
Quality of Automated Program Repair on
Real-World Defects

Manish Motwani , Mauricio Soto , Yuriy Brun , Senior Member, IEEE,

Ren�e Just , and Claire Le Goues ,Member, IEEE

Abstract—Automated program repair is a promising approach to reducing the costs of manual debugging and increasing software

quality. However, recent studies have shown that automated program repair techniques can be prone to producing patches of low

quality, overfitting to the set of tests provided to the repair technique, and failing to generalize to the intended specification. This paper

rigorously explores this phenomenon on real-world Java programs, analyzing the effectiveness of four well-known repair techniques,

GenProg, Par, SimFix, and TrpAutoRepair, on defects made by the projects’ developers during their regular development process. We

find that: (1) When applied to real-world Java code, automated program repair techniques produce patches for between 10.6 and

19.0 percent of the defects, which is less frequent than when applied to C code. (2) The produced patches often overfit to the provided

test suite, with only between 13.8 and 46.1 percent of the patches passing an independent set of tests. (3) Test suite size has an

extremely small but significant effect on the quality of the patches, with larger test suites producing higher-quality patches, though,

surprisingly, higher-coverage test suites correlate with lower-quality patches. (4) The number of tests that a buggy program fails has a

small but statistically significant positive effect on the quality of the produced patches. (5) Test suite provenance, whether the test suite

is written by a human or automatically generated, has a significant effect on the quality of the patches, with developer-written tests

typically producing higher-quality patches. And (6) the patches exhibit insufficient diversity to improve quality through some method of

combining multiple patches. We develop JaRFly, an open-source framework for implementing techniques for automatic search-based

improvement of Java programs. Our study uses JaRFly to faithfully reimplement GenProg and TrpAutoRepair to work on Java code,

and makes the first public release of an implementation of Par. Unlike prior work, our study carefully controls for confounding factors

and produces a methodology, as well as a dataset of automatically-generated test suites, for objectively evaluating the quality of Java

repair techniques on real-world defects.

Index Terms—Automated program repair, patch quality, objective quality measure, Java, GenProg, Par, TrpAutoRepair, Defects4J

Ç

1 INTRODUCTION

AUTOMATED program repair holds the potential to improve
software quality while simultaneously reducing the reli-

ance on costly manual effort. For example, Facebook uses two
automated program repair tools, SapFix and Getafix, on their
production code to suggest defect patches [9], [89]. However,
recent work examining the quality of automated program
repair has found that patches produced by many automated
program repair techniques are often of low quality [122] and
not semantically equivalent to developer-written patches [114].
In particular, our earlier work [122] found that patches pro-
duced by GenProg [77], TrpAutoRepair [111], and AE [132]
typically pass only 68.7, 72.1, and 64.2 percent of independent
tests not used to create the patch, respectively. This both raises

an important concern about the practical usability of modern
automated repair techniques, and drives research toward
building techniques that produce higher-quality patches [68],
[86], [88], [94].

Automated program repair techniques typically start with
a program version and a set of passing and failing tests, and
thenmodify the program version until finding a set of modifi-
cations (a patch) that makes all the tests pass. The underlying
issue is that the set of tests provides a partial specification of
the desired behavior, and thus the produced patches may
overfit to those tests. For example, while, typically, many
patches in a technique’s search space pass the supplied tests,
relatively few are equivalent to the developer-written patch
[88], [114]; the automated repair technique has no way of
knowingwhich is the better patch to return.

Our prior work introduced an objective methodology for
evaluating the quality of a patch and had successfully applied
it to a set of very small programswritten by novice developers
in an introductory programming course [122]. While that
work identified important shortcomings of automated pro-
gram repair techniques, its results may not generalize beyond
the very small and simple programs. That study only consid-
ered two generate-and-validate (G&V) repair techniques, did
not control for confounding factors, and used test suite size as
a proxy for coverage. By contrast, this work performs a
detailed studywith fourG&V repair techniques on real-world
defects in real-world, large, complex projects employing rig-
orous statistical analyses, properly measuring coverage, and

� Manish Motwani and Yuriy Brun are with the Manning College of Infor-
mation and Computer Sciences, University of Massachusetts Amherst,
Amherst,MA 01003-9264USA. E-mail: {mmotwani, brun}@cs.umass.edu.

� Mauricio Soto and Claire Le Goues are with the School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA.
E-mail: {msotogon, clegoues}@cs.cmu.edu.

� Rene Just is with the Paul G. Allen School of Computer Science and
Engineering, University of Washington, Seattle, WA 98195-2350 USA.
E-mail: rjust@cs.washington.edu.

Manuscript received 21 Apr. 2019; revised 10 Mar. 2020; accepted 18 May
2020. Date of publication 1 June 2020; date of current version 14 Feb. 2022.
(Corresponding author: Manish Motwani.)
Recommended for acceptance by E. Bodden.
Digital Object Identifier no. 10.1109/TSE.2020.2998785

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022 637

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

controlling for confounding factors. We use 5 programs with
357 defects created during real-world development from the
Defects4J benchmark [66]. We selected four representative
repair techniques and a diverse benchmark of defects to
increase the likelihood that our results generalize. We answer
six research questions:

RQ1 Do G&V techniques produce patches for real-world
Java defects?

Answer: Yes, although less often than for C defects.
RQ2 How often and how much do the patches produced by

G&V techniques overfit to the developer-written test
suite and fail to generalize to the evaluation test suite,
and thus ultimately to the program specification?

Answer: Often. For the four techniques we evaluated, only
between 13.8 and 41.6 percent of the patches pass
100 percent of an independent test suite. Patches typi-
cally break more functionality than they repair.

RQ3 How do the coverage and size of the test suite used to
produce the patch affect patch quality?

Answer: Larger test suites produce slightly higher-quality
patches, though, surprisingly, the effect is extremely
small. Also surprisingly, higher-coverage test suites
correlate with lower quality, but, again, the effect size is
extremely small.

RQ4Howdoes the number of tests that a buggyprogram fails
affect the degree towhich the generated patches overfit?

Answer: The number of failing tests correlates with slightly
higher quality patches.

RQ5How does the test suite provenance (whether it is writ-
ten by developers or generated automatically) influence
patch quality?

Answer: Test suite provenance has a significant effect on
repair quality, although the effect may differ for differ-
ent techniques. In most cases, human-written tests lead
to higher-quality patches.

RQ6 Can overfitting be mitigated by exploiting randomness
in the repair process? Do different random seeds overfit
in different ways?

Answer: The patches exhibit insufficient diversity to
improve quality through some method of combining
multiple patches.

Our methodology for measuring patch quality relies on an
independent test suite that is not given to the repair technique
to produce a patch. The independent test suite captures
(again, partially) some of the specifications not captured by
the original test suite given to the repair technique, and thus
its passing rate independently evaluates the quality of the
patch. The alternative to thismethodology is amanual inspec-
tion of the patch, (e.g., [114]), but two independent recent
studies [72], [140] have empirically demonstrated that our
independent-test-suite-based methodology is more reliable
andmore objective thanmanual inspection.

Prior studies of quality of automated program repair
have either used manual inspection for quality assess-
ment [107], [122], [131], or have focused on small programs
and relatively-easy-to-fix defects [122], [140]. Some studies
did use a 224-defect subset of the same benchmark of real-
world programs we use, but used manual inspection for
quality assessment and, unlike our work, assessed tools’
ability to produce patches and efficiency of patch

production, but did not identify the factors that affect patch
quality (RQs 3–6) [42], [90].

Our work overcomes two considerable new engineering
challenges. First, employing the objective, independent-test-
suite-based evaluation of patch quality, requires the creation
of high-quality, automatically-generated test suites for real-
world Java projects. We develop a methodology for using
today’s state-of-the-art test-suite generation techniques and
overcoming their shortcomings to produce high-quality
suites, and we release both the methodology and the gener-
ated test suites. Second,many automatedprogram repair tech-
niques are designed and implemented for C (e.g., GenProg
and TrpAutoRepair) and Par [69], designed and implemented
for Java, was never released. We build JaRFly, the Java Repair
Framework, which simplifies the implementation of Java tech-
niques for genetic improvement (including but not limited to
genetic improvement techniques for program repair), and
release Java-based implementations of GenProg, Par, and
TrpAutoRepair. Our implementations of GenProg and
TrpAutoRepair are the first that faithfully follow the original
techniques’ designs, improving prior attempts at replicating
these techniques for Java. Our release of the Par implementa-
tion is the first ever public release of Par. JaRFly is the first
framework of its kind that can handle the entire Defects4J
dataset, including the Closure compiler subject program.

The main contributions of our work are:

� An empirical evaluation of quality of program repair
on real-world Java defects, which outlines shortcom-
ings and establishes a methodology and dataset for
evaluating quality of new repair techniques’ patches
on real-world defects to promote research on high-
quality repair.

� A methodology for evaluating patch quality that
fixes numerous shortcomings in prior work, prop-
erly controlling for potential confounding factors.

� A dataset of independent evaluation test suites for
Defects4J defects, and a methodology for generating
such test suites. Augmenting existingDefects4J defects
with two, independently created test suites can aid not
only program repair, but other test-based technology.

� Java Repair Framework (JaRFly), a publicly released,
open-source framework for building Java G&V repair
techniques, including our reimplementations of Gen-
Prog, Par, and TrpAutoRepair. JaRFly is designed to
allow for easy combinations and modifications to
existing techniques, and to simplify experimental
design for automated program repair on Java pro-
grams. http://JaRFly.cs.umass.edu/

638 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

The rest of this paper is structured as follows. Section 2
describes the background of automated program repair.
Section 3 introduces JaRFly. Section 4 details the dataset of
real-world defects used in our study and our methodology
for creating high-quality test suites. Section 5 empirically eval-
uates four automated program repair techniques with respect
to the quality of the patches they produce on real-world
defects. Section 6 discusses the implications of our results,
suggests future directions for research, and describes the limi-
tations of our choices of subject repair tools and defects.
Finally, Section 7 places our work in the context of related
research, and Section 8 summarizes our contributions.

2 AUTOMATED PROGRAM REPAIR

Automated program repair techniques’ goal is to convert an
existing program that nearly satisfies a specification into
one that fully satisfies it. This can be done for many types of
specifications, e.g., contracts [107], [131], a reference imple-
mentation [92], or, by far most commonly, tests. This paper
focuses on test-based program repair.

Unfortunately, tests provide only a partial specification
of the desired behavior, and, as such, producing a patch
that passes all the tests might break other untested or under-
tested functionality. Patches that pass all supplied tests but
do not generalize to the intended specification are said to be
of low quality and to overfit to the test suite used to produce
them. Section 2.1 will provide background on automated
program repair, and Section 2.2 will explain methods for
evaluating patch quality.

2.1 G&V and Synthesis-Based Repair

Automatic program repair techniques can be classified
broadly into two classes: (1) Generate-and-validate (G&V) tech-
niques create candidate patches (often via search-based soft-
ware engineering [57]) and then validate them, typically
through testing (e.g., [5], [29], [36], [39], [68], [69], [83], [93],
[101], [114], [120], [125], [132], [133]. (2) Synthesis-based techni-
ques use constraints to build patches via formal verification,
inferred or programmer-provided contracts, or specifications
(e.g., [64], [107], [131]).Runtime program repair techniques (e.g.,
[23], [24], [37], [38], [108] self-heal the execution at runtime
and typically do not produce source-code patches, and are
orthogonal to the above classification. This paper focuses on
G&V techniques, and neither synthesis-based nor runtime-
repair techniques. Prior work has considered overfitting in
synthesis-based repair techniques [76], albeit only on small
programs. While both synthesis-based and G&V techniques
share high-level goals, they work best in different settings,
and have different limitations and challenges.

Test-driven G&V techniques are a particularly interesting
subject of exploration, as they (e.g., Clearview [108], GenProg,
Par, and Debroy and Wong [36]) have been shown to repair
defects in large, real-world legacy software. Meanwhile, for-
mal specifications and contracts are relatively rare in practice.
Although new projects appear to be increasingly adopting
contracts [46], their penetration into existing systems and lan-
guages remains limited. Few maintained contract implemen-
tations exist for widely-used languages such as C. For
example, in the Debian main repository, only 43 packages
depended on Zope.Interfaces (by far the most popular

Python, contract-specific library in Debian) out of a total of
4,685 Python-related packages. For Ubuntu, 144 out of 5,594
Python-related packages depended on Zope.Interfaces.
Synthesis-based techniques show great promise for new or
safety-critical systems written in suitable languages, and ade-
quately enriched with specifications. However, the signifi-
cance of defects in existing software demands that research
attention be paid at least in part to techniques that address soft-
ware quality in existing systems written in legacy languages.
Since legacy codebases are often idiosyncratic to the point of
not adhering to the specifications of their host language [15], it
might not be possible even to add contracts to such projects.

G&V repair works by generating multiple candidate
patches that might address a particular bug and then vali-
dating the candidates to determine if they constitute a repair.
In practice, the most common form of validation is testing.
A G&V approach’s input is therefore a program and a set of
test cases. The passing tests validate the correct, required
behavior, and the failing tests identify the buggy behavior
to be repaired. G&V approaches differ in how they choose
which locations to modify, which modifications are permit-
ted, and how the candidates are evaluated, among others.

We chose four representative G&V repair techniques for
our analysis. There are many existing G&V repair techni-
ques, often with similar performance. However, an underly-
ing theory of G&V repair suggests that analysis of a set of
these techniques should generalize to others [132]. Section 6
discusses the generalizability of our results.

GenProg [77], [133] uses a genetic programming heuris-
tic [71] to search the space of candidate repairs. Given a
buggy program and a set of tests, GenProg generates a pop-
ulation of random patches by using statistical fault localiza-
tion to identify which program elements to change (those
that execute only on failing test cases or on both failing and
passing text cases), and selecting elements from elsewhere
in the program to use as candidate patch code. The fitness
of each patch is computed by applying it to the input pro-
gram and running the result on the input test cases; a
weighted sum of the count of passed tests informs a random
selection of a subset of the population to propagate into the
next iteration. These patch candidates are recombined and
mutated to form new candidates until either a candidate
causes the input program to pass all tests, or a preset time
or resource limit is reached. Because genetic programming
is a random search technique, GenProg is typically run mul-
tiple times on different random seeds to repair a bug.

Par [69] performs search by applying 12 fix templates —
automatic program editing scripts created based on the fix
patterns identified from developer fixes — in the locations
they can be applied that are also identified as likely faulty
by statistical fault localization.

SimFix [63], a more recent technique, mines code pat-
terns (similar to Par templates) from frequently occurring
code changes from developer-written patches. Then, in the
project with the defect SimFix is attempting to repair, Sim-
Fix identifies code snippets that are similar to the code Sim-
Fix has localized the defect to. SimFix defines similarity
using structural properties, variable names, and method
names. SimFix ranks the code snippets by the number of
times the mined patterns have to be applied to the snippet
to replace the buggy code. SimFix then selects the snippets

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 639

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

(one at a time) from the ranked list of top 100 snippets,
applies the pattern-based modifications to produce a candi-
date patch, and validates the patch against tests created
using a test purification technique [139]. While the original
paper describes SimFix stopping once a patch that passes
the test suite is found [63], the implementation [62] gener-
ates multiple patches that pass at least one of the purified
originally-failing tests. In this paper, we use all the found
patches for our analyses.

