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Concurrent and Continuous Prediction of Finger
Kinetics and Kinematics via Motoneuron Activities

Rinku Roy, Yang Zheng, Derek G. Kamper, and Xiaogang Hu

Abstract—Objective: Robust neural decoding of
intended motor output is crucial to enable intuitive control
of assistive devices, such as robotic hands, to perform
daily tasks. Few existing neural decoders can predict
kinetic and kinematic variables simultaneously. The current
study developed a continuous neural decoding approach
that can concurrently predict fingertip forces and joint
angles of multiple fingers. Methods: We obtained
motoneuron firing activities by decomposing high-density
electromyogram (HD EMG) signals of the extrinsic finger
muscles. The identified motoneurons were first grouped
and then refined specific to each finger (index or middle)
and task (finger force and dynamic movement)
combination. The refined motoneuron groups (separate
matrix) were then applied directly to new EMG data in real-
time involving both finger force and dynamic movement
tasks produced by both fingers. EMG-amplitude-based
prediction was also performed as a comparison. Results:
We found that the newly developed decoding approach
outperformed the EMG-amplitude method for both finger
force and joint angle estimations with a lower prediction
error (Force: 3.47%0.43 vs 6.64%0.69% MVC, Joint Angle:
5.40%0.50° vs 12.8+0.65°) and a higher correlation (Force:
0.75%0.02 vs 0.66+0.05, Joint Angle: 0.94%0.01 vs 0.5%0.05)
between the estimated and recorded motor output. The
performance was also consistent for both fingers.
Conclusion: The developed neural decoding algorithm
allowed us to accurately and concurrently predict finger
forces and joint angles of multiple fingers in real-time.
Significance: Our approach can enable intuitive
interactions with assistive robotic hands, and allow the
performance of dexterous hand skills involving both force
control tasks and dynamic movement control tasks.

Index Terms: Neural decoding, Hand function, Isometric
force, Dynamic movement

l. Introduction

EXETEROUS control of hand motion is essential to our

daily life. In recent years, advanced assistive robotic
hands, such as prosthetic hands [1] or exoskeleton gloves [2, 3],
have been developed that allow restoration of independent
control of individual digits. These devices can be interfaced
using neural signals from the brain [4], muscles [5], or
peripheral nerves [6]. In particular, these studies have decoded
neural signals for hand gesture recognition [4-6]. Despite
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exciting progress, continuous decoding of individual finger
movements from neural signals remains a substantial challenge
[7, 8]. Even though neural signals obtained through invasive
methods have shown success in detecting finger kinematics and
kinetics [9, 10], their wide clinical use has been limited, partly
because of the invasive nature of the approaches.

Alternatively, skin surface electromyogram (sEMG) is a
commonly used neural signal source for myoelectric control of
assistive devices. SEMG can be used to determine movement
intentions from muscle activity in real-time [11-13].
Myoelectric control of assistive devices is usually
accomplished through pattern recognition [14] or continuous
direct control methods [15]. Pattern recognition, which
identifies movement patterns from predefined sets, has been
used successfully to identify 19 different hand postures with a
96.7% success rate [16]. In contrast, the direct control approach
enables continuous control of hand movement by mapping
global EMG features, such as EMG amplitude, to kinematic or
kinetic variables [15]. However, EMG amplitude is subject to
interference from a variety of sources, including motion
artifacts, fatigue, high background noise, as well as action
potential variations; this interference may deteriorate
myoelectric control performance over time [17]. More recently,
deep-learning based approaches have also been implemented
for motor intent detections [18-20]. Although promising, the
initial training of network models is time-consuming and
requires a large data set.

EMG signals consist of hundreds of motor unit action potentials
(MUAPs). As an alternative to global EMG features, the motor
output can also be predicted from motor unit (MU) firing
activities obtained from motor unit decomposition [13, 21].
This approach estimates the neural drive input signal to the
spinal motoneuron pool in the form of MU firing frequency at
the population level. The time-consuming steps of the MU
decomposition algorithm were circumvented in a previous
study [22] by using convolutional neural networks (CNN) to
derive the populational discharge frequency directly from
SEMGs instead. Although the algorithm provided higher
accuracy in certain cases, the internal logic of the CNN model
was unknown. Previous studies have shown that the neural
drive information is more robust than global EMG features in
predicting finger joint kinematics [23-25], as well as fingertip
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forces [26, 27], because the neural drive signal is estimated via
binary neuronal firing occurrences rather than analog EMG
signals. It has been demonstrated that the neural-drive method
can continuously estimate forces at individual finger levels [24]
and at concurrent multi-finger levels when forces vary
randomly among multiple fingers [25]. Aside from finger
forces, the neural-drive approach can also be used to predict
joint angle during single finger oscillatory movement tasks [26,
28]. Despite the research progress, the assessment of the neural-
drive method on multi-finger dynamic movement tasks has not
been explored. More importantly, dynamic joint angle
estimation and fingertip force estimation were separately
performed in previous studies. However, most real-world motor
tasks involve complex hand activities, which include both
isometric force control and dynamic movement components,
performed asynchronously using multiple fingers. Therefore, it
is critically important to estimate finger joint kinematics and
fingertip forces concurrently across multiple fingers.

