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Abstract: Hidden moving target defense (HMTD) is a proactive defense strategy stealthy to attack- 8 
ers by changing the reactance of transmission lines to thwart false data injection (FDI) attacks. How- 9 
ever, alert attackers with strong capabilities pose additional risks to the HMTD and thus, it is a 10 
much-needed effort to evaluate the hiddenness of the HMTD. This paper first summarizes two ex- 11 
isting alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven alert at- 12 
tackers. Further, this paper proposes a novel model-based alert attacker model that uses the MTD 13 
operation models to estimate the dispatched line reactance. The proposed attacker model can con- 14 
struct stealthy FDI attacks against HMTD methods that lack randomness by using the estimated line 15 
reactance. We propose a novel random-based HMTD (RHMTD) operation method, which utilizes 16 
random weights to introduce randomness and uses the derived hiddenness operation conditions as 17 
constraints. RHMTD is theoretically proven to be stealthy to three alert attacker models. In addition, 18 
we analyze the detection effectiveness of the RHMTD against three alert attacker models. Simula- 19 
tion results on the IEEE 14-bus systems show that traditional HMTD methods fail to detect attacks 20 
by the model-based alert attacker, and RHMTD is stealthy to three alert attackers and effective in 21 
detecting attacks by three alert attackers. 22 

Keywords: False data injection attack; hidden moving target defense; alert attacker model; state 23 
estimation; D-FACTS device; unsupervised learning 24 
 25 

1. Introduction 26 
Modern power systems suffer from significant threats from cyber-physical attacks 27 

due to the vulnerabilities of widely used information and communication technology 28 
(ICT) enabled devices and Internet of things (IoT) technologies. In addition, energy 29 
sources such as wind and solar energy have inherent instability that might compromise 30 
the stability of the system [1]. According to the U.S. Department of Energy, 362 power 31 
interruptions related to cyber-physical attacks were reported between 2011 and 2014 [2]. 32 
False data injection (FDI) attacks are one of the most destructive cyber-physical attacks 33 
against smart grids. FDI attacks compromise measurements in the supervisory control 34 
and data acquisition (SCADA) system, which aim to manipulate the voltage estimated by 35 
the state estimation in the energy management system of the power system. The FDI at- 36 
tacks can cause severe consequences, including line overloading, load shedding, unstable 37 
system states and even voltage collapse [3]. 38 

Moving target defense (MTD) is introduced into the physical layer of power systems 39 
to detect FDI attacks. MTD actively perturbs the branch impedance using distributed flex- 40 
ible AC transmission system (D-FACTS) devices, such that the time-variant system con- 41 
figuration invalidates attackers’ knowledge about the actual power system configura- 42 
tions. The first MTD work against FDI attacks [4] proposed a random MTD (RMTD) 43 
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method in which the reactance of an arbitrary subset of D-FACTS-equipped lines is ran- 44 
domly changed. It was proved that MTD methods could effectively detect FDI attacks [5]– 45 
[9], cyber-physical attacks [10], and Stuxnet attacks [11]. 46 

1.1. Related Work 47 
MTD planning and MTD operation are two essential steps in implementing the MTD 48 

method. MTD planning refers to installing D-FACTS devices on an identified subset of 49 
transmission lines, and MTD operation refers to adjusting the D-FACTS setpoints under 50 
different load conditions. Reference [12] proved that MTD planning determines the detec- 51 
tion effectiveness of MTDs. Max-rank placement [5], [12] can achieve the maximum rank 52 
of the composite matrix, which is the widely-used metric of MTD detection effectiveness. 53 
Arbitrary placement and full placement are the two simplest D-FACTS placement strate- 54 
gies without considering the detection effectiveness of MTDs. Arbitrary placement in- 55 
stalled D-FACTS devices on randomly selected lines [4], while full placement installed D- 56 
FACTS devices on every transmission line [13]. The placement of D-FACTS devices was 57 
optimized in [14], which aims to reduce the number of measurements that can be manip- 58 
ulated by the attacker. It also proved that the coordinated design of consecutive perturba- 59 
tion schemes within an MTD cycle could improve the MTD's performance in detecting 60 
FDI attacks. 61 

MTD operation methods mainly determine the function of D-FACTS devices in MTD. 62 
The arbitrary operation method, the simplest MTD operation method, randomly per- 63 
turbed the D-FACTS setpoints [4] without considering the economic benefits and detec- 64 
tion effectiveness. Optimal-power-flow (OPF)-based operation methods utilized the D- 65 
FACTS devices and OPF model to control the power flow and minimize the system losses 66 
or generation costs [12], [15], [16]. Optimization-based operation methods maximized the 67 
metric of detection effectiveness or the economic cost to optimally dispatch the D-FACTS 68 
setpoints [13], [17]. Recently, a double-benefit moving target defense was proposed to 69 
protect the SG from cyber–physical attacks (CPAs) and also gain generation-cost benefits 70 
in DC power system model [9]. Reference [18] studied the effectiveness and hiddenness 71 
of MTD using measurement residuals in three-phase AC distribution system state estima- 72 
tion and further formulated the optimization problem for MTD to jointly optimize the 73 
effectiveness and hiddenness considering voltage stability. Reference [19] developed two 74 
strategies to make the increasing operation cost zero for activating the MTD. In addition, 75 
it studied the impact of MTD on the system dynamics using small signal stability. 76 

A strong and alert adversary can detect the existence of MTD in place, which can 77 
drive the attacker to postpone the attack using the incorrect line impedance. Conse- 78 
quently, the attacker can invest more resources to obtain the current power system con- 79 
figuration, and potentially launch stealthy attacks with a higher-level threat. The concept 80 
of hidden MTD is proposed in transmission systems [6] and distribution systems [20], in 81 
which the defender delicately modifies the line impedance to maintain MTD hidden to 82 
the attacker. 83 

There are three types of hidden MTD methods in the literature. In the first type, re- 84 
ferred to as watermarking HMTD [21], the defender slightly changes the line impedance 85 
such that the status of the power system will not significantly change, and the attacker 86 
will not realize the existence of MTD. However, small line impedance changes cause the 87 
Chi-square bad data detector (BDD) in state estimation fails to detect the FDI attacks. The 88 
defender had to utilize the CUSUM detector to detect FDI attacks. Due to the characteristic 89 
of CUSUM [22], the CUSUM detector cannot immediately detect the FDI attacks, resulting 90 
in the system that will suffer from FDI attacks for multiple time instants. In the second 91 
type, referred to as secure-meter-based HMTD [23], multiple protected meters were uti- 92 
lized in each loop of the power system topology to cover the status change of the power 93 
system and the power flow changes caused by the line impedance changes. It is assumed 94 
that attackers have no read access to the protected meters such that alert attackers (AA) 95 
cannot detect the existence of MTD using the remaining measurements through the state 96 
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estimation. However, this method is expensive for the defender, as the expensive pro- 97 
tected meters are only used for ensuring the hiddenness of MTD, rather than improving 98 
the detection effectiveness against attacks. In the third type, referred to as model-based 99 
HMTD [5], [20], the defender delicately changes the line impedance such that the power 100 
flow of each transmission line is the same before and after the MTD. However, the model- 101 
based HMTD methods utilize optimization models without any uncertainties, which are 102 
not consistent with the dynamic defense nature of MTD. Randomness and diversity are 103 
two essential components in the dynamic defense strategy [24]. Without randomness in 104 
MTD, the attacker can apply the same HMTD method to estimate the exact line impedance 105 
dispatched by the system operator, if the attacker knows which model-based HMTD is 106 
used. Therefore, it is necessary to model possible alert attackers, and further improve the 107 
hiddenness and detection effectiveness of MTD methods against the different types of 108 
smart and alert attackers.  109 

