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Abstract: Hidden moving target defense (HMTD) is a proactive defense strategy stealthy to attack-
ers by changing the reactance of transmission lines to thwart false data injection (FDI) attacks. How-
ever, alert attackers with strong capabilities pose additional risks to the HMTD and thus, it is a
much-needed effort to evaluate the hiddenness of the HMTD. This paper first summarizes two ex-
isting alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven alert at-
tackers. Further, this paper proposes a novel model-based alert attacker model that uses the MTD
operation models to estimate the dispatched line reactance. The proposed attacker model can con-
struct stealthy FDI attacks against HMTD methods that lack randomness by using the estimated line
reactance. We propose a novel random-based HMTD (RHMTD) operation method, which utilizes
random weights to introduce randomness and uses the derived hiddenness operation conditions as
constraints. RHMTD is theoretically proven to be stealthy to three alert attacker models. In addition,
we analyze the detection effectiveness of the RHMTD against three alert attacker models. Simula-
tion results on the IEEE 14-bus systems show that traditional HMTD methods fail to detect attacks
by the model-based alert attacker, and RHMTD is stealthy to three alert attackers and effective in
detecting attacks by three alert attackers.

Keywords: False data injection attack; hidden moving target defense; alert attacker model; state
estimation; D-FACTS device; unsupervised learning

1. Introduction

Modern power systems suffer from significant threats from cyber-physical attacks
due to the vulnerabilities of widely used information and communication technology
(ICT) enabled devices and Internet of things (IoT) technologies. In addition, energy
sources such as wind and solar energy have inherent instability that might compromise
the stability of the system [1]. According to the U.S. Department of Energy, 362 power
interruptions related to cyber-physical attacks were reported between 2011 and 2014 [2].
False data injection (FDI) attacks are one of the most destructive cyber-physical attacks
against smart grids. FDI attacks compromise measurements in the supervisory control
and data acquisition (SCADA) system, which aim to manipulate the voltage estimated by
the state estimation in the energy management system of the power system. The FDI at-
tacks can cause severe consequences, including line overloading, load shedding, unstable
system states and even voltage collapse [3].

Moving target defense (MTD) is introduced into the physical layer of power systems
to detect FDI attacks. MTD actively perturbs the branch impedance using distributed flex-
ible AC transmission system (D-FACTS) devices, such that the time-variant system con-
figuration invalidates attackers’ knowledge about the actual power system configura-
tions. The first MTD work against FDI attacks [4] proposed a random MTD (RMTD)
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method in which the reactance of an arbitrary subset of D-FACTS-equipped lines is ran-
domly changed. It was proved that MTD methods could effectively detect FDI attacks [5]-
[9], cyber-physical attacks [10], and Stuxnet attacks [11].

1.1. Related Work

MTD planning and MTD operation are two essential steps in implementing the MTD
method. MTD planning refers to installing D-FACTS devices on an identified subset of
transmission lines, and MTD operation refers to adjusting the D-FACTS setpoints under
different load conditions. Reference [12] proved that MTD planning determines the detec-
tion effectiveness of MTDs. Max-rank placement [5], [12] can achieve the maximum rank
of the composite matrix, which is the widely-used metric of MTD detection effectiveness.
Arbitrary placement and full placement are the two simplest D-FACTS placement strate-
gies without considering the detection effectiveness of MTDs. Arbitrary placement in-
stalled D-FACTS devices on randomly selected lines [4], while full placement installed D-
FACTS devices on every transmission line [13]. The placement of D-FACTS devices was
optimized in [14], which aims to reduce the number of measurements that can be manip-
ulated by the attacker. It also proved that the coordinated design of consecutive perturba-
tion schemes within an MTD cycle could improve the MTD's performance in detecting
FDI attacks.

MTD operation methods mainly determine the function of D-FACTS devices in MTD.
The arbitrary operation method, the simplest MTD operation method, randomly per-
turbed the D-FACTS setpoints [4] without considering the economic benefits and detec-
tion effectiveness. Optimal-power-flow (OPF)-based operation methods utilized the D-
FACTS devices and OPF model to control the power flow and minimize the system losses
or generation costs [12], [15], [16]. Optimization-based operation methods maximized the
metric of detection effectiveness or the economic cost to optimally dispatch the D-FACTS
setpoints [13], [17]. Recently, a double-benefit moving target defense was proposed to
protect the SG from cyber—physical attacks (CPAs) and also gain generation-cost benefits
in DC power system model [9]. Reference [18] studied the effectiveness and hiddenness
of MTD using measurement residuals in three-phase AC distribution system state estima-
tion and further formulated the optimization problem for MTD to jointly optimize the
effectiveness and hiddenness considering voltage stability. Reference [19] developed two
strategies to make the increasing operation cost zero for activating the MTD. In addition,
it studied the impact of MTD on the system dynamics using small signal stability.

A strong and alert adversary can detect the existence of MTD in place, which can
drive the attacker to postpone the attack using the incorrect line impedance. Conse-
quently, the attacker can invest more resources to obtain the current power system con-
figuration, and potentially launch stealthy attacks with a higher-level threat. The concept
of hidden MTD is proposed in transmission systems [6] and distribution systems [20], in
which the defender delicately modifies the line impedance to maintain MTD hidden to
the attacker.

There are three types of hidden MTD methods in the literature. In the first type, re-
ferred to as watermarking HMTD [21], the defender slightly changes the line impedance
such that the status of the power system will not significantly change, and the attacker
will not realize the existence of MTD. However, small line impedance changes cause the
Chi-square bad data detector (BDD) in state estimation fails to detect the FDI attacks. The
defender had to utilize the CUSUM detector to detect FDI attacks. Due to the characteristic
of CUSUM [22], the CUSUM detector cannot immediately detect the FDI attacks, resulting
in the system that will suffer from FDI attacks for multiple time instants. In the second
type, referred to as secure-meter-based HMTD [23], multiple protected meters were uti-
lized in each loop of the power system topology to cover the status change of the power
system and the power flow changes caused by the line impedance changes. It is assumed
that attackers have no read access to the protected meters such that alert attackers (AA)
cannot detect the existence of MTD using the remaining measurements through the state
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estimation. However, this method is expensive for the defender, as the expensive pro- 97

tected meters are only used for ensuring the hiddenness of MTD, rather than improving 98

the detection effectiveness against attacks. In the third type, referred to as model-based 99