TrpAutoRepair [111] uses random search instead of genetic
programming to traverse the search space of candidate solu-
tions. Instead of running an entire test suite for every patch,
TrpAutoRepair uses heuristics to select the most informative
test cases first, and stops running the suite once a test fails.
TrpAutoRepair limits its patches to a single edit. It ismore effi-
cient than GenProg in terms of time and test case evalua-
tions [111]. The same approach is also called RSRepair [112],
andwe refer to the original algorithmname in this paper.

There are four key challenges that G&V must overcome to
find patches [132]. First, there are many places in the buggy
program that may be changed. The set of program locations
that may be changed and the probability that any one of them
is changed at a given time describes the fault space of a particu-
lar program repair problem. GenProg, Par, SimFix, and
TrpAutoRepair tackle this challenge by using existing fault
localization techniques to identify good repair candidates.
SimFix increases the accuracy of GZoltar [22], an existing fault
localization technique, by using a test purification tech-
nique [139] that removes assertions unrelated to the bug from
the failing tests, as well as source code statements related to
those unrelated assertions. Second, there are many ways to
change potentially faulty code in an attempt to fix it. This
describes the fix space of a particular program repair problem.
GenProg and TrpAutoRepair tackle this challenge using the
observation that programs are often repetitive [10], [51] and
logic implemented with a bug in one place is likely to be
implemented correctly elsewhere in the same program. Gen-
Prog and TrpAutoRepair therefore limit the code changes to
deleting and copying constructs from elsewhere in the same
program. Par instantiates a set of repair templates constructed
based on a manual inspection of a large set of developer edits
to open source projects. SimFix similarly uses templates
mined from developer-written patches, also limiting code
changes to snippets from the same programwhich are similar
structurally, or through variable or method names, to the
code being replaced. Third, there are many ways to edit the
code snippets identified by the fix space so as to patch the bug.
These edits, called mutation operators, define the repair strat-
egy. GenProg and TrpAutoRepair use three mutation opera-
tors, selected uniformly at random, append candidate snippet,
replace the buggy region with the candidate snippet, and delete
the buggy region. GenProg also allows for a crossover operator
that combines parts of two candidate snippets. Par uses 12
mutation operators, chosen uniformly at random, each one
corresponding to its 12 fix templates. SimFix uses the code
patterns mined from the existing developer-written patches
and selects the candidate snippets that requires fewer modifi-
cations using the mined code patterns. Fourth, selecting the
tests to be executed to evaluate a candidate patch defines a
repair technique’s test strategy. GenProg and Par sample 10
percent of the tests using random sampling for internal

computations, and only the full test suite for promising candi-
dates. TrpAutoRepair uses heuristics to select the most infor-
mative test cases first, and stops running the suite once a test
fails. SimFix executes all the failing tests first and, only if all
those pass, continues to execute the passing tests.

GenProg, Par, SimFix, and TrpAutoRepair share sufficient
common features to allow consistent empirical and theoreti-
cal comparisons. This allows us to focus on particular experi-
mental concerns and mitigates the threat that unrelated
differences between the algorithms confound the results.

2.2 Evaluating Repair Quality

In 2013, Brun et al. [20] demonstrated that automated pro-
gram repair is prone to producing patches that overfit to the
test suites it has access to. Within the space of possible pro-
gram modifications, many programs (and, thus, patches)
exist that pass all the supplied tests. While some of these
programs encode the desired behavior for all possible
inputs, many fail to encode desired behavior on at least
some inputs not represented by the tests. Those other pro-
grams fail to generalize to the unwritten, intended specifica-
tion and result in low-quality patches. This phenomenon of
automated program repair producing patches that satisfy
the partial specification of the supplied test suite, but failing
to generalize is called overfitting [122].

Since then, research has measured the degree to which
G&V patches overfit and what factors affect that overfitting
on small C programs [122], how often G&V patches disagree
with developer-written patches [114], how often overfitting
happens in Java repair [42], [90], the space of possible
patches and the concentration of correct ones [87], and so
on. Further, research has attempted to improve on the qual-
ity of the patches produced by using semantic search to
increase the granularity of repair [68], condition synthe-
sis [86], learning patch generation patterns from human-
written code [88], and automated test case generation [135].
Other research has found that overfitting is not unique to
G&V C repair, with synthesis-based repair also overfitting
to the supplied partial specification [76]. Even when repair
uses manually-written contracts as the desired behavior
specification, which are more complete than tests, it still
overfits, producing correct patches for only 59 percent of
the defects [107].

There are two established methods for evaluating quality
of program repair, using an independent test suite not used
during the construction of the repair [20], [122], and manual
inspection [90], [114], typically for equivalence with a devel-
oper-written patch (though manual inspection has been
used to measure how maintainable the patches are [50] and
how likely developers are to accept them [69]). The two
methodologies are complementary. Intuitively, the method-
ology that uses an independent test suite is more objective,
whereas manual inspection is more subjective and can be
subject to subconscious bias, especially if the inspectors are
authors of one of the techniques being evaluated. A recent
study found that manual-inspection-based quality evalua-
tion can be imprecise [72], while independent-test-suite-
based quality evaluation is inherently partial, as the inde-
pendent test is a partial specification. As a result, manual
evaluation of quality can imprecisely label patches as

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

correct and incorrect. The test-suite-based evaluation cannot
be imprecise, but may be incomplete, potentially mislabel-
ing some patches as correct but never labeling a correct
patch as incorrect.

In this paper, we select to use the test-suite-based quality
evaluationmethod because (1) it is objective and reproducible
in a fully automated manner, (2) can scale to complex, real-
world defects in real-world systems, which are the focus of
our work (whereas manual inspection would require using
the projects’ developers with intricate project knowledge).
Since this methodology necessarily underestimates overfit-
ting (it never labels a correct patch as incorrect) [72], our find-
ings of overfitting are, atworst, conservative.

3 JARFLY: THE JAVA REPAIR FRAMEWORK

This section describes JaRFly, our open-source framework for
implementing techniques for automatic search-based improve-
ment (or genetic improvement) of Java programs. Genetic
improvement approaches reuse existing software as input to
metaheuristic search. The search goal is to identify variants of
that input software that improve on the software according to
some criterion (e.g., functionality, performance) [109].

JaRFly is publicly available at http://JaRFly.cs.

umass.edu/ to facilitate researchers and practitioners
building search-based improvement approaches for Java
programs. The implementation includes reimplementations
of GenProg [77] and TrpAutoRepair [111] for Java (original
releases of these tools were for C programs), and releases
the first public reimplementation of Par [69].

JaRFly’s novelty and utility lie in the way it decouples the
fundamental components of metaheuristic search and
allows developers to specify just those fundamental compo-
nents, taking care of the rest of the approach implementa-
tion. These components are problem representation, fitness
function, mutation operators, and search strategy [58]. JaR-
Fly provides high-level extension points for each of these
fundamental components, which differentiates it from prior
frameworks that support implementing Java-based repair
techniques [91].

JaRFly simplifies the process of implementing genetic
improvement approaches for Java programs. JaRFly han-
dles parsing Java programs into a specified representation,
and metaheuristic search over variants within that represen-
tation using specified mutation operators, search strategy,
and fitness function. JaRFly allows the user to specify these
representations, mutation operators, search strategies, and
fitness functions by selecting from a set of already imple-
mented options, or by extending with new versions via
explicit extension points.

JaRFly improves on prior frameworks that support imple-
menting Java-based repair techniques [91] by making these
fundamental components explicit and supporting their exten-
sions explicitly, while also handling awider range of Java pro-
grams. For example, JaRFly can operate over the Closure
compiler subject program from the Defects4J dataset, whereas
prior frameworks cannot [91]. We next detail JaRFly’s four
fundamental components ofmetaheuristic search.

Problem Representation. The first and perhaps most funda-
mental design choice in applying metaheuristic search to a
software engineering problem is deciding how to represent

the problem such that it is amenable to symbolic manipula-
tion. The most common representation choice in genetic
improvement applications is the patch representation, in which
an individual candidate solution is represented as a variable-
length sequence of edits to the original program [77], [78]. In
addition to Java, variations of and improvements on this
representation choice can target Python [2] and C [103], [104]
programs. Prior to the development of the patch representa-
tion, genetic-programming-based program repair operated
over problems represented as a fixed-length weighted path
through the program represented as an abstract syntax
tree [48], [133]; as is typical in metaheuristic search, represen-
tation choice influences search success and efficiency [78]. By
making this representation an explicit choice, and extension
point, JaRFly enables developers to both pay proper attention
to the choice of representation and to evaluate multiple repre-
sentation choices.

JaRFly’s Representation interface exports functional-
ity for manipulating and evaluating a candidate solution in
the context of a search-based program improvement
approach. This includes support for

1) querying variant-specific localization information,
2) evaluating fitness, such as serializing a variant to

disk and compiling it, or running one or more test
cases against a given variant, tasks common to most
genetic improvement approaches, depending on fit-
ness function, and

3) assessing the validity of and applying mutation
operators to the particular variant.

To that end, JaRFly’s Representation is parameter-
ized by a mutation interface that provides functionality for
editing arbitrary Java programs.

JaRFly provides prebuilt implementations of (1) an abstract
superclass that supports caching and serialization of common
representation-independent intermediate data, such as a fit-
ness cache, and (2) a classic patch representation for program
repair problems in Java. The currently-implemented patch
representation is a variable-length list of indivisible mutation
operators, such as “Insert statement S at location L”; mutating
this representation adds a new edit to the end of the current
variant. It is straightforward to implement other choiceswith-
out requiring major refactoring of the framework. For exam-
ple, Oliveira et al. [103], [104] propose a novel patch-based
representation that decouples the fault, operator, and fix
spaces, with implications for crossover (but no other compo-
nents of the search strategy); this could be achieved for Java in
our framework by specializing the present patch-based repre-
sentation (specifically the getGenome method) and imple-
menting the new crossover operators in dedicatedmethods in
the Populationmodule.

Fitness Function. Applying metaheuristic search to a soft-
ware engineering problem requires a fitness function to
determine the fitness of a variant. Thus, this function must
operate on the representation. JaRFly makes the choice of
the fitness function explicit.

The most typical fitness function in modern repair
approaches is a weighted sum of the number of test cases
passed by a program variant. Sampling can reduce the
computational cost of this fitness function [47]. Alternative fit-
ness functions for program repair typically combine test cases

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 641

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

with another objective, such as in a multi-objective search
strategy. These alternative objectives can include a variant’s
similarity to patches in a dataset of previous developer-
written patches [75], or its intermediate semantic distance
according to a set of learned invariants over intermediate pro-
gram state [40], [47] or according to memory values [34] from
either the original program or the rest of the population.

JaRFly provides an extensible, representation-agnostic
Fitnessmodule that, by default, implements and provides
configuration options for multiple common fitness strategies
from the genetic improvement literature. These strategies
include test execution at different levels of JUnit granularity
(individual JUnit method, or entire JUnit class), and configu-
ration options for test sampling (including generational ver-
sus individual sampling, and a configurable sample rate),
and test selection (sampled, heuristically modeled [111],
[132], or test to first failure). JaRFly’s Fitness interface is
agnostic to the underlying testing methodology, so it is not
limited to using JUnit for fitness calculation. Fitness pro-
vides, by default, the idea of a (potentially dynamically-
updated) test model, supporting experiments and extensions
focused on more intelligent test selection and prioritization.
JaRFly, moreover, extends (in a non-default branch) Fit-
ness to evaluate and provide additional values, such as an
experimental diversity-based metric [40], in the context of a
multi-objective search strategy (NSGA-II [35]) extended
from the Searchmodule. Other measures of fitness, such as
via comparison to a historical dataset of patches [75], can
similarly extend Fitness.testFitness for more special-
ized, non-test-drivenmetrics.

Mutation Operators. Metaheuristic search requires a set of
manipulation operators applicable to the selected represen-
tation. JaRFly provides the EditOperationabstraction,
parameterized by a rewriter engine that can modify arbi-
trary Java programs. JaRFly’s default implementation uses
the Eclipse JDT API to perform rewriting. An EditOpera-

tion is instantiated at a particular (abstract) Location,
and may contain one or more abstract Holes that need to be
filled in with suitable code. For example, an Appendopera-
tion can be instantiated at any statement in a Java location;
it has a single Hole that must be filled in by a piece of code
that may be appended there.

JaRFly implements all statement-level edit operations
used by GenProg and TrpAutoRepair and all Par fix tem-
plates, including the optional ones from https://sites.

google.com/site/autofixhkust/home/, not included
in the original paper [69]. Both GenProg and TrpAutoRepair
construct modifications by reusing code from elsewhere in
the program under repair. The Representation enforces
this type of modification, providing information on legal
Locations and code bank code that can be used to fill in
Holes for a particular variant. Meanwhile Par uses 12 fix
templates — automatic program editing scripts created
based on the fix patterns identified from developer-written
patches. As with the coarser-grained operations used by
GenProg and TrpAutoRepair, the Representation pro-
vides the possible values to fill in Holes in Par’s fix tem-
plates, such as which variable should be checked for null
in the null-check-insertion template.

Some EditOperations cannot be applied at all Loca-
tions. For example, an Append operation cannot insert

code that references out-of-scope variables, or the result
will not compile. JaRFly creates EditOperations via a
helper JavaEditFactory, which queries a variant via its
Representation interface for information to determine
the edit’s legality. JaRFly implements a set of static semantic
checks that can identify edits that will be rejected by the
compiler. Previous work demonstrated that static semantic
checks improve efficiency in genetic programming repair
for C programs [78]. Java’s compiler is substantially stricter
than most C compilers, requiring commensurately more
complex static checks to avoid invalid mutations.

Although we use the released SimFix implementation for
our experiments, the mutation operators considered by Sim-
Fix could be implemented further as abstractions or exten-
sions of this paradigm. Mutation operators are typically
associated with weights that inform their selection and
application. In the default implemented algorithms, these
weights are fixed throughout the search strategy. However,
they are customizable by design, such as via a machine-
learned model of edit frequency drawn from historical,
developer-written patches [88], [123].

Search Strategy. The choices of representation and muta-
tion operators represent the space of possible variants meta-
heuristic search can explore, and the choice of fitness
function represents the objective shape of that search space.
The search strategy defines the path through the space the
metaheuristic search uses to optimize the objective.

Common search strategies include local search, random
search, and genetic programming. JaRFly’s Search inter-
face provides a representation-agnostic extension point for
implementing search strategies, and implements five strate-
gies, to facilitate comparison and customization. The imple-
mented strategies are a random search, a weighted brute
force single-edit search, an oracle search, a genetic program-
ming heuristic, and NGSA-II [35], a multi-objective evolu-
tionary search strategy.

In addition to these four fundamental components of the
metaheuristic search, JaRFly includes implementation and
support for other common and important interfaces and
utilities for search-based program modification:

Population Manipulation. JaRFly implements crossover and
selection strategies common in source-level evolutionary pro-
gram manipulation. The implemented crossover strategies
include one-point crossover, uniform crossover [133], and
crossback crossover (crossover with the original unmodified
representation) [133]. The one implemented selection strategy
is tournament selection with configurable tournament sizes.
JaRFly contains extension points to make adding new cross-
over and selection operators straightforward and indepen-
dent of representation. Additionally, JaRFly allows setting the
proportionalmutation rate as a top-level configuration option.

Localization and Code Bank Management. Fault and fix locali-
zation are common concerns in search-based program repair
or improvement. JaRFly implements common weighted path
localizationwith configurable pathweights, facilities for read-
ing in arbitrary localization data from a file, and an abstract
class for implementing alternative localization strategies [113].
JaRFly uses the JaCoCo coverage library to compute coverage
for the purposes of fault localization [44].

