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Abstract— A reliable and functional neural interface is necessary 

to control individual finger movements of assistive robotic hands. 

Non-invasive surface electromyogram (sEMG) can be used to 

predict fingertip forces and joint kinematics continuously. 

However, concurrent prediction of kinematic and dynamic 

variables in a continuous manner remains a challenge. The 

purpose of this study was to develop a neural decoding algorithm 

capable of concurrent prediction of fingertip forces and finger 

dynamic movements. High-density electromyogram (HD-EMG) 

signal was collected during finger flexion tasks using either the 

index or middle finger: isometric, dynamic, and combined tasks. 

Based on the data obtained from the two first tasks, motor unit 

(MU) firing activities associated with individual fingers and tasks 

were derived using a blind source separation method. MUs 

assigned to the same tasks and fingers were pooled together to 

form MU pools. Twenty MUs were then refined using EMG data 

of a combined trial. The refined MUs were applied to a testing 

dataset of the combined task, and were divided into five groups 

based on the similarity of firing patterns, and the populational 

discharge frequency was determined for each group. Using the 

summated firing frequencies obtained from five groups of MUs in 

a multivariate linear regression model, fingertip forces and joint 

angles were derived concurrently. The decoding performance was 

compared to the conventional EMG amplitude-based approach. In 

both joint angles and fingertip forces, MU-based approach 

outperformed the EMG amplitude approach with a smaller 

prediction error (Force: 5.36±0.47 vs 6.89±0.39 %MVC, Joint 

Angle: 5.0±0.27° vs 12.76±0.40°) and a higher correlation (Force: 

0.87±0.05 vs 0.73±0.1, Joint Angle: 0.92±0.05 vs 0.45±0.05) 

between the predicted and recorded motor output. The outcomes 

provide a functional and accurate neural interface for continuous 

control of assistive robotic hands. 
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I. INTRODUCTION 

Individuals with neural injuries tend to have hand impairments 
that severely limit their ability to live independently. Assistive 
robotic hands have the potential to alleviate the hand 
impairments. However, one critical barrier that limit wide 
clinical utility of these robotic devices is the lack of reliable 
neural decoding algorithms to control these robotic devices. 
Surface Electromyography (sEMG) [1, 2], which measures 
muscle activities composed of superimposing of hundreds of 
motor unit action potentials (MUAPs) from motor units (MUs), 
is widely used as reliable neural interface [3, 4]. Although a 
significant amount of success has been achieved in decoding 
several motor movements, including various upper-limb and 

hand activities, decoding individual finger movements still 
remains a considerable challenge [5]. To decode motor output 
from sEMG, two approaches are commonly used. One way is 
through pattern recognition, which involves recognizing a 
particular motion from a set of predefined patterns [6]. 
Although the method was successful at identifying a large 
number of patterns [7], the detected motions could only be used 
to control the assistive device in a discrete manner. An 
alternative is to use global EMG features such as EMG 
amplitude [8], which are capable of generating continuous 
control inputs. Although promising, EMG amplitude may be 
affected by a variety of interferences such as muscle fatigue, 
motion artifacts, and background noise. Since the control signal 
is directly related to the varying EMG amplitude, these 
interferences could result in deterioration of control 
performance over time [9].  
As an alternative to global EMG features, decomposed signal 
sources as MU firing activities [2] was explored in estimating 
motor outputs. By using the MU discharge frequencies at the 
population level, neural-drive input to the muscles can be 
obtained, which can then be used for the movement estimation. 
It has been demonstrated that this approach is robust and 
efficient in estimating finger movements [10, 11], since it is less 
susceptible to intrinsic and extrinsic interferences. Both 
isometric finger force [10, 12] and dynamic joint angle [11, 13] 
were estimated more accurately using this approach than with 
the conventional EMG-amplitude method. In those studies, 
isometric finger force and dynamic joint angle estimation were 
performed separately, and the desired finger was involved only 
in a single task. Real-world scenarios may, however, involve a 
more complex movement of the fingers, requiring both 
isometric force and dynamic movements. In addition to 
developing efficient prediction models for concurrent and 
continuous estimation of isometric force and dynamic joint 
angle, keeping the complexity of those models to a minimum is 
also important to make them feasible for real-time 
implementation. In most prior studies [10, 12], the population 
firing frequencies of all the achieved MUs were determined and 
used in a linear regression model for the estimation. Due to the 
use of the summation of firing frequencies from all MUs, the 
prediction model had a minimum level of complexity; but 
details of individual MU firing activity were lost due to this 
process. In another study, ten motor units were selected and 
firing frequencies of individual MUs were used to estimate 
finger force and joint angle [11]. The inclusion of the firing rate 
of individual MUs increased the complexity of the prediction 
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model. In addition, only a limited number of MUs were 
selected, and contributions of other MUs were not considered.  
Additionally, the computationally intensive process of MU 
decomposition makes implementing the neural-drive approach 
in real-time challenging. Previous studies have demonstrated 
that by performing the source separation process in advance 
using a small segment [14] or different trials of the data [11], 
the neural-drive approach can be implemented in-real time for 
estimating motor outputs based on the derived separation 
vectors. In this study, we aim to develop a neural interface that 
will, 1) estimate finger kinematics and kinetics concurrently 
from complex finger movements; 2) be efficient and low 
complexity, and 3) be able to use in real-time.  