Accordingly, we developed a method based on populational
MU firing activities that can concurrently estimate fingertip
forces and joint angles across multiple fingers (index and
middle fingers). EMG-amplitude-based prediction was also
performed in parallel as a comparison. We found that the
neural-drive approach outperformed the EMG-amplitude
method for both finger force and joint angle estimations with a
lower prediction error and a higher correlation between the
estimated and recorded motor output. The developed approach
could facilitate intuitive control of assistive robotic hands to
perform dexterous tasks involving both force control and
dynamic movement control.

II. METHODS

An overview of the concurrent prediction of finger force and
joint angle is shown in Fig. 1. We first acquired high-density
EMG (HD EMG) signals of the extrinsic finger flexor and
extensor muscles while participants performed isometric finger
force and dynamic finger movement tasks. They performed
each task using their index and middle fingers independently,
and also performed both tasks sequentially using both fingers
concurrently. We obtained MU firing information from the
decomposition of HD EMG signals from the single finger trials.
MUs were first assigned to different groups specific to each

finger and each task (isometric finger force and dynamic
movement) combination. To improve decoding accuracy, the
MU groups were then refined for each finger and task
separately. The refined MU groups (separate matrix) were then
applied directly to new HD EMG data trials in real-time
involving both isometric finger force and dynamic movement
tasks produced by both fingers.

Data Acquisition

Participants: Seven healthy individuals (Age: 28+7 years)
were recruited to participate in the study. No participant had any
prior neuromuscular ailments. The Institutional Review Board
at the University of North Carolina at Chapel Hill approved the
study protocol. Prior to the experiment, all participants
provided informed consent based on the approved protocols.

Experimental Setup: The participants were seated in a chair
in front of the testing desk during the experiment. With the
support of a soft foam, participants placed their right forearm
on the desk in a neutral position. The experiment involved
performing dynamic and isometric finger flexion using the
index or middle finger. Before the experiment, the experimenter
palpated the forearm to determine location of the flexor
digitorum superficialis (FDS) and extensor digitorum

communis (EDC) muscles in order to place the EMG electrode
grid. The electrode placement was subject-specific, and was
not uniform across all participants. After skin preparation, a pair
of 8x16 electrode arrays were then placed on the skin over both
muscles on the dorsal and volar sides of the forearm to record
finger flexion-related EMG data. Each electrode of the array
measured 3 mm in diameter and electrodes were spaced 10 mm
apart. Using the EMG USB2+ (OT Bioelettronica) acquisition
system, monopolar EMG signals were amplified with a gain of
1000, filtered (10-900Hz), and sampled at 2048 Hz. Moreover,
finger force and joint angles of the index and middle fingers
were measured in tandem with EMG signals for all participants.
The middle and index finger movements were recorded. Two
custom flex angle sensors were attached to the
metacarpophalangeal joints of the index and middle fingers to
capture joint angle data, which were sampled at 100 Hz (Fig.
2A). To measure finger flexion forces, index and middle fingers
were placed horizontally along two miniature load cells (SM-
200N, Interface) mounted on the desk. The spacing and
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Fig 1: The method for estimating the joint angle and force concurrently for each finger from both-combined trials. Red arrows and shaded boxes point to the neural
drive approach, which estimates force and joint angle concurrently based on MU firing frequency, whereas green arrows and shaded boxes indicate the traditional

amplitude-based approach, which uses EMG amplitudes for estimation.
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orientation of the load cells were adjustable to accommodate
different hand sizes. The finger force data were sampled at 1000
Hz.
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Fig 2. Experimental setup and paradigm. A) In the single finger-dynamic
movement task, angle sensors were placed at the MCP joint of the index and
middle fingers. Either the index or middle finger was repeatedly flexed and
extended within three seconds. 60° represents full flexion and 0° represents full
extension. B) During the single finger-isometric force task, two load cells were
placed along the index and middle fingers to measure finger flexion forces. The
participant followed a trapezoidal trajectory of 12 seconds; C) In the both
finger-combined dynamic and isometric task, joint angles and flexion forces of
the index and middle fingers were acquired simultaneously. After flexing both
index and middle fingers from full extension, participants followed the same
trapezoidal force target with both fingers, and then performed full extension.