1.2. Research Gap 110 
The research gap is that existing alert attackers need to be summarized and modeled, 111 

and novel alert adversaries with strong and advanced capabilities are necessary to be 112 
modeled. With clearly-defined alert attacker models, these alert attacker models can be 113 
used as a metric to comprehensively evaluate the hiddenness and detection effectiveness 114 
of any novel MTD methods. In this paper, two existing alert attackers against MTD are 115 
modeled, i.e., BDD-based alert attacker (BDD-AA), and data-driven alert attacker (DD- 116 
AA). In addition, this paper proposes a novel model-based alert attacker (M-AA). These 117 
three alert attacker models can be used to analyze the drawbacks of existing HMTD meth- 118 
ods. 119 

This paper further proposes a novel HMTD method that is hidden to three alert at- 120 
tacker models. We compare the proposed HMTD method with the existing methods re- 121 
garding the hiddenness and detection effectiveness against three alert attacker models in 122 
Table 1. Table 1 presents the drawbacks of existing HMTD methods, highlights the neces- 123 
sity of the proposed model-based alert attacker, and demonstrates the novelties of the 124 
proposed HMTD method. Note that the first Yes (Y) or No (N) indicates whether the 125 
HMTD method is hidden to a given alert attacker, and the second Y or N indicates 126 
whether the HMTD method is able to detect the attacks by the attacker. 127 

Table 1. Comparison of the proposed and existing HMTD methods regarding the hiddenness and 128 
detection effectiveness. 129 

Method BDD-AA DD-AA M-AA Characteristics 
Watermarking 
HMTD [21] 

      
    Y/Y 

       
     Y/Y 

      
    Y/Y 

 
Detection delay of FDI attack 

Secure-meter-based 
HMTD [23] 

      
    Y/Y   

       
     N/Y 

      
    Y/Y 

 
Extra expensive protected meters 

Model-based 
HMTD [5], [20] 

      
    Y/Y 

       
     Y/Y 

      
    Y/N 

 
Lack of randomness 

 
This paper 

      
    Y/Y 

       
     Y/Y 

      
    Y/Y 

No detection delay and no pro-
tected meters with randomness 

1.3. Contribution 130 
To fill the research gap, this paper summarizes two alert attacker models and further 131 

proposes a novel alert attacker model. These three alert attacker models formulate a metric 132 
to fully evaluate the hiddenness and detection effectiveness of any HMTD method. Then, 133 
this paper proposes a novel random-based HMTD (RHMTD) operation model which is 134 
stealthy to the three alert attackers. The contribution of this paper is summarized as fol- 135 
lows: 136 

• We summarize two alert attacker models against MTD in the literature: i) a BDD- 137 
based alert attacker who uses Chi-square BDD to detect the existence of MTD; and 138 
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ii) a data-driven alert attacker who uses dimension reduction and unsupervised 139 
learning methods to detect the existence of MTD.  140 

• We propose a novel alert attacker model, i.e., a model-based alert attacker, who uses 141 
the MTD operation model to calculate the dispatched line reactance and then uses 142 
Chi-square BDD to verify the correctness of the estimated reactance. This attacker 143 
model can construct stealthy FDI attacks against HMTD methods that lack ran- 144 
domness by using the estimated line parameters.  145 

• We propose a novel random-based HMTD (RHMTD) operation model in the DC 146 
power system model, which maximizes the weighted line reactance changes and 147 
integrates the derived MTD hiddenness operation condition as constraints. The 148 
weights of the line reactance in the objective function follow the uniform distri- 149 
bution for introducing the randomness.  150 

• We theoretically prove that the hiddenness of the proposed RHMTD method 151 
against three alert attacker models. We further analyze the attack detection effec- 152 
tiveness of the proposed method against three alert attacker models. 153 

The rest of this paper is organized as follows. In Section II, we define three alert at- 154 
tacker models. In Section III, we derive a novel RHMTD operation model, prove the hid- 155 
denness of RHMTD to three alert attackers, and evaluate the attack detection effectiveness 156 
of RHMTD against three alert attackers. The case studies in the IEEE 14-bus system are 157 
conducted in Section IV. The paper is concluded in Section V. 158 

2. Alert Attacker Models 159 
In this section, we first define variables used in this paper and then define three alert 160 

attacker models. 161 

2.1. Notation 162 
Variables used throughout the paper are summarized in Table 2. “D-FACTS lines” 163 

and “non-D-FACTS lines” stand for the set of lines equipped with and without D-FACTS 164 
devices, respectively.  165 

Table 2. Nomenclature 166 

Symbol Definition 
𝛉𝛉 Voltage angle of buses excluding reference bus 
z    Measurement vector 
a FDI attack vector 

H0 DC measurement matrix in SE before MTD 
H DC measurement matrix in SE after MTD 
A Incident matrix of power system graph 
X Diagonal line reactance matrix 
xij The reactance of line i–j (between bus i and j) 
n Total number of system buses 
m Total number of measurements 
p Total number of lines 

 167 

2.2. BDD-based Alert Attacker Model  168 
The first BDD-based alert attacker model is proposed in [6]. Here, we refine the BDD-based 169 

alert attacker with the capability of topology learning capability. 170 
Attack goal. The BDD-based alert attacker aims to launch traditional stealthy FDI attacks 171 

using correct line impedance under the MTD. Assumption. We assume that the attacker knows the 172 
original configuration of the system without MTD, including the system topology and the line im- 173 
pedance 0b , but doesn’t know the actual line impedance dispatched by MTD on the current time 174 
instant. Attacker’s capability. The attacker has read access to all SCADA measurements in the 175 
power system to detect MTD, and write access to all measurements to inject FDI attacks. The at- 176 
tacker can perform SE and BDD to detect MTD, and can launch the topology learning (TL) methods 177 
[25] to learn the current line impedance âb . Attack logic. The flowchart of the BDD-based alert 178 
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attacker is shown in Fig. 1. The attacker conducts SE using the original line impedance before the 179 
MTD, and then performs BDD to calculate the estimation residual by (1).  180 

