C via B. The vehicle is instructed to travel along a spline between A
and B, before continuing along a straight line between B and C. The right
figure illustrates the actual, erroneous path of the vehicle. The issue
causes the vehicle to skip the spline waypoint B, and travel directly from
A to C along a straight line.

C A

waypoints includes a spline path, the vehicle will errone-
ously skip the first waypoint along a spline path (Fig. 2).

Identifying such bugs requires both a means of triggering
the bug (i.e., subjecting the system to a particular scenario
and environment), and defecting that a failure has occurred
(i.e., the system behaves in an unintended manner). Numer-
ous studies on automated test input generation have
focused on addressing the triggering problem [39], [44], [74],
[78], [105], [106], [110]. Using artifacts and models of the sys-
tem, or a search-based approach, these studies propose
ideas on generating test inputs, scenarios, and environ-
ments that trigger and expose different behaviors of the sys-
tem. In this work, we assume a means of triggering bugs
and focus our attention on the problem of automatically
detecting failures.

The example of ArduPilot and Issue #9657 motivates our
approach in creating oracles for mature systems. As men-
tioned, a mature software (e.g., ArduPilot) performs com-
mon scenarios as expected. For example, when a vehicle is
instructed to navigate to a target location, it performs as
expected under most conditions. Note that if such common
behavior becomes faulty in a mature system, the maintainers
and testers would be alerted quickly, as it affects many users
and scenarios. However, in circumstances involving behav-
iors that are less commonly used, such as scenarios that
involve spline waypoints, the vehicle may misbehave and
perform not exactly as expected.

In this work, we use a novel clustering approach to auto-
matically identify the common behaviors of the system,
which we use to form an oracle that can distinguish between
expected and unexpected executions. In Section 4, we
describe Mithra’s approach for constructing such oracles.

2.2 ArduCopter’s Architecture

For our running example, we use ArduPilot (version COPTER-
3.6.9) as the controller for a simulated quadcopter. Fig. 3 pro-
vides a simplified view of the cyber and physical components
of ArduCopter. The user provides input to ArduCopter’s
cyber component in one of three forms: (1) as a discrete com-
mand from a ground control station, such as TAKEOFF, along
with a set of parameters (e.g., desired altitude); (2) as a pre-
computed sequence of such commands, known as a mission;
or (3) in the form of a continuous sequence of radio control
signals. The cyber component of ArduCopter interacts with
the physical component by polling its sensors at a fixed inter-
val (e.g., once every 10ms) to determine its extrinsic state and
sending signals to its actuators based on its extrinsic state and
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Fig. 3. A simplified view of the ArduCopter communications architecture.
Input is provided by the user to the cyber component in the form of dis-
crete commands and missions, or as a continuous radio control signal.
The cyber component sends signals to actuate the physical component
of the system, and reads sensor values. The state of the system,
reported by the sensors, is periodically written to a telemetry log.

the user-provided input. The extrinsic state s; of the system
at time ¢ describes the values of its state variables, each repre-
senting the value of a particular sensor, and is composed of
both continuous (e.g., vELociTy) and categorical values (e.g.,
sTAaTUS). The cyber component of the system periodically logs
its extrinsic state to a telemetry log at a fixed rate (e.g., 10 Hz).
From the telemetry log, we extract an execution trace S for
each command execution that records the sequence of extrin-
sic states logged during execution. We use the execution trace
as input to our technique.

Fig. 4 provides a simplified example of two execution
traces for the TAKEOFF command. Each execution trace
can be represented as a heterogeneous multivariate time series:
time series data consisting of multiple dimensions that
include both continuous and nominal data. Since the time
taken to complete an execution may vary, traces are variable
in length and may consist of thousands of recorded states.
For example, a 30-second execution of a single command
results in a trace with 300 state observations if telemetry is
recorded at 10 Hz. On another execution, the same com-
mand may take 50 seconds to complete and result in 500
state observations.

In this work, we restrict our attention to command-based
user inputs and leave an application of our approach on
continuous inputs to future work. We consider 10 out of 25
commands supported by the ArduCopter mission planner,
shown in Table 1,> and 18 associated state variables describ-
ing properties like orientation, position, and velocity.* The
15 excluded commands consist of 10 commands specific to
particular hardware (e.g., Do-Dicicam-CoNTROL triggers the
camera shutter if the copter is mounted with a camera), 4
commands controlling the mission planner itself and having
little to no impact on the behavior of the system (e.g., Do-
Jump skips commands in the mission), and 1 command, Lor-
TER-UNLIMITED, that halts the execution of the mission plan-
ner, as the system loiters above a location indefinitely.

3 CLUSTERING MULTIVARIATE TIME SERIES

Our oracle learning approach builds oracles by clustering
telemetry logs represented by multivariate time series
(MTS). In this section, we provide the necessary background
in MTS clustering to understand the techniques underlying
our approach. Time series clustering has widely been used

3. http:/ /ardupilot.org/copter/docs/mission-command-list.html
[Date Accessed: September 2, 2020].

4. The full list of these 18 state variables are included as an appen-
dix, which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109 /TSE.2021.3120680.
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Fig. 4. An example of two execution traces for the ArduCopter's TAKEOFF command with respect to its ALTiTuDE and LATITUDE state variables. In the
bottom trace (blue), TAKEOFF(ALT:4.0), the copter elevates 4 meters above the ground. In the top trace (orange), TAKEOFF(ALT:14.7), the copter
elevates 14.7 meters above the ground. In both cases, the LaTITuDE remains roughly fixed.

to find common patterns in streams of data in a variety of
domains including bioinformatics and biology, genetics,
finance, air quality control, and meterology [13], [24], [28],
[101]. In this paper, we present a novel formulation of MTS
clustering that effectively and concisely encodes correct
CPS behavior, and which can be used as an efficient oracle
for the purpose of simulation-based testing.

k-Medoids: The k-medoids algorithm [58] is a clustering
technique that uses a given distance metric to partition a
given dataset into k clusters such that the distance between
the points within a cluster and the center of that cluster (i.e.,
the centroid) is minimized. Unlike the well-known k-means,
in which the center of a cluster is the average between its
points, k-medoids uses an existing representative point
within the cluster as its center. By using an existing point to
represent the centroids of each cluster, k-medoids avoids the
difficulties of computing a mean time series from a set of var-
iable-length MTS, which may not be physically meaningful.
Furthermore, k-medoids is attractive for clustering MTS
datasets because it does not introduce additional, expensive
distance calculations (e.g., measuring the distance between a
given point and the mean of a cluster, as in k-means).
k-medoids only compares existing points to one another,
and so a distance matrix can be efficiently precomputed.
When accounting for the multiple clustering runs that are
necessary to determine a suitable &, k-medoids requires O(n -
(n — 1)) unique distance calculations as opposed to O(k?n?)
required by k-means.

Distance Metrics: Any clustering approach requires a suit-
able distance metric. A common distance metric is euclidean
distance (i.e., L2 norm), which is inexpensive to compute.
However, euclidean distance can only be used for same-
length MTS (i.e., time series of an equal duration and number

TABLE 1
A List of the Command Types Supported by ArduCopter’s
Mission Planner that are Considered in this Work, Their Number
of Parameters, and a Brief Description of Their Function

# of
Command Types Params Description
WAYPOINT 4 Straight navigation to waypoint.
SPLINE_WAYPOINT 4 Spline navigation to waypoint.
TAKEOFF 1 Takeoff from the ground.
LAND 2 Land on the ground.
LOITER_TURNS 4 Loiter & turn above a location.
LOITER_TIME 4 Loiter at a location for set time.
RETURN_TO_LAUNCH 0 Return to home location.
CHANGE_SPEED 2 Set the target horizontal speed.
SET HOME 4 Set home location.
PARACHUTE 1 Trigger a parachute.

of observations). In our case, where this assumption does not
hold, we require an alternative distance metric. We discuss
two alternative metrics that can compare variable-length
MTS: Dynamic Time Warping [16] and Eros [115]. Table 2
provides a high-level comparison of these distance metrics
in terms of their cost and associated qualities.