Experiment Procedure: Each participant performed three
different tasks in a random order using their Index and/or
Middle fingers. Prior to starting the actual experiment, the data
recording was examined for a short duration to disable noisy
channels due to improper skin contact with electrodes. In the
Single-Dynamic task, the participants were instructed to flex
the MCP joints of either their index or middle finger as far as
they could and then return to the full-extension position in 3
seconds (as shown in Fig. 2A). The joint angle trajectory was
displayed continuously to the participants during the
experiment. In a single trial of 24 seconds, the same movement
was repeated eight times, and each trial was then repeated five
times for each finger. A resting time of 60 seconds was provided
between two successive trials. In the Single-Isometric task, the
maximum voluntary contraction (MVC) of index and middle
fingers was obtained separately for each participant. A
trapezoidal target was then shown to the participants, and they
were asked to follow the target with their index or middle
finger. The trapezoid trajectory started to rise at 2 seconds, and
ramped up linearly to 40% MVC. The force plateaued at 40%
MVC for 8 seconds, before ramping down to 0% MVC (Fig.
2B). The participants performed the isometric force task using
each finger for five trials. Similar to the previous task, a 60-
second rest time was provided between trials. Finger selection
was randomized among the participants in both tasks. For the
Both-Combined task, participants flexed both their index and
middle fingers simultaneously from the full-extension position,
touched the load cell, pressed against the load cell by following
the same trapezoidal force target with both fingers, and moved
back to the full-extension position (Fig. 2C). In a single trial,
participants repeated the same activity three times within 24
seconds. The participant repeated the combined dynamic and
isometric force tasks for five trials.

Data Processing

Prior to the analysis, the HD-EMG data were preprocessed with a
motion artifact removal technique [29]. Due to the significant
contribution of the FDS muscle to isometric flexion force [30],
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MU firing activities from the flexor EMG was used to estimate
the flexion forces. The finger flexion and extension angles of
individual fingers were estimated by considering both flexor
and extensor muscle activations during dynamic joint
movement. MU decomposition was performed on HD-EMG
data obtained from the single finger isometric or dynamic tasks,
and the separation matrices were then applied directly to the
data from the Both-Combined trials. In parallel to the neural-
drive approach, a conventional EMG amplitude method was
also performed to compare the predicted motor outputs.
channel. Briefly, the data processing of both motor output
prediction methods is essentially in three major steps: 1)
channel optimization, 2) feature extraction (MU firing rate or
EMG amplitude), and 3) estimation of the joint angle or
fingertip forces. The analysis was performed entirely in
MATLAB-2020b (MathWorks).
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Fig 3: Representative EMG amplitude (RMS) distribution for the index finger
(column A) and the middle finger (column B) during single finger isometric
and dynamic trials for a single subject. In the first two rows, the amplitude
distribution of flexor muscles is shown for the isometric and dynamic tasks,
respectively. The last row shows the amplitude distribution of extensor muscles
during dynamic finger movement. The 60 channels selected for MU
decomposition are encircled by white dashed curves. The EMG-amplitude
method also used the same channels to estimate the EMG amplitude for each
finger. (Column C) EMG amplitude distribution for Both-Combined trials for
flexion and extension.

2

Motor output
information.

Channel Optimization. We observed that during the single
finger isometric and dynamic tasks, muscle activation was
confined to a relatively small area (Fig. 3A and Fig. 3B), while
other channels exhibited relatively low EMG amplitudes. To
reduce computational load, only the channels over the active
area were selected for EMG decomposition. The root mean
squared (RMS) amplitude was calculated for all 128 channels
for this selection. These values were then averaged across the
trials with the same finger and task assignments for each
channel. The 60 channels with the highest RMS values were
selected for decomposition. The number 60 was chosen to
select approximately half of the total number of channels based
on a previous study [31]. There were six sets of EMG channels:
Index-Isometric-Flexor ~ (Chnr),  Middle-Isometric-Flexor
(Chmrr), Index-Dynamic-Flexor (Chmr), Index-Dynamic-
Extensor (Chipg), Middle-Dynamic-Flexor (Chmpr) and
Middle-Dynamic-Extensor (Chmpe). The exemplar EMG
amplitude (RMS) distribution of the Single-Isometric and

prediction using MU discharge
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Single-Dynamic tasks are shown in Fig. 3A and Fig. 3B. Fig.
3C represents the EMG amplitude distribution of a Both-
Combined trial.
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Fig4: MU dec;m_position process using Fast Independent Component Analysis
algorithm (FastICA).

Feature Extraction. This section contains information about
the process of MU decomposition and MU pool formation for
estimating finger force and joint angle.