1 1
1 0 0 0 0 1 1 1 0 0 0 0 12 2

( ) ( )T T T T
ar

− −= − = −z H H H H z H x H H H H z           (1) 181 

where the measurement matrix under the MTD is H1 and the attacker’s original meas- 182 
urement matrix before MTD is H0. 183 

If the attacker’s estimation residual is less than the threshold, i.e., a thr r< , it indicates the 184 
attacker’s knowledge of the line impedance is correct and no MTD is applied in the field. Then, the 185 
attacker can launch stealthy FDI attacks using the original system configuration H0. If a thr r> , the 186 
alert attacker suspects the accuracy of the line impedance due to the MTD and postpones launching 187 
attacks until bypassing the BDD check by estimating the actual line impedance with the topology 188 
learning methods. 189 

Power System 
[ 1]t +z

MTD Model

[ ]b t0[ ]tz

[ ]b tSelect

State Estimation

BDD Correct MTD  
              

No
Yes

[ ]  ?ar t τ<

  DC-FDI 0
ˆˆ[ ] ( [ ])at b t= + ∆a z H x

+

[ ]ta

[ 1]a t +z

BDD-based alert attacker

System operator

ˆ[ 1]t +x

TL

[ ]GP t

Init. 0b

ˆ [ ]ab t

 190 
Fig. 1. The attack logic flowchart of the BDD-based alert attacker. 191 

2.3. Data-driven Alert Attacker Model  192 
The first data-driven alert attacker model against MTD is proposed in [21]. Here, we general- 193 

ize the data-driven alert attacker model, and enable the attacker with stronger attack capability. 194 
Currently, only watermarking HMTD has been evaluated to remain hidden to the data- 195 
driven attacker through simulation. However, the hiddenness of the secure-meter-based 196 
HMTD and model-based HMTD has not been evaluated against the data-driven attacker. 197 

Attack goal. The attacker aims to launch data-driven FDI attacks under the MTD. Assump- 198 
tion. It is assumed the attacker doesn’t know the configuration of the system before and after the 199 
MTD, including the system topology and the line impedance, but he knows MTD may be applied 200 
in the system. Attacker’s capability. The attacker has read access and write access to all SCADA 201 
measurements. The attacker can collect historical measurement data over time and the attacker can 202 
use unsupervised machine learning methods to analyze the data.  203 

Attack logic. The attack logic of the data-driven alert attacker is shown in Fig. 2. First, the 204 
attacker adds all eavesdropped measurements in Z matrix. Then, the attacker applies the dimension 205 
reduction method (e.g., PCA) on the collected historical measurement Z to 2D for visualization. If 206 
the low-dimensional historical measurements form more than one cluster, it reflects the pattern of 207 
the power flow measurements significantly changes, indicating MTD could exist in the field. Then, 208 
the attacker can apply clustering algorithms (e.g., K-means and DBSCAN) to identify all historical 209 
measurements responding to the current MTD, and construct data-driven FDI attacks using the 210 
identified historical measurements. However, the number of the identified historical measurements 211 
depends on the frequency of MTD. Therefore, under MTD, the number of historical measurements 212 
that can be used for constructing data-driven FDI attacks is significantly reduced. Since the perfor- 213 
mance of data-driven FDI attacks heavily relies on the number of measurements, advanced data- 214 
driven FDI attack methods need to be applied, such as matrix-reconstruction FDI [26]. If the low- 215 
dimensional historical measurements only form one cluster, it indicates MTD is not applied in the 216 
field. Therefore, all collected historical measurements can be used to construct data-driven FDI 217 
attacks. With sufficient historical measurements, the attack has more data-driven FDI attack meth- 218 
ods to choose from for constructing malicious injection vectors, such as PCA-FDI [27] and sub- 219 
space FDI [28].  220 
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Power System 
[ 1]t +z
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Collect
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measurement 
Z

MTD  Exists?              No
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+

[ ]ta
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Clustered Z

[ ]GP t

PCA

Full Z

 221 
Fig. 2. The attack logic flowchart of the data-driven alert attacker. 222 

2.4. Model-based Alert Attacker Model  223 
For the first time, this paper proposes a model-based alert attacker model. This alert attacker 224 

model is designed for the existing MTD or HMTD methods [5], [12], [15], [19], [20], which are 225 
based on the optimization problem without considering any uncertainties. If the attacker applies the 226 
same MTD model, it is easy to obtain the actual line impedance dispatched in the field.   227 

Attack goal. The attacker aims to launch traditional FDI attacks using the correct line 228 
impedance under the MTD. Assumptions. We assume the attacker knows the configura- 229 
tion of the system, including the system topology and the line impedance before the MTD. 230 
Attacker’s capability. The attacker has read access and write access to all SCADA meas- 231 
urements. In addition, the attacker is assumed to know the multiple MTD operation mod- 232 
els, including the method used by the system operator. Attack logic. As shown in Fig. 3, 233 
the model-based alert attacker utilizes the MTD operation model to calculate the dis- 234 
patched line impedance âb  and measurement matrix 𝐇𝐇� . Then, the attacker can further 235 

evaluate the correctness of the solved line impedance by 𝑟𝑟𝑎𝑎 = �𝐳𝐳1 − 𝐇𝐇��𝐇𝐇�𝑇𝑇𝐇𝐇��−1𝐇𝐇�𝑇𝑇𝐳𝐳1�
2
. If 236 

a thr r< , it indicates the attacker obtains the actual line impedance under the MTD. If the 237 
estimated residual is larger than the threshold, i.e., a thr r> , the alert attacker needs to 238 
change an MTD operation method until the system operator’s current MTD operation 239 
model is found and correct line impedance is obtained. Then, the attacker can launch the 240 
traditional FDI attacks using 𝐇𝐇� . 241 

Power System 
[ 1]t +z

MTD Model

[ ]b t0[ ]tz

[ ]b tSelect

State Estimation

MTD
model

Correct MTD  
              

No
Yes

[ ]  ?ar t τ<

ˆ [ ]ab t

  DC-FDI 0
ˆˆ[ ] ( [ ])at b t= + ∆a z H x

+

[ ]ta

[ 1]a t +z

Model-based alert attacker

System operator

ˆ[ 1]t +x

Change
MTD 
model

 242 
Fig. 3. The attack logic flowchart of the model-based attacker. 243 

3. Random-based HMTD 244 
In this section, we first derive a novel hiddenness operation condition of HMTD, and 245 

then propose a novel RHMTD operation model. Finally, we prove that the proposed 246 
RHMTD is hidden to three alert attackers, and analyze the attack detection effectiveness 247 
of RHMTD. 248 

3.1. Hiddenness Operation Condition 249 
Assume MTD changes the line impedance of the transmission lines. Accordingly, the 250 

measurement matrix is changed from H0 to H1, and system states are changed from 0θ  to 251 
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1θ . SCADA measurements are changed from 00 0=z H θ   (the measurements before 252 
MTD) to 1 1 1=z H θ (the measurements after MTD).  253 

We will use the decomposition of H matrix to demonstrate the impact of D-FACTS 254 
devices on H and the relationship between H0 and H1. First, we separate matrix H0 into 255 
two submatrices, i.e., 1

