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Abstract— A reliable and functional neural interface is necessary
to control individual finger movements of assistive robotic hands.
Non-invasive surface electromyogram (SEMG) can be used to
predict fingertip forces and joint kinematics continuously.
However, concurrent prediction of kinematic and dynamic
variables in a continuous manner remains a challenge. The
purpose of this study was to develop a neural decoding algorithm
capable of concurrent prediction of fingertip forces and finger
dynamic movements. High-density electromyogram (HD-EMG)
signal was collected during finger flexion tasks using either the
index or middle finger: isometric, dynamic, and combined tasks.
Based on the data obtained from the two first tasks, motor unit
(MU) firing activities associated with individual fingers and tasks
were derived using a blind source separation method. MUs
assigned to the same tasks and fingers were pooled together to
form MU pools. Twenty MUs were then refined using EMG data
of a combined trial. The refined MUs were applied to a testing
dataset of the combined task, and were divided into five groups
based on the similarity of firing patterns, and the populational
discharge frequency was determined for each group. Using the
summated firing frequencies obtained from five groups of MUs in
a multivariate linear regression model, fingertip forces and joint
angles were derived concurrently. The decoding performance was
compared to the conventional EMG amplitude-based approach. In
both joint angles and fingertip forces, MU-based approach
outperformed the EMG amplitude approach with a smaller
prediction error (Force: 5.36+£0.47 vs 6.89+0.39 %MVC, Joint
Angle: 5.0+0.27° vs 12.76+0.40°) and a higher correlation (Force:
0.87+£0.05 vs 0.73+0.1, Joint Angle: 0.92+0.05 vs 0.45+0.05)
between the predicted and recorded motor output. The outcomes
provide a functional and accurate neural interface for continuous
control of assistive robotic hands.
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I. INTRODUCTION

Individuals with neural injuries tend to have hand impairments
that severely limit their ability to live independently. Assistive
robotic hands have the potential to alleviate the hand
impairments. However, one critical barrier that limit wide
clinical utility of these robotic devices is the lack of reliable
neural decoding algorithms to control these robotic devices.
Surface Electromyography (sEMG) [1, 2], which measures
muscle activities composed of superimposing of hundreds of
motor unit action potentials (MUAPs) from motor units (MUs),
is widely used as reliable neural interface [3, 4]. Although a
significant amount of success has been achieved in decoding
several motor movements, including various upper-limb and

hand activities, decoding individual finger movements still
remains a considerable challenge [5]. To decode motor output
from sSEMG, two approaches are commonly used. One way is
through pattern recognition, which involves recognizing a
particular motion from a set of predefined patterns [6].
Although the method was successful at identifying a large
number of patterns [7], the detected motions could only be used
to control the assistive device in a discrete manner. An
alternative is to use global EMG features such as EMG
amplitude [8], which are capable of generating continuous
control inputs. Although promising, EMG amplitude may be
affected by a variety of interferences such as muscle fatigue,
motion artifacts, and background noise. Since the control signal
is directly related to the varying EMG amplitude, these
interferences could result in deterioration of control
performance over time [9].

As an alternative to global EMG features, decomposed signal
sources as MU firing activities [2] was explored in estimating
motor outputs. By using the MU discharge frequencies at the
population level, neural-drive input to the muscles can be
obtained, which can then be used for the movement estimation.
It has been demonstrated that this approach is robust and
efficient in estimating finger movements [10, 11], since it is less
susceptible to intrinsic and extrinsic interferences. Both
isometric finger force [10, 12] and dynamic joint angle [11, 13]
were estimated more accurately using this approach than with
the conventional EMG-amplitude method. In those studies,
isometric finger force and dynamic joint angle estimation were
performed separately, and the desired finger was involved only
in a single task. Real-world scenarios may, however, involve a
more complex movement of the fingers, requiring both
isometric force and dynamic movements. In addition to
developing efficient prediction models for concurrent and
continuous estimation of isometric force and dynamic joint
angle, keeping the complexity of those models to a minimum is
also important to make them feasible for real-time
implementation. In most prior studies [10, 12], the population
firing frequencies of all the achieved MUs were determined and
used in a linear regression model for the estimation. Due to the
use of the summation of firing frequencies from all MUs, the
prediction model had a minimum level of complexity; but
details of individual MU firing activity were lost due to this
process. In another study, ten motor units were selected and
firing frequencies of individual MUs were used to estimate
finger force and joint angle [11]. The inclusion of the firing rate
of individual MUs increased the complexity of the prediction
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model. In addition, only a limited number of MUs were
selected, and contributions of other MUs were not considered.
Additionally, the computationally intensive process of MU
decomposition makes implementing the neural-drive approach
in real-time challenging. Previous studies have demonstrated
that by performing the source separation process in advance
using a small segment [14] or different trials of the data [11],
the neural-drive approach can be implemented in-real time for
estimating motor outputs based on the derived separation
vectors. In this study, we aim to develop a neural interface that
will, 1) estimate finger kinematics and kinetics concurrently
from complex finger movements; 2) be efficient and low
complexity, and 3) be able to use in real-time.