HMTD [5], [20], the defender delicately changes the line impedance such that the power 100
flow of each transmission line is the same before and after the MTD. However, the model- 101
based HMTD methods utilize optimization models without any uncertainties, which are 102
not consistent with the dynamic defense nature of MTD. Randomness and diversity are 103
two essential components in the dynamic defense strategy [24]. Without randomness in 104
MTD, the attacker can apply the same HMTD method to estimate the exact line impedance 105
dispatched by the system operator, if the attacker knows which model-based HMTD is 106
used. Therefore, it is necessary to model possible alert attackers, and further improve the 107
hiddenness and detection effectiveness of MTD methods against the different types of 108
smart and alert attackers. 109

1.2. Research Gap 110

The research gap is that existing alert attackers need to be summarized and modeled, 111
and novel alert adversaries with strong and advanced capabilities are necessary to be 112
modeled. With clearly-defined alert attacker models, these alert attacker models can be 113
used as a metric to comprehensively evaluate the hiddenness and detection effectiveness 114
of any novel MTD methods. In this paper, two existing alert attackers against MTD are 115
modeled, i.e., BDD-based alert attacker (BDD-AA), and data-driven alert attacker (DD- 116
AA). In addition, this paper proposes a novel model-based alert attacker (M-AA). These 117
three alert attacker models can be used to analyze the drawbacks of existing HMTD meth- 118
ods. 119

This paper further proposes a novel HMTD method that is hidden to three alert at- 120
tacker models. We compare the proposed HMTD method with the existing methods re- 121
garding the hiddenness and detection effectiveness against three alert attacker models in 122
Table 1. Table 1 presents the drawbacks of existing HMTD methods, highlights the neces- 123
sity of the proposed model-based alert attacker, and demonstrates the novelties of the 124
proposed HMTD method. Note that the first Yes (Y) or No (N) indicates whether the 125
HMTD method is hidden to a given alert attacker, and the second Y or N indicates 126
whether the HMTD method is able to detect the attacks by the attacker. 127

Table 1. Comparison of the proposed and existing HMTD methods regarding the hiddenness and 128

detection effectiveness. 129
Method |BDD-AA| DD-AA | M-AA Characteristics
Watermarking
HMTD [21] Y/Y Y/Y Y/Y Detection delay of FDI attack
Secure-meter-based
HMTD [23] Y/Y N/Y Y/Y Extra expensive protected meters
Model-based
HMTD [5], [20] Y/Y Y/Y Y/N Lack of randomness
No detection delay and no pro-
This paper Y/Y Y/Y Y/Y tected meters with randomness
1.3. Contribution 130

To fill the research gap, this paper summarizes two alert attacker models and further 131
proposes a novel alert attacker model. These three alert attacker models formulate a metric 132
to fully evaluate the hiddenness and detection effectiveness of any HMTD method. Then, 133
this paper proposes a novel random-based HMTD (RHMTD) operation model which is 134
stealthy to the three alert attackers. The contribution of this paper is summarized as fol- 135
lows: 136

e We summarize two alert attacker models against MTD in the literature: i) a BDD- 137
based alert attacker who uses Chi-square BDD to detect the existence of MTD; and 138
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ii) a data-driven alert attacker who uses dimension reduction and unsupervised 139
learning methods to detect the existence of MTD. 140

e  We propose a novel alert attacker model, i.e., a model-based alert attacker, who uses 141

the MTD operation model to calculate the dispatched line reactance and then uses 142
Chi-square BDD to verify the correctness of the estimated reactance. This attacker 143

model can construct stealthy FDI attacks against HMTD methods that lack ran- 144
domness by using the estimated line parameters. 145

e  We propose a novel random-based HMTD (RHMTD) operation model in the DC 146
power system model, which maximizes the weighted line reactance changes and 147
integrates the derived MTD hiddenness operation condition as constraints. The 148
weights of the line reactance in the objective function follow the uniform distri- 149

bution for introducing the randomness. 150

e We theoretically prove that the hiddenness of the proposed RHMTD method 151
against three alert attacker models. We further analyze the attack detection effec- 152
tiveness of the proposed method against three alert attacker models. 153

The rest of this paper is organized as follows. In Section II, we define three alert at- 154
tacker models. In Section III, we derive a novel RHMTD operation model, prove the hid- 155
denness of RHMTD to three alert attackers, and evaluate the attack detection effectiveness 156
of RHMTD against three alert attackers. The case studies in the IEEE 14-bus system are 157

conducted in Section IV. The paper is concluded in Section V. 158
2. Alert Attacker Models 159

In this section, we first define variables used in this paper and then define three alert 160
attacker models. 161
2.1. Notation 162

Variables used throughout the paper are summarized in Table 2. “D-FACTS lines” 163
and “non-D-FACTS lines” stand for the set of lines equipped with and without D-FACTS 164

devices, respectively. 165
Table 2. Nomenclature 166
Symbol Definition
0 Voltage angle of buses excluding reference bus
z Measurement vector
a FDI attack vector
H, DC measurement matrix in SE before MTD
H DC measurement matrix in SE after MTD
A Incident matrix of power system graph
X Diagonal line reactance matrix
X The reactance of line i— (between bus i and j)
n Total number of system buses
m Total number of measurements
p Total number of lines
167
2.2. BDD-based Alert Attacker Model 168
The first BDD-based alert attacker model is proposed in [6]. Here, we refine the BDD-based 169
alert attacker with the capability of topology learning capability. 170

Attack goal. The BDD-based alert attacker aims to launch traditional stealthy FDI attacks 171
using correct line impedance under the MTD. Assumption. We assume that the attacker knows the 172
original configuration of the system without MTD, including the system topology and the line im- 173
pedance b,, but doesn’t know the actual line impedance dispatched by MTD on the current time 174
instant. Attacker’s capability. The attacker has read access to all SCADA measurements in the 175
power system to detect MTD, and write access to all measurements to inject FDI attacks. The at- 176
tacker can perform SE and BDD to detect MTD, and can launch the topology learning (TL) methods 177

[25] to learn the current line impedance l;a. Attack logic. The flowchart of the BDD-based alert 178
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attacker is shown in Fig. 1. The attacker conducts SE using the original line impedance before the 179