0H  and 2
0H , which correspond to the measurements related to the 256 

lines with and without D-FACTS devices, respectively. Then, we apply the matrix decom- 257 
position [12] on 1

0H  and 2
0H , respectively:  258 

1
1 1 1

2

0
0 2

0 2 2

⋅ ⋅   
= =   
     ⋅ ⋅

D X A
D A

H
X

H
H

                     (2) 259 

where X1∈ℝp1×p1 and X2∈ℝp2×p2 are the diagonal reactance matrix of p1 D-FACTS lines and 260 
p2 non-D-FACTS lines, respectively; A1∈ℝn-1×p1 and A2∈ℝn-1×p2 are the reduced bus-branch 261 
incidence matrix of the graphs composed of the D-FACTS lines and non-D-FACTS lines, 262 
respectively; D1 and D2 is the meter deployment matrix of graph A1 and A2, respectively. 263 
Here, D-FACTS lines refer to the transmission lines equipped with D-FACTS devices, and 264 
non-D-FACTS lines refer to the remaining transmission lines in the power system. Simi- 265 
larly, H1 can be expressed by (3): 266 

1 1 1 1 1 1

2 2 2

1
1

1 2
1 2 2 2

( )     
= = =     
   

′⋅ ⋅ ⋅ +

  

∆ ⋅
⋅ ⋅ ⋅ ⋅

D X A D X X AH
H

H D X A D X A              (3) 267 

where ′X  is the diagonal reactance matrix of D-FACTS lines after D-FACTS devices 268 
modify the line reactance; and ∆X  is the incremental line reactance matrix, i.e., 269 

1 1′∆ = −X X X . (2) and (3) intuitively demonstrate the impact of MTD on the measurement 270 
matrix. MTD only modified the submatrix of the measurement matrix related to the D- 271 
FACTS devices. 272 

According to [6], HMTD remains hidden to BDD-based attackers by remaining all 273 
measurements unchanged after the setpoint changes of D-FACTS devices, i.e., 0 1=z z . In 274 
the noiseless condition, the unchanged measurement condition can be reformulated: 275 

 
1 1
0 1

0 02 2
0 1

( )= +
   
   

    
∆



H H
H H

θ θ θ                       (4) 276 

where ∆θ  is the incremental state by MTD, i.e., 1 0∆ = −θ θ θ . When we substitute (2) and 277 
(3) into (4), we can obtain: 278 

1 1 1 0 1 1 1 0

2 2 2

( ) ( )
0

⋅ ⋅ ⋅ = ⋅ + ∆ ⋅ ⋅ + ∆
 ⋅ ⋅ ⋅∆ =

D X A θ D X X A θ θ
D X A θ             (5) 279 

Since 2 2 2⋅ ⋅D X A  is a fixed matrix, ∆θ  determined by HMTD should belong to the 280 
null space of 2 2 2⋅ ⋅D X A , i.e., 2 2 2( )Null∆ ∈ ⋅ ⋅θ D X A . Thus, ∆θ  can be represented by the 281 
kernel bases of 2 2 2⋅ ⋅D X A . Therefore, the hiddenness condition of the HMTD can be sum- 282 
marized as follows: 283 

1 1 1 0 1 1 1 0( ) ( )⋅ ⋅ ⋅ = ⋅ + ∆ ⋅ ⋅ +D X A θ D X X A θ KW            (6) 284 
where [ ]1 2, ,..., sk k k=K ∈ ℝp1×s is the matrix of kernel bases of 2 2 2⋅ ⋅D X A ; 285 

[ ]1 2, ,..., T
sw w w=W ∈ℝs is the weight determined by the system operator; and s is the 286 

dimension of kernel bases.  287 

3.2. The Random-based HMTD model 288 
In order to remain stealthy to three alert attackers and ensure the attack detection 289 

effectiveness, an HMTD operation model should simultaneously meet the following four 290 
requirements. First, for the BDD-based alert attacker, the measurements need to remain 291 
unchanged before and after the implementation of MTD. Essentially, the setpoints of D- 292 



Processes 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

FACTS devices in the HMTD operation model should satisfy the derived hiddenness con- 293 
dition (6). Secondly, for the data-driven alert attacker, MTD ought to avoid introducing 294 
distinct changes in measurements. Note that this requirement is less restrictive than that 295 
of the BDD-based alert attacker. Thirdly, for the model-based alert attacker, it is necessary 296 
to introduce unpredicted randomness into the HMTD operation model. In this case, even 297 
though the model-based alert attacker applies the same HMTD operation algorithm used 298 
by the system operator, the attacker still fails to obtain the actual line reactance dispatched 299 
by the system operator. Finally, sufficient line reactance changes are needed to guarantee 300 
a fast and effective attack detection capability [12]. 301 

We propose a non-convex, nonlinear, optimization-based RHMTD operation model 302 
in (7), which aims to remain stealthy to three alert attacker models and ensure the attack 303 
detection effectiveness. The proposed RHMTD model maximizes the weighted square of 304 
the line reactance changes using uniformly distributed random weights. The maximized 305 
line reactance changes ensure the attack detection effectiveness, while the random weights 306 
contribute to providing uncertainties to the model-based alert attacker. Constraint (7.1) is 307 
the derived hiddenness condition, which ensures the RHMTD to be hidden to the BDD- 308 
based and data-driven alert attackers. Constraint (7.2) defines the kernel bases of 309 

2 2 2⋅ ⋅D X A  for the hiddenness condition. Constraint (7.3) is the physical constraint of D- 310 
FACTS devices working setpoints. Generally, the MTD magntiude µ  is 0.2 [6].  311 

,

1 1 1 0 1 1 1 0

2 2 2

max         diag( ) diag( )                                                        (7)

. .      ( ) ( )                  (7.1)
          ( )                

T

s t
Null

∆
∆ ∆

⋅ ⋅ ⋅ = ⋅ + ∆ ⋅ ⋅ +
= ⋅ ⋅

X W
X λ X

D X A θ D X X A θ KW
K D X A

1 1

                                         (7.2)
          diag( ) diag( ) diag( )                                (7.3)µ µ− ≤ ∆ ≤X X X

   312 

where the weight parameter  λ  is random variables following the uniform distribution 313 
between 0 and 1, i.e., 1 0

 (0,1) , i = 1,2,..., i U∈λ X . 314 
The RHMTD operation model can be seamlessly integrated into the existing energy 315 

management system of the power system. The defender, i.e., the system operator, can 316 
assign the weight and then calculate the setpoints of the D-FACTS devices by solving 317 
model (7) after the optimal power flow (OPF) function determines the optimal generation. 318 
Then, the D-FACTS setpoints are sent to the field devices for implementation through 319 
encrypted communication.  320 