II. METHODS

A. Participants. The study recruited three healthy individuals
(Age: 28+7 years) with no neurological disorders history.
According to the protocols approved by the Institutional
Review Board of the University of North Carolina protocol, all
participants gave informed consent before the experlment
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Fig 1. Experimental setup (A); Trajectory tollowed by the pamc1pant during
Single-Isometric Task (B), Single-Dynamic task (C), Single-combined task
(dash line represent force target, and solid line represent angle target) (D).

B. Data Acquisition. During the experiment, participants sat in
a chair facing the testing desk and placed their right forearm on
the desk in a neutral position supported by a soft foam pad. An
electrode array of 8x16 was attached to the flexor side of the
forearm overlying the flexor digitorum superficialis (FDS)
muscle (Fig.1A) which was identified by palpating the
participant’s forearm. Each electrode in the array was 3 mm in
diameter and 10 mm apart. Recordings of EMG data were
performed at a sampling rate of 2048 Hz using an EMG USB2+
(OT Bioelettronica) data acquisition system, which amplified
the signals with a gain of 1000 and a bandwidth of 10-900 Hz.
Along with EMG, the experiment also included measuring the
finger force involved in isometric motion and the joint angle
related to the dynamic motion of the targeted finger. In order to
accomplish this, two custom angle sensors were placed on the
metacarpophalangeal (MCP) joints of the index and middle
fingers (Fig.1A), and the fingers were aligned horizontally on a
pair of miniature load cells embedded in the metal frame
attached to the desk. The sampling rate for joint angle
measurements was 100 Hz and 1 kHz for force measurements.

The experiment consisted of three different tasks that each
participant performed using their index or middle fingers at
random. The same tasks were performed five times on each
finger, with a minute gap between each trial. The Maximum
Voluntary Contraction (MVC) of the index and middle fingers
was measured before each participant began the actual task. As
part of each task, a movement trajectory was displayed on the
monitor, and the participant instructed to follow it with their
fingers as shown in Fig. 1B, 1C, and 1D.

C. Prediction through MU-discharge information.

i. MU extraction. Single-isometric and Single-dynamic trials
were processed for MU decomposition. Prior to that, the HD-
EMG signals for each trial were pre-processed with the motion
artifact removal method as described in [15], and then the Root
Mean Square (RMS) was calculated for all 128 channels. RMS
values across all trials associated with similar finger and task
assignments were averaged and then sorted in descending order
to determine the top 60 most active channels. A number of 60
was chosen based on the findings of earlier studies [10]. The
MU decomposition method used in this study was similar to
that described in [16, 17]. In brief, our procedure involved
applying a fast independent component analysis (FastICA)
based algorithm after extending the selected 60 channels by a
factor (=9) and whitening them, which resulted in a separation
matrix of individual MUs through a fixed-point iteration
procedure. Separation matrices obtained from different trials
related to the same finger and task were merged together to
form the '"MU pools' for each finger-task combination. From
each MU pool, duplicate MUs and separation vectors with low
Silhouette values (SIL < 0.5) were removed. The four MU pools
were derived from the index and middle finger isometric and
dynamic tasks: Index-Isometric (By), Middle-Isometric (Buy),
Index-Dynamic (B;p), and Middle-Dynamic (Bup).