II. METHODS 

A. Participants. The study recruited three healthy individuals 
(Age: 28±7 years) with no neurological disorders history. 
According to the protocols approved by the Institutional 
Review Board of the University of North Carolina protocol, all 
participants gave informed consent before the experiment. 

 
Fig 1. Experimental setup (A); Trajectory followed by the participant during 
Single-Isometric Task (B), Single-Dynamic task (C), Single-combined task 
(dash line represent force target, and solid line represent angle target) (D). 

B. Data Acquisition. During the experiment, participants sat in 
a chair facing the testing desk and placed their right forearm on 
the desk in a neutral position supported by a soft foam pad. An 
electrode array of 8x16 was attached to the flexor side of the 
forearm overlying the flexor digitorum superficialis (FDS) 
muscle (Fig.1A) which was identified by palpating the 
participant’s forearm. Each electrode in the array was 3 mm in 
diameter and 10 mm apart. Recordings of EMG data were 
performed at a sampling rate of 2048 Hz using an EMG USB2+ 
(OT Bioelettronica) data acquisition system, which amplified 
the signals with a gain of 1000 and a bandwidth of 10-900 Hz. 
Along with EMG, the experiment also included measuring the 
finger force involved in isometric motion and the joint angle 
related to the dynamic motion of the targeted finger. In order to 
accomplish this, two custom angle sensors were placed on the 
metacarpophalangeal (MCP) joints of the index and middle 
fingers (Fig.1A), and the fingers were aligned horizontally on a 
pair of miniature load cells embedded in the metal frame 
attached to the desk. The sampling rate for joint angle 
measurements was 100 Hz and 1 kHz for force measurements. 

The experiment consisted of three different tasks that each 
participant performed using their index or middle fingers at 
random. The same tasks were performed five times on each 
finger, with a minute gap between each trial. The Maximum 
Voluntary Contraction (MVC) of the index and middle fingers 
was measured before each participant began the actual task. As 
part of each task, a movement trajectory was displayed on the 
monitor, and the participant instructed to follow it with their 
fingers as shown in Fig. 1B, 1C, and 1D.  
 
C. Prediction through MU-discharge information. 

i. MU extraction. Single-isometric and Single-dynamic trials 
were processed for MU decomposition. Prior to that, the HD-
EMG signals for each trial were pre-processed with the motion 
artifact removal method as described in [15], and then the Root 
Mean Square (RMS) was calculated for all 128 channels. RMS 
values across all trials associated with similar finger and task 
assignments were averaged and then sorted in descending order 
to determine the top 60 most active channels. A number of 60 
was chosen based on the findings of earlier studies [10]. The 
MU decomposition method used in this study was similar to 
that described in [16, 17]. In brief, our procedure involved 
applying a fast independent component analysis (FastICA) 
based algorithm after extending the selected 60 channels by a 
factor (f=9) and whitening them, which resulted in a separation 
matrix of individual MUs through a fixed-point iteration 
procedure. Separation matrices obtained from different trials 
related to the same finger and task were merged together to 
form the 'MU pools' for each finger-task combination. From 
each MU pool, duplicate MUs and separation vectors with low 
Silhouette values (SIL < 0.5) were removed. The four MU pools 
were derived from the index and middle finger isometric and 
dynamic tasks: Index-Isometric (BII), Middle-Isometric (BMI), 
Index-Dynamic (BID), and Middle-Dynamic (BMD). 
 