3.3. Hiddenness of the RHMTD against alert attackers 321 
In this section, we prove the hiddenness of the proposed method to three alert attack- 322 

ers. Assume the measurements before the MTD are 00 0=z H x , and the measurements af- 323 
ter the RHMTD is 11 1=z H x , where 1H  is determined by (7). Note that 0 1=z z  holds in 324 
the noiseless condition due to the hiddenness operation constraints. 325 

Theorem 1. The RHMTD model is hidden to the BDD-based alert attacker.  326 

Proof. The BDD-based alert attacker uses the system configuration 0H  to calculate the 327 
estimation residual, and the estimation residual of the proposed RHMTD is zero in the 328 
noiseless condition, as follows. Thus, RHMTD is hidden to the BDD-based alert attacker.  329 

1 1
1 0 0 0 0 1 0 0 0 0 0 02 2

1
0 0 0 0 0 0 0 0 0 0 22

( ) ( )

  ( ) 0

T T T T
a

T T

r − −

−

= − = −

= − = − =

z H H H H z z H H H H z

z H H H H H x z H x
           (8) 330 

□ 331 

Theorem 2. The RHMTD is hidden to the data-driven alert attacker. 332 
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Proof. The data-driven alert attacker collects a set of historical measurements to conduct 333 
the UL detection. It is assumed that the attacker arranges all eavesdropped measurement 334 
vectors of T time instants into a historical measurement matrix 1 2[ , ,..., ]Hist

T=Z z z z , where 335 
HistZ ∈ℝm×T. Let us separate T time instants into two parts, i.e., 1 2T T T= + , and accordingly, 336 

let 1Z  and 2Z be the historical measurement matrix of T1 and T2 time instants, respec- 337 
tively. When there are no MTDs applied in the system over T times instants, the historical 338 
measurement matrix is denoted by 0 1,0 2,0

Hist  =  Z Z Z . The data-driven attacker first ap- 339 
plies the PCA on 0

HistZ to reduce the dimension, and cluster the the low-dimension data 340 

0
PCAZ as follows:  341 

0 0( )PCA HistPCA=Z Z                           (9) 342 

0( )PCA
iy Cluster= Z                          (10) 343 

where yi is the cluster index of i-th dimension-reduced measurement vector. 344 
Assume the RHMTD model is applied since T2–th time instants, and the historical meas- 345 
urement matrix collected by the attacker becomes 1,0 2,

Hist
RH H =  Z Z Z . Due to the hidden- 346 

ness operation condition, the measurement vector in the T2 time instants remain un- 347 
changed with and without RHMTD, i.e., 2,0 2,H=Z Z . Thus, 0

Hist Hist
RH=Z Z  holds. Then, the 348 

dimension-reduced vectors of Hist
RHZ  are same as that of 0

HistZ , i.e., 0( )Hist PCA
RHPCA =Z Z . 349 

Since the input of clustering algorithm remain unchanged, the RHMTD will not change 350 
the clustering results. Therefore, the proposed RHMTD is hidden to the data-driven alert 351 
attacker.                                                                   □  352 

Theorem 3. The RHMTD is hidden to the model-based alert attacker.  353 

Proof. It is assumed the model-based alert attacker applies the RHMTD model (7) using 354 
the eavesdropped measurements 1z , and obtains the system configuration 𝐇𝐇� . Even 355 
though the input measurement of RHMTD model conducted by the system operator and 356 
the attacker are the same ( 0 1=z z ), different weights result in different D-FACTS setpoints, 357 
i.e., 𝐇𝐇𝑅𝑅𝑅𝑅 ≠ 𝐇𝐇� . Due to the hiddenness condition, 𝐳𝐳1 = 𝐇𝐇�𝐱𝐱2 holds. The estimation residual 358 
computed by the model-based alert attacker using Ĥ  is zero as follows. 359 

𝑟𝑟𝑎𝑎 = �𝐳𝐳1 − 𝐇𝐇��𝐇𝐇�𝑇𝑇𝐇𝐇��−1𝐇𝐇�𝑇𝑇𝐳𝐳1�
2

= �𝐳𝐳1 − 𝐇𝐇��𝐇𝐇�𝑇𝑇𝐇𝐇��−1𝐇𝐇�𝑇𝑇𝐇𝐇�𝐱𝐱2�
2
        (11) 360 

              = �𝐳𝐳1 − 𝐇𝐇�𝐱𝐱2�2 = 0    361 
Note that if the attacker happens to use the same weight as that used by the system 362 

operator, 𝐇𝐇𝑅𝑅𝑅𝑅 = 𝐇𝐇�  holds. However, it doesn’t impact the hiddenness of the RHMTD in 363 
Theorem 3. It only degrades the attack detection effectiveness of the proposed RHMTD, 364 
but it happens with very low probability.                                         □ 365 

3.4. Detection Effectiveness of the RHMTD against alert attackers 366 
In this section, we analyze the attack detection effectiveness of RHMTD against the attacks 367 

by the BDD-based and model-based alert attackers due to the straightforward analysis, and then 368 
prove that the RHMTD has the maximum detection effectiveness against the PCA-FDI attacks by 369 
the data-driven attackers. 370 

For the BDD-based alert attacker, the stealthiness of the RHMTD misleads the attacker to 371 
adopt the traditional FDI attacks without the aid of topology learning. It is proved that the 372 
placement of D-FACTS determines the attack detection effectiveness of MTD against the 373 
traditional FDI attacks [12]. The max-rank HMTD placement [5] adopted in this paper 374 
guarantees the maximum attack detection effectiveness under the assumption that the 375 
reactance of all D-FACTS lines is changed by the D-FACTS devices. This assumption is 376 
satisfied by the RHMTD operation by maximizing the line reactance changes introduced 377 
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by D-FACTS devices. Therefore, the RHMTD under the max-rank HMTD placement has 378 
the maximum detection effectiveness of the attacks by the BDD-based attackers. 379 

The model-based alert attacker constructs FDI attacks using Ĥ  under the HRMTD. 380 
According to the MTD detection effectiveness metric [6], [12], [13], the detection 381 
effectiveness of RHMTD with RHH  against the model-based alert attacker depends on 382 

the rank of the composite matrix, i.e., ˆ([ ])RHrank H H . We can apply the graph-theory 383 

analysis on deriving the value of ˆ([ ])RHrank H H . Note that in the D-FACTS placement 384 
problem, it is the difference between the original line reactance (attacker’s knowledge) 385 
and defender’s dispatched line reactance that determines the detection effectiveness. 386 
However, it is the difference between the attacker’s estimated line reactance âb  387 
(attacker’s knowledge) and defender’s dispatched line reactance b that plays an important 388 
role in the detection effectiveness of the model-based attacker’s attacks. Thus, we treat the 389 
difference between the attacker’s estimated line reactance and the defender’s dispatched 390 
line reactance, i.e., âb b− , as the contribution of D-FACTS devices. If ˆ ( ) ( )ab i b i=  holds 391 
for the i-th D-FACTS line, it indicates the D-FACTS device on this line does not exist from 392 
the perspective of the alert attacker, referred to as the equivalently removed D-FACTS line 393 
hereafter; if ˆ ( ) ( )ab i b i≠ , the D-FACTS device on this line works. In this case, if âb b≠ 394 
holds for all D-FACTS lines, the adopted max-rank HMTD placement ensures the 395 
maximum attack detection effectiveness i.e., ( )ˆmax ([ ])RHrank p=H H  based on the 396 

graph-theory analysis of MTD [12]. If the attacker accurately estimates the defender’s 397 
dispatched reactance of some D-FACTS lines, the rank of the composite matrix in MTDs 398 
is determined by the number of loops in aG  as follows: 399 