These facilities support significant (but straightforward)
customization and investigation of all elements of a meta-

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

heuristic search technique for program transformation.
Implementing different metaheuristic search strategies
(regardless of the search goal) requires specialization of a
single Search class; investigating or isolating the effect of
particular search features (such as selection, crossover or
mutation rate, or the numerous other parameters influenc-
ing the traversal strategy in a genetic algorithm) requires
the specialization of single methods, or the modification of
existing top-level configuration options. These choices
enable significant ongoing experimentation and specializa-
tion of the search component of a search-based or genetic
improvement program modification strategy, without
requiring reimplementation or modification of how pro-
grams under modification are represented, manipulated, or
evaluated.

4 REAL-WORLD DEFECTS AND TEST SUITES

Our study requires real-world defects in real-world proj-
ects. Further, our study requires that each of these projects
have not one but two high-quality test suites. Section 4.1
describes the Defects4J [66] dataset we use in our study, and
Section 4.2 describes the methodology we followed to create
test suites.

A replication package, with all data, code, and instruc-
tions necessary to replicate our results is available at
http://github.com/LASER-UMASS/JavaRepair-

replication-package/.

4.1 Real-World Defects

We used Defects4J version 1.1.0, which consists of 357
defects made by developers during the development of five
real-world open-source Java projects. Fig. 1 describes the
Defects4J defects and the projects they come from. Each
defect comes with (1) one defective and one developer-
repaired version of the project code; (2) a set of developer-
written tests, all of which pass on the developer-repaired
version and at least one of which evidences the defect by
failing on the defective version; and (3) the infrastructure to
generate tests using modern automated test generation
tools. Each defective version is a real-world version of the
code. This version, submitted to the project’s version-
control repository by the developers of the subject project,
fails on at least one test. The developer-repaired version is a
subsequent version of that code submitted by the project’s
developers to the project’s version-control repository that
passes all the tests, minimized to only include changes rele-
vant to repairing the defect.

Defects4J has been used to evaluate program repair in
terms of how often techniques produce patches [41], what
types of defects the techniques are able to patch [98], and
the quality of the produced patches [72], [90], [136], [137].
These existing evaluations that measure patch quality
use manual inspection [72], [90], [136] or automatically-
generated evaluation test suites [72], [135], [137]. While
manual inspection is subjective and could be biased, low-
quality evaluation test suites could inaccurately measure
quality [72]. In this paper, we develop a methodology for
producing high-quality evaluation test suites, allowing us
to measure patch quality more accurately; we also go
beyond simply measuring quality and study what factors
influence patch quality of automated program repair.

4.2 Quality-Evaluating Test Suites

To objectively measure the quality of a generated repair, we
need two independent test suites that specify the desired
behavior of the program being repaired. One test suite can be
used by the automated program repair techniques to produce
a patch for a defect. The second, independent test suite is
called the evaluation test suite; this test suite is used to mea-
sure the patch’s quality. As alreadymentioned, eachDefects4J
defect comes with a developer-written test suite that eviden-
ces the defect. To create the second test suite, for each defect,
we generated test inputs using an off-the-shelf automated test
input generator, and using the developer-repaired code as an
oracle of correct behavior. We generated the second test suites
only for the 106 defects for which at least one of the four auto-
mated repair techniques we evaluate produced a patch.
(Fig. 3 in Section 5.1will describe these patch results.)

This repair-quality methodology is only effective if the
evaluation test suite is of high-quality. Coverage is widely-
used in industry to estimate test-suite quality [61]. Using
statement-level code coverage as a proxy for test suite quality,
our goal was to generate, for each defect, a high-coverage test
suite, thus implying that a big portion of the functionality of
the inspected class is being evaluated. Specifically, we focused
on the statement coverage of the methods and classes modi-
fied by the developer-written patch and designed a test gener-
ation methodology aimed to maximize that coverage. Ideally,
wewant the evaluation test suite to have perfect coverage, but
modern automated test generation tools cannot achieve per-
fect coverage on all large real-world programs, in part because
of limitations of such tools such as possible infinite recursion
in the creation process or impreciseness of method signatures
such as Java generics [49]. Thus, we set as our goal to generate,
for each defect, a test suite that achieves 100 percent coverage

Fig. 1. The 357 defect dataset created from five real-world projects in the Defects4J version 1.1.0 benchmark. We used SLOCCount to measure the
lines of code (KLoC) counts (https://www.dwheeler.com/sloccount/). The tests and test KLoC columns refer to the developer-written tests.

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 643

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

on all developer-modified methods, and at least 80 percent
coverage on all developer-modified classes. The choice of cov-
erage criteria is a compromise between a reasonable measure
of covering all the developer changes and the modern auto-
mated test generation tools’ ability to generate high-coverage
test suites.

We used the patched version of the code to generate
the evaluation test suite because it guarantees that this test
suite covers at least one way of repairing the defect. An alter-
native to using the defective version of the code would not
provide such a guarantee. Our choice might cause the evalua-
tion test suites to more accurately measure the quality of
patches that are structurally similar to the human-written
patches, and would bias that measurement more favorably
toward patches whose behavior agrees with the human-
written patches. Future work could attempt to mitigate these
concerns by combining test suites generated using multiple
versions of the code, and by using alternate information for
oracles, such as natural language specifications [17], [53], [97],
[124], other implementations of the same specification [92], or
even the unpatched version [135], [141], though each of those
approacheswould introduce its own limitations.

We compared the effectiveness of two modern off-the-
shelf automated test generators Defects4J supports, Ran-
doop [105] and EvoSuite [49], in a controlled fashion, and
found that EvoSuite consistently produced test suites with
higher coverage on Defects4J defects’ code. This finding is
consistent with prior analyses [118]. Accordingly, we
elected to use EvoSuite as our test suite generator.

EvoSuite uses randomness in its test generation and contin-
ues to generate tests up to a given time budget, so we experi-
mented with different ways to run EvoSuite to maximize
coverage.We ran EvoSuite using branch coverage as its target
maximization search criterion (the default option) twenty
times per defect, with different seeds, ten times for 3 minutes
and ten times for 30 minutes. We found low variance in the
coverage produced by the generated test suites: the 3-minute
test suites had a variance in statement coverage of 0.6 percent
and the 30-minute test suites of 0.8 percent. We also found
that the improvement between the mean statement coverage
of the 3-minute test suites and themean statement coverage of
the 30-minute test suites was low (from 68 to 72 percent),
suggesting that longer time budgets would not signifi-
cantly improve coverage. Merging ten 3-minute test suites
resulted in higher statement coverage than a single average
30-minute test suite (77 versus 72 percent). Finally, merg-
ing ten 30-minute test suites resulted in 81 percent state-
ment coverage, on average, the highest we observed. We
thus used the ten merged 30-minute test suites as preferred
combination mechanism to optimize test suite coverage.

We followed the following automated process for generat-
ing the test suites: For each defect, we ran EvoSuite (v1.0.3)
ten times (on different seeds) with a 30-minute time budget
and merged the ten resulting test suites, removing duplicate
tests. We then checked if the resulting test suite covered
100 percent of the statements in the developer-modifiedmeth-
ods, and at least 80 percent of the statements in each of the
developer-modified classes. For 34 out of the 106 defects, this
algorithm generated test suites that satisfied the coverage cri-
terion. In the course of our study, a new version of EvoSuite
was released. We attempted to augment the test suites by

using this later version of EvoSuite (v1.0.6), but this new ver-
sion did not produce better-coverage test suites than v1.0.3 on
its own. However, using statement-coverage as the target
maximization search criterion (instead of the default branch
coverage) did produce test suites that, when combined with
the previous v1.0.3-generated test suites, improved coverage.
This process resulted in test suites that satisfied the coverage
criterion for a total of 62 defects (11 Chart, 6 Closure, 11 Lang,
30Math, and 4 Timedefects).

We then examined the generated test suites that met one,
but not both of the coverage criteria and attempted to manu-
ally augment them to fully meet the other criterion. Examin-
ing these cases, we found that EvoSuite often was unable to
cover statements that required the use of specific hard-to-
generate literals present in the code. For example, covering
some portions of code from the Closure project (a JavaScript
compiler) required tests that take as input specific strings of
JavaScript source code, such as an inline comment. Mean-
while covering some exceptional Lang code required spe-
cific strings to trigger the exceptions. The probability of the
random strings generated and selected by EvoSuite to
match the necessary strings to cover these portions of the
code is negligibly small. We, therefore, manually examined
the source code and created test cases using the necessary
literals. Augmenting the EvoSuite-generated test suites with
these manually-written tests resulted in high quality test
suites for 9 more defects (1 Chart, 3 Closure, 4 Lang, and
2 Math, defects) that satisfied the coverage criteria.

In total, this process produced test suites that satisfied the
coverage criterion for 71 of the 106 defects (12Chart, 9 Closure,
14 Lang, 32Math, and 4 Timedefects). The test suites varied in
size from 59 to 7,164 tests, with the mean test suite containing
1,194 tests and themedian test suite 648 tests.

We restrict our study to these 71 defects. An additional 5
defects had 80 percent or higher coverage on the developer-
modified classes, but did not have 100 percent coverage on
the developer-modified methods. The mean statement cov-
erage for the developer-modified classes for these 71 defects
is 96.7 percent and the median is 98.7 percent (with means
and medians for the modified methods both 100 percent, as
required by the coverage criterion). Fig. 2 summarizes these
statistics for the 71 defects used in our study and the 106
defects patched by at least one repair technique.

We examined the 35 defects for which our process failed
to generate adequate test suites to understand why this hap-
pened. We found that the uncovered code was either
unreachable, the default code at the end of a switch

Fig. 2. Statement coverage of the EvoSuite-generated test suites for the
106 Defects4J defects patched by at least one repair technique in our
study, and for the 71-defect subset for which our generated test suites
covered 100 percent of all developer-modified methods and at least 80
percent of all developer-modified classes.

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

statement, a branch of a complex set of nested if statements,
exception declarations or catch clauses for exceptions not
thrown by local code (but possibly thrown elsewhere).
Unfortunately, because significant domain knowledge and
project-specific understanding are necessary to determine
whether such code is reachable and to construct an input
that would execute this code, we could not definitively
eliminate it as unreachable, and elected to omit these defects
from our study.

5 EMPIRICAL MEASUREMENTS OF REPAIR

QUALITY

WeevaluateG&V repair via a series of controlled experiments
using the Defects4J dataset described in Section 4.1 and test
suites described in Section 4.2. Section 5.1 outlines our experi-
mental procedure for repairing defects using GenProg, Par,
SimFix, and TrpAutoRepair and reports how successful the
techniques are at producing patches on real-world defects.
Section 5.2 examines the quality of those patches and meas-
ures which factors affect patch quality. Finally, Section 5.3
exploresmethods for improving patch quality.

5.1 Ability to Produce a Patch

Research Question 1: Do G&V techniques produce patches
for real-world Java defects?

We used each repair technique to attempt to repair each of
the 357 defects in the Defects4J benchmark providing the
developer-written test suite to all the techniques to guide
repair. For GenProg, Par, and TrpAutoRepair, which select
random mutation operators to generate a patch, we attempt
to repair each defect 20 times with a timeout of 4 hours each
time, using a different seed each time, for a total of
357� 20 ¼ 7;140 attempted repairs, per repair technique.
For SimFix, which is deterministic, we attempt the repair
once for each defect using the default timeout of 5 hours, for
a total of 357 attempted repairs. This results in a grand total
of 7;140� 3þ 357 ¼ 21;777 repair attempts. We ran these
techniques using a cluster of 50 compute nodes, each with a
Xeon E5-2680 v4 CPU with 28 cores (2 processors, 14 cores
each) running at 2.40 GHz. Each node had 128 GB of RAM
and 200 GB of local SSD disk. We launched multiple repair
attempts in parallel, each requesting 2 cores on one compute
node. The 20 repair attempts provided a compromise
between the likely ability to make statistically significant
findings, and the computational resources necessary to run
our experiments. The computational requirements are sig-
nificant: Repairing a single defect 20 times with a 4-hour
timeout can take 80 hours per defect per repair technique,
and 10 CPU-years for 357 defects and 3 repair techniques.

The repair techniques’ parameters affect how they attempt
to repair defects. For GenProg, Par, and TrpAutoRepair
(implemented in JaRFly), we used the parameters from prior
work that evaluates these techniques on C programs [69], [77],
[111].We set the population size (PopSize) to 40 and themax-
imumnumber of generations to 10 for all three techniques. For
GenProg and TrpAutoRepair, we uniformly equally weighted
the mutation operators append, replace, and delete. For

Par, we uniformly equally weighted the mutation operators
FUNREP, PARREP, PARADD, PARREM, EXPREP, EXPADD,
EXPREM, NULLCHECK, OBJINIT, RANGECHECK, SIZECHECK,
and CASTCHECK. For GenProg and Par, we set SampleFit to
10 percent of the test suite. For fault localization, all three tech-
niques apply a simple weighting scheme to assign values to
statements based on their execution by passing and failing
tests. For Par and TrpAutoRepair, we set negativePath-
Weight to 1.0 and positivePathWeight to 0.1, based on
prior work [69], [111]. For GenProg, we set negativePath-
Weight to 0.35 and positivePathWeight to 0.65 [78]. For
all remaining parameters, we use their default values from
prior work [69], [77], [111]. For SimFix, we use its open-source
implementationwith its default configuration [62].

We describe the complete set of parameters at https://
github.com/LASER-UMASS/JavaRepair-replication-

package/wiki/Configuration-parameter-details/.
Fig. 3a reports the results of the repair attempts. GenProg

patches 49 out of 357 defects (6 Chart, 15 Closure, 9 Lang,
18 Math, and 1 Time) and produces a total of 585 patches,
out of which 255 are unique. Par patches 38 out of 357
defects (3 Chart, 12 Closure, 7 Lang, 15 Math, and 1 Time),
and produces a total of 288 patches, out of which 107 are
unique. SimFix patches 68 out of 357 defects (8 Chart, 15 Clo-
sure, 13 Lang, 27 Math, and 5 Time) and produces a total of
76 patches, out of which 73 are unique. TrpAutoRepair
patches 44 out of 357 defects (7 Chart, 12 Closure, 8 Lang,
16 Math, and 1 Time) and produces a total of 513 patches,
out of which 199 are unique. Overall, at least one technique
produced at least one patch for 106 out of the 357 defects.
All techniques produced at least one patch for 12 defects.
SimFix most often produced patches (21.3 percent of the
attempts) and produced patches for the most defects
(19.0 percent). Fig. 3b shows the distributions of unique
patches, per project, generated by each of the four techniques.

Compared to prior studies onCdefects [122], [79], [111], the
Java repair mechanisms produce patches on fewer repair

Fig. 3. (a) GenProg, Par, SimFix, and TrpAutoRepair produce patches
1,462 times (6.7 percent) out of the 21,777 attempts. At least one tech-
nique can produce a patch for 106 (29.7 percent) of the 357 real-world
defects. (b) The distributions of unique patches produced by the four
techniques are similarly shaped.