ii. MU Selection. From each MU pool, we selected only 20
MUs that were strongly correlated to the assigned task of the
given pool. Number 20 was selected based on our pilot testing.
The MU selection was done by using a single-combined
evaluation trial selected through five-fold cross-validation from
the set of single-combined trials related to the same finger. All
the remaining single-combined trials were used as testing trials
for estimating motor outputs. For MU selection, MU pools
generated through previous steps were applied to the evaluation
trials; the obtained source signals were converted into binary
firing event trains using a k-means algorithm (where, k =2, MU
discharges were set to 1 and background signals to 0), and firing
rates of individual MUs were then calculated from them using
a 0.5-sec moving average window (step size = 0.1-sec). A
similar average window was used to process the measured
finger force and joint angle of that trial. The firing rate of
individual MUs of a selected pool and recorded motor output
values related to the assigned task of that pool were fitted in
linear regression (order = 1 for isometric and order = 2 for
dynamic MU pools); the 20 MUs with the highest R? values
were selected for further analysis.
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iii. Force & Joint angle estimation. The isometric and
dynamic MU pools associated with the same finger were
directly applied to the EMG data of a single-combined testing
trial of that finger separately. 20 MUs were divided into five
groups based on similarity of firing patterns, and the
populational discharge frequencies of each group were
smoothed through a Kalman filter to remove isolated and
sporadic fluctuations. In the force estimation process, the
populational firing frequencies for five groups were fitted into
a multivariate linear regression model (order = 1) with the
recoded finger force of that trial (after processed through 0.5-
sec average window of step size = 0.1) .

Fi(t) = X8 =1 a6riSeri(t) + by (D

During the joint angle estimation process, the populational
discharge frequencies for five groups were fitted into a
multivariate linear regression model (order = 2) with the
processed joint angle value.

JA:() = X2r=1P6riSeri(t) + qeriSéri () + C; 2

where, Fyand J4; = Force and Joint angle of the i-th finger (i =
index or middle); # = time; S=Population discharge freq. of four
MUs; Gr = index of Groups; a, b, p, ¢ and C =regression
coefficients [18].

D. Prediction through EMG-Amp. For EMG-amplitude
based estimation, we used the same 60 channels as for MU
decomposition. For the combined testing trials, we calculated
the average RMS values of the selected channels using a sliding
window of 0.5 seconds (step size of 0.1) and then processed
these values with the same Kalman filter we discussed earlier.
In order to force estimation, we fitted the obtained values into
a bivariate linear regression model (order = 1) along with the
recorded finger force (after processing) of that trial.

Fi(t) = ¢Ai(©) + d; 3)

whereas, in order to estimate the joint angle, we fitted the
obtained value into a bivariate linear regression model (order =
2) with the processed joint angle value.

JA((®) = A7 (1) + Y Ai() + 2 “4)

where, F;and JA; = Force and Joint angle of the i-th finger (i =
index or middle); 4, = RMS of EMG; ¢;, d;, x;, yi, and z; =
Regression coefficients.

ITII. RESULTS

The predicted force and joint angle estimation from an
exemplary single-combined trial are illustrated in Fig. 2A and
2C. In these figures, the predicted motor estimations obtained
from the MU discharge frequency-based method and the EMG
amplitude-based method are compared with the measured
values. As shown in figures, the predicted outputs obtained with
the MU discharge frequencies are more accurate and closely
match the measured outputs when compared with the EMG-
amp-based method. In Fig. 2B and 2D, we also illustrate MU
firing event trains used for neural-drive-based estimation. The
firing event trains of the selected 20 MUs related to the

isometric task are depicted in Fig. 2B, with a blue dashed curve
representing the populational discharge frequencies of all the
MUs. According to the figure, the MUs started firing as soon
as the fingers exerted isometric force and continued until the
fingers were retracted from the load cells. In the case of joint
angle estimation, selected 20 MUs associated with the dynamic
task started firing when the finger started flexing the MCP joint
and were active until the finger started extending back to its
original position. The black dashed curve represents the
normalized populational firing frequency of all MUs.
EMG Amplitude
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Fig 2: The concurrent estimation of force (A) and joint angle (C) from single-
combined trial. MU firing event trains and populational firing frequency
associated with the estimation of force (B) and joint angle (D).
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Figure 3: The RMSE (A & C) and the R? value (B & D) of the neural-
drive and EMG-amp methods.