ˆ([ ])RH DFrank p lp= −H H                   (12) 400 
where 

DFlp  is the number of loops in aG  and aG  is a graph constructed from the view 401 
of the attackers, consisting of all buses, non-D-FACTS lines and equivalently removed D- 402 
FACTS lines. 403 

For the data-driven alert attacker, the hiddenness of RHMTD misleads the alert attacker 404 
to estimate the principle components of 0H  before the MTD, rather than that of the actual 405 

RHH . Consequently, the stealthiness of the PCA-FDI attack greatly degrades. Specifically, 406 
the stealthiness of the PCA-FDI attacks depends on the difference between column space 407 
of 0H  and that of RHH . In Theorem 4, we prove that the proposed RHTMD under the 408 
max-rank HMTD placement maximizes the difference between the column space of 0H  409 
and that of RHH . such that the stealthy attack space is minimized.  410 

Theorem 4. The RHMTD model has the maximized attack detection probability to the PCA-FDI 411 
attack by the data-driven alert attacker. 412 

Proof. The alert attacker collects historical measurements under RHMTD over T times, 413 
and the historical measurement matrix is denoted by Hist

RHZ . Similar to the proof of 414 
Theorem 3, 0

Hist Hist
RH=Z Z  holds in the noiseless condition due to the hiddenness of the 415 

RHMTD. Therefore, the estimated H matrix under the RHMTD ( )PCA Hist
RH RHH PCA= Z  is the 416 

same as that without MTD 0 0( )PCA HistH PCA= Z  in the noiseless condition, i.e., 417 

0
PCA PCA
RHH H= . Then, PCA-FDI attacks are constructed by 0

PCA PCA
RHa H c H c= = . 418 

According to the principle of FDI attack [6], if the attack vector a  belongs to the 419 
column space of RHH , i.e., ( )RHa col∈ H , the constructed PCA-FDI attack is stealthy to 420 
RHMTD. Specifically, a PCA-FDI attack is stealthy to RHMTD, if 0( ) ( )PCA

RHa col col∈ H H . 421 
Then, the dimension of the stealthy attack space can be expressed as: 422 
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Since attacker’s 0
PCAH  is unknown to the system operator, it is assumed that the 424 

attacker can accurately approximates the column space of 0H , i.e., 0 0( ) ( )PCAcol col=H H . 425 
Then, the dimension of stealthy attack space becomes:  426 

0 0( ) ( ) 2 ( 1) ([ ])PCA
RH RHcol col n r= × − −H H H H  427 

The adopted max-rank HMTD placement guarantees the maximum value of 428 
[ ]0( RHr H H . Therefore, the dimension of stealthy attack space is minimized under the 429 

RHMTD. Therefore, RHMTD has the maximized attack detection effectiveness to PCA- 430 
FDI attacks by the data-driven alert attacker.                                      □ 431 

4. Numerical Results                           432 

4.1. Test Systems 433 
We evaluate the HMTD operation model in the IEEE 14-bus system [29]. We solve 434 

the HMTD operation model using fmincon function of MATLAB. We use MATLAB to 435 
simulate the BDD-based and model-based alert attackers and use Python to simulate the 436 
data-driven alert attacker. The measurement noise is assumed to be Gaussian distributed 437 
with zero mean and the standard deviation as 1% of the actual measurement. The 438 
threshold of the Chi-square detector in the BDD used by attackers and defenders is set to 439 
have a 0.1% false-positive rate.  440 

4.2. Uncertainties of RHMTD 441 
First, we demonstrate the effectiveness of random weights in providing uncertainties 442 

to the line reactance in the RHMTD. Under the same load condition, we conduct the 443 
RHMTD operation model for 20 times using different weights. Fig. 4 shows the dispatched 444 
line reactance of each D-FACTS line in the 20 RHMTDs. It is seen the reactance of each D- 445 
FACTS lines in the 20 RHMTD are different. The uncertainties can contribute to the 446 
hiddenness and detection effectiveness of RHMTD to the model-based attacker. However, 447 
for some RHMTDs, they have similar reactance of 7-th D-FACTS lines, which will 448 
negatively impact the detection effectiveness of RHMTD against the attacks by the model- 449 
based alert attacker. This impact will be evaluated in Section 4.4. 450 

 451 
Fig. 4. The reactance of D-FACTS-lines in 20 RHMTDs under a given load. 452 

We utilize the L1-norm distance between the line reactance generated by the system 453 
operator and that by the model-based attacker to measure the uncertainties in the RHTMD. 454 
Based on the distance, we demonstrate the impact of MTD magnitude on the uncertainties. 455 
Under each MTD magnitude, we generate one RHMTD operation point for the system 456 
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operator as the reference, and then generate 50 RHMTD operation points as the model- 457 
based alert attacker’s estimation by running the RHMTD model. Figure 5 shows the 458 
boxplot of the L1-norm distance under different MTD magnitudes. It is seen that a larger 459 
MTD magnitude generally results in a large L1-norm distance. The median of the L1-norm 460 
distance under 0.2 MTD magnitude is lower than that under 0.18. It indicates that a larger 461 
MTD magnitude doesn’t guarantee a larger L1-norm distance or a better attack detection 462 
effectiveness against the model-based alert attacker due to the random uncertainties.  463 

 464 
Fig. 5. L1-norm distance under MTD magnitudes. 465 

4.3. Hiddenness of RHMTD against Three Alert Attackers 466 
In this section, we evaluate the hiddenness of RHMTD to three alert attackers. First, we eval- 467 

uate the hiddenness of RHMTD to the BDD-based alert attacker by comparing the defense stealth- 468 
iness probability (DSP) of RHMTD and RMTD under different MTD magnitudes. The DSP is a 469 
widely used metric to measure the MTD hiddenness from the perspective of attackers, which is 470 
defined as the ratio of the number of MTDs hidden to attackers to the total number of launched 471 
MTDs.  472 