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 645

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

attempts and for fewer defects. On C defects, GenProg pro-
duced patches for between 47 percent (ManyBugs defect data-
set) and 60 percent (IntroClass defect dataset) and
TrpAutoRepair produced patches for between 52 percent
(ManyBugs) and 57 percent (IntroClass) defects. It is not sur-
prising that on real-world defects, the rate is lower. Our find-
ings are also consistent with prior work applying G&V repair
to Java defects, which found techniques to produce patches for
9.8–15.6 percent of the defects [90]. In a prior study on Java
defects, Par produced patches for 22.7 percent of the
defects [69]. While that study’s defects also came from real-
world software projects, it is possible that the complexity of
Defects4J defects results in the lower patch rates for Par. Some
of the prior study’s defects came fromLang andMath, projects
that are also part of Defects4J (though adifferent set of defects),
and our results on those projects are similar to those in the
prior study [69]. Even though SimFix patches more defects
(19.0 percent) than other techniques, the fraction of defects
patched by SimFix is still much lower (19.0 versus 47 percent)
than that those obtained using repair techniques for C defects.

Answer to Research Question 1:We conclude thatG&V tech-
niques do produce patches on real-world Java defects,
though the rate of patch production is lower than on C
defects.

5.2 Patch Quality

Section 5.1 showed that G&V techniques are able to patch
29.7 percent of the real-world defects inDefects4J. This section
explores the quality of the produced patches and measures
the factors that affect it. These experiments are based on the
71 defects for which we are able to generate high-quality eval-
uation test suites (recall Section 4.2). These 71 defects are a
subset of the 106 defects for which at least one repair tech-
nique produced at least one patch (recall Fig. 2).

5.2.1 Patch Overfitting

Research Question 2: How often and how much do the
patches produced by G&V techniques overfit to the
developer-written test suite and fail to generalize to the
evaluation test suite, and thus ultimately to the program
specification?

Methodology. To measure the quality of a produced patch,
we start with the defective code version, apply the patch to
that code, and execute the generated evaluation test suite.
We call the total number of tests executed in the evaluation
test suite Ttotal and the number of tests the patched version
passes Tpass. The quality of a patch is

Tpass
Ttotal

, as defined by
prior work [122]. A patch that passes all the tests in the eval-
uation test suite has 100 percent patch quality.

We also measure the quality of the defective code version
by executing the evaluation test suite prior to applying the
patch. This allows us to identify the quality improvement
due to the patch.

Results. First, we consider the quality of the patches auto-
mated program repair techniques produce. Fig. 4 shows the
distributions of the quality of the patches produced by each

technique. Due to the nature of the space of possible patches,
all four techniques produce the same patch for some defects,
which, for example, caused the minimum exhibited quality
patch to be identical for all four techniques. Overall,
74.1 percent of the patches (GenProg: 75.7 percent, Par:
86.2 percent, SimFix: 53.9 percent, and TrpAutoRepair:
80.5 percent), on average, failed at least one test, thus overfit-
ting to the specification and failing to fully repair the defect.
The mean quality of the patches varied from 95.7 to
96.4 percent. The relatively high fraction is not necessarily a
proportional indication of the quality of repair: Defective code
versions already pass 98.3 percent of the tests, on average, so a
patch that passes 96.0 percent of the tests may not even be an
improvement over the defective version.

Accordingly, next, we consider whether patches improve
program quality. Fig. 5 shows, for each of the patched defects,
the change in the quality between the defective version and
the patched version.A negative value implies that the patched
version failed more evaluation tests than the defective ver-
sion. When a technique produced multiple distinct patches
for a defect, for this comparison, we used the highest-quality
patch. For GenProg, 33.3 percent of the defects’ patches
improved the quality, 42.5 percent showed no improvement,
and the remaining 24.2 percent decreased quality. For Par,
20.0 percent improved, 40.0 percent showed no improvement,
and 40.0 percent decreased quality. For SimFix, 45.8 percent
improved, 35.5 percent showed no improvement, and
16.7 percent decreased quality. For TrpAutoRepair,
32.3 percent improved, 25.8 percent showed no improvement,
and 41.9 percent decreased quality. For Par and TrpAutoRe-
pair, more patches broke behavior than repaired it, and the
decrease in quality was, on average, larger than the improve-
ment. For all the techniques, the majority (89 out of 137,
65.0 percent) of the patches decrease or fail to improve quality,
and more than a quarter (39 out of 137, 28.5 percent) of the
patches break evenmore tests than they fix.

These results are consistent with the previous findings
obtained using C repair techniques on small programs,
where the median GenProg patch passed only 75 percent
(mean 68.7 percent) of the evaluation test suite and the
median TrpAutoRepair patch passed 75.0 percent of the
evaluation test suite (mean 72.1 percent) [122].

Fig. 4. The quality of the patches the repair techniques generated when
using the developer-written test suite varied from 64.8 to 100.0 percent.
The distributions of patch quality is skewed toward the 100 percent end. On
average, 74.1 percent (GenProg: 75.7 percent, Par: 86.2 percent, SimFix:
53.9 percent and Trp: 80.5 percent) of the patches failed at least one test.

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

Answer to Research Question 2: We conclude that tool-gen-
erated patches on real-world Java defects often overfit to
the test suite used in constructing the patch, often break-
ing more functionality than they repair.

5.2.2 Test Suite Coverage and Size

Research Question 3: How do the coverage and size of the
test suite used to produce the patch affect patch quality?

Intuition suggests that higher coverage test suites used to pro-
duce patches should lead to better-quality patches. Prior
work empirically supports this intuition for G&V program
repair [122]; however, that work approximated the test suite
coverage using test suite size and was not on real-world
defects. In this study, we use real-world defects, measure the
actual statement-level code coverage instead of an estimate or
proxy, and control for confounding factors, such as test suite
size, defects’ project, and the number of failing tests. In fact,

prior studies of test suites have identified test suite size as
often a confounding factor [67]. For our dataset, we found sta-
tistically significant weak positive correlation (r ¼ 0:14)
between test suite size and statement-level coverage of the
developer-written test suite on the defective code version.
This is consistentwith the prior studies [67].

Methodology. To measure the relationship between test
suite coverage and repair quality, we attempted to create
subsets of the developer-written test suite of varying cover-
age while controlling for test suite size, number of failing
tests, and the defects themselves. However, we found that
there is very low variability in the coverage of the individ-
ual tests and so we could not control for the test suite size
while varying coverage. Hence, we generate the subsets
while controlling for the number of failing tests and defects.
Since test suite coverage and test suite size are positively
correlated, analyzing their association with repair quality
individually would not be appropriate. Thus, we use multi-
ple linear regression to identify the relationship between
two explanatory variables (test suite coverage and test suite
size) and a response variable (repair quality). Unlike prior
work [122], our methodology does not need to control for

Fig. 5. Patch overfitting. Change in quality between the defective version and the patched version of the code. The median patch neither improves
nor decreases quality. While more GenProg patches improve the quality than decrease it, the opposite is true for Par and TrpAutoRepair patches,
and, on average, patches break more functionality than they repair. The data presented are for the 45 defects with high-quality evaluation test suites,
of which GenProg produced patches for 33, Par for 25, and TrpAutoRepair for 31.

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 647

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

the ratio of passing to failing tests because most of the
Defects4J defects have only a single failing test. (Section 5.2.3
will discuss the lack of variability in the number of failing
tests further.)

For this analysis, we considered the 71 defects for which
we created high-quality evaluation test suites. For each of
the defects, we created subsets of the developer-written test
suite of varying coverage. Each subset contains all the tests
that evidence the defect, and randomly selected subsets of
the rest of the tests. We then used the repair techniques to
produce patches using these test suite subsets (using
the methodology from Section 5.1), and then computed the
quality of the patches produced for each defect using the
automatically-generated evaluation test suites. We excluded
defects for which we could not generate test suites with suf-
ficient variability in coverage, and, as before, for which we
did not have sufficiently high-quality evaluation test suites.
We describe the details of our methodology next.

To generate the test suite subsets for each defect, we first
compute the minimum and the maximum code coverage
ratio of the developer-written test suite of that defect. The
minimum code coverage ratio (covmin) of a developer-written
test suite is the statement coverage on the defective code
version of just those tests that fail on the defective code ver-
sion and pass on the developer-repaired code version. We
include all of these tests in every subset we generate, so
their coverage is the minimum possible coverage. The maxi-
mum code coverage ratio (covmax) is the statement coverage on
the defective code version of the entire developer-written
test suite (the largest possible subset). For example, for
Chart 1, there is 1 failing test and 245 passing tests that exe-
cute the developer-modified class AbstractCategoryI-

temRenderer. The minimum coverage, (covmin), for Chart
1 is the statement coverage of the single failing test on the
developer-modified class. This test covers 18 out of the
519 lines, (3.5 percent). The maximum coverage, (covmax),
for Chart 1 is the statement coverage of the full test suite
(246 tests) on the developer-modified class. This test suite
covers 300 out of the 519 lines, (57.8 percent).

We then compute the potential test suite coverage vari-
ability as the difference between the minimum and the max-
imum: Dcov ¼ covmax � covmin. Defects whose Dcov < 25%

lack sufficient variability in statement coverage to be used
in this study, and we discard them. In our study, we dis-
carded 15 defects for this reason (2 Chart, 1 Closure, 1 Lang
and 11 Math) out of the 71 defects that had at least one
repair technique produce at least one patch and had a high-
quality evaluation test suite (recall Section 4.2).

For each of the 56 remaining defects, we chose five target
coverage ratios evenly spaced between the minimum and
the maximum: covmin þ

1
5
Dcov, covmin þ

2
5
Dcov, covmin þ

3
5
Dcov,

covmin þ
4
5
Dcov, and covmin þ Dcov ¼ covmax.

We used these target ratios to create 25 distinct test
suites, 5 for each of the targets. For each target ratio c, we
attempted to create five distinct test suite subsets within a 5
percent margin of c. (Note that there are typically multiple
ways to achieve even covmax coverage.) Each of the five test
suite subsets started with all tests that fail on the defective
code version and pass on the developer-repaired code ver-
sion. We then iteratively attempted to add a uniformly ran-
domly selected passing test case, without replacement, one

at a time, as long as it did not make the subset’s coverage
exceed the target by more than 5 percent, stopping if the
subset’s coverage was within 5 percent of the target. If we
attempted to add a test 500 times and failed to reach the tar-
get, we stopped. For 11 of the 56 defects (2 Chart, 3 Closure,
1 Lang, and 5 Math), the sampling algorithm was unable to
generate five distinct test suite subsets for all of the targets,
so we discard these 11 defects. We consider the remaining
45 defects for the analysis.

Finally, for each technique, we computed a multiple lin-
ear regression considering patch quality as the dependent
variable and test suite coverage and size as independent
variables.

Results. For each of the 45 defects, we had 25 test suite sub-
sets, and we attempted each repair 20 times using GenProg,
Par, and TrpAutoRepair on different seeds, and one time
using SimFix. In total, these 23,625 repair attempts produced
9,144 patches. Fig. 6a shows the distribution of these patches.
GenProg produced at least one patch for 29 out of the
45 defects, Par 25, SimFix 34, and TrpAutoRepair 29. (Gen-
Prog: 6 Chart, 2 Closure, 10 Lang, 10 Math, and, 1 Time; Par:
5 Chart, 1 Closure, 8 Lang, 10 Math, and, 1 Time; SimFix:
6 Chart, 3 Closure, 8 Lang, 13 Math, and 4 Time; and TrpAu-
toRepair 6 Chart, 2 Closure, 10 Lang, 10Math, and, 1 Time.)

Fig. 6b shows the statistics of the quality of the patches
for those defects, created using the varying-coverage test
suites. The quality varied, with GenProg even producing
some patches that failed all evaluation test cases. Overall,

Fig. 6. Test suite coverage and size. (a) Distribution of the number of
patches produced using developer-written test suite subsets of varying
code coverage on the defective code version. (b) The quality of the
patches generated using varying-coverage test suites varied from 0.0 to
100.0 percent. On average, 75.2 percent (GenProg: 83.8 percent, Par:
86.7 percent, SimFix: 49.3 percent, and TrpAutoRepair: 81.0 percent) of
the patches failed at least one test. (c) A multiple linear regression
reports that test suite size and test suite coverage are strongly signifi-
cantly associated with patch quality (p < 0:001) except for coverage for
TrpAutoRepair).

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

75.2 percent of the patches, on average, failed at least one
test in the evaluation test suite.

Next, for each technique, we created a multiple linear
regression model to predict the quality of the patches based
on the test suite coverage and size. Fig. 6c shows, for each
technique, the results of the regression model. All four fitted
regression models are strongly statistically significant
(p < 0:001) though with low R2 values. Test suite size was a
statistically significant predictor for patch quality for all four
techniques, with larger test suites leading to higher-quality
patches; however, with an extremely small effect size. Cover-
age was a less clear predictor: for TrpAutoRepair, the associ-
ation was not statistically significant (p > 0:1), and was
positive for GenProg and TrpAutoRepair, but negative for
SimFix and Par. We further detail each technique’s regres-
sion results next.

For GenProg, patch quality (on a 0–100 scale) is equal to
94:82� 0:02ðcoverageÞ þ 0:02ðsizeÞ, where coverage is 100�
the fraction of code in the defective code version covered by
the test suite, and size is the normalized number of tests in the
test suite used to generate the patch. Thus, the quality of the
patch produced by GenProg decreases by 0.02 percent for
each 1 percent increase in the test suite coverage and increases
by 0.02 percent for each additional test in the test suite. While
both associations of test suite coverage and sizewith the patch
quality were statistically significant (p < 0:001), the magni-
tude is extremely small and the lowR2 value indicates little of
the variability is explained. We conclude that test suite cover-
age and test suite size are significant predictors of patch qual-
ity, but the magnitude of the effect is extremely small, for
GenProg.

For Par, the quality of the patch is equal to 91:18�
0:10ðcoverageÞ þ 0:03ðsizeÞ. Thus, the quality of the patch pro-
duced by Par decreases by 0.10 percent for each 1 percent
increase in the test suite coverage and increases by 0.03 percent
for each additional test in the test suite. Again, while both
associations of test suite coverage and test suite size with
patch quality are strongly statistically significant (p < 0:001),
the magnitude is extremely small and the low R2 value indi-
cates little of the variability is explained. We conclude that
both test suite coverage and test suite size are significant pre-
dictors of patch quality, but the magnitude of the effect is
extremely small, for Par.

For SimFix, the quality of the patch is equal to 98:43�
0:04ðcoverageÞ þ 0:002ðsizeÞ. Thus, the quality of the patch
produced by SimFix decreases by 0.04 percent for each 1
percent increase in the test suite coverage and increases by
0.002 percent for each additional test in the test suite. We
observe strongly statistically significant (p < 0:001) associa-
tions of test suite coverage and test suite size with patch
quality however, the magnitude is extremely small and the
low R2 value indicates little of the variability is explained.
We conclude that both test suite coverage and test suite size
are significant predictors of patch quality, but the magni-
tude of the effect is extremely small, for SimFix.

For TrpAutoRepair, the quality of the patch is equal to
95:80þ 0:0003ðcoverageÞ þ 0:006ðsizeÞ. The equation implies
that the quality of the patch produced by TrpAutoRepair
increases by 0.0003 percent for 1 percent increase in the test
suite coverage and increases by 0.006 percent for each addi-
tional test in test suite. The association of test suite size with

patch quality is strongly statistically significant (p < 0:001),
but that is not the case for test suite coverage. And, again,
the magnitude of the association is extremely small and the
low R2 value indicates little of the variability is explained.
We conclude that test suite size is a significant predictor of
patch quality, but the magnitude of the effect is extremely
small, for TrpAutoRepair.

Answer to Research Question 3: We conclude that, surpris-
ingly, both test suite size and test suite coverage have
extremely small but statistically significant correlations
with patch quality (positive for test suite size and nega-
tive for test suite coverage) produced using automatic
program repair techniques.