MU pool formation. Isometric and dynamic trials for a single
finger were used to obtain MU separation vectors for each
finger specific to a task, and the separation vectors were
combined to form a MU pool associated with that finger and
task. We extracted MU firing activities using a previously
developed Fast Independent Component Analysis (FastICA)
algorithm [26, 32-34]. The process of MU decomposition is
given in the supplementary material. The brief process of MU
decomposition is illustrated in Fig. 4 (The detailed process is
illustrated in Fig. S2 in the supplementary material). Briefly, the
60 selected channels were whitened and extended by a factor of
(/=9). In the decomposition process, a fixed-point iteration
procedure was used to obtain the separation vectors and source
signals for the individual MUs. To distinguish MU discharge
events (set to 1) from background signals (set to 0), the k-
mean++ (k=2) algorithm [35] was applied to the signals sources
in order to reconstruct the binary firing events trains. Several
previous studies [36, 37] have shown that ICA-based source
separation can be implemented in dynamic movement
conditions. The quality check at the cluster analysis stage based
on Silhouette distance can also remove the inaccurate
separation vectors. The separation vectors from different single
finger trials of the same finger and task were combined to form a
separation matrix for each finger-task combination.
Separation vectors with poor separation in the cluster analysis
(i.e., Silhouette values < 0.5) and duplicate MUs were removed.
There were six separation matrices corresponding to six MU
pools: Index-Isometric-Flexor (Bur), Middle-Isometric-Flexor
(Bmrr), Index-Dynamic-Flexor (Bmr), Index-Dynamic-
Extensor (Bipe), Middle-Dynamic-Flexor (Bwmpr), Middle-
Dynamic-Extensor (Bmpe). Fig. 5A and 5B show examples of
the isometric finger force and dynamic joint angle recorded
during single index finger trials. The corresponding MU firing
event trains are shown in Fig. 5C and 5D, respectively.
Similarly, irregular variations in joint angle was also evident in
Fig. 5D. This overestimation of neural drive signals may result
from the inclusion of MUs related to different finger-task
combinations, due to inevitable co-activation of other undesired
fingers. The HD EMG grid covers a majority of the multi-
compartment muscles and MU action potentials from different
compartments can be registered concurrently. The
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decomposition algorithm could not distinguish which MUs
belong to which finger.

MU pool refinement. A MU pool refinement procedure was
implemented to eliminate MUs related to either use of an
undesired finger or performance of an incorrect task while
retaining MUs that were pertinent to the selected task-finger
combination. EMG data from Both-Combined trials were used
for this process. We divided the Both-Combined trials into two
groups: training and testing. Training data were used to refine
the MU pool, whereas Testing data were used to estimate forces
and joint angles. We performed a five-fold cross-validation, in
which four groups were used for training, and the remaining
group was used for testing. A two-step refinement process was
performed in this study:
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Fig 5: Extracted MU firing information from single-finger trials. Exemplar
isometric force (A) and dynamic movement (B) trials of the single-finger
(index) tasks. MU firing event trains of a single-isometric trial (C) associated
with the finger forces (A). A single-dynamic trial (D) associated with the joint
angle (B). The red curve shows the populational MU firing frequency.

e  Task-Based Refinement: Some MUs may be preferentially
activated during dynamic movement, while other MUs
may be more active during isometric force production. In
the task-based refinement, MUs more related to dynamic
tasks were removed from the MU pool corresponding to
isometric tasks of the same finger, and vice versa. The
rationale was that the firing rate of some MUs may be
better correlated with forces than with dynamic joint
angles, and vice versa. In this refinement process, we
applied the MU pools obtained from the previous steps to
the EMG data of the Both-Combined trials (training set)
and calculated the individual MU firing rate by averaging
values across a 0.5-s average window with a step size of
0.1-seconds (the same window was used throughout the
study). The recorded force and joint angle of the targeted
finger were also processed over the same window. A first-
order linear regression was performed between the MU
firing rate and the isometric force of the targeted finger,
whereas a second-order linear regression was performed
between the MU firing rate and the joint angle of intended
finger [26]. MUs were retained if the coefficient of
determination (R?) value was higher for the desired task
than for the other task; otherwise, the MUs were discarded.
The regression analysis and R? comparisons were
conducted on all the MUs during the refinement. A task-
based refinement example for the Index-Isometric-Flexor
MU pool (Bur) is shown in the Supplementary Material.

o Finger-Based Refinement: The close proximity of

individual finger muscles could cause interference in
single-finger muscle activity due to co-contraction of
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adjacent muscle compartments. To remove the MUs
related to other fingers, a finger-based refinement
procedure [31] was performed after the task-based
refinement. During the combined trials, both fingers
carried out simultaneous tasks, but their actual force or
kinematic profiles were slightly different. For example,
different fingers may touch the load cells at different
timings, and rate of rise of the force profiles can be
different. These distinct features across fingers allowed us
to separate the MUs into finger-specific groups.
Specifically, MUs retained after the task-based refinement
were applied to the Both-Combined trial to determine the
firing rates of individual MUs. Force and joint angle data
from the index and middle fingers were smoothed using the
same average window. For the isometric MU pools, the
finger-based refinement was performed using the first-
order linear regression between MU firing rate and
individual finger force, while for the dynamic MU pools, a
second-order linear regression was used between MU
firing rate and finger joint angles. If the targeted finger had a
higher R? than the other finger, the MU was Kkept;
otherwise, the MU was removed from the MU pool. The
Supplementary Material shows an example of finger-based
refinement for the Index-Isometric-Flexor MU pool (Bir).