Dynamic Time Warping (DTW) [16], [41], [54], [55] is a
similarity measure” that compares temporal sequences (i.e.,
traces) in terms of their “shape”. DTW accounts for varia-
tions in duration, length, speed, and amplitude between
two traces by mapping points from one trace to another
trace via a non-linear process of “warping”, illustrated in
Fig. 5. DTW computes the optimal mapping between A and
B such that every point in A is mapped to at least one point
in B and vice versa in such a way that the order of points is
retained, and the sum of distances between mapped points
is minimized.

Although DTW provides a powerful means of comparing
variable-length k-dimensional time series, it comes at the
cost of a considerably O(kmn) higher runtime complexity
compared to O(kn) complexity of the L2 norm, where m and
n are the lengths of two time series. This can be reduced
using a DTW approximation or lower bound such as
FastDTW [99] or LB_Keogh [59].

The Extended Frobenius norm [115], or Eros, is a cheaper
alternative to DTW that uses Principal Component Analysis
(PCA) [4], [47], [90] to measure the distance between two
variable-length MTS. Instead of measuring similarity
between them by aggregating similarities between their
individual variables, Eros treats each MTS as a matrix and
uses the principal components to measure similarity.

Given an MTS dataset, Eros first determines the eigen-
vectors and eigenvalues of the covariance matrices of each
MTS within the dataset. Eros then aggregates the eigenval-
ues to obtain weights for the dataset. Finally, Eros uses those
weights to measure the similarity between two MTS in
terms of their associated eigenvectors.

Eros is considerably cheaper to compute than DTW
with an amortized runtime complexity that is linear in the
number of variables in the MTS, and unlike euclidean dis-
tance, can be applied to variable-length MTS. Eros can
account for differences in shape and is capable of handling
shifts in time, but unlike DTW, it does not account for scal-
ing over time.

5. Note that although DTW measures a distance-like quantity, it is
not a true distance metric since it violates the triangle inequality:
d(z, z) < d(z,y) + d(y, 2).
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TABLE 2
A High-Level Comparison of Several Distance Metrics for
Clustering Multivariate Time Series

Euclidean

Distance Eros DTW
Cost Low Low High
Variable length MTS X v 4
Agnostic to shift in time X v v
Agnostic to scaling over time X X v

4 APPROACH

In this section, we describe Mithra, our proposed unsuper-
vised oracle learning approach, based on anomaly detection
for mature cyberphysical systems: Section 4.1 presents an
overview, Section 4.2 describes the preprocessing of the
training data, Section 4.3 presents how Mithra learns oracles,
and Section 4.4 describes how Mithra’s oracles are queried.
Finally, we discuss implementation details in Section 4.5.

4.1 Overview
Mithra learns oracles for CPSs that accept a vocabulary of
discrete commands, and produce telemetry logs (e.g., Ardu-
Copter). As Fig. 6 presents, Mithra first decomposes the
telemetry logs (i.e., execution traces) consisting of sequential
execution of multiple commands, and aggregates all com-
mand traces that represent the same command type
together to create the training data for each command type.°®
Mithra uses the training data to identify clusters represent-
ing the different behaviors for each command type. For
example, based on traces such as those in Fig. 4, Mithra
detects one such common behavior, TAKEOFF(ALT: <p;>),
in which ALTITUDE gradually increases until reaching a speci-
fied altitude p,; while LATITUDE remains constant. Building
oracles for each command type rather than individual test
cases (i.e., missions), allows Mithra to derive oracle for a
limited number of commands that can create thousands of
different test cases. A test case is only considered passing
when all commands in the mission perform as expected.
Approaches for clustering and classifying time series that
are based on comparing differences in shape are often supe-
rior in terms of performance than those that compare differ-
ences in time [9], [93]. Unfortunately, clustering strictly
with a DTW distance measure does not scale to large data-
sets. As a result, Mithra clusters execution traces based on
overall shape using a three-step approach inspired by
Aghabozorgi et al.’s method for clustering large time-series
data [10]. Fig. 7 provides a high-level overview:

1)  Preclustering: A low-resolution version of the training
data is clustered into preclusters to reduce the search
space.

2)  Purifying: As the low-resolution preclusters are
insufficiently accurate, Mithra next creates a set of
subclusters for each precluster using high-resolution
data.

6. From this point forward, we simply refer to command traces of a
command type as traces.
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Fig. 5. Dynamic time warping measures the distance between two time
series of unequal length by mapping the points in each time series onto
the other via warping. The solid lines represent individual time series
and the dashed lines represent the warping that maps one onto the
other. By warping, DTW allows similarity between time series to be com-
puted based on their shape.

3) Merging: Similar subclusters are merged to obtain a
set of behavioral clusters, producing a simpler model
that is cheap to query.

Using its learned behavioral clusters, Mithra constructs an
oracle for each command based on anomaly detection, that
marks execution traces as either CORRECT or ERRONEOUS based
upon their similarity to the contextual behaviors repre-
sented by those clusters.

Note that although the structure of our technique draws
inspiration from the prior work, Aghabozorgi et al.’s
approach [10] can only be applied to datasets of time series
with fixed length, and thus is not suitable off-the-shelf for
our problem domain. Transforming traces to a fixed length
would either require scaling and downsampling longer
traces, losing important information, or padding shorter
traces with nominal data that would introduce inaccuracies
and reduce the effectiveness of clustering. Our novel contri-
bution is to use k-medoids in a multi-step clustering process
using Eros and FastDTW on a combination of both high and
low-resolution data that carefully balances accuracy and
efficiency to effectively discover clusters for variable-length
data without introducing artifacts. Our multi-step cluster-
ing process carefully overcomes the considerable computa-
tional costs of simply using A-medoids and DTW on high-
resolution trace data in a single clustering step, which can-
not be applied to large number of traces in the dataset. In
Section 5.5, we evaluate the effect of each step on overall
performance.

Overall, Mithra’s approach is designed to tackle all three
challenges of testing CPSs outlined in Section 1:

1)  Mithra does not require access to the source code or
any other artifacts of the system. It is a blackbox
approach that relies on readily available telemetry
data to identify and distinguish between behaviors.

2) Mithra is, by design, tolerant to noise and non-deter-
minism since it (a) builds its oracle using many
observations of system behaviors, and (b) uses an
acceptance threshold to account for noisy and non-
deterministic data.

3) Mithra is capable of capturing context-dependent
behavior while the context is captured by observable
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Fig. 7. An overview of Mithra’s three-step clustering approach of preclustering, subclustering, and merging. Solid lines represent individual traces,

and dashed lines represent cluster centroids.

variables. For instance, the differences in behavior
due to battery level can be captured by Mithra when
the effects of differing battery levels (e.g., decreased
speed) is captured by the training data.

4.2 Training Data

In the training phase, Mithra takes, as input, a set of teleme-
try logs. Ideally, the set should contain logs that exercise all
functionality of the system, covering a diversity of possible
scenarios, though this is not a strict requirement. Mithra
constructs an individual training set for each command
type within the vocabulary of the CPS by extracting the rele-
vant execution traces for that command type from the pro-
vided set of telemetry logs, shown in Fig. 6.

Note that, like most other techniques [3], [12], [45], [50],
[81], Mithra is unsupervised. Thus, these training logs are
not labeled in terms of whether they correspond to correct
or erroneous behaviors. Similar to the prior techniques [11],
[25], [33], [50], [65], [85], [116], Mithra makes the assumption
that most programs behave correctly most of the time, and
erroneous behavior is typically rare [32].

Mithra preprocesses training data in three ways:

1)

2)

Converting Categorical Data. Categorical variables
(e.g., ArduCopter’s MODE, which takes values such as
STABILIZE, AUTO, and GUIDED), complicate dis-
tance measures, as the distance between two categor-
ical datapoints can only be measured by whether
they take the same value. Mithra converts categorical
data to numerical data using one-hot encoding [29],
where each category is turned into a dimension with
binary value.