MTD, and then performs BDD to calculate the estimation residual by (1). 180

r, =z - H (M H ) Yz, | = [Hx, — H (HOH,)  HY 7, | 1) 181
where the measurement matrix under the MTD is H; and the attacker’s original meas- 182
urement matrix before MTD is Ho. 183

If the attacker’s estimation residual is less than the threshold, i.e., r, <r, , it indicates the 184

attacker’s knowledge of the line impedance is correct and no MTD is applied in the field. Then, the 185
attacker can launch stealthy FDI attacks using the original system configuration Ho. If 7 >7,,the 186
alert attacker suspects the accuracy of the line impedance due to the MTD and postpones launching 187
attacks until bypassing the BDD check by estimating the actual line impedance with the topology 188

learning methods. 189
A BDD-based alert attacker
l?h System operator — BDD Correct MTD
Init. , rlt]<t 2
MTD Model f0 < Yes
a o
Select blt]
7y ’ DC-FDI a[t] =z, +H(b,[1])Ax
z,[1] b1l
y a[r]
Flr] b 4 K1 +1]
—> Power System >+ > State Estimation [—»
2[t+1] z[t+1] 190
Fig. 1. The attack logic flowchart of the BDD-based alert attacker. 191
2.3. Data-driven Alert Attacker Model 192

The first data-driven alert attacker model against MTD is proposed in [21]. Here, we general- 193
ize the data-driven alert attacker model, and enable the attacker with stronger attack capability. 194
Currently, only watermarking HMTD has been evaluated to remain hidden to the data- 195
driven attacker through simulation. However, the hiddenness of the secure-meter-based 196
HMTD and model-based HMTD has not been evaluated against the data-driven attacker. 197

Attack goal. The attacker aims to launch data-driven FDI attacks under the MTD. Assump- 198
tion. It is assumed the attacker doesn’t know the configuration of the system before and after the 199
MTD, including the system topology and the line impedance, but he knows MTD may be applied 200
in the system. Attacker’s capability. The attacker has read access and write access to all SCADA 201
measurements. The attacker can collect historical measurement data over time and the attacker can 202
use unsupervised machine learning methods to analyze the data. 203

Attack logic. The attack logic of the data-driven alert attacker is shown in Fig. 2. First, the 204
attacker adds all eavesdropped measurements in Z matrix. Then, the attacker applies the dimension 205
reduction method (e.g., PCA) on the collected historical measurement Z to 2D for visualization. If 206
the low-dimensional historical measurements form more than one cluster, it reflects the pattern of 207
the power flow measurements significantly changes, indicating MTD could exist in the field. Then, 208
the attacker can apply clustering algorithms (e.g., K-means and DBSCAN) to identify all historical 209
measurements responding to the current MTD, and construct data-driven FDI attacks using the 210
identified historical measurements. However, the number of the identified historical measurements 211
depends on the frequency of MTD. Therefore, under MTD, the number of historical measurements 212
that can be used for constructing data-driven FDI attacks is significantly reduced. Since the perfor- 213
mance of data-driven FDI attacks heavily relies on the number of measurements, advanced data- 214
driven FDI attack methods need to be applied, such as matrix-reconstruction FDI [26]. If the low- 215
dimensional historical measurements only form one cluster, it indicates MTD is not applied in the 216
field. Therefore, all collected historical measurements can be used to construct data-driven FDI 217
attacks. With sufficient historical measurements, the attack has more data-driven FDI attack meth- 218
ods to choose from for constructing malicious injection vectors, such as PCA-FDI [27] and sub- 219
space FDI [28]. 220
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a Data-driven-based alert attacker

3 S ‘ Collect
H stem operator % 2
ain DY P 1, historical PCA
measurement No
z

MTD Model Yes
A ’ Data-driven FDI attacks }
z,[1] blr]
y af]
A ) 4 X[1+1)
—> Power System >+ > State Estimation [—»

z[t+1] z,[t+1] 271
Fig. 2. The attack logic flowchart of the data-driven alert attacker. 222
2.4. Model-based Alert Attacker Model 223

For the first time, this paper proposes a model-based alert attacker model. This alert attacker 224
model is designed for the existing MTD or HMTD methods [5], [12], [15], [19], [20], which are 225
based on the optimization problem without considering any uncertainties. If the attacker applies the 226
same MTD model, it is easy to obtain the actual line impedance dispatched in the field. 227

Attack goal. The attacker aims to launch traditional FDI attacks using the correct line 228
impedance under the MTD. Assumptions. We assume the attacker knows the configura- 229
tion of the system, including the system topology and the line impedance before the MTD. 230
Attacker’s capability. The attacker has read access and write access to all SCADA meas- 231
urements. In addition, the attacker is assumed to know the multiple MTD operation mod- 232
els, including the method used by the system operator. Attack logic. As shown in Fig. 3, 233
the model-based alert attacker utilizes the MTD operation model to calculate the dis- 234

patched line impedance l;a and measurement matrix H. Then, the attacker can further 235

evaluate the correctness of the solved line impedance by 7, = ”z1 —H HTH) 1HTz1|| JIf 236
2

ru <rth’

it indicates the attacker obtains the actual line impedance under the MTD. If the 237
estimated residual is larger than the threshold, i.e., r, >r,, the alert attacker needs to 238

change an MTD operation method until the system operator’s current MTD operation 239
model is found and correct line impedance is obtained. Then, the attacker can launch the 240
traditional FDI attacks using H. 241

A Model-based alert attacker

‘i System operator | | MTD b,l1] Correct MTD
model
rltl<z 2
MTD Model Change Yes
MTD No
Select b[t] model
7y DC-FDI a[t]=z,+H(b,[1])Ax
z,[1] bl1]
y ar]
v 1t +1]
Power System >+ |  State Estimation [—»
2t +1] z,[t+1] "
Fig. 3. The attack logic flowchart of the model-based attacker. 243
3. Random-based HMTD 244

In this section, we first derive a novel hiddenness operation condition of HMTD, and 245
then propose a novel RHMTD operation model. Finally, we prove that the proposed 246
RHMTD is hidden to three alert attackers, and analyze the attack detection effectiveness 247
of RHMTD. 248