The average number of MUs in the individual MU pools after
refinement is summarized in Table S1 (in supplementary
material). Each condition averaged between 21-51 MUs that
were ultimately used for analysis. The high number of MUs
used to calculate the source signal may also result in an increase
in computational complexity and delay during force and joint
angle estimation. Alternatively, N number of MUs from each of
the MU pools were selected to predict finger forces and joint
movements of the testing trials. We derived MU separation
vectors from single-finger trials and then applied them to multi-
finger trials for estimating force and joint angle. It is possible
that the testing trials might contain a small number of MU spike
trains. Therefore, we selected a smaller number of MUs for the
testing trials such that at least those MUs would appear in those
test trials. In our preliminary investigation, it appears that,
rather than using populational firing frequency of all MUs, we
can also use individual firing activities of a small number of
MU for an accurate estimation of forces and joint angles [26].
According to our pilot evaluation, N=5 was selected as a
reasonable choice. The MUs were selected based on the R?
value obtained through a regression between the firing
frequency and force (in case of isometric MU pool) or joint
angle (in case of dynamic MU pool) when individual MU
separation vectors were applied to a different Both-Combined
training trial. The 5 MUs with the highest R? values were then
selected.

Finger force and Joint angle estimation.

Finger force estimation. The selected five isometric MUs
for individual fingers were directly applied to the EMG data of
the Both-Combined trials (testing). The firing frequency of each
MU was calculated using an average window of 0.5 seconds
and moving step of 0.1 second. A Kalman filter (the system
matrix = 1, the observation matrix = 1, the system covariance =
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0.1 and the observation covariance = 0.5) was then applied to
the firing frequency to eliminate isolated and sporadic
fluctuations. At the same time, the finger force data for both
fingers were smoothed with the same window. The firing rate of
all five MUs and the force of the targeted finger (F;) were fit into
a multivariate linear model to predict finger forces (Eq. 1):

Fi(t) = ¥3-1a:;D;;(t) + b, )

where, Fi=force of the i-th finger (i = index or middle); j-index
of MUs; D = Firing rate of MUs; t=time; a; and b;=regression
coefficients [38].

Joint Angle estimation. The dynamic MU pools for both the
flexors and extensors were applied directly to the testing trials,
and the obtained firing frequencies of all the MUs (after
processing with the average window and Kalman filter) were
then fit into a multivariate model using the smoothed joint angle
value (using the same average window) recorded for the
targeted finger (Eq. 2):

JAI(®) = Zirwp=1(Pomu  Drimu () + Qumu D fimu,(£)) +
. terms for Flexor MUs
Yhu,=1 _(Ri,MUeDe,i,MUe (®) + Simu.Déimu, () + G 2

terms for Extenso,MUs

where, JAi =joint angle of the i-th finger (i = index or middle);
MUy & MU, =number of flexor & extensor MUs, respectively;
Dr & D. =firing rate of flexor and extensor MUs; P;, Oi, R;, S,
and Ci=regression coefficients.

Motor output prediction using EMG amplitude.

Channel Optimization and Feature Extraction. EMG
amplitude-based force and joint angle estimation were also
performed. From Fig. 3A and 3B, it was evident that even
though the 60 selected channels covered the most active regions
for specific finger-task combinations, there were considerable
overlaps between the isometric and dynamic tasks performed
with the same finger. In addition, substantial overlap in
activation between finger muscles was observed while
performing the single-finger task. Accordingly, task-based and
finger-based refinement approaches were carried out to refine
the EMG channel sets for each finger-task combination. Data
from Both-Combined training trials were used for this
refinement. The EMG amplitudes (RMS) of the individual
channels were calculated by performing a moving average
across a window of 0.5 seconds and moving step of 0.1 second.
In the task-based refinement, the R? values from the regression
of the EMG amplitude and force were compared with those
obtained from the regression of the same EMG amplitude and
the joint angle of the same finger. For the isometric channel
pools, the EMG channel was retained, if the R? value was higher
in the force regression. For the dynamic channel pools, the
channel was retained, if the R? value was higher in the angle
regression. A similar finger-based refinement was performed
on the remaining EMG channels. The supplementary Figure S1
shows an example of task-based refinement on the EMG
channel pool of Index-Isometric-Flexor (Chur).

blications/rights/index.html for more information.