Previous findings for C program repair techniques [122]
considered only test suite size and found that for both Gen-
Prog and TrpAutoRepair, larger test suites improved patch
quality.

5.2.3 Defect Severity

Research Question 4: How does the number of tests that a
buggy program fails affect the degree to which the gen-
erated patches overfit?

The number of failing tests that trigger the defect are likely to
be proportional to the number constraints that repair techni-
ques need to satisfy to generate a repair. The goal of this
research question is tomeasure the effect of the number of fail-
ing tests in the test suite used for producing the patches on the
quality of patches generated usingG&V techniques.

Methodology. To measure the effect of the number of fail-
ing tests in the test suite used to guide repair, we selected
those defects that had at least 5 failing tests in the devel-
oper-written test suite and for which we are able to create
high-quality evaluation test suite (recall Section 4.2). Unfor-
tunately, there were only 5 such defects in the 71-defect sub-
set of Defects4J. For each of the five defects, we created 21
test suites subsets. We did this by first computing five
evenly distributed target sizes s: 1

5
f , 2

5
f , 3

5
f , 4

5
f , and f , where

f is the number of failing tests in the developer-written test
suite (rounding to the nearest integer). Then, for each s

(except s ¼ f), we created 5 test suite subsets by including
every passing test from the developer-written test suite, and
uniformly randomly sampling, without replacement, s of
the failing tests. This created 20 test suite subsets. We also
included the entire developer test suite as a representative
of the s ¼ f target, for a total of 21 test suite subsets. We
then used the four automated repair techniques to attempt
to patch the defects using each of the test suite subsets, fol-
lowing the methodology described in Section 5.1. Our meth-
odology controls for the number of passing tests, unlike the
prior study [122].

Both patch quality and the number of failing tests in the
test suite used to guide repair are continuous variables, so
we measure the association between these two variables
using the Pearson correlation coefficient. This is typical for

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 649

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

measuring the linear relationship between two continuous
random variables.

Results. Fig. 7a shows the frequency distribution of failing
tests across the 71 defects for which at least one of the four
techniques produced at least one patch, and for which we
were able to create a high-quality evaluation test suite. Of
these 71 defects, only 5 defects, Chart 22, Chart 26, Closure
26, Closure 86, and Time 3, have at least five failing tests.

Fig. 7b shows, for each technique, the quality of the patches
produced, as a function of the fraction of the failing tests in the
test suite used to guide repair. For GenProg and TrpAutoRe-
pair, we observe statistically significant (p < 0:05) positive
correlations (GenProg: r ¼ 0:18, p ¼ 0:006; TrpAutoRepair:
r ¼ 0:19 p ¼ 0:008) between patch quality and the number of
failing tests in the test suite. The 95 percent confidence interval
for both techniqueswas ½0:05; 0:30�.

Par did not produce any patches for any of the 5 defects
considered for this analysis. Simfix only produced three
patches and did not patch any of the 5 defects when using
partial failing tests. Analyzing the execution logs of SimFix
revealed that it was not able to localize the bug using partial
failing tests. This suggests that fault localization strategy
used by repair techniques could be a confounding factor
when measuring the effect of the number of failing tests on
patch quality. (Recall that SimFix and JaRFly use different
fault localization techniques.)

Answer to Research Question 4:We conclude that the num-
ber of tests that a buggy program fails has a small but
statistically significant positive effect on the quality of
the patches produced using automatic program repair
techniques and that this finding depends on the fault
localization strategy used by the repair techniques.

5.2.4 Test Suite Provenance

Research Question 5: How does the test suite provenance
(whether it is written by developers or generated auto-
matically) influence patch quality?

Prior work has suggested that using automatic test generation
might improve program repair quality by increasing the cover-
age of the test suite used to produce the repair [122], [135],
[141]. Augmenting a developer-written test suitewith automat-
ically-generated tests requires an oracle that specifies the
expected test outputs. The unpatched program can be used as
that oracle [135], [141], but that enforces the assumption that
the patch should avoid changing any behavior not explicitly
exhibited by the failing tests. Other implementations of the
same specification could similarly be used as an oracle [92], but
this is only possible whenmultiple implementations exist (e.g.,
if repairing a browser and the expected behavior can be
observed in an independent browser implementation) and
requires defects in the implementations to be independent,
which is often not the case in practice [70]. Finally, oracles can
perhaps be extracted from comments or natural language spec-
ifications, for example with Swami [97], Toradacu [53], Jdoc-
tor [17], or @tComment [124].

However, our earlier study found that evenwhen a perfect
oracle exists, using automatically-generated tests for program
repair resulted in much lower quality patches than using
developer-written tests (about 50 percent versus about
80 percent quality) on small, student-written programs [122].
Thus, this research question sets out to evaluate the effective-
ness of using tests generated using EvoSuite as described in
Section 4.2 to produce patches usingG&V repair.

Methodology. In this experiment, we compared the patches
generated using developer-written test suites from Section 5.1
to patches generated using the EvoSuite-generated test suites.
A technical challenge in executing repair techniques using
EvoSuite-generated tests is a potential incompatibility between
the bytecode instrumentation of EvoSuite-generated tests with
the bytecode instrumentation done by code-coverage-measur-
ing tools employed by repair techniques for fault localization.
JaRFly uses JaCoCo [59] for fault localization and resolves
instrumentation conflicts by updating the runtime settings of
EvoSuite-generated tests (following official EvoSuite docu-
mentation).1 The EvoSuite-generated tests are compatible with

Fig. 7. Defect severity. (a) The distribution of the number of failing tests in the 71 defects for which at least one repair technique produces at least one
patch and has a high-quality evaluation test suite. (b) Linear regression between patch quality and the number of failing tests and Pearson’s correla-
tion show statistically significant positive correlations for GenProg and TrpAutoRepair.

1. http://www.evosuite.org/documentation/measuring-code-
coverage/

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

JaCoCo, Cobertura [27], Clover [8], and PIT [30] code coverage
tools, but not with GZoltar [22]. Unfortunately, SimFix uses
GZoltar, and so could not be included in this experiment. For
GenProg, Par, and TrpAutoRepair, as before, we used the
developer-written patches as the oracle of expected behavior.

To control for the differences in the defects, properly
measuring the association between test suite provenance
and patch quality should be done using defects that can be
patched using both kinds of test suites. If the set of defects
patched using developer-written test suites differs from the
set of defects patched using the automatically-generated
test suites (as was the case in the earlier study [122]), then
the defects can be a confounding factor in the experiment.
For example, it is possible that more of the defects patched
using one of the types of test suites are easier to produce
high-quality patches for, unfairly biasing the results.

We thus started with the 68 defects for which at least one
of the three repair techniques (GenProg, Par, and TrpAu-
toRepair) was able to produce a patch when using the
developer-written test suites to guide repair, and first dis-
carded those defects for which the EvoSuite-generated test
suites did not evidence the defect. To evidence the defect, at
least one test in the test suite has to fail on the defective
code version. (By definition, all automatically-generated
tests pass on the developer-patched version, since that ver-
sion is the oracle for those tests.) For 31 out of the 68 defects,
automatically-generated test suites did not evidence the
defect. This left 37 defects (5 Chart, 4 Closure, 11 Lang,
16 Math, and 1 Time). We next executed each of the three
repair techniques on each of the 37 defects using the Evo-
Suite-generated test suites, using the methodology from
Section 5.1, thus executing 37� 20 ¼ 740 repair attempts
per technique. Note that comparing repair techniques’
behavior with different test suites on these 37 defects is
unfair because one of the criteria they satisfied to be selected
is that at least one repair technique produced at least one
patch for the defect using the developer-written test suite.
Thus, for each technique, we identified the set of defects
that were patched both using developer-written and using
automatically-generated test suites. We call these the in-
common populations. Note that these populations are,
potentially, different for each technique.

To compare the quality of the patches on the in-common
patch populations, we use the nonparametric Mann-
Whitney U test. We choose this test because the two popula-
tions may not be from a normal distribution. This test meas-
ures the likelihood that the two populations came from the
same underlying distribution. We compute Cliff’s delta’s d

estimate to capture the magnitude and direction of the esti-
mated difference between the two populations. We also
compute the 95 percent confidence interval (CI) of the d

estimate.
Results. Fig. 8 summarizes our results. Fig. 8a reports data

for the 37 defects for which both test suites evidence the
defect. As expected, because of the aforementioned bias in the
selection of the 37 defects, using EvoSuite-generated test
suites produced fewer patches and patches for fewer defects
than using developer-written test suites. Using developer-
written test suites produced a patch on between 10.1 and
21.4 percent executions, while using EvoSuite-generated test
suites produced a patch on between 2.3 and 13.9 percent of

the executions. Using developer-written test suites produced
a patch for between 54.1 and 81.1 percent of the defects, while
using EvoSuite-generated test suites produced a patch for
between 5.4 and 45.9 percent of the defects.

In addition to the bias in defect selection, another possi-
ble reason that EvoSuite-generated test suites resulted in
fewer patches could be differences in the test suites. Fig. 8b
shows the distributions of the number of failing (defect-
evidencing) tests across the 37 defects for the two types of
test suites. EvoSuite-generated test suites typically had
more failing tests, perhaps contributing to it being more dif-
ficult to produce patches when using those test suites. Prior
work has shown that having a larger number of failing tests
correlated with lower patch production [98], [122].

We compared the quality of the patches produced using
the two types of test suites on the in-common populations.
Fig. 8c shows that for GenProg and TrpAutoRepair, the
mean and median quality of the patches produced using
the developer-written test suites are higher than of those
produced using EvoSuite-generated test suites. These differ-
ences are statistically significant (Mann-Whitney U test,
p ¼ 1:3� 10�11 for GenProg, and p ¼ 5:8� 10�11 for TrpAu-
toRepair). The d estimate computed using Cliff’s delta
shows a large effect size for the median patch quality of the
patches produced using EvoSuite-generated test suites
being lower for GenProg and TrpAutoRepair. The 95 percent
CI does not spans 0 for both techniques, indicating that,
with 95 percent probability, the two populations are likely
to have different distributions.

For GenProg, this comparison is on the 12 in-common
defects (Chart 5, Closure 22, Lang 43, Math 24, Math 40,
Math 49, Math 50, Math 53, Math 73, Math 80, Math 81,
and Time 19). On these defects, GenProg produced 73
patches using developer-written test suites and 93 patches
using EvoSuite-generated test suites (166 patches total). For
TrpAutoRepair, this comparison is on the 13 in-common
defects (Chart 5, Closure 22, Closure 86, Lang 43, Lang
45, Math 24, Math 40, Math 49, Math 50, Math 73, Math
80, Math 81, and Time 19). On these defects, TrpAutoRe-
pair produced 57 patches using developer-written test
suites and 96 patches using EvoSuite-generated test suites
(153 patches total).

Because the results for GenProg and TrpAutoRepair are
derived from 12 and 13 defects, respectively, there is hope
that these results will generalize to other defects. The same
cannot be said for Par. Par produced patches using both
types of test suites for only 2 out of the 37 defects (Closure
22 and Math 50). Fig. 8c shows that the mean and median
quality of the patches produced using the developer-written
test suites are lower than those produced using EvoSuite-
generated test suites. This result is statistically significant
because Par produced 18 patches using developer-written
test suites and 17 patches using EvoSuite-generated test
suites, with p ¼ 5:3� 10�5 and the 95 percent CI interval
does not span 0. However, while significant for these
2 defects, we cannot claim (nor do we believe that) this
result generalizes to all defects from this 2-defect sample.

Our finding is consistent with the earlier finding [122]
that provenance has a significant effect on repair quality,
and that for GenProg and TrpAutoRepair, developer-writ-
ten test suites lead to higher quality pathces. Surprisingly,

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 651

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

the finding is opposite for Par (which was not part of the
earlier study), with automatically-generated tests leading to
higher-quality patches. Our study improves on the earlier
work in many ways: We control for the defects in the two
populations being compared, we use real-world defects,
and we use a state-of-the-art test suite generator with a rig-
orous test suite generation methodology. The earlier study
used a different generator (KLEE [21]) and aimed to achieve
100 percent code coverage on a reference implementation,
but the generated test suites were small.

Answer to Research Question 5: We conclude that test suite
provenance has a significant effect on repair quality,
though the effect may differ for different techniques. For
GenProg and TrpAutoRepair, patches created using
automatically-generated tests had lower quality than
those created using developer-written test suites. For a
small, perhaps non-representative number of defects,
Par-generated patches showed the opposite effect.

Fig. 8. Test suite provenance. (a) Using EvoSuite-generated test suites, automated program repair techniques were able to produce patches for 37 of
the the 68 defects. (b) The EvoSuite-generated test suites typically have more failing tests than the developer-written ones. (c) The box-and-whisker
plots compare patch quality on the in-common defect populations, showing the maximum, top quartile, median, bottom quartile, and minimum values,
with the mean as a red diamond. The quality of patches produced by GenProg and TrpAutoRepair using the EvoSuite-generated test suites is statisti-
cally significantly (Mann-Whitney U test) lower that those produced using developer-written test suites. For Par, the effect is reversed.

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

5.3 Mitigating Overfitting

Research Question 6: Can overfitting be mitigated by
exploiting randomness in the repair process? Do differ-
ent random seeds overfit in different ways?

Because automated program repair aims to solve an under-
specified problem, there are often many possible patches.
This is the fundamental issue behind the repair quality prob-
lem. The partial specification — a test suite — fails to distin-
guish between patches that pass the tests and implement the
desired functionality and the patches that pass the tests but
fail to implement the desired functionality not encoded by the
partial specification. The search space of possible patches is
large [87] and navigating it in a way to improve the probabil-
ity of finding a high-quality patch [68], [87], [88], [135] is at the
heart of solving the repair quality problem.

An interesting observation is that the diversity of the
patches produced in such a way, even by a single technique,
may be used to improve the overall quality of a patch [122].
In essense, if each of the generated patches is wrong on the
unspecified part of the specification, but is wrong in a differ-
ent way, perhaps they can be combined in a way to produce
a higher-quality patch. Specifically, a super patch that simu-
lates the individual patches and then executes the plurality
behavior may avoid the pitfalls of individual patches.

This is a form of n-version programming, and it is subject
to the same constraints as n-version programming. Specifi-
cally, human program repair usually lacks the scale of diver-
sity required to effectively combine programs into n-versions
and meaningfully improve quality; correlations in faults of
human-written programs prevent a quality improvement
beyond some level [70]. Thus, testing if this approach works
for automatically generated patches is, in some sense, a mea-
sure of whether human-written and automatically-generated
patches differ in their diversity profiles.

Combining complex programs with side effects and
potential resource use and contention, including simulating
the execution of a set of patches in parallel, can be problem-
atic. For this study, we separate the question of how to com-
bine patches from the question of whether it might be
worthwhile to combine patches. We answer the latter ques-
tion. We simply say that if, given a set of patches for a
defect, the majority of the patches passes an evaluation test,
then it is possible that the n-version combination would
pass that test. If the overall quality of an n-version patch
across the entire evaluation test suite is higher than that of
the individual patches, then perhaps it is worthwhile to
attempt to combine them. Conversely, if the n-version patch
quality is no better than the individual patches, combining
is unlikely to improve quality.

Methodology. In Section 5.1, we described executing the
four repair techniques on all 357 Defects4J defects using the
developer-written test suites, with 20 different seeds per
defect for GenProg, Par, and TrpAutoRepair, and once for
SimFix. This produced 634 unique patches (255 by GenProg,
107 by Par, 73 by SimFix, and 199 by TrpAutoRepair, recall
Fig. 3). For each technique, we identified the defects for
which that technique produced at least 3 distinct patches.