Normalization. Since it may not be meaningful to
compare different state variables (e.g., vELociry and
LATITUDE) due to differing ranges and units, we stan-
dardize [42] the data to ensure that differences in
each state variable are treated with equal impor-
tance. Each dimension (i.e., state variable) within a
time series is scaled to resemble a normal distribution
with mean u = 0 and standard deviation o = 1. Note
that, by default and for the experiments reported
in this paper, we scale dimensions according to a
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normal distribution since we do not assume knowl-
edge of the underlying distributions for each dimen-
sion. However, if such knowledge is available, an
informed user may adjust this normalization step to
use an alternative distribution (e.g., Poisson) in lieu of
anormal distribution.

3)  Feature Selection. Clustering techniques can suffer
from the curse of dimensionality on datasets with
many dimensions [23]. Therefore, Mithra accepts an
option to select Nigyrures dimensions in the training
data with the highest entropy [30] as a preprocessing
step. The entropy of a dimension X is defined as
H(X) =", P(x)logP(x) where P(z) the probability
of observing a particular value z € X High entropy
in a dimension indicates that it can be informative in
distinguishing different behaviors. We leave investi-
gation of other feature selection approaches to future
work.

4.3 Oracle Learning

Given a training set of traces for a command, Mithra
attempts to identify the set of contextual (i.e., disjunctive)
behaviors for that command. Mithra uses a three-step time
series clustering approach that allows clustering to scale to
a large number of detailed traces:

Step 1: Preclustering: Mithra first downsamples the train-
ing execution traces to produce a set of low-resolution traces
to be clustered. By reducing the resolution of the data,
Mithra can more efficiently compute DTW distance on an
approximation of its input traces. The goal of this step is to
reduce the search space for the subsequent, more computa-
tionally intensive steps.

To lower trace resolution, Mithra uniformly drops data
points from each time series. For example, trace t=
[S0, 51, - - -, S100] with 101 data points can be downsampled
to a lower-resolution trace t' = [Sy, S5, S10, - - - , So5, S100] With
21 data points. Even though ¢’ does not represent the exact
behavior of trace t, it approximates t's shape and can be
used to create an initial set of preclusters.

To obtain the set of preclusters, Mithra applies k-medoids
clustering to the low-resolution data using FastDTW [99] as
its distance metric. The number of clusters k is obtained
dynamically by finding the 1 < k < ky,q, that maximizes
the silhouette score [97].

Step 2: Purifying: Since low-resolution data is used to
obtain the set of preclusters, those preclusters may repre-
sent spurious patterns that do not hold on the original,
high-resolution data. Therefore, in the second step, Mithra
divides the contents of each precluster into multiple sub-
clusters based on their Eros similarity. Although Eros is a
less effective means of measuring similarity between traces
than DTW (i.e., scale information is lost), it is inexpensive to
compute and provides useful partial information about sim-
ilarities in shape. To calculate the subclusters, we apply
k-medoids clustering within each precluster, and find the
medoid that is most representative of all traces within a
subcluster.

Step 3: Merging: Finally, Mithra uses FastDTW to merge
subclusters that share a similar shape based on the original,
high-resolution data. This step prevents representation of
the same contextual behavior by multiple subclusters, which
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leads to a simpler model that is cheaper to query. To do so,
Mithra first computes the DTW distance among the medoids
of subclusters using the original, high-resolution traces for
those medoids. Although the time series are more detailed
than those used during preclustering, the total number of
time series, and, by extension, distance calculations, is far
smaller, ensuring this step is scalable.

Mithra then uses the computed medoid distances to
reduce the set of subclusters into a set of behavioral clusters
by merging subclusters that share highly similar medoids.
Mithra uses hierarchical clustering [53] to find the sets of
similar subclusters. For every set of similar subclusters,
Mithra constructs a new behavioral cluster that includes all
their traces, and applies DTW averaging with uniform scal-
ing [35] to the medoids of those subclusters to produce a
centroid that best represents all traces in the new behavioral
cluster.

Finally, Mithra uses FastDTW to compute 114 and op for
each behavioral cluster 8 based on the distance from the
traces within B to the centroid of that cluster ¢z, which
Mithra uses to construct the decision boundary for .

4.4 Oracle Querying

The behavioral clusters for each command represent quali-
tatively different modes of behavior observed for that com-
mand. These may include both behaviors that are
frequently observed and assumed to be correct (e.g., clusters
with more than one hundred traces), as well as behaviors
that are rarely observed and suspected to be erroneous (e.g.,
clusters with fewer than five traces).

Mithra uses the behavioral clusters to predict whether a
new trace is CORRECT Or ERRONEOUS by comparing it to the cen-
troid of its best-fit cluster. More formally, given a previously
unseen execution trace t for a command, Mithra first finds
the behavioral cluster g; € BC that most closely resembles ©
based on the DTW distance between r and the centroid of
each cluster

B; = argmin DTW (z, cg)
BeBC

Mithra then uses 8 to predict the label ¢, for that trace as

ERRONEOUS if |Bi] < p
£; = ¢ ERRONEOUS if DIW(z,¢p:) > g + Oog:
CORRECT otherwise

where |8] is the number of traces within 8, p € Z" is the rar-
ity threshold, and 6 € R™ is the acceptance rate. If 8} contains
fewer than p traces, it is assumed to represent a rare, and
thus, erroneous behavior, and so, 7 is marked as ERRONEOUS.
The rarity threshold allows Mithra to be more robust
towards erroneous traces in the training data. In the more
likely case where g} contains at least p traces, then f; itself
is assumed to represent a common, and thus, correct behav-
ior. In that case, Mithra uses the precomputed DTW dis-
tance to determine whether t lies within the decision
boundary of B}, and if so, labels it as correct. The accep-
tance rate 6 is used to alter the extent of the decision bound-
ary and provides the user with a means of controlling the
precision-recall tradeoff of the classifier to their preferences.
We investigate and discuss the effects of 6 in Section 5.3.
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4.5 Implementation

Our implementation of Mithra, which we release as part of
our replication package, allows tuning of parameters to our
approach, such as resolution used during Preclustering and
Niearures (Section 4.2).

Derived Variables. One additional optional argument that
can improve Mithra’s performance is parameter handling.
The behavior of a CPS with respect to a certain command
often depends upon the parameters provided to that com-
mand. In the example of Fig. 4, if the copter flies to altitude
of 10 meters instead of 4 when instructed to TAKEOFF
(aLT:4.0), the trace should be marked as ERRONEOUS. How-
ever, by default, Mithra cannot connect two relevant dimen-
sions in the traces (in this case, the ALTITUDE of the copter
and the parameter passed to the command pq).

To account for parameter values, we can add new dimen-
sions to input traces that are dynamically computed, and
derived from other dimensions (i.e., values of parameters
and state variables). For example, for the command TAKE-
OFF(ALT:<p,;>), Mithra derives a new variable DIST_ALT as
(pait — ALTITUDE), adds this variable to the time series and
performs the rest of the approach on both the new and origi-
nal variables. With this new dimension, Mithra’s learned
clusters represent that, for example, in corRrRect TAKEOFF
(<par>) traces, the value of DIST_ALT always converges to
zero; we can mark ERRONEOUS cases where it does not (e.g.,
flying to 2 meters altitude when 5 is given as the parameter).
Note that this added dimension does not specify the correct
or expected behavior; it merely expresses a meaningful con-
nection between parameters and state variables.

The definitions for derived dimensions are presently
user-provided. As the number of command parameters is
usually very limited and many commands share the same
set of parameters, specifying these definitions is fairly sim-
ple. For example, many of the commands in ArduPilot take
parameters related to location,” for which providing the def-
initions only once would be sufficient. For our case study of
ArduPilot, we specify definitions for 4 derived dimensions
that are shared among 7 of 10 commands. The definitions
for these added dimensions are provided as part of our rep-
lication package. Note that Mithra can operate without these
additional dimensions, but it will be less accurate. We antic-
ipate that such dimensions are likely automatically discov-
erable, a prospect that we leave to future work.