ii. MU Selection. From each MU pool, we selected only 20 
MUs that were strongly correlated to the assigned task of the 
given pool. Number 20 was selected based on our pilot testing. 
The MU selection was done by using a single-combined 
evaluation trial selected through five-fold cross-validation from 
the set of single-combined trials related to the same finger. All 
the remaining single-combined trials were used as testing trials 
for estimating motor outputs. For MU selection, MU pools 
generated through previous steps were applied to the evaluation 
trials; the obtained source signals were converted into binary 
firing event trains using a k-means algorithm (where, k = 2, MU 
discharges were set to 1 and background signals to 0), and firing 
rates of individual MUs were then calculated from them using 
a 0.5-sec moving average window (step size = 0.1-sec). A 
similar average window was used to process the measured 
finger force and joint angle of that trial. The firing rate of 
individual MUs of a selected pool and recorded motor output 
values related to the assigned task of that pool were fitted in 
linear regression (order = 1 for isometric and order = 2 for 
dynamic MU pools); the 20 MUs with the highest R2 values 
were selected for further analysis. 
 

Authorized licensed use limited to: Penn State University. Downloaded on February 21,2023 at 21:51:15 UTC from IEEE Xplore.  Restrictions apply. 



iii. Force & Joint angle estimation. The isometric and 
dynamic MU pools associated with the same finger were 
directly applied to the EMG data of a single-combined testing 
trial of that finger separately. 20 MUs were divided into five 
groups based on similarity of firing patterns, and the 
populational discharge frequencies of each group were 
smoothed through a Kalman filter to remove isolated and 
sporadic fluctuations. In the force estimation process, the 
populational firing frequencies for five groups were fitted into 
a multivariate linear regression model (order = 1) with the 
recoded finger force of that trial (after processed through 0.5- 
sec average window of step size = 0.1) . 

����� =  ∑ 	
�,�

�,���� + ��
�

� ��                                       (1) 

 
During the joint angle estimation process, the populational 
discharge frequencies for five groups were fitted into a 
multivariate linear regression model (order = 2) with the 
processed joint angle value. 
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where, Fi and JAi = Force  and Joint angle of the i-th finger (i = 
index or middle); t = time; S=Population discharge freq. of four 
MUs; Gr = index of Groups; a, b, p, q and C =regression 
coefficients [18]. 
 
D. Prediction through EMG-Amp. For EMG-amplitude 
based estimation, we used the same 60 channels as for MU 
decomposition. For the combined testing trials, we calculated 
the average RMS values of the selected channels using a sliding 
window of 0.5 seconds (step size of 0.1) and then processed 
these values with the same Kalman filter we discussed earlier. 
In order to force estimation, we fitted the obtained values into 
a bivariate linear regression model (order = 1) along with the 
recorded finger force (after processing) of that trial. 

����� =  ������� +  ��                                                            (3) 
 
whereas, in order to estimate the joint angle, we fitted the 
obtained value into a bivariate linear regression model (order = 
2) with the processed joint angle value. 

������ =  ����
���� + ������� + ��                                         (4) 

 
where, Fi and JAi = Force and Joint angle of the i-th finger (i = 
index or middle); Ai = RMS of EMG; ci, di, xi, yi, and zi = 

Regression coefficients. 

III. RESULTS 

The predicted force and joint angle estimation from an 
exemplary single-combined trial are illustrated in Fig. 2A and 
2C. In these figures, the predicted motor estimations obtained 
from the MU discharge frequency-based method and the EMG 
amplitude-based method are compared with the measured 
values. As shown in figures, the predicted outputs obtained with 
the MU discharge frequencies are more accurate and closely 
match the measured outputs when compared with the EMG-
amp-based method. In Fig. 2B and 2D, we also illustrate MU 
firing event trains used for neural-drive-based estimation. The 
firing event trains of the selected 20 MUs related to the 

isometric task are depicted in Fig. 2B, with a blue dashed curve 
representing the populational discharge frequencies of all the 
MUs.  According to the figure, the MUs started firing as soon 
as the fingers exerted isometric force and continued until the 
fingers were retracted from the load cells. In the case of joint 
angle estimation, selected 20 MUs associated with the dynamic 
task started firing when the finger started flexing the MCP joint 
and were active until the finger started extending back to its 
original position. The black dashed curve represents the 
normalized populational firing frequency of all MUs.  