3.1. Hiddenness Operation Condition 249

Assume MTD changes the line impedance of the transmission lines. Accordingly, the 250
measurement matrix is changed from Hy to Hj, and system states are changed from 0, to 251
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0, . SCADA measurements are changed from z,=H 0, (the measurements before 252
MTD) to z, = H,0, (the measurements after MTD). 253

We will use the decomposition of H matrix to demonstrate the impact of D-FACTS 254
devices on H and the relationship between Hy and H.. First, we separate matrix Ho into 255
two submatrices, i.e, H; and H;, which correspond to the measurements related to the 256
lines with and without D-FACTS devices, respectively. Then, we apply the matrix decom- 257
position [12] on H; and H{, respectively: 258

Hi) Dl 'Xl 'Al
= 2) 259
H(z) D2 'Xz 'Az ®

where X;ERPIP! and X2€RP*P? are the diagonal reactance matrix of p1 D-FACTS lines and 260
p2 non-D-FACTS lines, respectively; A1ER™"?' and A2€R™"?? are the reduced bus-branch 261
incidence matrix of the graphs composed of the D-FACTS lines and non-D-FACTS lines, 262
respectively; D1 and D2 is the meter deployment matrix of graph A1 and As, respectively. 263
Here, D-FACTS lines refer to the transmission lines equipped with D-FACTS devices, and 264
non-D-FACTS lines refer to the remaining transmission lines in the power system. Simi- 265
larly, H1 can be expressed by (3): 266

H | [D-X[-A | [D (X, +AX) A
Hl = = =
H’ D, X, A, D, X, A,
where X' is the diagonal reactance matrix of D-FACTS lines after D-FACTS devices 268

modify the line reactance; and AX is the incremental line reactance matrix, ie., 269
AX =X] -X,. (2) and (3) intuitively demonstrate the impact of MTD on the measurement 270

0=

B) 267

matrix. MTD only modified the submatrix of the measurement matrix related to the D- 271
FACTS devices. 272

According to [6], HMTD remains hidden to BDD-based attackers by remaining all 273
measurements unchanged after the setpoint changes of D-FACTS devices, i.e,, z,=z,.In 274

the noiseless condition, the unchanged measurement condition can be reformulated: 275
H, 0, = H, (0, +A0) 4
H(z) 0= le 0 4) 276
where A® is the incremental state by MTD, i.e,, A6 =0, —0,. When we substitute (2) and 277
(3) into (4), we can obtain: 278

{Dl ‘X,-A,-0,=D,- (X, +AX)- A, - (0, + A0)
(5) 279

D,-X,-A,-A0=0

Since D, -X, A, is a fixed matrix, A®@ determined by HMTD should belong to the 280

null spaceof D, -X,-A,,ie, ABe Null(D,-X,-A,). Thus, A@ canbe represented by the 281
kernel bases of D, -X, - A, . Therefore, the hiddenness condition of the HMTD canbe sum- 282
marized as follows: 283
D X -A-0,=D,-(X +AX)-A, - (0, +KW) (6) 1284

where K =[k,k,,...k,]€ RP" is the matrix of kernel bases of D,-X,-A, ; 285
Wz[wl,wz,...,wS]TERS is the weight determined by the system operator; and s is the 286

dimension of kernel bases. 287

3.2. The Random-based HMTD model 288

In order to remain stealthy to three alert attackers and ensure the attack detection 289
effectiveness, an HMTD operation model should simultaneously meet the following four 290
requirements. First, for the BDD-based alert attacker, the measurements need to remain 291
unchanged before and after the implementation of MTD. Essentially, the setpoints of D- 292
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FACTS devices in the HMTD operation model should satisfy the derived hiddenness con- 293
dition (6). Secondly, for the data-driven alert attacker, MTD ought to avoid introducing 294
distinct changes in measurements. Note that this requirement is less restrictive than that 295
of the BDD-based alert attacker. Thirdly, for the model-based alert attacker, it is necessary 296
to introduce unpredicted randomness into the HMTD operation model. In this case, even 297
though the model-based alert attacker applies the same HMTD operation algorithm used 298
by the system operator, the attacker still fails to obtain the actual line reactance dispatched 299
by the system operator. Finally, sufficient line reactance changes are needed to guarantee 300
a fast and effective attack detection capability [12]. 301

We propose a non-convex, nonlinear, optimization-based RHMTD operation model 302
in (7), which aims to remain stealthy to three alert attacker models and ensure the attack 303
detection effectiveness. The proposed RHMTD model maximizes the weighted square of 304
the line reactance changes using uniformly distributed random weights. The maximized 305
line reactance changes ensure the attack detection effectiveness, while the random weights 306
contribute to providing uncertainties to the model-based alert attacker. Constraint (7.1)is 307
the derived hiddenness condition, which ensures the RHMTD to be hidden to the BDD- 308
based and data-driven alert attackers. Constraint (7.2) defines the kernel bases of 309
D, X, A, for the hiddenness condition. Constraint (7.3) is the physical constraint of D- 310

FACTS devices working setpoints. Generally, the MTD magntiude u is 0.2 [6]. 311
. Ta 1:
max diag(AX)" Adiag(AX) @)
st. D -X,-A,-0,=D, - (X, +AX)-A, - (0, + KW) (7.1) 312
K = Null(D, - X, -A,) (7.2)
— udiag(X, ) < diag(AX) < pdiag(X,) (7.3)
where the weight parameter A is random variables following the uniform distribution 313
between 0 and 1,i.e, &, €U(0,1),i=12,.. ||X], - 314

The RHMTD operation model can be seamlessly integrated into the existing energy 315
management system of the power system. The defender, i.e., the system operator, can 316
assign the weight and then calculate the setpoints of the D-FACTS devices by solving 317
model (7) after the optimal power flow (OPF) function determines the optimal generation. 318
Then, the D-FACTS setpoints are sent to the field devices for implementation through 319
encrypted communication. 320

3.3. Hiddenness of the RHMTD against alert attackers 321

In this section, we prove the hiddenness of the proposed method to three alert attack- 322
ers. Assume the measurements before the MTD are z, = H;x,, and the measurements af- 323

ter the RHMTD is z, = Hx,, where H, is determined by (7). Note that z, =z, holdsin 324
the noiseless condition due to the hiddenness operation constraints. 325