Telemetry Sampling Rate. As its input, Mithra expects a set
of telemetry traces that describe the state at approximately
the same fixed time interval. For systems that use sensors
with heterogeneous polling rates that are managed by dif-
ferent processes (e.g., in ROS), telemetry data for individual
variables may be logged at different frequencies and offsets.
In a preprocessing step, we produce an appropriate trace
for Mithra by stepping through the telemetry at a fixed time
interval, determined by the telemetry sampling rate, and
using the most recently reported observation for each vari-
able at each discrete time step.

The telemetry sampling rate can be increased to allow
Mithra to better discriminate between traces. However, this
will lead to longer training times and diminishing returns.

7. https:/ /ardupilot.org/planner/docs /common-mavlink-mission-
command-messages-mav_cmd.html#frames-of-reference

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

5 EVALUATION

To determine whether our technique is an effective oracle
learning method for mature cyberphysical systems, we con-
duct experiments, outlined in Section 5.2, on the case study
system described in Section 2. We compare Mithra to the
state-of-the-art [45] (AR-SI, described in Section 5.1). We
answer the following research questions:

RQ1 (Accuracy) How accurately does our clustering method
distinguish between correct and erroneous traces?
(Section 5.3)

RQ2 (Comparison) How does the labeling accuracy of Mithra
compare to AR-SI [45], a state-of-the-art oracle learning
approach for cyberphysical systems? (Section 5.4)

RQ3 (Conceptual Validation) How do Mithra’s individual
steps influence its overall labeling accuracy? (Section 5.5)

RQ4 (Time) How long does it take to train and query Mithra,
and how does it compare to AR-SI? (Section 5.6)

Finally, we evaluate Mithra on an autonomous racing

CPS in Section 5.7 to show its applicability to systems

beyond ArduPilot. In Section 5.8, we discuss threats to the

validity of this evaluation.

5.1 Baseline

To compare our approach with the state-of-the-art, we reim-
plement He et al.’s approach for creating autoregressive sys-
tem identification (AR-SI) oracles for CPSs [45].® Like our
approach, AR-SI targets CPSs, does not assume source code
access, does not require training on a bug-free, ground-truth
version of the CPS, and operates on a multi-variate time
series. Based on the assumption that many CPSs are
designed to run smoothly when noise is under control, AR-SI
determines whether a trace is erroneous or correct by check-
ing the smoothness of the system’s behavior. Let Y¥; € R™
represent the state of the system at time ¢ with m state varia-
bles,and U € RY represent user input (i.e., command param-
eters). AR-SI models the relationship between U and Y; as
follows

p
Y, = (ZA]-K]) +BU +§ 6))

J=1

and optimizes model parameters A, A,,..., A4, € R™™
and B € R™*? so that the runtime accumulated SI error
energy &; is minimized. Then, AR-SI uses the optimal model
parameters (A}, A3,..., A} and B") to predict the next state
of the system Y4

p
Vi = (ZA;YHU) +B'U @
=1

and collects the prediction error as e;;1 = Yjy1 — Yiq.

In other words, AR-SI uses the past p observed states of
the system to predict its next state with the assumption that
state changes tend to be smooth and the prediction error
should be low. When the prediction error for all states in
the trace is computed, AR-SI checks whether they contain

8. The source code of AR-SI is not publicly available, and we were
unable to gain access via private email correspondence.
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an outlier prediction error. If so, the trace is marked as ERRO-
NEOUS, otherwise it is marked as CORRecT. Any prediction
error outside of yu + 60 is considered an outlier.

AR-SI was originally evaluated on our case study CPS;
we discuss methodology next.

5.2 Experimental Methodology

We construct a benchmark for our case study, ArduPilot,
which we use to evaluate our research questions. This bench-
mark consists of a training dataset and an evaluation dataset.
The training dataset consists of unlabeled traces for 2500 ran-
domly generated missions; it is used to train Mithra. The
evaluation dataset provides a labeled, balanced set of 233
erroneous and 233 correct traces. We use it as ground truth
when measuring the accuracy of Mithra and AR-SI (i.e., the
ability to discriminate between erroneous and correct traces).
Note that the labels of the evaluation dataset are not pro-
vided to either approach. Each mission that is generated for
these datasets consists of between 1 to 8 commands from
types presented in Table 1 (with repetition). Each command
accepts between zero and four parameters as input.

To ensure reproducibility and avoid physical harm, we
use software-in-the-loop (SITL) simulation to obtain traces
in lieu of traces from real-world field testing. We sample
state at a rate of 10 Hz according to the simulation clock
rather than the wall clock, retaining the same information as
a corresponding field trace. The collected mission traces in
this experiment contain between 90 to 5400 sample data
points (with median of 1640 data points). We use a 10 Hz
sampling rate as the baseline approach, AR-SI, cannot han-
dle a sampling rate higher than 10 Hz [45]. The practice of
using simulation to obtain traces for this type of evaluation
is common [11], [25], [45]. Below, we provide key details
about benchmark construction.

Training Dataset. As a source of training data for our tech-
nique, we record traces for 2500 randomly generated mis-
sions in simulation; To accelerate data collection, we spread
the process across 30 cores and use 40X simulation speedup.
In total, we took roughly 15 hours to collect training traces.
The generated missions of this dataset contain an average of
6.75 commands, with an average of 1.85 parameters per
command.

Evaluation Dataset. We construct our evaluation dataset by
first identifying 11 historical bugs via manual investigation
of issues and bug-fixing commits on the ArduPilot reposi-
tory.” We specifically target issues that impact the autono-
mous mission executor of the Copter vehicle: issues that are
tagged as bug, and directed to Copter subsystem or all Ardu
vehicles, and are executed by the auto mode (mission con-
troller) of the system. Additionally, we only considered the
issues that result in observable changes in the system behav-
ior based on the description provided on the issue-tracker by
the users, since both Mithra and AR-SI are only capable of
identifying anomalies in the system’s behavior. Therefore,
configuration bugs and issues due to variation in equipment
and software are out of scope for both approaches.

We transform each historical bug into a controlled bug
scenario by manually grafting the bug onto the ground-truth
version of ArduPilot, CorTErR-3.6.9. By individually grafting

9. https://github.com/ArduPilot/ ArduPilot
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the bugs onto the ground-truth version, rather than using
those historical versions directly, we ensure that the only
differences in behavior are due to a particular bug and not
from an unrelated change to the program. We generate an
additional 13 bugs by applying the same historical faults to
other parts of the code, raising the total number of bug sce-
narios to 24.

For each bug scenario, we use a hand-written mission
template, tailored to that scenario, to randomly generate 10
missions that trigger and manifest the bug. We create multi-
ple missions for a single bug scenario since different set of
commands and parameters may have different behaviors
on the specified bug scenario, and 10 randomly generated
missions can cover more variety of these changes in behav-
ior. After running each mission, we collect line coverage of
the execution to ensure that the executed mission does in
fact execute the lines of interest (i.e., faulty lines).

Finally, we use the generated missions to construct an
evaluation set of correct and erroneous traces. We obtain
240 erroneous traces by executing each bug scenario against
its associated bug-triggering missions. However, we
exclude traces resulting in software crashes (e.g., segmenta-
tion faults) from our dataset since those traces can simply
be labeled as ErRrONEOUS and no oracle is required. We
exclude 7 out of 240 traces due to system malfunction. On
average, the generated missions contain 5.58 commands
and 2.36 parameters per command. We then obtain 233 cor-
rect traces by executing all 233 bug-triggering missions
against the ground-truth version of the program, and create
a balanced set of evaluation traces.

Comparison to AR-SI's Methodology. AR-SI was originally
evaluated on a dataset of 8 historical ArduPilot bugs and 17
artificial bugs created by fault injection [45]. Similar to our
approach, He et al. collect a set of traces, which are consid-
ered ERRONEOUS if they execute the faulty lines, and correct
otherwise. However, the AR-SI dataset of bugs and traces is
not available publicly, and we have been unable to gain
access via private correspondence. Therefore, we created a
dataset of 24 real-life bugs and 466 traces, and release it as a
benchmark to be used by studies in the future.