 
Fig 2: The concurrent estimation of force (A) and joint angle (C) from single-
combined trial. MU firing event trains and populational firing frequency 
associated with the estimation of force (B) and joint angle (D).  

 
Figure 3: The RMSE (A & C) and the R2 value (B & D) of the neural-
drive and EMG-amp methods. 

Further, a comparison was made between the performance of 
the neural-drive method and the EMG-amp method for force 
and joint angle prediction using RMSE and R2 values. For each 
individual finger, RMSE values are illustrated in Fig. 3A and 
Fig. 3C for the average of all single-combined trials involving 
that finger. From Fig. 3A, it can be seen that the neural-drive 
method predicts forces with lower estimation errors than the 
EMG-amp method for both index (5.36±0.47 vs 6.89±0.39) and 
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middle finger (7.54±0.43 vs 9.83±0.51). As a further 
demonstration, Fig. 3B shows a box plot illustrating the spread 
of R2 values across the trials associated with a particular finger. 
By comparing the median values, it appears that the force 
output predicted with the neural drive method has a higher 
correlation (index: 0.92, middle: 0.82) with measured finger 
force compared to the EMG-amp method (index: 0.83, middle: 
0.63). There is a similar type of observation for joint angle 
estimation also; as illustrated in Fig. 3C and 3D respectively, 
the joint angle estimations predicted by the neural drive 
approach have lower estimation error (index: 5.00±0.27 vs 
12.76±0.40, middle: 5.74±0.59 vs 12.22±0.63) and higher 
correlation (index: 0.92 vs 0.45, middle: 0.93 vs 0.46) with the 
measured joint angle than the conventional EMG-amp method.  

IV. DISCUSSION 

Our study investigated continuous and concurrent prediction of 
isometric finger force and dynamic joint movement. The motor 
outputs of the index and middle finger were estimated using 
MU discharge frequencies obtained through HD-EMG 
decomposition. A similar estimation was done with the EMG-
amp approach in order to compare prediction performance. 
According to the results, the neural-drive had a lower 
estimation error (RMSE) and higher correlation (R2) with the 
recorded force and joint angle values than the EMG-amp-based 
approach. The concurrent kinematic and kinetic prediction 
algorithm at single-finger levels can be applied to dexterous 
control of prosthetic hands by arm amputees. Compared with 
the pattern recognition approaches, the continuous decoding 
algorithm developed here could allow arm amputees to perform 
daily functional tasks in a more intuitive manner. In addition, 
the algorithms can be used to control assistive exoskeleton 
gloves for assisting finger movement in clinical populations 
such as stroke survivors.  
Even though the MUs were decomposed from the single finger 
isometric and dynamic trials, it is possible the MU pools 
associated with each finger-task label may contain active MUs 
related to other fingers and tasks, which can lead to inaccurate 
predicted outcomes. Further, this study used MU pools 
generated from single-isometric and single-dynamic trials 
associated with a specific finger to estimate force and joint 
angle from single-combined testing trials. The number of MUs 
in the testing trials might be fewer than in the pools and using 
too many MUs might result in errors in estimation. Therefore, 
we selected only 20 MUs that were strongly correlated with the 
assigned task of a given pool in order to minimize the number 
of MUs and remove those that were associated with different 
fingers-task combinations. The selected MUs were divided into 
five groups, and the population discharge frequency of each 
group was fitted into a regression model.  
As MU pools were formed from the isometric and dynamic 
trials conducted with index and middle fingers, they were 
specific to individual finger and task labels. The selected MUs 
from the desired MU pools were applied directly to combined 
trials for estimating force and joint angle. By making the time-
consuming source separation process during initial calibration, 
the neural drive approach is feasible for real-time decoding. 

Since the selected MUs were specific to finger and task labels, 
in the future, the same set of MUs should be able to estimate 
motor outputs correctly when fingers are engaged in more 
complex tasks requiring a variety of finger movements and 
force levels. With further development, the developed neural 
decoding algorithm can lead to dexterous interaction of 
assistive robotic hands. 
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