/pul
Authorized licensed use limited to: Penn State University. Downloaded on February 21,2023 at 21:50:18 UTC from IE%% Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3232067

TBME-00830-2022.R2

Force - Index

Force - Middle
— Joint Angle - Index !
— Joint Angle - Middle

r

Index Finger

2 mu4
5 Mu3
3 mu2
w

MU1
Middle

2

=mus
gmus
Zmu2

F

JAWAWAW

Finger G

MUS

|euonejndod

MU5

Jeuoneindod

MuU1

(ea1baq) a|buy

20

5 10 15

Index Finger

Flexor

Extensor

'S apey bumy ™ < apey bumg

o
ajey buui4
|euonejndod

Time (sec)

Middle Finger

Flexor

Extensor

MU5
Mu4

Y=}
ajey buuiy
|euonjejndod

5

10
Time (sec)

15

Fig 6: A representative example of a Both-Combined test trial with simultaneous recording of index and middle finger forces and joint angles (A); The concurrent
estimation of force (B &C) and joint angle (D & E) for individual fingers using the neural-drive and EMG-amplitude methods. MU firing event trains and
populational firing frequency associated with the estimation of force (F & G) and joint angle (H & I) of individual fingers.

Finger force and joint angle estimation. Evaluation of
the EMG-amplitude method on force and joint angle estimation
was performed on the Both-Combined testing trials. EMG
amplitudes (RMS) of the refined channel pools using the same
average window was calculated, followed by an average across
EMG channels. The same Kalman filter was applied. For force
prediction, the overall EMG amplitude was fit into a linear
model using forces of the targeted finger (Eq. 3):

F () = Ai(®) + d; 3)

where, F; =force of the i-th finger (i = index or middle);
A=RMS of EMG; c; and di=Regression coefficients.

To predict joint angles, the amplitudes of both the flexor and
extensor were fit into a bivariate linear model using the joint
angle of the target finger (Eq. 4):

JA(t) = wAF () + v AZ;(0) + XA (D) + yiAe (D)+ 2
4

where, JAi =Joint angle of the i-th finger (7 = index or middle); Ar
& A. = RMS for Flexor and Extensor; wui, vi xi yi and
zi=Regression coefficients.

Statistical Analysis

The accuracy of the neural-drive and EMG-amplitude methods
on force and joint angle prediction was evaluated using the root
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mean square error (RMSE) and R? value. For individual fingers,
the R? and RMSE values were averaged across trials and across
participants to represent the overall performance. Data
distribution for the obtained RMSE and R? values were checked
using the Kolmogorov-Smirnov test. As these were normally
distributed, paired t-tests were used to compare the performance
between methods. The t-test was performed for the same finger
across all participants. A Bonferroni-Holm adjustment was
performed to avoid Type-I errors that can result from multiple t-
tests.

A. Performance for Force estimation

RESULTS

Fig. 6 shows the predicted output of a representative Both-
Combined test trial. A comparison of the force estimation from
this trial using neural-drive and EMG-amplitude methods is
illustrated in Fig. 6B and 6C. The MU firing event trains of the
index and middle finger flexor and extensor muscles used for
the neural drive calculation are shown in Fig. 6F and 6G,
respectively. An alternating MU firing activity between the
flexor and extensor muscles are evident.

We then quantified the force prediction performance using
RMSE and R? between the recorded and the predicted force
using the neural-drive and EMG-amplitude methods (Fig. 7A
and 7B). The neural-drive method showed a lower estimation
error for both index (RMSE=3.47+0.43 %MVC (mean =+
standard error)) and middle (RMSE=4.47+0.82 %MVC)
fingers, when compared with the EMG-amplitude method
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(index: RMSE=6.64+0.69 %MVC; middle: RMSE=9.73+1.04
%MVC). A significant difference between the two methods was
identified using t-tests with Bonferroni-Holm adjusted p level
of 0.025 (index: ¢t = -4.86, p = 0.0028, Cohen's d = -2.07;
middle: ¢ =-4.02, p = 0.0069, Cohen's d = -2.16). Similarly, the
neural-drive estimated force had a higher correlation with the
recorded finger force (Fig. 7B). Namely, the median value for
the neural-drive method (index: R?=0.77 and middle: R?=0.73)
was higher than that of the EMG-amplitude method (index:
R?=0.71 and middle: R>=0.61). A significant difference was
observed (index: £ =3.08, p =0.0082, Cohen’s d =2.37; middle: ¢
=3.80, p = 0.0089, Cohen’s d =2.12).

B. Performance for Joint Angle estimation.

For the Both-Combined test trials, the joint angle estimated by
the neural-drive method closely resembles the measured joint
angle, whereas the EMG-amplitude method showed an
underestimation on the predicted angles (Fig. 6D and 6E). The
MU firing event trains of the extensor and flexor muscles of the
index and middle fingers are shown in Fig. 6H and 6I,
respectively.