To evaluate the effectiveness of AR-SI, He et al. compared
AR-SI against a “human oracle” devised by CPS experts.
The human oracle consists of three rules that check that the
velocity and angular velocity of the copter are within certain
bounds (e.g., “velocity shall never exceed +20m/s”). He
et al. found that AR-SI produced fewer false positives and
false negatives than the human oracle. Approximately 70%
of traces that were identified as erroneous by the human
oracle were, in fact, correct. We choose not to evaluate
against a human oracle since its performance is dependent
upon the knowledge and skills of the experts, and therefore
any comparison to such an oracle would not yield meaning-
ful insights on the performance of Mithra or AR-SL

Setup. To account for nondeterminism, we run each
experiment on 20 different seeds. For all experiments, we
run Mithra with maximum number of clusters k.. = 15,
and feature selection Nigarures = 10. We have selected these
options as a high (and safe) upper bound based on the num-
ber of different behaviors that can arise in a command
according to the system’s documentation, and our under-
standing of the number of features that can have significant
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Fig. 8. Relationship between Mithra’s median precision (blue triangles),
recall (red diamonds) and accuracy (yellow circles) and acceptance rate
used to classify outliers.

impact on the system’s behavior with respect to a com-
mand. We discuss selection of rarity threshold p, and accep-
tance rate 6 in Section 5.3. We run AR-SI with p = 10, which
is the best performing parameter for this approach on Ardu-
Copter reported by the original paper [45].

We conduct our experiments on a single machine, run-
ning Ubuntu 18.04, with the following specifications: TR
2990WX (32 cores), 64GB RAM, GTX 1080 Ti, and a 1 TB
NVMe SSD. We used Python 3.6.2, TensorFlow 1.14.0,
Docker 18.06.1-ce, PyClustering 0.9.0 [84].

Replication. We provide our source code, raw results,
scripts to analyze those results, and benchmark traces as
part of our replication package: https://doi.org/10.6084/
m9.figshare.14619177.

Evaluation Metrics. To evaluate a candidate model (i.e.,
the output of our technique), we iterate over each trace in
the evaluation set and check whether the label predicted by
the model (i.e., CORRECT or ERRONEOUS) matches the expected
label. Note that a trace is labeled as correcr if and only if all
the command traces of that trace are labeled correct. We
then compute the number of true positives TP (erroneous
traces marked as ERRONEOUs), false positives FP (correct
traces marked as ERRONEOUS), true negatives TN (correct
traces marked as CORRECT), and false negatives FIN (errone-
ous traces marked as cORRecCT). From those values, we obtain
a summary of model performance:

Precision: fraction of traces reported as erroneous that are
truly erroneous (77-7p).

Recall: fraction of erroneous traces reported as such
TP

TP .
Accuracy: fraction of correctly labeled traces (7 Fprnrp)-

Note that we use accuracy rather than Fl-score,
defined as the harmonic mean of recall and precision, as
an overall measure of performance as the F1-score places lit-
tle weight on false positives and is best suited to imbalanced
datasets. Below, we answer our research questions presented
in Section 5.

5.3 RQ1: Accuracy

Using the training dataset, Mithra identifies a set of behav-
ioral clusters for every command type in Table 1. On average,
Mithra identifies 5.56 clusters per command type, ranging
from 3 to 14 clusters per command type with median of 5.
Among all identified clusters over all 20 seeds, 4% of clusters
contain fewer than 5 traces, which can represent rare behav-
ior in the training dataset.
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TABLE 3
The Impact of Rarity Threshold p on Mithra’s Performance With
Respect to the Number of Traces that are Marked as ERRONEOUS
Due to Rarity Over All 20 Seeds, and the Median Accuracy
Reached by Mithra (6 = 1.5)

Rarity threshold # of ERRONEOUS traces Median
P by rarity (20 seeds) accuracy
0 0 69.3%
5 8 69.3%
10 78 68.8%

Fig. 8 illustrates the median performance of Mithra with
different acceptance rates 6 (with p = 5). As the acceptance
rate increases, recall decreases and precision increases,
resulting in a more conservative model that detects fewer
erroneous traces overall, but ensures that traces marked as
erroneous are more likely to be truly erroneous. Overall
accuracy remains fairly steady as the acceptance rate is
increased, demonstrating the tradeoff between false nega-
tives and false positives. By modifying the acceptance rate,
users can customize Mithra to their preferences [52], [98].

Overall, Mithra achieves a median accuracy of 66.5%
across all seeds, and reaches its highest accuracy of 69.3%
when its acceptance rate 6 = 1.5 (marking 74.7% of truly
correct traces, correct). We therefore use acceptance rate 0 =
1.5 for the rest of our experiments.

To study the impact of rarity threshold p on Mithra’s per-
formance, we set its value to 0, 5, and 10, and compute the
number of traces that are marked as ERRONEOUS duo to
matching with a rare behavior cluster, and measuring the
median accuracy of Mithra presented by Table 3. As
expected, when p = 0 no trace considered as presenting rare
behavior since no cluster has fewer than 0 traces in it to be
considered rare. Compared to p =0, p =5 and 10 mark
higher number of traces as ERRONEOUS duo to rarity (8 and 78
respectively). p =5 reaches the same median accuracy of
69.3%, while p = 10 results in slightly lower median accu-
racy of 68.8%. We use the rarity threshold of p =5 for the
rest of our experiments.

As an example of a correctly detected behavior for Ardu-
Copter, we take a look at the behavioral clusters for the LOI-
TER_TIME(TIME, LAT, LON, ALT) command. According to the
ArduCopter documentation,'® the behavior of LOITER -
TIME is described as “The vehicle will fly to and then wait
at the specified location for the specified number of sec-
onds.” However, as stated in the documentation, if the
given latitude and longitude are both set to zero, the copter
should hold at its current location. Fig. 9 illustrates the
behavioral clusters that were identified by Mithra for LOI-
TER_TIME. Cluster 1 captures traces where the latitude of
the copter changes drastically, whereas in Cluster 2, the lati-
tude of the copter remains constant. In this example, we can
see that Mithra automatically identifies the two correct
behaviors of LOITER_TIME as stated in the documentation.

The motivating example described in Section 2.1 illustrates
the case where the copter misbehaves on SPLINE_ WAY-
POINT command that is followed by another navigation

10. http:/ /ardupilot.org/copter /docs / mission-command-list.
html#loiter-time
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Fig. 9. Two behavioral clusters for LOITER_TIME that were learned by
Mithra, plotted with respect to normalized LaTITuDE (y-axis) over time
(z-axis). Each blue line represents a single trace in the cluster, and the
red lines represent the centroid of the cluster. The left cluster captures
the behavior of the copter moving to a specified location before loitering,
whereas the right cluster shows the behavior of remaining at its current
location and loitering.

command. On 20 evaluation traces (10 correct and 10 errone-
ous) generated for this issue, Mithra reaches median accuracy,
recall and precision of 70% , 90%, and 66.6%, respectively with
6 = 0.5, and 65%, 50%, and 71%, respectively with 6 = 1.5.
Intuitively, this demonstrates that when Mithra is provided
traces that trigger this issue, Mithra can correctly mark those
traces as ERRONEOUS 90% of the time (6 = 0.5).

5.4 RQ2: State-of-the-Art Comparison

Fig. 10 presents a comparison of the performance of Mithra
against AR-SI. The median precision, recall, and accuracy of
AR-SI are 62.2%, 39.0%, and 57.8% respectively, compared
to Mithra’s 74.7%, 56.0%, and 69.3%. Using a Mann-Whit-
ney U test (o = 0.05) we demonstrate that Mithra achieves
significantly higher precision, recall, and accuracy com-
pared to AR-SI. That is, Mithra detects a greater number of
erroneous traces and does so with higher confidence.

We additionally use the intra-class correlation coefficient
ICC(3,1) [61] to measure the reliability of Mithra and AR-SI
across 20 seeds. This metric measures the consistency of a
model in assigning the same label to a given trace across dif-
ferent seeds, and takes a value between zero and one; one
being perfect reliability, and zero the complete absence of
reliability. We find that Mithra demonstrates a “good” reli-
ability of 0.840, whereas AR-SI exhibits a “poor” reliability
of 0.349. Intuitively, this result shows that Mithra is more
likely to assign the same label to a given trace regardless of
the seed used during training.