For these defects, we then evaluated how the potential
n-version patch would perform by executing the evaluation
test suite on each patch and considering the n-version to
pass the test if the strict majority of the patches passed the
test. For GenProg, 30 defects qualified for this experiment, 9
for Par, and 25 for TrpAutoRepair. SimFix could not be
used for this analysis because it did not generate more than
two distinct patches for any defect.

To compare the quality of the n-version and individual
programs, we use the nonparametric Mann-Whitney U test.
We choose this test because our data may not be from a nor-
mal distribution. We compute Cliff’s delta’s delta estimate to
capture the magnitude and direction of the estimated differ-
ence between the two populations. We also compute the
95 percent confidence interval (CI) of the d estimate.

Results. Fig. 9 compares the quality of the n-version
patches to the individual patches that make up those n-ver-
sion patches. The Mann-Whitney U test indicates the differ-
ences between the patch quality of the individual patches
and the n-version patches are not statistically significant
and the d estimate suggests the differences are negligible.

Answer to Research Question 6: We conclude that auto-
mated program repair techniques’ patches lack the
diversity necessary to employ an approach based on n-
versioning to improve patch quality.

Our finding is consistent with the prior study for rela-
tively high-quality patches [122]. However, the earlier study
found that when patch quality was low (e.g., because of a
low-quality test suite being used to repair the defect) the
patch diversity may have been sufficient to improve qual-
ity [122]. This study does not explore that part of the ques-
tion because the patches we observe for the Defects4J
defects tend to be of relatively-high quality.

6 DISCUSSION

Our main finding is that patches produced by Java G&V auto-
mated program repair techniques often overfit to the tests used
to produce those patches. The most important implication of
our work is that research is needed into improving program
repair techniques to produce higher-quality patches, or at least
identifying and discarding lower-quality ones. Researchers
can use the patch quality evaluation methodology and high-
quality test suites we have developed to evaluate their techni-
ques on real-world defects and demonstrate improvements
over the state-of-the-art within this important dimension.

We observed that test-suite size correlates with higher-
quality patches, and test-suite coverage correlates with lower-
quality patches, though both effects are extremely small.
These findings, surprisingly, suggest that improving test
suites used for repair is unlikely to lead to better patches.
Future research should explore if there exists other guidance
developers can use to improve their test suites to help pro-
gram repair produce higher-quality patches.

Controlling for fault localization strategy, the number of
tests a buggy program fails is positively correlated with
higher-quality patches. On its face, this is surprising because
fixing a larger number of failing tests usually requires fixing

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 653

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

more behavior (although it is certainly possible for a small bug
to cause many tests to fail, and for a large bug to cause only
one test to fail). The key observation here is that fault localiza-
tion can be a confounding factor. A larger number of failing
tests can help fault localization identify the correct place to
repair a defect, improving the chances the technique can pro-
duce a patch. A recent study similarly found that fault locali-
zation can have a significant effect on repair quality [3]. In our
study, we observe cases in which SimFix failed to localize a
defect, and therefore failed to produce a patch when given
fewer failing tests, butwas able to do sowithmore failing tests
(recall Section 5.2.3).

We found that human-written tests are, usually, better
for program repair than automatically-generated ones. This
suggests that automatically generating tests to augment the
developer-written tests may not help program repair. How-
ever, the method of generating the tests likely matters, and
future research should study that relationship, in particular,
exploring whether new approaches that generate tests from
natural-language specifications [17], [97] are helpful.

Finally, we observed that Java G&V repair techniques pro-
duce patches for more defects than C G&V repair techniques.
Future research could target understanding the differences in
the languages that cause this and improving the fix space and
repair strategies used by the Java repair techniques.

6.1 Limitations

Research questions each impose specific requirements on the
benchmark that can be used effectively to evaluate them. It is

challenging for a single benchmark to satisfy these require-
ments for a diverse set of research questions, such as the ones
we have explored in this paper. For example, the majority of
the Defects4J defects have a single failing test, which makes it
hard to study the association between the number of failing
tests and patch quality. Similarly, a lack of variability in the
statement coverage of the developer-written tests makes it
hard to study the relationships that involve that coverage.
These shortcomings in the benchmark may reduce the
strength of the results. Nevertheless, this paper has developed
amethodology that can be applied to other benchmarks to fur-
ther study these questions.

JaRFly, our Java Repair framework, can help future
researchers build new Java repair techniques. Our method-
ology for creating high-quality evaluation test-suites can be
used to do so for new benchmarks, and the instances of
evaluation test suites we have created for Defects4J can be
used for future evaluations on that benchmark in a repro-
ducible manner.

A recent study identified the evaluation-test-suite-based
approach to be reproducible, if conservative [72]: Evaluation
test-suites may miss identifying some overfitting patches, but
every patch they identify as overfitting, does so. This
approach is complementary to manual inspection, which is
less reliable but can identify some instances of overfitting that
evaluation test suitesmiss [72]. Future research should pursue
improving automated test generationwith the goal of produc-
ing higher-quality evaluation test suites for program repair.
Perhaps complementary to this challenge is recent work on
automatically generating test-suites from natural-language

Fig. 9. The box-and-whisker plots compare the quality of the individual and n-version programs made up of those patches, with the mean as a red
diamond. The p values (Mann-Whitney U test) suggest that there is no statistically significant difference in the quality of n-version and individual pro-
grams. We measure the effect size using Cliff’s Delta test. For the given dataset, n-version programs perform negligibly worse (indicated by the d esti-
mate) than individual versions for all the three techniques however, the 95 percent confidence interval spans 0 for all techniques suggesting that, with
95 percent probability, the quality of n-version program is likely to be same as individual program.

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

software artifacts (instead of human-patched version of
code) [17], [97].

The generalizability of our results relies on the generaliz-
ability of the four program repair techniques we use in our
evaluation. While the classification of G&V techniques [132]
makes the argument that evaluations on representative tech-
niques should generalize to other techniques in this class,
evaluations on a larger, more diverse set of techniques pro-
vide stronger evidence. In this paper, we have evaluated four
G&V techniques. Applying our methodology to other techni-
ques would constitute a valuable replication study. However,
technological challenges prevented us from adding more
techniques. Some projects do not release their tools’ imple-
mentations, making reuse difficult. Some projects release only
compiled binaries of their tools and do not make the source
code public, which preventsminormodifications to those tool
necessary for running experiments. For example, we were
unable to use CapGen [134] in our evaluation because only its
compiled binary is publicly available and we could not mod-
ify it to run using only a subset of the developer-written test-
suites (as is required in Sections 5.2.2 and 5.2.3) and EvoSuite-
generated test-suites (as is required in Section 5.2.4). Finally,
some tools cannot be used as envisioned by the original proj-
ect because of environmental changes. For example, we were
unable to use ACS [137] in our evaluation because it was
designed to work with a particular query style that directly
interacts with GitHub, and GitHub has since disabled such
queries. More generally, a recent empirical study on Java pro-
gram repair techniques found that 13 out of the 24 (54 percent)
techniques studied could not be used, including ACS and
CapGen. The techniques could not be used because theywere
not publicly available, did not function as expected, required
extraordinarymanual effort to run (e.g.,manual fault localiza-
tion), or had hard-coded information to work on specific
defect benchmarks and could not bemodifiedwith reasonable
effort to work on others [41]. When possible, future research
that produces automated program repair techniques should
aim to make their tools public, releasing their source code,
and avoid encoding specific benchmarks or experimental set-
ups into the tools themselves.

6.2 Threats to Validity

Our study uses Defects4J, a well-established benchmark of
defects in five real-world, open source Java projects. The
diversity, and real-world nature of Defects4J mitigates the
threat that our study will not generalize to other defects.
Defects4J is evolving and growing with new projects, and
our methodology can be applied to subsequently added
projects, and to other benchmarks, to further demonstrate
generalizability.

Our objective methodology for measuring patch quality
requires independently generated test suites and the quality
of those test suites affects our quality measurement. We use
state-of-the-art automated test generation techniques, Evo-
Suite [49] and Randoop [105], but even state-of-the-art tools
struggle to perform well on real-world programs. To miti-
gate this threat, we experimented with two test generation
tools and their configuration parameters, developed a meth-
odology for generating and merging multiple test suites,
and only perform our study on the 71 out of 106 defects (67

percent) whose evaluation test suites met strict coverage cri-
teria on the code affected by developer-written patches for
the defects.

Our test-suite-based methodology for measuring patch
quality inherently overestimates the quality of patches because
the evaluation test suites are necessarily partial specifications.
If our methodology identifies a test that fails on a patch, the
patch is necessarily incorrect; however, if our methodology
deems a patch of 100 percent quality, there could still exist a
hypothetical evaluation test the patch would fail. As a result,
our conclusions are conservative.We find that automated pro-
gram repair often overfits on real-world Java defects, but the
reality could be evenmore dire.

GenProg, Par, SimFix, and TrpAutoRepair are four repre-
sentative G&V automated program repair techniques. Prior
work has explored similarity unifying G&V repair and
developed an underlying theory, suggesting that results
from analysis of these four techniques should generalize to
other G&V techniques [132].

Our methodology follows the guidelines for evaluating
randomized algorithms [7] and uses repair techniques’ con-
figuration parameters from prior evaluations that explored
the effectiveness of those parameter settings [69], [77], [111].
We carefully control for a variety of potential confounding
factors in our experiments, and use statistical tests that are
appropriate for their context. We make all our code, test
suites, and data public to increase researchers being able to
replicate our results, explore variations of our experiments,
and extend the work to other repair techniques, test suite
generation tools, and defect datasets. JaRFly repair frame-
work is available from http://JaRFly.cs.umass.edu/

and our generated test suites and experimental results from
http://github.com/LASER-UMASS/JavaRepair-

replication-package/.

7 RELATED WORK

This section places our research in the context of prior work
on automated program repair (Section 7.1), studies of qual-
ity and other properties of automated program repair
(Section 7.2), and benchmarks of defects for use to evaluate
automated program repair (Section 7.3).

7.1 Automatic Program Repair Techniques

There are two classes of approaches to repairing defects using
failing tests to identify faulty behavior and passing tests to
encode desirable behavior: G&V and semantic-based repair.
The G&V techniques use search-based software engineer-
ing [57] to generate many candidate patches and then validate
them against tests. GenProg [77], [80], [133] uses a genetic pro-
gramming heuristic [71] to search the space of candidate
repairs. TrpAutoRepair [111] limits its patches to a single edit,
uses random search insteadof genetic programming, and heu-
ristics to select which tests to run first, improving efficiency.
Prophet [88] and HDRepair [75] automatically learn bug-fix-
ing patterns from prior developer-written patches and use
them to produce candidate patches for new defects. AE [132]
is a deterministic technique that uses heuristic computation of
program equivalence to prune the space of possible repairs,
selectively choosingwhich tests to use to validate intermediate
patch candidates. ErrDoc [128] uses insights obtained from a

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 655

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

comprehensive study of error handling bugs in real-world C
programs to automatically detect, diagnose, and repair the
potential error handling bugs in C programs. JAID [26] uses
automatically derived state abstractions from regular Java
code without requiring any special annotations and employs
them, similar to the contract-based techniques to generate
candidate repairs for Java programs. Qlose [32] optimizes a
program distance, a function of syntactic and semantic differ-
ences between the original buggy and the patched programs,
while generating candidate patches. DeepFix [56] and
ELIXIR [116] use learned models to predict erroneous pro-
gram locations along with patches. ssFix [135] uses existing
code that is syntactically related to the context of a bug to pro-
duce patches. CapGen [134] works at the AST node level and
uses context and dependency similarity (instead of semantic
similarity) between the suspicious code fragment and the can-
didate code snippets to produce patches. SapFix [89] and
Getafix [9], two tools deployed on production code at Face-
book, efficiently produce correct repairs for large real-world
programs. SapFix [89] uses prioritized repair strategies,
including pre-defined fix templates, mutation operators, and
bug-triggering change reverting, to produce repairs in real-
time. Getafix [9] learns fix patterns from past code changes to
suggest repairs for bugs that are found by Infer, Facebook’s
in-house static analysis tool. SimFix [63] considers the variable
name and method name similarity, as well as structural simi-
larity between the suspicious code and candidate code snip-
pets. Similar to CapGen, it prioritizes the candidate
modifications by removing the ones that are found less fre-
quently in existing patches. SketchFix [60] optimizes the can-
didate patch generation and evaluation by translating faulty
programs to sketches (partial programs with holes) and lazily
initializing the candidates of the sketches while validating
them against the test execution. Par [69] and SOFix [84] use
predefined repair templates to generate candidate patches.
These repair templates are created based on the repair pat-
terns mined from StackOverflow posts by comparing code
samples in questions and answers for fine-grained modifica-
tions. Synthesis techniques can also construct new features
from examples [28], [54], rather than address existing bugs.

The semantic-based techniques use semantic reasoning
to synthesize patches to satisfy an inferred specification.
Nopol [138], Semfix [101], DirectFix [93], and Angelix [94]
use SMT or SAT constraints to encode test-based specifica-
tions. S3 [74] extends the semantics-based family to incorpo-
rate a set of ranking criteria such as the variation of the
execution traces similar to Qlose [32]. JFIX [73] extends
Angelix [94] to target Java programs. SemGraft [92] infers
specifications by symbolically analyzing a correct reference
implementation instead of using test cases. Genesis [85],
Refazer [115], NoFAQ [33], Sarfgen [130], and Clara [55]
process correct patches to automatically infer code transfor-
mations to generate patches. SearchRepair [68] blurs the
line between G&V and semantic-based techniques by using
constraint-based encoding of the desired behavior to replace
suspicious code with semantically-similar human-written
code from elsewhere.

Our work does not introduce new repair techniques but
aims to help techniques properly evaluate their ability to pro-
duce high-quality patches for real-world defects. Our work
enables properly comparing techniques with respect to patch

quality, and encourages the creation of new techniqueswhose
focus is producing high-quality patches on real-world defects.
Empirical studies of fixes of real bugs in open-source projects
can also improve repair techniques by helping designers
select change operators and search strategies [66], [142].
Understanding how repair techniques handle particular clas-
ses of errors, such as security vulnerabilities [80], [108] can
guide tool design. For this reason, some automated repair
techniques focus on a particular defect class, such as buffer
overruns [119], [121], unsafe integer use in C programs [29],
single-variable atomicity violations [64], deadlock and live-
lock defects [82], concurrency errors [83], and data input
errors [5] while other techniques tackle generic bugs. Our
evaluation has focused on tools that fix generic bugs, but our
methodology can be applied to focused repair aswell.

In addition to repair, search-based software engineering
has been used for developing test suites [95], [129], finding
safety violations [4], refactoring [117], and project manage-
ment and effort estimation [11]. Good fitness functions are
critical to search-based software engineering. Our findings
indicate that using test cases alone as the fitness function
leads to patches that may not generalize to the program
requirements, and more sophisticated fitness functions may
be required for search-based program repair.

7.2 Empirical Studies Evaluating Automatic
Program Repair

Prior work has argued the importance of evaluating the
types of defects automated repair techniques can repair [98],
and evaluating the generated patches for understandability,
correctness, and completeness [96]. Yet many of the prior
evaluations of repair techniques have focused on what frac-
tion of a set of defects the technique can produce patches for
(e.g., [23], [31], [42], [64], [80], [90], [132], [133]), how quickly
they produce patches (e.g., [77], [132]), how maintainable
the patches are (e.g., [50]), and how likely developers are to
accept them (e.g., [1], [69]).