We also evaluated the joint angle prediction performance of the
neural-drive and EMG-amplitude methods, using the RMSE
and R? from the Both-Combined test trials (Fig. 7C and 7D).
Paired #-test results on the RMSE values indicated that the
neural-drive method has a significantly smaller angle
estimation error than the EMG-amplitude method (index: ¢ = -
6.21, p = 0.0054, Cohen's d = -4.88; middle: ¢ = -5.30, p =
0.0018, Cohen's d = -2.55). Similarly, the ¢-test of R? values
showed that the neural drive approach has a higher correlation
with the measured joint angle than the EMG-amplitude method
(index: r=8.17,p=0.0047, Cohen’s d =4.32; middle: = 6.86, p
=0.0018, Cohen’s d = 3.71). Specifically, we found a smaller
angle estimation error of the neural-drive approach (index:
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Fig 7: The RMSE (A & C) and the R2 value (B & D) of the neural-drive and
EMG-amp methods of all the participants. The individual circles represent the
RMSE and R2 value of individual participants. The same participants are
connected in dash lines. *, p < 0.05. **, p <0.01.
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RMSE=5.40+0.50°; middle: RMSE=5.00+0.49°) than the
EMG-amplitude method (index: RMSE=12.840.65°; middle:
RMSE=13.441.74°). The neural-drive method also showed a
higher angle correlation for both fingers (index: R?>=0.93 and
middle: R?=0.94) than the EMG-amplitude method (index:
R?=0.45 and middle: R?>=0.54). Further, a post-hoc test using
Bonferroni-Holm corrections (adjusted p level of .0025)
showed significantly lower estimation errors (RMSE) and
higher correlation (R?) for both index and middle finger joint
angle estimations of the neural-drive method.

V. DISCUSSION

The purpose of our study was to develop a neural decoding
method based on motoneuron firing information obtained from
HD-EMG signals of extrinsic finger muscles. This approach
could concurrently estimate joint kinematics and kinetics of
multiple fingers, while participants performed multi-finger
isometric force and dynamic movement tasks together. Our
results showed that the neural-drive method performed
significantly better than the conventional EMG amplitude-
based method in terms of force and joint angle estimation, with a
smaller prediction error and a higher correlation with the
measured motor output. These findings demonstrated that the
developed approach is potentially suitable for continuous
interface with assistive robotic hands at individual finger levels.
The outcomes show that the neural decoding approach has the
potential to enable dexterous motor control of assistive devices
during daily motor tasks.

The main contribution of the current work is the development of
a neural decoder that can concurrently predict isometric
forces and dynamic joint kinematics at individual finger levels.
In previous literature [24-26, 28], MU firing information has
been used to estimate fingertip forces and joint angles of
individual fingers in separate studies. Specifically, MUs are
decomposed from HD EMG data, and the neural drive signals
can be estimated by populational MU firing activity. Different
regression functions are then adopted to map the estimated
neural derive signals to either forces or joint angles. However, in
most daily activities, our hands perform force-based control
tasks as well as dynamic movement tasks together using
multiple fingers. Therefore, to meet every day needs with
assistive robotic hands, it is necessary to determine both finger
force and joint angle at the same time for individual fingers.
Based on our study, different sets of MUs can be preferentially
activated for kinematic and kinetic control tasks, which is
consistent with earlier studies showing that different cortical
neurons are involved in kinematic and kinetic control [39] and
that the learning processes between the two tasks are also
somewhat independent [40]. As a result, the earlier neural
decoders based on kinematic or kinetic variables may not be
generalizable to the other variables. The currently developed
decoder directly addresses this issue by constructing task- and
finger-specific MU groups for the estimation of neural drive
signals. All these calculations were performed offline because
of high-computational intensity. After these calculation steps
are completed, we can reuse these matrices for subsequent real-
time calculations.
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Decomposition of EMG signals into MUs is time-consuming,
which poses a challenge for real-time neural-machine interface.
A few studies have implemented the idea of real-time
decomposition by pre-calculating separation vectors using a
small data set, and the neural drive can then be derived by
applying the separation matrix directly to a new data set [26,
41]. This protocol requires a time-consuming MU
decomposition step each time before being applied to motor
output estimation in real-time for a new data-set. Instead, in the
current study, MU decomposition was performed separately
using data from the single-finger isometric force and dynamic
movement tasks. MUs from the same finger and task were
clustered to form an initial pool of MUs corresponding to the
particular finger label and particular task label. These
subgroups of MUs were then refined to improve decoding
accuracy. Previous studies have explored a finger-based
refinement procedure for MU pools [24, 25] to eliminate MUs
resulting from co-activation of unintended fingers. An
additional task-based refinement procedure was performed in
the current study to retain MUs that are more relevant to the
specific task of a given finger. We then applied these sets of
MUs directly to a new dataset to estimate force and joint angle
for both fingers concurrently. This procedure allows concurrent
task- and finger-specific motor decoding in a real-time manner.
Since the MU pools were formed for each finger-task
combination, we can reuse them for more complex finger
movement without re-running the time-consuming MU
decomposition steps.