Theorem 1. The RHMTD model is hidden to the BDD-based alert attacker. 326

Proof. The BDD-based alert attacker uses the system configuration H, to calculate the 327
estimation residual, and the estimation residual of the proposed RHMTD is zero in the 328
noiseless condition, as follows. Thus, RHMTD is hidden to the BDD-based alert attacker. 329

Te = ||Zl -H,(H;H ) 'Hz, "2 = ”Zo -H,(H;H ) "Hz, "2 @®
330
= "Zo -H,(H;H ) H{H,x, "2 = "Zo - Hyx, "2 =0

O 331

Theorem 2. The RHMTD is hidden to the data-driven alert attacker. 332
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Proof. The data-driven alert attacker collects a set of historical measurements to conduct 333
the UL detection. It is assumed that the attacker arranges all eavesdropped measurement 334
vectors of T time instants into a historical measurement matrix Z" =[z,,z,,...,z,], where 335

7™ eR™T Let us separate T time instants into two parts, i.e., 7 =7, +7,, and accordingly, 336
let Z, and Z,be the historical measurement matrix of T: and T time instants, respec- 337
tively. When there are no MTDs applied in the system over T times instants, the historical 338
measurement matrix is denoted by Z/™ = [ZLO ZZ’OJ. The data-driven attacker first ap- 339

plies the PCA on Z;™ to reduce the dimension, and cluster the the low-dimension data 340

7" as follows: 341
7' = PCA(ZI™) 9) 342
v, = Cluster(Z,") (10) 343
where yi is the cluster index of i-th dimension-reduced measurement vector. 344

Assume the RHMTD model is applied since T>—th time instants, and the historical meas- 345
urement matrix collected by the attacker becomes Z!»' = [ZLO Z, HJ .Due to the hidden- 346

ness operation condition, the measurement vector in the T2 time instants remain un- 347
changed with and without RHMTD, i.e., Z,,=Z,,, . Thus, Z;* =Zp holds. Then, the 348

RH
dimension-reduced vectors of Zp.' are same as that of Z["', i.e, PCA(Zuy)=27Z,". 349

Since the input of clustering algorithm remain unchanged, the RHMTD will not change 350
the clustering results. Therefore, the proposed RHMTD is hidden to the data-driven alert 351
attacker. O 352

Theorem 3. The RHMTD is hidden to the model-based alert attacker. 353

Proof. It is assumed the model-based alert attacker applies the RHMTD model (7) using 354
the eavesdropped measurements z,, and obtains the system configuration H. Even 355
though the input measurement of RHMTD model conducted by the system operator and 356
the attacker are the same (z, = z,), different weights result in different D-FACTS setpoints, =~ 357
i.e, Hgy # H. Due to the hiddenness condition, z; = Hx, holds. The estimation residual 358

computed by the model-based alert attacker using H is zero as follows. 359
ra = ||z — A(ATH) A7z, ||2 = ||z - A(A™A) AT Ax, ||2 (11) 360
= ||z, — Hx,|[, = 0 361

Note that if the attacker happens to use the same weight as that used by the system 362
operator, Hgy = H holds. However, it doesn’t impact the hiddenness of the RHMTD in 363
Theorem 3. It only degrades the attack detection effectiveness of the proposed RHMTD, 364
but it happens with very low probability. o 365

3.4. Detection Effectiveness of the RHMTD against alert attackers 366

In this section, we analyze the attack detection effectiveness of RHMTD against the attacks 367
by the BDD-based and model-based alert attackers due to the straightforward analysis, and then 368
prove that the RHMTD has the maximum detection effectiveness against the PCA-FDI attacks by 369
the data-driven attackers. 370

For the BDD-based alert attacker, the stealthiness of the RHMTD misleads the attacker to 371
adopt the traditional FDI attacks without the aid of topology learning. It is proved that the 372
placement of D-FACTS determines the attack detection effectiveness of MTD against the 373
traditional FDI attacks [12]. The max-rank HMTD placement [5] adopted in this paper 374
guarantees the maximum attack detection effectiveness under the assumption that the 375
reactance of all D-FACTS lines is changed by the D-FACTS devices. This assumption is 376
satisfied by the RHMTD operation by maximizing the line reactance changes introduced 377
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by D-FACTS devices. Therefore, the RHMTD under the max-rank HMTD placement has 378
the maximum detection effectiveness of the attacks by the BDD-based attackers. 379

The model-based alert attacker constructs FDI attacks using H under the HRMTD. 380
According to the MTD detection effectiveness metric [6], [12], [13], the detection 381
effectiveness of RHMTD with H,, against the model-based alert attacker depends on 382

the rank of the composite matrix, i.e., rank(H H w1 . We can apply the graph-theory 383
analysis on deriving the value of rank([ﬁ H,, ] . Note that in the D-FACTS placement 384

problem, it is the difference between the original line reactance (attacker’s knowledge) 385
and defender’s dispatched line reactance that determines the detection effectiveness. 386

A

However, it is the difference between the attacker’s estimated line reactance b, 387

(attacker’s knowledge) and defender’s dispatched line reactance b that plays an important 388
role in the detection effectiveness of the model-based attacker’s attacks. Thus, we treat the 389
difference between the attacker’s estimated line reactance and the defender’s dispatched 390

line reactance, i.e., l;” —b, as the contribution of D-FACTS devices. If Z;a (@) =b() holds 391

for the i-th D-FACTS line, it indicates the D-FACTS device on this line does not exist from 392
the perspective of the alert attacker, referred to as the equivalently removed D-FACTSline 393

hereafter; if Z;a (i) # b(i) , the D-FACTS device on this line works. In this case, if l;a #b 39
holds for all D-FACTS lines, the adopted max-rank HMTD placement ensures the 395
maximum attack detection effectiveness i.e., max(rank([ﬁ HRH])) =p based on the 39
graph-theory analysis of MTD [12]. If the attacker accurately estimates the defender’'s 397
dispatched reactance of some D-FACTS lines, the rank of the composite matrix in MTDs 398
is determined by the number of loops in G, as follows: 399

rank((H M., 1) = p—Ips (12) 400
where /p.. is the number of loopsin G, and G, isa graph constructed from the view 401

of the attackers, consisting of all buses, non-D-FACTS lines and equivalently removed D- 402
FACTS lines. 403