However, some recent studies have focused on evaluat-
ing the quality of repair and developing approaches to miti-
gate patch overfitting. For example, on 204 Eiffel defects,
manual patch inspection showed that AutoFix produced
high-quality patches for 51 (25 percent) of the defects, which
corresponded to 59 percent of the patches it produced [107].
While AutoFix uses contracts to specify desired behavior,
by contrast, the patch quality produced by techniques that
use tests has been found to be much lower. Manual inspec-
tion of the patches produced by GenProg, TrpAutoRepair
(referred to as RSRepair in that paper), and AE on a 105-
defect subset of ManyBugs [114], and by GenProg, Nopol,
and Kali on a 224-defect subset of Defects4J showed that
patch quality is often lacking in automatically produced
patches [90]. An automated evaluation approach that uses a
second, independent test suite not used to produce the
patch to evaluate the quality of the patch similarly showed
that GenProg, TrpAutoRepair, and AE all produce patches
that overfit to the supplied specification and fail to general-
ize to the intended specification [20], [122]. This work has
led to new techniques that improve the quality of the
patches [68], [86], [88], [135], [136], [141]. For example,
DiffTGen generates tests that exercise behavior differences

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

between the defective version and a candidate patch, and
uses a human oracle to rule out incorrect patches. This
approach can filter out 49.4 percent of the overfitting
patches [135]. Using heuristics to approximate oracles can
generate more tests to filter out 56.3 percent of the overfit-
ting patches [136]. UnsatGuided uses held-out tests to filter
out overfitting patches for synthesis-based repair, and is
effective for patches that introduce regressions but not for
patches that only partially fix defects [141]. Automated test
generation techniques that generate test inputs along with
oracles [17], [53], [97], [124] or use behavioral domain con-
straints [6], [52], [65], [127], data constraints [45], [99], [100],
or temporal constraints [12], [13], [14], [43], [102] as oracles
could potentially address the limitations of the above-
described approaches.

Using independent test suites to measure patch quality is
imperfect, as test suites are partial and may identify some
incorrect patches as correct. On a dataset of 189 patches pro-
duced by 8 repair techniques applied to 13 real-world Java
projects, independent tests identify fewer than one fifth of
the incorrect patches, underestimating the overfitting prob-
lem [72]. However, on other benchmarks, the results are
much more positive. For example, on the QuixBugs bench-
mark, combining test-based and manual-inspection-based
quality evaluation could identify 33 overfitting patches,
while test-based evaluation alone identified 29 of the 33
(87.9 percent) [140]. While the human judgment is a crite-
rion not used by the repair tools for patch construction, it is
fundamentally different from the correctness criterion we
use in our evaluation, as it is often difficult for humans to
spot bugs even when told exactly where to look for
them [106]. Further, using independently generated test
suites instead of using the subset of the original test suite to
evaluate patch quality ensures that we do not ignore regres-
sions a patch is most likely to introduce. Poor-quality test
suites result in patches that overfit to those suites [114]. Our
evaluation goes further, demonstrating that high-quality,
high-coverage test suites still lead to overfitting, and identi-
fying other relationships between test suite properties and
patch quality.

Our work has focused on understanding the effective-
ness of repair techniques to patch large real-world Java pro-
grams correctly and to identify what factors affect the
generation of high-quality patches. Studying the effects of
test suite size, coverage, number of failing tests, and test
provenance on the quality of the patches generated by
Angelix on the IntroClass [79] and Codeflaws [126] bench-
marks of defects in small programs finds results consistent
with ours. By contrast, our work focuses on real-world
defects in real-world projects and G&V repair. Further,
prior work has shown that the selection of test subjects
(defects) can introduce evaluation bias [16], [110]. Our eval-
uation focuses precisely on the limits and potential of repair
techniques on a large dataset of defects, and controls for a
variety of potential confounds, addressing some of Mon-
perrus’ concerns [96].

Our answer to RQ6 considers combining multiple
patches in a form of n-version programming [25]. N-version
programming works poorly with human-written systems
because the errors humans make do not appear to be inde-
pendent [70]. Our evaluation has shown that the n-version

of automatically-generated patches also fails to provide a
benefit.

7.3 Defect Benchmarks

Several benchmarks of defects have evolved specifically for
evaluating automated repair. TheManyBugs benchmark [79]
consists of 185 C defects in real-world software. The Intro-
Class benchmark [79] consists of 998 C defects in very small,
student-written programs, although not all 998 are unique.
The Codeflaws benchmark [126] consists of 3,902 defects
from 7,436 C programs mined from programming contests
and automatically classified across 39 defect classes. The
DBGBench benchmark [19] (based on the CoREBench bench-
mark [18]) contains a collection of 70 real regression errors in
four open-source C projects. The QuixBugs benchmark [81]
consists of 40 programs from the Quixey Challenge, where
programmers were given a short buggy program and one
minute to fix the bug. The programs are translated to Python
and Java, and each bug is contained on a single line. The
Defects4J benchmark [66], originally designed for testing
and fault-localization studies, consists of 357 Java defects in
real-world software, and has become a popular benchmark
for evaluating automated program repair [42], [90], [98],
[138]. We elected to use Defects4J because it contains real-
world defects in large, complex projects, it supports repro-
ducibility and test suite generation, and is increasingly a
testbed for evaluating automated program repair.

8 CONTRIBUTIONS

While automated program repair shows promise for improv-
ing software quality and reducing the costs of software main-
tenance, several studies have raised concerns that program
repair may do more harm than good in terms of software
quality. This paper has systematically and rigorously
explored the effect of fourG&V program repair techniques on
real-world defects in real-world Java projects, and found that
while program repair techniques do sometimes produce
patches, those patches often (between 53.9 and 86.2 percent of
the time) break untested or undertested functionality. In fact,
the median patch breaks more functionality than it repairs.
Increasing the size of the test suite used to guide the repair
process can help slightly improve patch quality. Inmost cases,
test suites written by humans lead to higher-quality patches
than automatically-generated test suites. Finally, the patches
the techniques generate lack sufficient diversity to be com-
bined in away to improve patch quality.

This work is the first to explore the relationships between
these aspects of patch generation and patch quality on real-
world defects, building on prior studies on toy pro-
grams [20], [76], [122]. Our study rigorously controls for
possible confounding factors and uses an objective, repeat-
able quality-evaluation methodology.

To enable our study, we create JaRFly, a framework for
Java G&V program repair techniques. We use JaRFly to faith-
fully reimplement GenProg [77] and TrpAutoRepair [111] for
Java, improving on prior attempts to do so. We further use
JaRFly to reimplement Par [69] and make the first public
release of a Par implementation. JaRFly is open-source and
available at http://JaRFly.cs.umass.edu/. We further
use state-of-the-art automated test generation to generate

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 657

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

high-quality test suites for real-world defects in Defects4J
used in our study, and create a methodology for generating
more such test suites for other defects. Our data, test suites,
and scripts are all available at http://github.com/

LASER-UMASS/JavaRepair-replication-package/.
Overall, our work has identified the shortcomings of

today’s program repair techniques when applied to real-
world defects, and will drive research toward improving
the quality of program repair.

ACKNOWLEDGMENTS

Thisworkwas supported by theUSNational Science Founda-
tion under grants CCF-1453474, CCF-1563797, CCF-1564162,
and CCF-1750116. This work was performed in part using
high performance computing equipment obtained under a
grant from the Collaborative R&DFundmanaged by theMas-
sachusetts TechnologyCollaborative.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in
Proc. ACM Symp. Operating Syst. Prin., 2005, pp. 59–74.

[2] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for
software repair,” in Proc. Annu. Conf. Genetic Evol. Comput., 2011,
pp. 1427–1434.

[3] A. Afzal, M. Motwani, K. T. Stolee, Y. Brun, and C. Le Goues,
“SOSRepair: Expressive semantic search for real-world pro-
gram repair,” IEEE Trans. Softw. Eng., 2019, doi: 10.1109/
tse.2019.2944914.

[4] E. Alba and F. Chicano, “Finding safety errors with ACO,” in
Proc. Conf. Genetic Evol. Comput., 2007, pp. 1066–1073.

[5] M. Alkhalaf, A. Aydin, and T. Bultan, “Semantic differential
repair for input validation and sanitization,” in Proc. Int. Symp.
Softw. Testing Anal., 2014, pp. 225–236.

[6] R. Angell, B. Johnson, Y. Brun, and A. Meliou, “Themis: Auto-
matically testing software for discrimination,” in Proc. Eur. Softw.
Eng. Conf. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2018,
pp. 871–875.

[7] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2011, pp. 1–10.

[8] Atlassian, “Clover code coverage tool,” 2016. [Online]. Available:
https://www.atlassian.com/software/clover

[9] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” in Proc. ACM Program. Lang. Object-
Oriented Program. Syst. Lang. Appl., 2019, Art. no. 159.

[10] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proc. ACM SIGSOFT Symp. Found.
Softw. Eng., 2014, pp. 306–317.

[11] A. Barreto, M. Barros, and C. Werner, “Staffing a software proj-
ect: A constraint satisfaction approach,” Comput. Operations Res.,
vol. 35, no. 10, pp. 3073–3089, 2008.

[12] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy, “Unifying FSM-inference algorithms through
declarative specification,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., 2013, pp. 252–261.

[13] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy, “Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference
algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 408–428,
Apr. 2015.

[14] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer
invariant-constrained models,” in Proc. Eur. Softw. Eng. Conf.
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2011, pp. 267–277.

[15] A. Bessey et al., “A few billion lines of code later: Using static
analysis to find bugs in the real world,” Commun. ACM, vol. 53,
no. 2, pp. 66–75, Feb. 2010.

[16] C. Bird et al., “Fair and balanced?: Bias in bug-fix datasets,” in
Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2009, pp. 121–130.

[17] A. Blasi et al., “Translating code comments to procedure
specifications,” in Proc. Int. Symp. Softw. Testing Anal., 2018,
pp. 242–253.

[18] M. B€ohme and A. Roychoudhury, “CoREBench: Studying com-
plexity of regression errors,” in Proc. ACM/SIGSOFT Int. Symp.
Softw. Testing Anal., 2014, pp. 105–115.

[19] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
and A. Zeller, “Where is the bug and how is it fixed? An experi-
ment with practitioners,” in Proc. Eur. Softw. Eng. Conf. ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 2017, pp. 117–128.

[20] Y. Brun, E. Barr, M. Xiao, C. Le Goues, and P. Devanbu,
“Evolution vs. intelligent design in program patching,” Techni-
cal Report, 2013. [Online]. Available: https://escholarship.org/
uc/item/3z8926ks, UC Davis: College of Engineering

[21] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. USENIX Conf. Operating Syst. Des. Implemen-
tation, 2008, pp. 209–224.

[22] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: An
Eclipse plug-in for testing and debugging,” in Proc. IEEE/ACM
Int. Conf. Automated Softw. Eng., 2012, pp. 378–381.

[23] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezz�e,
“Automatic recovery from runtime failures,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2013, pp. 782–791.

[24] A. Carzaniga, A. Gorla, N. Perino, and M. Pezz�e, “Automatic
workarounds for Web applications,” in Proc. ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2010, pp. 237–246.

[25] L. Chen and A. Avi�zienis, “N-version programming: A fault-
tolerance approach to reliability of software operation,” in Proc.
IEEE Int. Symp. Fault-Tolerant Comput., 1978, pp. 3–9.

[26] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts,” in Proc. IEEE/ACM Int. Conf. Automated
Softw. Eng., 2017, pp. 637–647.

[27] S. Christou, “Cobertura code coverage tool,” 2015. [Online].
Available: https://cobertura.github.io/cobertura/

[28] R. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in
Proc. Symp. Princ. Program. Lang., 2015, pp. 677–688.

[29] Z. Coker and M. Hafiz, “Program transformations to fix
C integers,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2013,
pp. 792–801.

[30] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“PIT: A practical mutation testing tool for Java (demo),” in Proc. Int.
Symp. Softw. TestingAnal., 2016, pp. 449–452.

[31] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2009, pp. 550–554.

[32] L. D’Antoni, R. Samanta, and R. Singh, “QLOSE: Program repair
with quantitative objectives,” in Proc. Int. Conf. Comput. Aided
Verification, 2016, pp. 383–401.

[33] L. D’Antoni, R. Singh, and M. Vaughn, “NoFAQ: Synthesizing
command repairs from examples,” in Proc. Eur. Softw. Eng. Conf.
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 582–592.

[34] E. F. de Souza, C. Le Goues, and C. G. Camilo-Junior, “A novel
fitness function for automated program repair based on source
code checkpoints,” in Proc. Genetic Evol. Comput. Conf., 2018,
pp. 1443–1450.

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans.
Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[36] V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proc. Int. Conf. Softw. Test-
ing Verification Validation, 2010, pp. 65–74.

[37] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard, “Inference and enforcement of data structure consis-
tency specifications,” in Proc. Int. Symp. Softw. Testing Anal., 2006,
pp. 233–243.

[38] B. Demsky and M. C. Rinard, “Goal-directed reasoning for
specification-based data structure repair,” IEEE Trans. Softw.
Eng., vol. 32, no. 12, pp. 931–951, Dec. 2006.

[39] A. Dhar, R. Purandare, M. Dhawan, and S. Rangaswamy,
“CLOTHO: Saving programs from malformed strings and incor-
rect string-handling,” in Proc. Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2015, pp. 555–566.

[40] Z. Y. Ding, Y. Lyu, C. Timperley, and C. Le Goues, “Leveraging
program invariants to promote population diversity in search-
based automatic program repair,” in Proc. Int. Workshop Genetic
Improvement, 2019, pp. 2–9.

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

[41] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu,
“Empirical review of Java program repair tools: A large-scale
experiment on 2,141 bugs and 23,551 repair attempts,” in
Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2019, pp. 302–313.

[42] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and
J. Xuan, “Automatic repair of real bugs in java: A large-scale
experiment on the defects4j dataset,” Empirical Softw. Eng.,
vol. 22, pp. 1936–1964, 2017, doi: 10.1007/s10664-016-9470-4.

[43] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in prop-
erty specifications for finite-state verification,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 1999, pp. 411–420.

[44] EclEmma, “JaCoCo Java code coverage library,” 2017. [Online].
Available: https://www.eclemma.org/jacoco/

[45] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 2,
pp. 99–123, Feb. 2001.

[46] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer,
“Contracts in practice,” in Proc. Int. Symp. Formal Methods, 2014,
pp. 230–246.

[47] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing bet-
ter fitness functions for automated program repair,” in Proc.
Genetic Evol. Comput. Conf., 2010, pp. 965–972.

[48] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proc.
Conf. Genetic Evol. Comput., 2009, pp. 947–954.

[49] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[50] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proc. Int. Symp. Softw. Testing Anal., 2012,
pp. 177–187.

[51] M. Gabel and Z. Su, “Testing mined specifications,” in Proc. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2012, Art. no. 4.

[52] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing
software for discrimination,” in Proc. Eur. Softw. Eng. Conf. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 498–510.

[53] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezz�e, “Automatic gener-
ation of oracles for exceptional behaviors,” in Proc. Int. Symp.
Softw. Testing Anal., 2016, pp. 213–224.

[54] S. Gulwani, “Automating string processing in spreadsheets
using input-output examples,” in Proc. Symp. Princ. Program.
Lang., 2011, pp. 317–330.

[55] S. Gulwani, I. Radi�cek, and F. Zuleger, “Automated clustering
and program repair for introductory programming assign-
ments,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
mentation, 2018, pp. 465–480.