We estimated both isometric force and dynamic joint angle
using MU firing information. As a comparison, we
implemented the traditional EMG amplitude method to estimate
individual finger forces and joint angles. For fair comparison,
we also performed channel refinement to retain EMG channels
with high signal quality and minimally interfered by cross-talk.
Prior studies showed that neural drive approaches were more
accurate in terms of RMSE and R? value for individual finger
force prediction, during both single and multi-finger tasks [24,
25]. We also observed large force underestimations in the EMG
amplitude method compared with the neural-drive method
when both index and middle fingers jointly performed the task.
Detailed results also showed that the neural drive method
performed better for individual participants than the EMG
amplitude method. Similarly, when correlated with the ground
truth, higher R? values were observed using the neural-drive
predicted force than the EMG-amplitude predicted forces.
These results demonstrate that the estimated force for the index
and middle fingers using the neural drive method is more
reliable than the EMG amplitude method for estimating finger
force, because the neural-drive method based on MU firings are
not sensitive to EMG amplitude interference over time.

Regarding joint angle estimation, the estimation performance
of the neural drive method is considerably higher than the EMG
amplitude method at the individual participant level, which
implies that the EMG amplitude method might not be suitable
for estimating joint kinematics for individual fingers during
complex hand movements. Previous studies have also found
similar results for single finger joint angle estimation [28]. The
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large error in joint angle estimation may be caused by a variety
of intrinsic and extrinsic factors, such as changes in relative
position between EMG electrodes and muscle compartments,
large motion artefact, varying background noise, that can bias
EMG amplitude estimation. In our study, a motion artifact
removal method [29] was applied to the EMG signals before the
EMG amplitude calculation. We expect an even higher
estimation error of the EMG amplitude method without this
artefact removal step. In contrast, angle estimation via the
neural drive method is based on binary spikes trains, which is
less likely to be affected by the interference factors.

The current study also has several limitations. To estimate
flexion forces of individual fingers, only MUs of the flexors
were used to calculate the neural drive signals. Our
experimental  designlimited finger extension force
measurement, because the task involved a motor sequence:
finger flexion, touch the load cells, apply force on the load cell,
and finger extension. Nevertheless, the low prediction error
using the neural-drive approach indicated that only the flexor
MUs were sufficient to estimate isometric finger force.
Moreover, the results demonstrated that the selected first-order
regression model was able to predict the measured forces
accurately. However, underestimation or overestimation was
observed near the peak values (refer Fig. 6B & Fig. 6C) of the
predicted forces, perhaps because of a lack of consideration of
co-activated extensor MUs. Future studies will include the
extensor MUs in the neural drive calculation to evaluate
whether the force prediction performance can be further
improved. During prolonged muscle activation, non-
stationarities in EMG signals can reduce the validity of
previously calculated separation matrices. Our current study did
not address this important issue. To maintain the validity of the
separation matrix, a periodic update mechanism of the
separation matrix is needed. In a previous study [42], we
developed a double-thread decomposition technique to address
changes of EMG signals due to drift of action potential
amplitude, varying background noise level, and sporadic motor
unit recruitment and de-recruitment patterns. The back-end
thread performs the computationally intensive separation
matrix calculation and matrix refinement (which is equivalent
to the offline initialization process), and the updated separation
matrix can be fed to the front-end thread periodically for real-
time decomposition. It is possible to implement the separation
matrix refinement procedures in the current study to the back-
end thread to accommodate EMG non-stationarities. In the
current study, simple linear regression models were used to
estimate joint and force firing rates without taking into account
different contributions from individual MUs. In addition, only a
subset of five MU firing activities were utilized for the motor
output predictions. The choice of the regression functions and
the number of MUs were indeed largely arbitrary. In future
studies, it is necessary to identify the optimal regression
functions and the optimal number of MUs for moto output
predictions. Lastly, during daily activities it is possible that both
fingertip forces and joint angles vary concurrently (e.g.,
squeezing a soft object). Whether we should use the force
related MUs or angle related MUs will depend on the control
policy we specify. If we activate the force controller once force
(above a threshold) is registered on the finger force sensor, then
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the force related MUs will be used to control the fingertip force
regardless the finger joint is moving or not. Nevertheless,
further studies are needed to specifically evaluate this issue. We
also plan to further evaluate asynchronized motor output
variations among fingers, such as some fingers produced force
output while others produced dynamic movement, or different
fingers produced different levels of forces. Since the MUs were
specific to individual fingers and specific to different tasks
following the refinement procedure, we expect that the same set
of MUs can be used to estimate finger motor output correctly
when different fingers engage in different tasks.

VV.CONCLUSION

This study developed a neural decoding method for
simultaneous estimation of finger forces and joint angles of
individual fingers during complex hand movements involving a
combination of dynamic motions and isometric forces. As an
alternative to the traditional EMG amplitude-based method, we
used the MU firing information to obtain finger-specific and
task-specific neural control signals and to minimize the impact
of intrinsic and extrinsic interference on the motor output
estimation. Our findings indicate that it is possible to predict the
finger force and joint angle together for individual fingers using
MU firing activities. Through further improvement of this
method, a robust human-machine interface could be
implemented to allow highly dexterous, individual finger
movements of assistive robotic hands.
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