Table 4 presents the performance of Mithra and AR-SI on
each bug in our evaluation dataset over all 20 seeds. As pre-
sented, there are 10 bugs that Mithra labels with more than
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TABLE 4
For Each Bug, the Total Number of Traces that are Marked True
Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) Over All 20 Seeds Per Approach, and the Overall
Accuracy (Acc.) on Labeling Traces for Each Bug

Mithra AR-SI
Bug TP TN FP FN Acc. TP TN FP FN Acc
*1 53 166 34 147 547 63 145 55 137 520
A2 70 130 50 110 555 53 132 48 127 51.4
A3 72 63 77 68 482 42 121 19 98 582
Y4 48 118 82 152 415 58 151 49 142 522
*5 106 160 40 94 665 43 168 32 157 527
%6 54 171 29 146 562 48 160 40 152 52.0
%7 200 176 24 0 940 119 156 44 81 68.7
*8 200 158 42 0 89.5 140 163 37 60 75.7
*9 58 171 29 142 572 56 159 41 144 53.7
%10 85 190 10 115 687 66 171 29 134 59.2
All 185 165 35 15 875 124 162 38 76 715
Al12 67 165 35 133 580 44 162 38 156 51.5
%13 149 171 29 51 80.0 107 142 58 93 622
Al4 179 179 21 21 895 117 163 37 83 70.0
Al5 99 177 23 101 690 64 150 50 136 53.5
%16 151 154 46 49 762 102 126 74 98 57.0
Al17 200 145 55 0 862 104 146 54 96 625
Al18 105 148 52 95 632 86 133 67 114 54.7
A19 140 117 23 0 918 73 109 31 67 65.0
A20 148 169 31 52 792 82 156 44 118 595
A21 63 152 48 137 537 60 142 58 140 50.5
%22 121 183 17 79 76.0 46 164 36 154 525
A23 29 181 19 171 525 43 147 53 157 475
A24 63 149 51 137 53.0 68 154 46 132 555

The bugs are either historical (¥) or inspired by historical (A) bug.

75% accuracy, out of which 5 are historical bugs. However,
AR-Slis only capable of labeling traces related to bug #8 with
more than 75% accuracy. This table also shows that Mithra
can label traces of four bugs with zero false negatives, mean-
ing that it marks all faulty traces for those bugs as ERRONEOUS
over all 20 seeds, and the accuracy on those bugs are all
above 85%, which shows it is also accurate in labeling the
correct traces. AR-SI is not able to label traces for any of the
bugs with zero false negatives. In fact, the lowest number of
false negatives it reaches is 60 traces for bug #8. If we only
consider the 11 historical bugs, Mithra reaches mean accu-
racy, precision, and recall of 70.6%, 75.0%, and 58.6%, while
AR-SIreaches 58.6%, 62.4%, and 39.2% respectively.

5.5 RQ3: Conceptual Validation

Each of the three steps of Mithra’s clustering approach is
designed to improve the accuracy of its detected clusters

Precision Recall Accuracy

0.9 0.9 0.9

058 @ 0.8 0.8

0.7 0.7 0.7 =
0-6 === 0-6 é 0.6 ===

0.5 0.5 0.5

0.4 0.4 == 0.4

0.3 03 0.3

W AR-S| @ Mithra

W AR-S| @ Mithra

W AR-SI @ Mithra

Fig. 10. A performance comparison between AR-SI and Mithra. Using a one-sided Mann-Whitney U test, we show that Mithra outperforms AR-SI sig-

nificantly (@ = 0.05) in terms of precision, recall, and accuracy.
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TABLE 5
A Comparison of Mithra’s Performance When the Output
Clusters of One of its Steps is Used to Construct the Classifier
in Terms of Precision, Recall, and Accuracy, Reported by Their
Median and Interquartile Range (IQR) Measuring the Difference
Between 75th and 25th Percentiles Across 20 Seeds

Preclusters Subclusters Beh. Clusters
Median IQR Median IQR Median IQR

Precision 0.52 0.01 0.72 0.06 0.75 0.06
Recall 0.96 0.03 0.59 0.04 0.56 0.04
Accuracy 0.54 0.02 0.68 0.02 0.69 0.02

Using a one-sided Mann-Whitney U test [73], we show that both Behavioral
Clusters and Subclusters have significantly higher precision and accuracy, and
lower recall than Preclusters (« = 0.01). We are unable to find a significant
difference between Subclusters and Behavioral Clusters.

while supporting scalability. To evaluate the individual
impact of those steps, we use the output produced by each
step (i.e., preclusters, subclusters, and behavioral clusters)
as input to oracle querying, which we then use to measure
the performance of each step (Table 5).

Using the outputs of either the second or third step of our
approach (i.e., subclusters and behavioral clusters) to pro-
duce a classifier results in significantly higher precision and
accuracy (o = 0.05) than a classifier constructed using the
output of only the first step (i.e., preclusters). This finding
demonstrates that solely using Dynamic Time Warping on
low-resolution data is insufficient on its own for precisely
detecting behavioral patterns.

We are unable to show a significant difference in perfor-
mance between using subclusters and behavioral clusters.
Recall, however, that the intention behind Mithra’s third
step is not to improve functional performance, but rather to
effectively reduce the number of reported clusters by com-
bining clusters that represent the same behavior. On average,
Mithra identifies 21 subclusters for each command, which it
reduces to an average of 5.5 behavioral clusters after its
merging step. By merging non-unique clusters, we reduce
the cost of oracle querying by decreasing the number of
expensive DTW distance calculations. Furthermore, report-
ing fewer clusters may ultimately aid user comprehension of
the discovered behaviors and thus provide higher confi-
dence in the output of the technique. However, non-unique
clusters do not impact Mithra’s performance since oracle
querying is independent of cluster uniqueness. Our results
provide empirical evidence that the process of merging clus-
ters is indeed effective at reducing the number of clusters,
and does not have any significant impact on overall perfor-
mance, thereby indicating that information is preserved.

To investigate the importance of preclustering, we apply
step 2 of Mithra’s approach in isolation to the original train-
ing traces. The resulting classifier obtains a median preci-
sion, recall, and accuracy of 53.2%, 90.9% and 55.4%,
respectively, providing evidence that preclustering of low-
resolution traces with DTW before subclustering results in
significantly higher precision and accuracy (o« = 0.01).

5.6 RQ4: Time
Our approach for automatically generating CPS oracles
requires an up-front training stage, whereas AR-SI can simply
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(b)

Fig. 11. (a) The F1/10 vehicle; one tenth of the size of a real Formula 1
race car. (b) A simulated race track with four obstacle cones (orange),
the F1/10 vehicle (red), and the range covered by the vehicle’s sensors
(blue). The vehicle follows the inside or outside walls to navigate through
the track counter-clockwise, and avoids obstacles.

be applied to evaluation traces without training. Although
Mithra’s training can take several hours to complete, depend-
ing on the size of the training data, that cost only needs to be
paid once and can be amortized. For our experiments,
Mithra’s training took 4 hours and 45 minutes to complete
and was spread across 30 threads. However, by storing and
reusing computed distance matrices, Mithra’s training time
for subsequent seeds was reduced to an average of 29.59
minutes. AR-SI's cost of labeling a single query trace is rela-
tively expensive, since it repeatedly optimizes a number of
parameters for every datapoint in the trace. In our experi-
ments, on average, it took 27.65 minutes for AR-SI to label all
evaluation traces using 30 threads (i.e., each trace took
approximately 107 thread-seconds). For Mithra, it took an
average of 2.79 minutes to label all evaluation traces using 30
threads (i.e., each trace took approximately 11 thread-sec-
onds). Using an independent samples t-test, we show that
querying Mithra is significantly (p < 0.001) faster than AR-SL

Overall, Mithra does require an upfront training cost that
AR-SI does not; given a trained model, oracle querying for
Mithra is approximately 10X faster than AR-SI.