Further, a comparison was made between the performance of
the neural-drive method and the EMG-amp method for force
and joint angle prediction using RMSE and R? values. For each
individual finger, RMSE values are illustrated in Fig. 3A and
Fig. 3C for the average of all single-combined trials involving
that finger. From Fig. 3A, it can be seen that the neural-drive
method predicts forces with lower estimation errors than the
EMG-amp method for both index (5.36+0.47 vs 6.89+0.39) and

Authorized licensed use limited to: Penn State University. Downloaded on February 21,2023 at 21:51:15 UTC from IEEE Xplore. Restrictions apply.



middle finger (7.54+0.43 vs 9.83+0.51). As a further
demonstration, Fig. 3B shows a box plot illustrating the spread
of R? values across the trials associated with a particular finger.
By comparing the median values, it appears that the force
output predicted with the neural drive method has a higher
correlation (index: 0.92, middle: 0.82) with measured finger
force compared to the EMG-amp method (index: 0.83, middle:
0.63). There is a similar type of observation for joint angle
estimation also; as illustrated in Fig. 3C and 3D respectively,
the joint angle estimations predicted by the neural drive
approach have lower estimation error (index: 5.00£0.27 vs
12.76+£0.40, middle: 5.7440.59 vs 12.22+0.63) and higher
correlation (index: 0.92 vs 0.45, middle: 0.93 vs 0.46) with the
measured joint angle than the conventional EMG-amp method.

IV. DISCUSSION

Our study investigated continuous and concurrent prediction of
isometric finger force and dynamic joint movement. The motor
outputs of the index and middle finger were estimated using
MU discharge frequencies obtained through HD-EMG
decomposition. A similar estimation was done with the EMG-
amp approach in order to compare prediction performance.
According to the results, the neural-drive had a lower
estimation error (RMSE) and higher correlation (R?) with the
recorded force and joint angle values than the EMG-amp-based
approach. The concurrent kinematic and kinetic prediction
algorithm at single-finger levels can be applied to dexterous
control of prosthetic hands by arm amputees. Compared with
the pattern recognition approaches, the continuous decoding
algorithm developed here could allow arm amputees to perform
daily functional tasks in a more intuitive manner. In addition,
the algorithms can be used to control assistive exoskeleton
gloves for assisting finger movement in clinical populations
such as stroke survivors.

Even though the MUs were decomposed from the single finger
isometric and dynamic trials, it is possible the MU pools
associated with each finger-task label may contain active MUs
related to other fingers and tasks, which can lead to inaccurate
predicted outcomes. Further, this study used MU pools
generated from single-isometric and single-dynamic trials
associated with a specific finger to estimate force and joint
angle from single-combined testing trials. The number of MUs
in the testing trials might be fewer than in the pools and using
too many MUs might result in errors in estimation. Therefore,
we selected only 20 MUs that were strongly correlated with the
assigned task of a given pool in order to minimize the number
of MUs and remove those that were associated with different
fingers-task combinations. The selected MUs were divided into
five groups, and the population discharge frequency of each
group was fitted into a regression model.

As MU pools were formed from the isometric and dynamic
trials conducted with index and middle fingers, they were
specific to individual finger and task labels. The selected MUs
from the desired MU pools were applied directly to combined
trials for estimating force and joint angle. By making the time-
consuming source separation process during initial calibration,
the neural drive approach is feasible for real-time decoding.

Since the selected MUs were specific to finger and task labels,
in the future, the same set of MUs should be able to estimate
motor outputs correctly when fingers are engaged in more
complex tasks requiring a variety of finger movements and
force levels. With further development, the developed neural
decoding algorithm can lead to dexterous interaction of
assistive robotic hands.
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