For the data-driven alert attacker, the hiddenness of RHMTD misleads the alert attacker 404
to estimate the principle components of H, before the MTD, rather than that of the actual 405

H,, . Consequently, the stealthiness of the PCA-FDI attack greatly degrades. Specifically, 406

the stealthiness of the PCA-FDI attacks depends on the difference between column space 407
of H, and that of H,, . In Theorem 4, we prove that the proposed RHTMD under the 408

max-rank HMTD placement maximizes the difference between the column space of H, 409

and that of H,,, . such that the stealthy attack space is minimized. 410

Theorem 4. The RHMTD model has the maximized attack detection probability to the PCA-FDI 411
attack by the data-driven alert attacker. 412

Proof. The alert attacker collects historical measurements under RHMTD over T times, 413
and the historical measurement matrix is denoted by Zj. . Similar to the proof of 414
Theorem 3, Z!™ =Z!" holds in the noiseless condition due to the hiddenness of the 415
RHMTD. Therefore, the estimated H matrix under the RHMTD H,," = PCA(Z}') isthe 416
same as that without MTD H/“ = PCA(Z[") in the noiseless condition, ie., 417
Hy = H . Then, PCA-FDI attacks are constructed by a=Hp,'c=H“c. 418

According to the principle of FDI attack [6], if the attack vector a belongs to the 419
column space of H,, ,ie., aecol(H,,), the constructed PCA-FDI attack is stealthy to 420
RHMTD. Specifically, a PCA-FDI attack is stealthy to RHMTD, if a € col(H,,)Ncol(H;"). 421

Then, the dimension of the stealthy attack space can be expressed as: 422
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|col(Hy, ) Neol(H;™)|
= F(H,,) +r(H[) ~r((H H,,)) (13) 423
=2x(n—1)-r((H H,,])

Since attacker’s H{“' is unknown to the system operator, it is assumed that the 424
attacker can accurately approximates the column space of H,, i.e., col(H{"')=col(H,). 425
Then, the dimension of stealthy attack space becomes: 426

|col(H ) Neol (™) =2x (1)~ r([H, Hy,]) 127

The adopted max-rank HMTD placement guarantees the maximum value of 428
r(H, H,,]. Therefore, the dimension of stealthy attack space is minimized under the 429
RHMTD. Therefore, RHMTD has the maximized attack detection effectiveness to PCA- 430

FDI attacks by the data-driven alert attacker. o 431
4. Numerical Results 432
4.1. Test Systems 433

We evaluate the HMTD operation model in the IEEE 14-bus system [29]. We solve 434
the HMTD operation model using fmincon function of MATLAB. We use MATLAB to 435
simulate the BDD-based and model-based alert attackers and use Python to simulate the 436
data-driven alert attacker. The measurement noise is assumed to be Gaussian distributed 437
with zero mean and the standard deviation as 1% of the actual measurement. The 438
threshold of the Chi-square detector in the BDD used by attackers and defenders is set to 439
have a 0.1% false-positive rate. 440

4.2. Uncertainties of RHMTD 441

First, we demonstrate the effectiveness of random weights in providing uncertainties 442
to the line reactance in the RHMTD. Under the same load condition, we conduct the 443
RHMTD operation model for 20 times using different weights. Fig. 4 shows the dispatched 444
line reactance of each D-FACTS line in the 20 RHMTDs. It is seen the reactance of each D- 445
FACTS lines in the 20 RHMTD are different. The uncertainties can contribute to the 446
hiddenness and detection effectiveness of RHMTD to the model-based attacker. However, 447
for some RHMTDs, they have similar reactance of 7-th D-FACTS lines, which will 448
negatively impact the detection effectiveness of RHMTD against the attacks by the model- 449
based alert attacker. This impact will be evaluated in Section 4.4. 450

0.6 .
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=
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o L L 3 L 3

Index of DF-ines 451
Fig. 4. The reactance of D-FACTS-lines in 20 RHMTDs under a given load. 452

We utilize the L1-norm distance between the line reactance generated by the system 453
operator and that by the model-based attacker to measure the uncertainties in the RHTMD. 454
Based on the distance, we demonstrate the impact of MTD magnitude on the uncertainties. 455
Under each MTD magnitude, we generate one RHMTD operation point for the system 456
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operator as the reference, and then generate 50 RHMTD operation points as the model-
based alert attacker’s estimation by running the RHMTD model. Figure 5 shows the
boxplot of the L1-norm distance under different MTD magnitudes. It is seen that a larger
MTD magnitude generally results in a large L1-norm distance. The median of the L1-norm
distance under 0.2 MTD magnitude is lower than that under 0.18. It indicates that a larger
MTD magnitude doesn’t guarantee a larger L1-norm distance or a better attack detection

effectiveness against the model-based alert attacker due to the random uncertainties.
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Fig. 5. L1-norm distance under MTD magnitudes.

4.3. Hiddenness of RHMTD against Three Alert Attackers

In this section, we evaluate the hiddenness of RHMTD to three alert attackers. First, we eval-
uate the hiddenness of RHMTD to the BDD-based alert attacker by comparing the defense stealth-
iness probability (DSP) of RHMTD and RMTD under different MTD magnitudes. The DSP is a
widely used metric to measure the MTD hiddenness from the perspective of attackers, which is
defined as the ratio of the number of MTDs hidden to attackers to the total number of launched
MTDs.