5.7 Wider Applicability

To show that Mithra is not limited to a single system (.e.,
ArduPilot), we demonstrate Mithra on the F1/10 platform
[87], shown in Fig. 11. F1/10 is an open-source, autonomous
racing cyber-physical platform, one tenth of the size of a
real Formula 1 racing car, that is designed to be used as a
testbed for research and education. We chose F1/10 as an
additional case study to demonstrate the applicability of
Mithra to a system built on top of the Robot Operating Sys-
tem [92], the most popular robotics development platform,
sometimes referred to as the “Linux of Robotics” [111].

In this experiment, we use Mithra to learn an oracle for
the wall-following command of F1/10,"" in which the vehi-
cle uses its sensors to complete laps around the race track
without crashing. The wall-following command takes a sin-
gle parameter that specifies whether the vehicle should fol-
low the inside or outside walls of the track. The vehicle will
indefinitely complete laps around the track in a counter-
clockwise direction, remaining close to desired wall, until

11. https:/ /github.com/linklab-uva/fltenth_gtc_tutorial
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instructed to stop by the user. Since “missions” for this sys-
tem consist of a single command of indefinite duration, we
impose a wall-clock time limit when collecting traces. These
traces consist of seven state variables, describing the vehi-
cle’s position and orientation at each point of observation.

We assess Mithra on F1/10 using a similar approach to
our evaluation on ArduPilot, outlined in Section 5.2, by con-
structing a benchmark. We use simulation to construct a
training dataset of 75 unlabeled traces, covering both inside
and outside wall-following behaviors. Note that we collect
substantially fewer training traces for F1/10 compared to
ArduPilot since the latter has a greater set of commands
and parameters. To construct an evaluation dataset, we first
automatically inject 234 faults into the F1/10 source code
using four mutation operators: Wrong Arithmetic Opera-
tion, Wrong Value Assigned to a Variable, Missing Paren-
theses, and Wrong Logic Clause. We use Comby [107], a
tool for searching and changing code structure, to apply the
mutations to the code. We use artificial faults for evaluation
since F1/10 does not have a rich enough development his-
tory to extract historical faults. After running the command
with both parameters on the syntactically valid, non-crash-
ing bugs and collecting the traces, we manually identify the
mutants that led to failure (i.e., crashing into obstacles). We
identify 153 mutants and produce 261 faulty traces. To
ensure a balanced evaluation dataset, we collect an addi-
tional 261 traces using the unmodified F1/10 system.

We run Mithra with rarity threshold p =5, maximum
number of clusters k,,,, = 15, and without feature selection,
and repeat the experiment with 20 seeds. Mithra reaches its
highest median accuracy (81.0%) when 6 = 1, with median
precision and recall of 84.6% and 74.9%, respectively. By
comparison, AR-SI achieves its highest median accuracy
(51.3%), with a median precision and recall of 51.7% and
37.1%, respectively, when p = 10.

The high performance of Mithra on F1/10 may be
explained by how erroneous behaviors in this system mani-
fest. In most cases, the vehicle misbehaves smoothly, and
does not necessarily show sudden, unexpected changes;
rather, it slowly navigates along the wrong path. Mithra
detects that the behavior does not match previously identi-
fied behavioral clusters. In contrast, AR-SI only detects erro-
neous behaviors that involve abrupt changes, which may
explain why AR-SI performs poorly on F1/10.

Overall, these results demonstrate the wider applicability
of Mithra by showing that Mithra can be successfully
applied to another system (i.e., F1/10).

5.8 Threats to Validity
Construct Are we asking the right questions? We assess Mithra’s
effectiveness as an oracle learning technique by measuring
how accurately its generated oracles discriminate between
correct and erroneous system behavior. We use precision,
recall, accuracy, and querying time as metrics of perfor-
mance, and compare to AR-SI, a state-of-the-art oracle learn-
ing approach that operates under the same assumptions, as a
baseline. To gain a deeper insight into how Mithra works,
we evaluate how each of its individual steps contribute to
the overall effectiveness.

Internal Did we skew the accuracy of our results with how we
collected and analyzed information? In many CPSs, executing
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faulty lines and triggering a bug does not guarantee that the
bug will manifest. However, many of our bugs are associ-
ated with a bug report on ArduPilot’s issue tracker and
describe missions that manifest the bug. We create mission
templates based on the bug reports and our own under-
standing of the bugs, and generate random missions from
those templates. The mission templates are a source of inter-
nal validity.

As the source code of AR-SI was not available to us, we
implemented our own version of AR-SI based on the
description provided in the paper [45]. Our implementation
of AR-SI represents a potential threat to internal validity.
We release our implementation of AR-SI as part of our repli-
cation package.

External Do our results generalize? In theory, our approach
is applicable to any CPS that logs its telemetry data. How-
ever, we only evaluate on two instances of such systems.
We pick ArduPilot as a fairly complex and highly popular
system that is widely used as a representative of real CPSs
in prior work [5], [45], [66], [109], [120], and we pick F1/10
as system built on top of the popular Robot Operating Sys-
tem [92].

In this paper we only evaluated Mithra on traces col-
lected over command-based mission executions, since com-
mands trigger autonomous control of the system that is
expected to perform a set of actions. In other words, using
the mission planner and providing a set of commands, we
focus on the system’s behavior in autonomous mode (.e.,
auto mode in ArduPilot) rather than manual control. In
theory, Mithra can be adapted to handle continuous inputs
(e.g., controlling the quadcopter with joystick), using techni-
ques such as sliding windows [118], and meta-featuring
[49]. However, we leave investigating applicability of
Mithra on continuous commands to future work.

Although Mithra is agnostic to the source of its traces and
can be applied to field traces, we do not evaluate Mithra on
field traces and leave that for future work.

Replicability Can others replicate our results? To allow
others to inspect, replicate, and extend our experiments, we
provide a replication package for our study, containing our
evaluation datasets and the source code for Mithra and our
implementation of AR-SI.

Conclusion Did we draw correct conclusions from our data?
From our experiments, we conclude that Mithra outper-
forms AR-SI according to several important measures of
performance: precision, recall, accuracy, and querying time.
We measure performance on a balanced set of 466 execution
traces, representing a variety of operating conditions (e.g.,
mission, particular bug), and use an appropriate one-sided
non-parametric test (Mann-Whitney U) to demonstrate sta-
tistically significant improvement.

6 ASSUMPTIONS AND LIMITATIONS

In this section, we discuss the assumptions made by Mithra,
and the limitations that affect our approach as a result of
making these assumptions.

Anomalous-Yet-Correct Behavior. Our approach, like others,
treats anomalous behavior as erroneous, and common erro-
neous behavior as correct [11], [25], [33], [50], [65], [85], [116].
However, anomalous behavior also includes corner cases
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and rare behaviors that are not observed during training,
which are not necessarily erroneous, and erroneous behavior
can be observed in the training data. Even though reporting
the anomalous-yet-correct behaviors as erroneous is not
ideal, and can result in false-positives, it can inform the
developers of under-tested functionality. In addition, most
systems typically perform as expected [32], as it is easier for
developers to detect and debug an erroneous behavior that is
observed frequently.

Dependency on Training Data. Overall, the performance of
our approach depends on its training data, a limitation it
shares with other dynamic model learning techniques [11],
[33], [65], [85]. If the provided traces do not provide suffi-
cient coverage of the unique behaviors of the robot, our
approach will fail to identify those behaviors. However,
generating a diverse set of training data is an orthogonal
problem we leave to future work. Additionally, even
though Mithra works on any CPSs that generates telemetry
logs, it is limited by the variables that are recorded in these
logs, and the extent of which these variables truly represent
the system’s behaviors. For example, if the telemetry logs of
a smart thermostat does not include data on the environ-
ment’s temperature, Mithra is not capable of truly capturing
the system’s behavior.

Sequential, Synchronous Execution. Our approach assumes
sequential execution of commands and cannot handle asyn-
chronous or concurrent executions. This assumption limits
the applicability of Mithra on systems that require multi-
process, asynchronous operation, which is prevalent among
CPSs. Taking ideas from testing distributed systems [17],
[18], we can include such traces in our approach in the
future.