[56] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “DeepFix: Fixing
common C language errors by deep learning,” in Proc. Nat. Conf.
Artif. Intell., 2017, pp. 1345–1351.

[57] M. Harman, “The current state and future of search based soft-
ware engineering,” in Proc. ACM/IEEE Int. Conf. Softw. Eng.,
2007, pp. 342–357.

[58] M. Harman and B. F. Jones, “Search-based software engineer-
ing,” Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, 2001.

[59] M. R. Hoffmann, B. Janiczak, E. Mandrikov, and M. Friedenhagen,
“JaCoCo code coverage tool,” 2009. [Online]. Available: https://
www.jacoco.org/jacoco/

[60] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Proc.
ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 12–23.

[61] M. Ivankovi�c, G. Petrovi�c, R. Just, and G. Fraser, “Code coverage
at Google,” in Proc. Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2019, pp. 955–963.

[62] J. Jiang, “SimFix implementation,” 2017. [Online]. Available:
https://github.com/xgdsmileboy/SimFix/

[63] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping pro-
gram repair space with existing patches and similar code,” in
Proc. ACM/SIGSOFT Int. Symp. Softw. Testing Anal., 2018,
pp. 298–309.

[64] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated
atomicity-violation fixing,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2011, pp. 389–400.

[65] B. Johnson, Y. Brun, and A. Meliou, “Causal testing: Understand-
ing defects’ root causes,” in Proc. ACM/IEEE Int. Conf. Softw.
Eng., 2020.

[66] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[67] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in soft-
ware testing?” in Proc. ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 654–665.

[68] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing pro-
grams with semantic code search,” in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., 2015, pp. 295–306.

[69] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch genera-
tion learned from human-written patches,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2013, pp. 802–811.

[70] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,”
IEEE Trans. Softw. Eng., vol. SE-12, no. 1, pp. 96–109, Jan. 1986.

[71] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[72] D. L. Xuan Bach, L. Bao, D. Lo, X. Xia, S. Li, and C. S. Pasareanu,
“On reliability of patch correctness assessment,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2019, pp. 524–535.

[73] D. L. Xuan Bach, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser,
“JFIX: Semantics-based repair of Java programs via symbolic
PathFinder,” in Proc. ACM/SIGSOFT Int. Symp. Softw. Testing
Anal., 2017, pp. 376–379.

[74] D. Le Xuan Bach, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser,
“S3: Syntax- and semantic-guided repair synthesis via program-
ming by examples,” in Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2017, pp. 593–604.

[75] D. L. Xuan Bach, D. Lo, and C. Le Goues, “History driven
program repair,” in Proc. Int. Conf. Softw. Anal. Evol. Reeng., 2016,
pp. 213–224.

[76] D. L. Xuan Bach, F. Thung, D. Lo, and C. L. Goues, “Overfitting
in semantics-based automated program repair,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2018, pp. 163–163.

[77] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2012,
pp. 3–13.

[78] C. Le Goues, S. Forrest, and W. Weimer, “Representations and
operators for improving evolutionary software repair,” in Proc.
Conf. Genetic Evol. Comput., 2012, pp. 959–966.

[79] C. Le Goues et al., “The ManyBugs and IntroClass benchmarks
for automated repair of C programs,” IEEE Trans. Softw. Eng.,
vol. 41, no. 12, pp. 1236–1256, Dec. 2015.

[80] C. Le Goues, T. Nguyen, S. Forrest, andW. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[81] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A
multi-lingual program repair benchmark set based on the
Quixey Challenge,” in Proc. ACM SIGPLAN Int. Conf. Syst. Pro-
gram. Lang. Appl.: Softw. Humanity Poster Track, 2017, pp. 55–56.

[82] Y. Lin and S. S. Kulkarni, “Automatic repair for multi-
threaded programs with Deadlock/Livelock using maximum
satisfiability,” in Proc. Int. Symp. Softw. Testing Anal., 2014,
pp. 237–247.

[83] P. Liu, O. Tripp, and C. Zhang, “Grail: Context-aware fixing of
concurrency bugs,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 318–329.

[84] X. Liu and H. Zhong, “Mining StackOverflow for program repair,”
in Proc. Int. Conf. Softw. Anal. Evol. Reeng., 2018, pp. 118–129.

[85] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proc. Eur. Softw. Eng. Conf.
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 727–739.

[86] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2015, pp. 166–178.

[87] F. Long and M. Rinard, “An analysis of the search spaces for gen-
erate and validate patch generation systems,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng., 2016, pp. 702–713.

[88] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proc. ACM SIGPLAN-SIGACT Symp. Princ. Pro-
gram. Lang., 2016, pp. 298–312.

[89] A. Marginean et al., “SapFix: Automated end-to-end repair at
scale,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2019, pp. 269–278.

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 659

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

[90] M.Martinez, T.Durieux, R. Sommerard, J. Xuan, andM.Monperrus,
“Automatic repair of real bugs in Java: A large-scale experiment on
the Defects4J dataset,” Empir. Softw. Eng., vol. 22, no. 4, pp. 1936–
1964, Apr. 2017.

[91] M. Martinez and M. Monperrus, “ASTOR: A program repair
library for Java (Demo),” in Proc. Int. Symp. Softw. Testing Anal.
Demo Track, 2016, pp. 441–444.

[92] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and
A. Roychoudhury, “Semantic program repair using a reference
implementation,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2018,
pp. 129–139.

[93] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in Proc. Int. Conf. Softw. Eng., 2015,
pp. 448–458.

[94] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
multiline program patch synthesis via symbolic analysis,” in
Proc. Int. Conf. Softw. Eng., 2016, pp. 691–701.

[95] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating
software test data by evolution,” IEEE Trans. Softw. Eng., vol. 27,
no. 12, pp. 1085–1110, Dec. 2001.

[96] M. Monperrus, “A critical review of “Automatic patch genera-
tion learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2014, pp. 234–242.

[97] M. Motwani and Y. Brun, “Automatically generating precise
oracles from structured natural language specifications,” in Proc.
ACM/IEEE Int. Conf. Softw. Eng., 2019, pp. 188–199.

[98] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do
automated program repair techniques repair hard and important
bugs?” Empir. Softw. Eng., vol. 23, no. 5, pp. 2901–2947, Oct. 2018.

[99] K. Muşlu, Y. Brun, and A. Meliou, “Data debugging with contin-
uous testing,” in Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Int.
Symp. Found. Softw. Eng. New Ideas Track, 2013, pp. 631–634.

[100] K. Muşlu, Y. Brun, and A. Meliou, “Preventing data errors with
continuous testing,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
pp. 373–384.

[101] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program repair via semantic analysis,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2013, pp. 772–781.

[102] T. Ohmann et al., “Behavioral resource-aware model inference,” in
Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2014, pp. 19–30.

[103] V. P. L.Oliveira, E. F. de Souza,C. LeGoues, andC.G.Camilo-Junior,
“Improved representation and genetic operators for linear genetic
programming for automated program repair,” Empir. Softw. Eng.,
vol. 23, no. 5, pp. 2980–3006, 2018.

[104] V. P. L. Oliveira, E. F. D. Souza, C. LeGoues, andC. G. Camilo-Junior,
“Improved crossover operators for genetic programming for program
repair,” inProc. Int. Symp. Search Based Softw. Eng., 2016, pp. 112–127.

[105] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proc. ACM/IEEE Int. Conf.
Softw. Eng., 2007, pp. 75–84.

[106] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 199–209.

[107] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Trans.
Softw. Eng., vol. 40, no. 5, pp. 427–449, May 2014.

[108] J. H. Perkins et al., “Automatically patching errors in deployed
software,” in Proc. ACM Symp. Operating Syst. Princ., 2009,
pp. 87–102.

[109] J. Petke, S. O.Haraldsson,M. Harman,W. B. Langdon, D. R.White,
and J. R. Woodward, “Genetic improvement of software: A com-
prehensive survey,” IEEE Trans. Evol. Comput., vol. 22, no. 3,
pp. 415–432, Jun. 2018.

[110] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in
empirical software engineering,” in Proc. Int. Conf. Automated
Softw. Eng., 2011, pp. 362–371.

[111] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Proc. Int. Conf.
Softw. Maintenance, 2013, pp. 180–189.

[112] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of ran-
dom search on automated program repair,” in Proc. Int. Conf.
Softw. Eng., 2014, pp. 254–265.

[113] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program
repair for evaluating the effectiveness of fault localization
techniques,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
pp. 191–201.

[114] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch genera-
tion systems,” inProc. Int. Symp. Softw. TestingAnal., 2015, pp. 24–36.

[115] R. Rolim et al., “Learning syntactic program transformations
from examples,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2017,
pp. 404–415.

[116] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR: Effec-
tive object oriented program repair,” in Proc. IEEE/ACM Int.
Conf. Automated Softw. Eng., 2017, pp. 648–659.

[117] O. Seng, J. Stammel, and D. Burkhart, “Search-based determina-
tion of refactorings for improving the class structure of object-
oriented systems,” in Proc. Conf. Genetic Evol. Comput., 2006,
pp. 1909–1916.

[118] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges,” in Proc. Int.
Conf. Automated Softw. Eng., 2015, pp. 201–211.

[119] S. Sidiroglou and A. D. Keromytis, “Countering network worms
through automatic patch generation,” IEEE Security Privacy,
vol. 3, no. 6, pp. 41–49, Nov. 2005.

[120] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer across
multiple applications,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2015, pp. 43–54.

[121] A. Smirnov and T. Chiueh, “DIRA: Automatic detection, identifi-
cation and repair of control-hijacking attacks,” in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2005. [Online]. Available: https://www.
ndss-symposium.org/ndss2005/dira-automatic-detection-identi
fication-and-repair-control-hijacking-attacks/

[122] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? Overfitting in automated program repair,” in
Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2015, pp. 532–543.

[123] M. Soto and C. Le Goues , “Using a probabilistic model to predict
bug fixes,” in Proc. IEEE 25th Int. Conf. Softw. Anal. Evol. Reeng.,
2018, pp. 221–231.

[124] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment:
Testing Javadoc comments to detect comment-code incon-
sistencies,” in Proc. Int. Conf. Softw. Testing Verification Validation,
2012, pp. 260–269.

[125] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of soft-
ware regressions,” inProc. Int. Conf. Softw. Eng., 2015, pp. 471–482.

[126] S. H. Tan, J. Yi, S. Mechtaev, and A. Roychoudhury, “Codeflaws:
A programming competition benchmark for evaluating auto-
mated program repair tools,” in Proc. IEEE Int. Conf. Softw. Eng.
Poster Track, 2017, pp. 180–182.

[127] P. S. Thomas, B. C. da Silva, A. G. Barto, S. Giguere, Y. Brun, and
E. Brunskill, “Preventing undesirable behavior of intelligent
machines,” Science, vol. 366, no. 6468, pp. 999–1004, Nov. 2019.

[128] Y. Tian and B. Ray, “Automatically diagnosing and repairing
error handling bugs in C,” in Proc. Eur. Softw. Eng. Conf. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 752–762.

[129] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Time-aware test suite prioritization,” in Proc. Int. Symp. Softw.
Testing Anal., 2006, pp. 1–12.

[130] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-
driven feedback generation for introductory programming exer-
cises,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
mentation, 2018, pp. 481–495.

[131] Y. Wei et al., “Automated fixing of programs with contracts,” in
Proc. Int. Symp. Softw. Testing Anal., 2010, pp. 61–72.

[132] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program
equivalence for adaptive program repair: Models and first
results,” in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng.,
2013, pp. 356–366.

[133] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest,
“Automatically finding patches using genetic programming,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2009, pp. 364–374.

[134] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 1–11.

[135] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches
through test case generation,” in Proc. ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2017, pp. 226–236.

[136] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proc. ACM/
IEEE Int. Conf. Softw. Eng., 2018, pp. 789–799.

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

[137] Y. Xiong et al., “Precise condition synthesis for program repair,”
in Proc. ACM/IEEE Int. Conf. Softw. Eng., 2017, pp. 416–426.

[138] J. Xuan et al., “Nopol: Automatic repair of conditional statement
bugs in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1,
pp. 34–55, Jan. 2017.

[139] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 52–63.

[140] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A compre-
hensive study of automatic program repair on the QuixBugs
benchmark,” in Proc. IEEE Int. Workshop Intell. Bug Fixing, 2019,
pp. 1–10.

[141] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Alleviating patch overfitting with automatic test generation: A
study of feasibility and effectiveness for the Nopol repair sys-
tem,” Empir. Softw. Eng., vol. 24, no. 1, pp. 33–67, Feb. 2019.

[142] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in
Proc. ACM/IEEE Int. Conf. Softw. Eng., 2015, pp. 913–923.

Manish Motwani received the MS degree from
the University of Massachusetts Amherst,
Amherst, Massachusetts, in 2018. He is currently
working toward the PhD degree in the College of
Information and Computer Sciences, University
of Massachusetts Amherst, Amherst, Massachu-
setts. His research involves studying large soft-
ware repositories to learn interesting phenomena
in software development and maintenance, and
to use that knowledge to design novel automation
techniques for testing and program repair. For
more information, please visit http://people.cs.
umass.edu/�mmotwani/.

Mauricio Soto received the MS degree from
the Carnegie Mellon University, Pittsburgh,
Pennsylvania, in 2018. He is currently working
toward the PhD degree in the School of Com-
puter Science, Carnegie Mellon University, Pitts-
burgh, Pennsylvania. His research focuses on
improving automated program repair techniques.
For more information, please visit https://www.cs.
cmu.edu/�msotogon/.

Yuriy Brun (Senior Member, IEEE) received the
PhD degree from the University of Southern
California, Los Angeles, California, in 2008 and
completed his postdoctoral workwith the University
of Washington, in 2012. He is a professor with the
Manning College of Information and Computer Sci-
ences, University of Massachusetts Amherst. His
research focuses on software fairness, testing, and
analysis. He received an NSF CAREER Award, an
IEEE TCSC Young Achiever in Scalable Comput-
ing Award, and the SEAMS 2020 Most Influential

Paper Award. He is a distinguishedmember of the ACM. Formore informa-
tion, please visit http://www.cs.umass.edu/�brun/.

Ren�e Just is an assistant professor with theUniver-
sity of Washington. His research interests include
software engineering and software security, in par-
ticular static and dynamic program analysis, mobile
security, mining software repositories, and applied
machine learning. His research in the area of soft-
ware engineering won three ACM SIGSOFT distin-
guished paper awards, and he develops research
infrastructures and tools (e.g., Defects4J and the
Major mutation framework) that are widely used by
other researchers. For more information, please
visit https://homes.cs.washington.edu/�rjust/.

Claire Le Goues (Member, IEEE) received the
BA degree in computer science from Harvard Uni-
versity, Cambridge, Massachusetts, and the MS
and PhD degrees from the University of Virginia,
Charlottesville, Virginia. She is an associate pro-
fessor with the School of Computer Science,
Carnegie Mellon University, where she is primarily
affiliated with the Institute for Software Research.
She received an NSF CAREER Award, the ICSE
2019 Most Influential Paper Award, and the ACM
SIGEVO Impact Award in 2019. She is interested

in constructing high-quality systems in the face of continuous software
evolution, with a particular interest in automatic error repair. For more
information, please visit http://www.cs.cmu.edu/�clegoues.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

MOTWANI ET AL.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 661

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 25,2023 at 02:00:59 UTC from IEEE Xplore. Restrictions apply.