To study the impact of MTD magnitude on the MTD hiddenness, we increase the 473 
MTD magnitude from 0.02 to 0.2 with an incremental of 0.02. For each MTD magnitude, 474 
we generate 100 RMTDs and 100 RHMTDs under different load conditions, respectively. 475 
In addition, we repeat this MTD generation process under two different noise conditions 476 
to evaluate the impact of noise on the MTD hiddenness. The DSP of RMTD and RHMTD 477 
against the BDD-based alert attacker is shown in Fig. 6. As seen, when the MTD 478 
magnitude is small (less than 0.04), it is likely that RMTD remains hidden to the attacker. 479 
This is because the tiny line reactance mismatch has limited capability to increase the 480 
estimation residual in the attacker’s BDD. With the increase of MTD magnitude, the DSP 481 
drops to zero, indicating that RMTD is no longer hidden to the attacker. For the RHTMD, 482 
its DSP is larger than 0.95 regardless of MTD magnitudes and noise standard deviation, 483 
indicating the hiddenness to the BDD-based attacker. 484 

 485 
Fig. 6. The hiddenness of RMTD and RHMTD against the BDD-based alert attacker under different noise 486 

conditions. 487 
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Then, we evaluate the hiddenness of RHMTD to the model-based alert attacker under 488 
different noise conditions. We generate 100 RHMTD operation setpoints under different 489 
load conditions under MTD magnitudes from 0.02 to 0.2 with an incremental of 0.02. The 490 
measurements of RHMTD are sampled in the noiseless condition and noisy conditions 491 
with standard deviation 1%σ = , 2%σ = , and 3%σ = , respectively. It is assumed that 492 
the model-based attacker applies the RHMTD model (7) to estimate the line reactance 493 
dispatched in the field, and then applies SE to calculate the estimation residual to detect 494 
the existence of MTD. The DSP of RHMTD against the model-based alert attacker is shown 495 
in Fig. 7. In the noiseless condition, the DSP of RHMTD is always 1.0 regardless of MTD 496 
magnitudes. In noisy conditions, the DSP of RHMTD is more than 95%. It is seen that 497 
MTD magnitude and noise magnitude don’t impact the hiddenness of RHMTD. 498 

 499 
Fig. 7. The hiddenness of RHMTD against the model-based alert attacker under noiseless and noise 500 

conditions. 501 
Finally, we demonstrate the drawbacks of RMTD against the data-driven alert 502 

attacker, and further evaluate the hiddenness of RHMTD to the data-driven alert attacker. 503 
To simulate historical measurements free from MTD collected by the data-driven alert 504 
attacker, the power flow problem is solved for multiple time instants. In this paper, we 505 
use 100 load conditions to generate historical measurements of 100 time instants. First, we 506 
generate 3 RMTD groups under 100 different load conditions under 0.05, 0.10, and 0.15 507 
MTD magnitudes, respectively. Specifically, let RMTD 1, RMTD 2, and RMTD 3 refer to 508 
these generated RMTD groups, and RMTD i (i = 1, 2, 3) has 100 different operation 509 
setpoints for each MTD magnitude. After the SCADA measurements are collected by the 510 
attacker, a dimension reduction algorithm, i.e., PCA, is applied on the 100 measurement 511 
vectors under RMTDs and 100 measurement vectors free of MTD to visualize the 512 
difference between the normal data (no MTD measurements) and MTD measurements.  513 

 514 
(a) MTD_MAG = 0.05 515 

 516 
(b) MTD_MAG = 0.05 517 
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 518 
(c) MTD_MAG = 0.15 519 

Fig. 8. The projection of RMTD and no MTD measurements in the ℝ2 space by PCA under different MTD 520 
magnitudes. 521 

The projection of RMTD and no MTD measurement data in the ℝ2 space under 522 
different MTD magnitudes are shown in Fig. 8. When the MTD magnitude is 0.05, the 523 
RMTD data points and no MTD data points are overlapped, indicating data-driven alert 524 
attacker cannot detect the existence of RMTD. When the MTD magnitude becomes 0.10, 525 
RMTD 1 is projected into a new cluster, while RMTDs 2 and 3 are still overlapped with no 526 
MTD data. When the MTD magnitude increases to 0.15, RMTDs 1 and 2 forms two new 527 
clusters, and data points of RMTD 3 also remain separated from no MTD data. For the 528 
data-driven attacker, a new cluster indicates the detection of MTD. Thus, the hiddenness 529 
of RMTD degrades with the increase of MTD magnitude, which is consistent with the 530 
performance of RMTD against the BDD-based alert attacker. 531 

To evaluate the hiddenness of RHMTD, we apply RHMTD algorithm under 100 load 532 
conditions with 0.20 MTD magnitude. For comparison, we also generate 10 RMTD groups 533 
with 0.20 MTD magnitude. The projection of RHMTD, 10 RMTD and no MTD 534 
measurements in the ℝ2 space is shown in Fig. 9. As seen, under 0.20 MTD magnitude, all 535 
RMTD groups form new clusters that locate far from the cluster of no MTD measurements. 536 
All data points of RHMTD remain inside of the cluster of the no MTD, as shown in Fig. 537 
10. Therefore, these RHMTD are stealthy to the data-driven attacker. Since RHMTDs with 538 
0.20 MTD magnitude could remain stealthy, it infers that the RHMTD with a smaller MTD 539 
magnitude could also remain stealthy, according to the impact of the MTD magnitude on 540 
the MTD stealthiness. 541 

 542 
Fig. 9. The projection of RHMTD, 10 RMTD and no MTD measurements in the ℝ2 space. 543 

 544 
Fig. 10. The projection of RHMTD and no MTD measurements in the ℝ2 space. 545 

 546 
We compare the hiddenness of RHMTD with two existing HMTD methods, i.e., 547 

watermarking HMTD [21] and model-based HMTD [4] against three alert attacker models. 548 
We can see that the proposed RHMTD is hidden to three alert attackers, consistent with 549 
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the hiddenness theorems in Section 3.3. It is seen that these three HMTD methods are all 550 
hidden to BDD-based alert attackers. This is because, as the first proposed alert attacker 551 
in the literature, these HMTD methods consider the estimation residual changes in the 552 
alert attacker’s BDD. All three HMTD methods are hidden to data-driven alert attackers 553 
since these HMTD methods avoid significant measurement changes before and after MTD. 554 
For the proposed model-based alert attacker, the DSP of watermarking HMTD is lower 555 
than its DSP against BDD-based alert attacker. It is because the randomness in the 556 
watermarking HMTD makes the attacker’s estimated line parameters different from the 557 
actual dispatched parameters. The difference results in an increase in the attacker’s 558 
estimation residual. Even though the model-based HMTD is hidden to the model-based 559 
alert attacker, the attacker can accurately estimate actual dispatched line parameters due 560 
to the lack of randomness in model-based HMTD. As a consequence, the model-based 561 
HMTD cannot detect the attacks by the model-based alert attacker, which is shown in Fig. 562 
12 and Table 4. 563 

Table 3. DSP of existing HMTD methods and the RHMTD against three alert attackers. 564 

Method BDD-AA DD-AA M-AA 
Watermarking HMTD 94% 100% 83% 
Model-based HMTD 93% 100% 96% 