7 FUTURE WORK

In this section, we discuss opportunities for future work,
including potential improvements to the approach and
opportunities for additional application and further
evaluation.

Application, Usability, and Further Evaluation. In this paper,
we applied Mithra to two real-world, exemplar systems,
and evaluated Mithra’s ability to accurately distinguish
between CORRECT and ERRONEOUS traces. However, we did
not evaluate or explore the usability of our approach in
terms of its ability to to help developers to identify, locate,
and address faults as part of a larger quality assurance
approach. For example, to aid in debugging an observed
failure, Mithra could be adapted to provide the user with
information about the variables within trace that contribute
most to its ERRONEOUS label (e.g., an altitude is abnormally
large). As such an investigation would require human stud-
ies that are beyond the scope of this paper, we leave explo-
ration of this possibility to future work, along with an
exploration of how Mithra can be integrated into fault local-
ization and automated program repair approaches.

In this work, we limited the evaluation of our approach toa
single configuration of the system. Mithra can naively handle
different configurations by learning a different set of clusters
under each configuration. However, such an approach would
almost certainly be prohibitive in terms of the amount of
required training data and the time taken by clustering.
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Alternatively, configuration variables could be injected into
the traces themselves during clustering, allowing meaningful
differences due to configuration to be identified during fea-
ture selection and incorporated into the learned clusters.
Given the considerable challenges involved in efficiently
exploring configuration spaces [57], we leave an exploration
of how Mithra can be adapted to account for such variability
to future work.

Another important factor in the input space of CPSs is
the operating environment. However, capturing and com-
pactly encoding relevant environment features within a
trace is a difficult research problem that requires novel
ideas. In this work, we evaluated Mithra without directly
including any information about the simulated environ-
ment (e.g., weather, obstacles, terrain). Some of this infor-
mation is easier to include (e.g., barometric pressure,
wind speed), while other pieces of information are trickier
to represent (e.g., the position and heading of nearby air-
craft). This limits Mithra’s ability to relate certain learned
behaviors to specific environment factors. In other words,
when Mithra is applied to training traces that has been
collected in different environments, it can recognize those
different behaviors (e.g., behavior A that is only per-
formed in presence of strong winds), but Mithra is unable
to relate these behaviors to correlated environmental fac-
tors. If, for example, behavior A incorrectly occurs in a
non-windy environment, Mithra would not be able to
mark it as ERRONEOUs. Additionally, effectively exploring
the environment space, and automatically evolving the
simulated environments in such a way that they expose
the system to more diverse scenarios is an important area
that needs to be investigated in the future [34], [60], [70],
[80], [112].

Improving Mithra. Throughout the paper, we have high-
lighted several opportunities to further improve various
aspects of Mithra, including alternative feature selection
and normalization approaches, and automating the discov-
ery of derived variables. Below, we briefly discuss two addi-
tional opportunities for improvement: incremental training
and developer-assisted cluster validation.

In its current form, the clusters found by Mithra cannot
be evolved to incorporate newly collected data: The training
process must be repeated from scratch with an updated
dataset to recompute the clusters such that they accurately
reflect any new, modified, or removed behaviors of the sys-
tem. This limitation can make Mithra expensive to practi-
cally deploy on frequently evolving systems. In future
studies, we intend to explore whether Mithra can efficiently
reuse and evolve previously identified clusters to account
for newly collected data.

The accuracy and utility of Mithra could be improved by
using a semi-automated approach that uses feedback from
the developer to confirm the correctness of discovered clus-
ters and identify small clusters that correspond to rare, erro-
neous behavior exhibited in the training set. This could take
place by, for example, presenting several representative
traces from each of the identified clusters to the user and
asking the user whether those traces are indeed CORRECT or
ERRONEOUS. This additional step would help to overcome
Mithra’s limitations in identifying frequent-but-erroneous
and rare-but-correct behaviors during training.
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8 RELATED WORK

Mithra is most closely related to prior work on anomaly detec-
tion in cyberphysical systems [26], [37], [43], [46], [81], [88],
[108], [120]. We have already positioned Mithra with respect
to AR-SI [45] in detail in Section 5.1. Chen ef al. [25] build mod-
els by combining mutation testing and machine learning: they
generate faulty versions (mutants) of the tested system and
then learn SVM-based models using supervised learning over
the resultant data traces corresponding to system execution.
They evaluate on a model of a physical water sanitation plant.
Our system improves on this prior work by obviating the
expensive mutant-generation step by virtue of making use of
unsupervised learning techniques. Ghafouri et al. [38] show
that common supervised approaches in this context are vul-
nerable to stealthy attacks. An unsupervised technique [50]
evaluated on the same treatment plant model trains a Deep
Neural Net (DNN) to identify outliers (similar in spirit to our
approach), but cannot be applied to time series data, a key
concern in many CPSs. Ye et al. [116] use a multivariate quality
control technique to detect intrusions by building a long-term
profile of normal activities in information systems and using
the norm profile to detect anomalies. However, it is a para-
metric technique and is not fully automated.

To generate test oracles for CPSs, Menghi ef al. [77] pro-
pose an approach that automatically translates CPS require-
ments specified in a logic-based language into test oracles
specified in Simulink. However, writing the specifications
for requirements of a CPS is difficult and error-prone [39].
Other approaches target the detection of particular attack
classes specifically. Choi et al. [27] present a technique that
infers control invariants to identify external physical attacks
against robotic vehicles; its models combine knowledge
about a vehicle’s physical properties and control algo-
rithms, as well as the laws of physics. Like AR-SI, it uses
system identification (SI) to detect malicious attacks on
CPSs; however, it requires a training step. Alippi ef al. [12]
learn Hidden Markov Models of highly correlated sensor
data that are then used to find sensor faults. Abbaspour
et al. [3] train adaptive neural networks over faults injected
into sensor data to detect fault data injection attacks in an
unmanned aerial vehicle. Our approach does not target a
particular class of failures, and can be used to detect both
sensor faults and attacks on the system.

Other techniques infer invariants or finite state models
describing correct software, which is known as dynamic
specification mining [11], [17], [19], [31], [33], [40], [51], [64],
[65], [82], [83], [85], [100], [114]. Most require source code
access or instrumentation, and none are suitable for time
series data. Techniques like Daikon [33] and its numerous
successors [31], [40], [82], [83] learn source- or method-level
data invariants rather than models of correct execution
behavior. Jiang et al. [51] use Daikon on messages that are
passed between different processes in ROS systems to learn
invariants that apply to the messages. Techniques like Tex-
ada [65] and Perracotta [114] do learn temporal properties
between events but do not model or learn temporal data
properties, a key primitive in CPS execution (Artinali [11]
comes closest to this goal, learning event ordering and data
properties within an event). Other techniques use console
logs generated by the system as the source for mining
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invariants and detecting anomalies [14], [67], [102], [113].
Overall, such techniques target orthogonal use cases and
systems as compared to our context.

As another way of approaching the oracle problem for
CPSs, studies have used metamorphic testing to observe the
relations between the inputs and outputs of multiple execu-
tions of a CPS [66], [103], [119]. Lindvall at al. [66] exploit
tests with same expected output according to a given model
to test autonomous systems. Zhou and Sun [119] use meta-
morphic testing to specifically detect software errors from
the LiDAR sensor of autonomous vehicles. Tian et al. [103]
introduce DeepTest, a testing tool for automatically detect-
ing erroneous behaviors of DNN-driven vehicles. As an
oracle, they use metamorphic testing by checking that prop-
erties like steering angle of an autonomous vehicle remain
unchanged in different conditions such as different weather
or lighting.

9 CONCLUSION

In this paper, we introduce Mithra, an automated tool that
demonstrates a three-step multivariate time series clustering
approach as an effective means of generating oracles for
cyberphysical systems. As part of our evaluation on a widely
used robotics platform, we show that Mithra identifies a
higher number of faulty executions than AR-SI, a state-of-the-
art oracle generation technique for CPSs, and does so with a
higher level of confidence. We show that Mithra is generally
more reliable and may be used to provide an oracle for auto-
mated, simulation-based testing as part of a continuous inte-
gration and deployment workflow.
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