To study the impact of MTD magnitude on the MTD hiddenness, we increase the
MTD magnitude from 0.02 to 0.2 with an incremental of 0.02. For each MTD magnitude,
we generate 100 RMTDs and 100 RHMTDs under different load conditions, respectively.
In addition, we repeat this MTD generation process under two different noise conditions
to evaluate the impact of noise on the MTD hiddenness. The DSP of RMTD and RHMTD
against the BDD-based alert attacker is shown in Fig. 6. As seen, when the MTD
magnitude is small (less than 0.04), it is likely that RMTD remains hidden to the attacker.
This is because the tiny line reactance mismatch has limited capability to increase the
estimation residual in the attacker’s BDD. With the increase of MTD magnitude, the DSP
drops to zero, indicating that RMTD is no longer hidden to the attacker. For the RHTMD,
its DSP is larger than 0.95 regardless of MTD magnitudes and noise standard deviation,
indicating the hiddenness to the BDD-based attacker.
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Fig. 6. The hiddenness of RMTD and RHMTD against the BDD-based alert attacker under different noise
conditions.
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Then, we evaluate the hiddenness of RHMTD to the model-based alert attacker under 488
different noise conditions. We generate 100 RHMTD operation setpoints under different 489
load conditions under MTD magnitudes from 0.02 to 0.2 with an incremental of 0.02. The 490
measurements of RHMTD are sampled in the noiseless condition and noisy conditions 491
with standard deviation o=1%, o=2%, and o =3%, respectively. It is assumed that 492
the model-based attacker applies the RHMTD model (7) to estimate the line reactance 493
dispatched in the field, and then applies SE to calculate the estimation residual to detect 494
the existence of MTD. The DSP of RHMTD against the model-based alert attacker is shown 495
in Fig. 7. In the noiseless condition, the DSP of RHMTD is always 1.0 regardless of MTD 496
magnitudes. In noisy conditions, the DSP of RHMTD is more than 95%. It is seen that 497
MTD magnitude and noise magnitude don’t impact the hiddenness of RHMTD. 498
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Fig. 7. The hiddenness of RHMTD against the model-based alert attacker under noiseless and noise 500
conditions. 501

Finally, we demonstrate the drawbacks of RMTD against the data-driven alert 502
attacker, and further evaluate the hiddenness of RHMTD to the data-driven alert attacker. 503
To simulate historical measurements free from MTD collected by the data-driven alert 504
attacker, the power flow problem is solved for multiple time instants. In this paper, we 505
use 100 load conditions to generate historical measurements of 100 time instants. First, we 506
generate 3 RMTD groups under 100 different load conditions under 0.05, 0.10, and 0.15 507
MTD magnitudes, respectively. Specifically, let RMTD 1, RMTD 2, and RMTD 3 refer to 508
these generated RMTD groups, and RMTD i (i = 1, 2, 3) has 100 different operation 509
setpoints for each MTD magnitude. After the SCADA measurements are collected by the 510
attacker, a dimension reduction algorithm, i.e., PCA, is applied on the 100 measurement 511
vectors under RMTDs and 100 measurement vectors free of MTD to visualize the 512

difference between the normal data (no MTD measurements) and MTD measurements. 513
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Fig. 8. The projection of RMTD and no MTD measurements in the R? space by PCA under different MTD
magnitudes.

The projection of RMTD and no MTD measurement data in the R* space under
different MTD magnitudes are shown in Fig. 8. When the MTD magnitude is 0.05, the
RMTD data points and no MTD data points are overlapped, indicating data-driven alert
attacker cannot detect the existence of RMTD. When the MTD magnitude becomes 0.10,
RMTD 1 is projected into a new cluster, while RMTDs 2 and 3 are still overlapped with no
MTD data. When the MTD magnitude increases to 0.15, RMTDs 1 and 2 forms two new
clusters, and data points of RMTD 3 also remain separated from no MTD data. For the
data-driven attacker, a new cluster indicates the detection of MTD. Thus, the hiddenness
of RMTD degrades with the increase of MTD magnitude, which is consistent with the
performance of RMTD against the BDD-based alert attacker.

To evaluate the hiddenness of RHMTD, we apply RHMTD algorithm under 100 load
conditions with 0.20 MTD magnitude. For comparison, we also generate 10 RMTD groups
with 0.20 MTD magnitude. The projection of RHMTD, 10 RMTD and no MTD
measurements in the R? space is shown in Fig. 9. As seen, under 0.20 MTD magnitude, all
RMTD groups form new clusters that locate far from the cluster of no MTD measurements.
All data points of RHMTD remain inside of the cluster of the no MTD, as shown in Fig.
10. Therefore, these RHMTD are stealthy to the data-driven attacker. Since RHMTDs with
0.20 MTD magnitude could remain stealthy, it infers that the RHMTD with a smaller MTD
magnitude could also remain stealthy, according to the impact of the MTD magnitude on
the MTD stealthiness.
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Fig. 9. The projection of RHMTD, 10 RMTD and no MTD measurements in the R? space.
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Fig. 10. The projection of RHMTD and no MTD measurements in the R? space.

We compare the hiddenness of RHMTD with two existing HMTD methods, i.e.,

watermarking HMTD [21] and model-based HMTD [4] against three alert attacker models.

We can see that the proposed RHMTD is hidden to three alert attackers, consistent with
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the hiddenness theorems in Section 3.3. It is seen that these three HMTD methods are all ~ 550
hidden to BDD-based alert attackers. This is because, as the first proposed alert attacker 551
in the literature, these HMTD methods consider the estimation residual changes in the 552
alert attacker’s BDD. All three HMTD methods are hidden to data-driven alert attackers 553
since these HMTD methods avoid significant measurement changes before and after MTD. 554
For the proposed model-based alert attacker, the DSP of watermarking HMTD is lower 555
than its DSP against BDD-based alert attacker. It is because the randomness in the 556
watermarking HMTD makes the attacker’s estimated line parameters different from the 557
actual dispatched parameters. The difference results in an increase in the attacker’s 558
estimation residual. Even though the model-based HMTD is hidden to the model-based 559
alert attacker, the attacker can accurately estimate actual dispatched line parameters due 560
to the lack of randomness in model-based HMTD. As a consequence, the model-based 561
HMTD cannot detect the attacks by the model-based alert attacker, which is shown in Fig. 562

12 and Table 4. 563
Table 3. DSP of existing HMTD methods and the RHMTD against three alert attackers. 564
Method BDD-AA DD-AA M-AA
Watermarking HMTD 949%, 100% 83%
Model-based HMTD 93%, 100% 96%
RHMTD 95% 100% 96%
565
4.4. Attack Detection Effectiveness of the RHMTD against Three Alert Attackers 566

In this subsection, we evaluate the attack detection effectiveness of the RHMTD 567
against three alert attackers. First, we prepare the defense pool of RHMTD. We increase 568
the MTD magnitude from 0.02 to 0.2 with an incremental of 0.02, and then generate 100 569
RHMTD operation setpoints for each MTD magnitude. In total, there are 1000 RHMTD 570
operation setpoints as the defense pool. In the simulation, the widely-used attack 571
detection probability is applied to measure the attack detection effectiveness of an MTD, 572
which is defined as the ratio of number of FDIs detected by the MTD to the total number 573
of FDI attacks. 574