RHMTD 95% 100% 96% 
 565 

4.4. Attack Detection Effectiveness of the RHMTD against Three Alert Attackers 566 
In this subsection, we evaluate the attack detection effectiveness of the RHMTD 567 

against three alert attackers. First, we prepare the defense pool of RHMTD. We increase 568 
the MTD magnitude from 0.02 to 0.2 with an incremental of 0.02, and then generate 100 569 
RHMTD operation setpoints for each MTD magnitude. In total, there are 1000 RHMTD 570 
operation setpoints as the defense pool. In the simulation, the widely-used attack 571 
detection probability is applied to measure the attack detection effectiveness of an MTD, 572 
which is defined as the ratio of number of FDIs detected by the MTD to the total number 573 
of FDI attacks. 574 

For the BDD-based attacker, RHMTD misleads the attacker to construct traditional FDI 575 
attacks without the aid of topology learning. Therefore, the BDD-based alert attacker 576 
constructs 100 single-bus FDI attacks using 0H  for each RHMTD in the defense pool. The 577 
ADP of RHMTD against the BDD-based alert attacker under different MTD magnitudes 578 
is shown in Fig. 11. The ADP increases with the MTD magnitude. This is because the tiny 579 
line changes cannot cause sufficient residual incremental in the defender’s BDD, and thus 580 
the ADP under the low MTD magnitudes is low. When the MTD magnitude is larger than 581 
0.08, the ADP becomes 93.3%. This is because MTD can not detect the single-bus FDI 582 
attack on Bus 8, which only has one transmission line. This is the drawback of MTD 583 
identified by our previous work [30].  584 
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 585 
Fig. 11. The ADP of RHMTD against the BDD-based alert attacker under different MTD magnitudes. 586 
The model-based attacker utilizes the same RHMTD model to estimate the reactance 587 

of D-FACTS lines and uses Ĥ to construct FDI attacks. We compare the detection 588 
effectiveness of the RHTMD and HMTD against the model-based attacker. We generate 589 
100 HMTD under each MTD magnitude. For each HMTD and RHMTD, the model-based 590 
attacker launches 100 FDI attacks. The ADP of RHMTD and HMTD against the model- 591 
based alert attacker under different MTD magnitudes is shown in Fig. 12. It is seen that 592 
HMTD cannot detect the attacks by the model-based attacker. The lack of uncertainties 593 
causes the model-based attacker can accurately estimate the reactance of D-FACTS lines, 594 
and the attacks can bypass the defender’s BDD. Compared with the low ADP of HMTD, 595 
the ADP of the RHMTD can reach 80%. We can see that the ADP of RHMTD against the 596 
model-based attacker is lower than the ADP of RHMTD against the BDD-based attacker. 597 
This is because the reactance of some D-FACTS lines estimated by the attacker is very 598 
close to the actual reactance dispatched by the defender. For a single-bus FDI attack by 599 
the model-based attacker, if line parameters of all connected lines associated with the 600 
target bus are accurately or approximately estimated, the FDI attack is very likely to 601 
remain stealthy to the RHMTD. The detection effectiveness of RHMTD against the model- 602 
based alert attacker is analyzed in Section 3.4.  603 

 604 
Fig. 12. The ADP of RHMTD and HMTD against the model-based alert attacker under different MTD 605 

magnitudes. 606 
The data-driven attacker constructs PCA-FDI attacks under RHMTD with 0.2 MTD 607 

magnitude. It is assumed that the attacker collects the historical measurements of 5000- 608 
time instants. The RHMTD is conducted under each time instant. In the PCA-FDI attacks, 609 
the number of the attacked buses are 1, 3, and 5, respectively. Here, the incremental 610 
voltage of the PCA-FDI attack is defined as 0k= ×c θ  , where 0θ  is the actual voltage 611 
angle of the power system at the attacked time instant, and k is the FDI magnitude varying 612 
from 0.05 to 0.4. The ADP of RHMTD against the PCA-FDI attacks by the data-driven alert 613 
attacker is shown in Fig. 13. It is seen that the ADP increases with the FDI attack 614 
magnitude and the number of attacked buses. 615 
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 616 
Fig. 13. The ADP of RHMTD against the data-driven alert attacker. 617 
 618 
We compare the attack detection effectiveness of RHMTD with two existing HMTD 619 

methods against three alert attacker models. We use the Chi-2 detector for three HMTD 620 
methods to detect FDI attacks. Due to small line parameter changes, the watermarking 621 
HMTD has very low ADP against three attackers. Model-based HMTD has the same ADP 622 
as RHMTD against the BDD-based alert attacker. However, its ADP against the model- 623 
based alert attacker is close to zero. This is because the attacks constructed by the model- 624 
based alert attacker are based on accurately estimated line parameters. RHMTD has 625 
higher ADP than other HMTD methods due to its randomness and sufficient line 626 
impedance changes. 627 

Table 4. ADP of existing HMTD methods and RHMTD against three alert attackers. 628 

Method BDD-AA M-AA DD-AA 
Watermarking HMTD 37.8% 47.3% 45% 

Model-based HMTD 93.9% 6.0% 59%  

RHMTD 93.6% 75.1% 68% 

5. Conclusions 629 
This paper points out the drawbacks of existing HMTD operation methods, including 630 

the delay of attack detection, extra costs on secure meters, and the lack of randomness. To 631 
fully evaluate the hiddenness of HMTD methods, this paper first summarizes the BDD- 632 
based alert attacker model and the data-driven alert attacker model, and then proposes a 633 
novel model-based alert attacker model. By analyzing the three alert attackers, this paper 634 
proposes a novel random-based HMTD, which maximizes the weighted square of line 635 
reactance changes, and introduces random variables into the weights of the objective func- 636 
tion. In addition, the proposed model utilizes the novel derived hiddenness operation 637 
conditions as constraints to ensure the measurements before and after MTD remain un- 638 
changed. We theoretically prove the hiddenness of the proposed RHMTD to three alert 639 
attacker models, and analyze the effectiveness of RHMTD in detecting FDI attacks con- 640 
structed by three alert attackers.  641 

The simulation results show that the random weights in RHMTD successfully intro- 642 
duce the randomness into the setpoints of D-FACTS devices. The randomness makes the 643 
model-based alert attacker difficult to accurately estimate the actually dispatched set- 644 
points of D-FACTS devices by the defender. The RHMTD method is hidden to both the 645 
BDD-based and model-based alert attackers with more than 95% DSP. The RHMTD 646 
method is also hidden to the data-driven alert attacker, since the projection of RHMTD 647 
and no MTD measurements overlaps after the dimension reduction. Simulation results 648 
also evaluate the detection effectiveness of RHMTD against three alert attackers. The tra- 649 
ditional HMTD fails to detect FDI attacks by the model-based alert attacker, while 650 
RHTMD can detect these attacks with 80% ADP. RHTMD is effective in detecting FDI 651 
attacks by the BDD-based and data-driven alert attackers with more than 90% ADP. 652 
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In the future, we will extend the proposed HMTD operation method in the DC power 653 
system model to the AC power system model. In addition, we will define more alert ad- 654 
versary models using advanced machine-learning techniques and limited data resources.   655 
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