For the BDD-based attacker, RHMTD misleads the attacker to construct traditional FDI 575
attacks without the aid of topology learning. Therefore, the BDD-based alert attacker 576
constructs 100 single-bus FDI attacks using H, for each RHMTD in the defense pool. The 577
ADP of RHMTD against the BDD-based alert attacker under different MTD magnitudes 578
is shown in Fig. 11. The ADP increases with the MTD magnitude. This is because the tiny 579
line changes cannot cause sufficient residual incremental in the defender’s BDD, and thus 580
the ADP under the low MTD magnitudes is low. When the MTD magnitude is larger than 581
0.08, the ADP becomes 93.3%. This is because MTD can not detect the single-bus FDI 582
attack on Bus 8, which only has one transmission line. This is the drawback of MTD 583
identified by our previous work [30]. 584
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Fig. 11. The ADP of RHMTD against the BDD-based alert attacker under different MTD magnitudes.

The model-based attacker utilizes the same RHMTD model to estimate the reactance
of D-FACTS lines and uses H to construct FDI attacks. We compare the detection
effectiveness of the RHTMD and HMTD against the model-based attacker. We generate
100 HMTD under each MTD magnitude. For each HMTD and RHMTD, the model-based
attacker launches 100 FDI attacks. The ADP of RHMTD and HMTD against the model-
based alert attacker under different MTD magnitudes is shown in Fig. 12. It is seen that
HMTD cannot detect the attacks by the model-based attacker. The lack of uncertainties
causes the model-based attacker can accurately estimate the reactance of D-FACTS lines,
and the attacks can bypass the defender’s BDD. Compared with the low ADP of HMTD,
the ADP of the RHMTD can reach 80%. We can see that the ADP of RHMTD against the
model-based attacker is lower than the ADP of RHMTD against the BDD-based attacker.
This is because the reactance of some D-FACTS lines estimated by the attacker is very
close to the actual reactance dispatched by the defender. For a single-bus FDI attack by
the model-based attacker, if line parameters of all connected lines associated with the

target bus are accurately or approximately estimated, the FDI attack is very likely to
remain stealthy to the RHMTD. The detection effectiveness of RHMTD against the model-

based alert attacker is analyzed in Section 3.4.
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Fig. 12. The ADP of RHMTD and HMTD against the model-based alert attacker under different MTD
magnitudes.

The data-driven attacker constructs PCA-FDI attacks under RHMTD with 0.2 MTD
magnitude. It is assumed that the attacker collects the historical measurements of 5000-
time instants. The RHMTD is conducted under each time instant. In the PCA-FDI attacks,
the number of the attacked buses are 1, 3, and 5, respectively. Here, the incremental
voltage of the PCA-FDI attack is defined as ¢=4x0, , where 0, is the actual voltage

angle of the power system at the attacked time instant, and k is the FDI magnitude varying
from 0.05 to 0.4. The ADP of RHMTD against the PCA-FDI attacks by the data-driven alert
attacker is shown in Fig. 13. It is seen that the ADP increases with the FDI attack
magnitude and the number of attacked buses.
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Fig. 13. The ADP of RHMTD against the data-driven alert attacker. 617

618

We compare the attack detection effectiveness of RHMTD with two existing HMTD 619
methods against three alert attacker models. We use the Chi-2 detector for three HMTD 620
methods to detect FDI attacks. Due to small line parameter changes, the watermarking 621
HMTPD has very low ADP against three attackers. Model-based HMTD has the same ADP 622
as RHMTD against the BDD-based alert attacker. However, its ADP against the model- 623
based alert attacker is close to zero. This is because the attacks constructed by the model- 624
based alert attacker are based on accurately estimated line parameters. RHMTD has 625
higher ADP than other HMTD methods due to its randomness and sufficient line 626

impedance changes. 627
Table 4. ADP of existing HMTD methods and RHMTD against three alert attackers. 628
Method BDD-AA M-AA DD-AA
Watermarking HMTD 37.8% 47.3% 45%
Model-based HMTD 93.9% 6.0% 59%
RHMTD 93.6% 75.1% 68%
5. Conclusions 629

This paper points out the drawbacks of existing HMTD operation methods, including 630
the delay of attack detection, extra costs on secure meters, and the lack of randomness. To 631
fully evaluate the hiddenness of HMTD methods, this paper first summarizes the BDD- 632
based alert attacker model and the data-driven alert attacker model, and then proposes a 633
novel model-based alert attacker model. By analyzing the three alert attackers, this paper 634
proposes a novel random-based HMTD, which maximizes the weighted square of line 635
reactance changes, and introduces random variables into the weights of the objective func- 636
tion. In addition, the proposed model utilizes the novel derived hiddenness operation 637
conditions as constraints to ensure the measurements before and after MTD remain un- 638
changed. We theoretically prove the hiddenness of the proposed RHMTD to three alert 639
attacker models, and analyze the effectiveness of RHMTD in detecting FDI attacks con- 640
structed by three alert attackers. 641

The simulation results show that the random weights in RHMTD successfully intro- 642
duce the randomness into the setpoints of D-FACTS devices. The randomness makes the 643
model-based alert attacker difficult to accurately estimate the actually dispatched set- 644
points of D-FACTS devices by the defender. The RHMTD method is hidden to both the 645
BDD-based and model-based alert attackers with more than 95% DSP. The RHMTD 646
method is also hidden to the data-driven alert attacker, since the projection of RHMTD 647
and no MTD measurements overlaps after the dimension reduction. Simulation results 648
also evaluate the detection effectiveness of RHMTD against three alert attackers. The tra- 649
ditional HMTD fails to detect FDI attacks by the model-based alert attacker, while 650
RHTMD can detect these attacks with 80% ADP. RHTMD is effective in detecting FDI 651
attacks by the BDD-based and data-driven alert attackers with more than 90% ADP. 652
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In the future, we will extend the proposed HMTD operation method in the DC power
system model to the AC power system model. In addition, we will define more alert ad-
versary models using advanced machine-learning techniques and limited data resources.
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