

1 Electron dynamics in extended systems within real-time time-dependent density 2 functional theory

3 Alina Kononov,¹ Cheng-Wei Lee,² Tatiane Pereira dos Santos,³ Brian Robinson,³ Yifan
4 Yao,³ Yi Yao,^{4,5} Xavier Andrade,⁶ Andrew David Baczewski,¹ Emil Constantinescu,⁷
5 Alfredo A. Correa,⁶ Yosuke Kanai,⁵ Normand Modine,⁸ and André Schleife^{3,9,10,*}

6 ¹*Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87123, USA*

7 ²*Colorado School of Mines, Golden, CO 80401, USA*

8 ³*Department of Materials Science and Engineering,*

9 *University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA*

10 ⁴*Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA*

11 ⁵*Department of Chemistry, University of North Carolina at Chapel Hill, NC, 27595, USA*

12 ⁶*Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States*

13 ⁷*Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL 60439, USA*

14 ⁸*Material, Physical, and Chemical Sciences Center,*

15 *Sandia National Laboratories, Albuquerque, NM 87123, USA*

16 ⁹*Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA*

17 ¹⁰*National Center for Supercomputing Applications,*

18 *University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA*

19 (Dated: February 25, 2023)

20 Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density
21 functional theory has emerged as a promising first-principles framework to describe electron real-time
22 dynamics. Here we discuss recent implementations around this approach, in particular in the context
23 of complex, extended systems. Results include an analysis of the computational cost associated with
24 numerical propagation and when using absorbing boundary conditions. We extensively explore the
25 shortcomings for describing electron-electron scattering in real time and compare to many-body
26 perturbation theory. Modern improvements of the description of exchange and correlation are
27 reviewed. In this work, we specifically focus on the Qb@ll code, which we have mainly used for
28 these types of simulations over the last years, and we conclude by pointing to further progress
29 needed going forward.

30 Keywords: computation/computing, quantum effects, radiation effects, metal, semiconducting, 2D materials

31 I. INTRODUCTION

32 Real-time time-dependent density functional theory
33 (RT-TDDFT) has attracted tremendous attention in the
34 context of accurate theoretical characterization of mate-
35 rials recently and over the years. It is arguably one of
36 the most promising approaches to simulate the real-time
37 quantum dynamics of electrons as well as its coupling to
38 ion dynamics. In particular, its promising balance be-
39 tween accuracy and computational cost make this tech-
40 nique increasingly applicable also for development, de-
41 sign, and discovery of materials including for electronic,
42 optical, electrochemical applications, amongst others.¹
43 Recent applications include laser excitation of materials,²
44 interaction of materials with energetic ions,³ and non-
45 linear excitation dynamics.⁴ The framework is imple-
46 mented in many software packages and readily usable
47 on a large variety of computational resources, including
48 use of graphics processing units (GPUs). This makes the
49 technique applicable to many diverse materials from just
50 a few atoms to complex extended structures consisting of
51 hundreds of atoms.⁷⁷

52 In this work we provide examples for recent develop-
53 ments and applications that we accomplished and use
54 these to illustrate the need for future improvements. This
55 includes discussing the underlying approximations and

56 the path towards a computationally more feasible and
57 widely applicable implementation of this approach for
58 complex and extended systems. Simulations of com-
59 plex, extended materials can benefit from less main-
60 stream approaches such as orbital-free TDDFT,^{5,6} sub-
61 system TDDFT,⁷ or time-dependent density functional
62 tight binding techniques.⁸ However, in what follows, we
63 focus on plane-wave RT-TDDFT and discuss our own
64 work of using and extending the Qb@ll code.^{9–12}

65 First, the time stepping that is used in RT-TDDFT
66 critically determines the computational cost. Second, we
67 also give a specific example for how absorbing boundary
68 conditions can mitigate high computational cost when
69 studying two-dimensional materials. Next, the physics of
70 charged projectile ions or electrons interacting with the
71 electronic system of the target is briefly discussed and
72 the computational cost of using an electron wave packet
73 instead of a classical Coulomb potential in a plane-wave
74 framework is assessed. Subsequently, we analyze in
75 detail the RT-TDDFT description of electron dynamics and
76 find shortcomings in capturing the time scale of electron-
77 electron scattering mediated thermalization. These re-
78 sults are compared to the literature and discussed relative
79 to *GW* simulations within many-body perturbation the-
80 ory. Finally, we discuss recent progress in describing the
81 electron-electron interaction via exchange and correlation

in RT-TDDFT, and the associated computational cost.¹²⁷ All RT-TDDFT simulations presented here were performed with the Qb@ll code and extensions thereof,^{9–12}¹²⁹ and we conclude our discussion with a brief outlook on future directions of this software, hoping to stimulate citing developments in the field of RT-TDDFT for years to come, including for computational materials discovery and development, as is the goal of this focus issue.¹³³

II. REAL-TIME PROPAGATION OF TIME-DEPENDENT KOHN-SHAM EQUATIONS

Excited electron dynamics can be modeled from first principles with real-time time-dependent density functional theory (TDDFT).^{13,14} In this approach, the electron density $n(\mathbf{r}, t)$ evolves over time according to the time-dependent Kohn-Sham (TDKS) equations:

$$\begin{aligned} i \frac{\partial}{\partial t} \phi_j(\mathbf{r}, t) &= \hat{H}[n](t) \phi_j(\mathbf{r}, t), \\ n(\mathbf{r}, t) &= \sum_j f_j |\phi_j(\mathbf{r}, t)|^2. \end{aligned} \quad (1)$$

Here, ϕ_j are single-particle Kohn-Sham orbitals with occupations f_j . The single-particle Hamiltonian,

$$\hat{H}[n](t) = \hat{T} + \hat{V}_{\text{ext}}(t) + \hat{V}_{\text{Har}}[n] + \hat{V}_{\text{XC}}[n], \quad (2)$$

contains the kinetic energy operator \hat{T} , the external potential $\hat{V}_{\text{ext}}(t)$ due to nuclei and any external fields,¹⁵⁴ the Hartree electron-electron potential $\hat{V}_{\text{Har}}[n]$, and the exchange-correlation potential $\hat{V}_{\text{XC}}[n]$. The electronic system may be coupled to nuclear motion through Ehrenfest dynamics.¹⁵

Explicit time dependence may arise within $\hat{V}_{\text{ext}}(t)$ from an external perturbation such as a moving projectile ion or a dynamic electromagnetic field. Depending on the gauge choice, an external vector potential $\mathbf{A}_{\text{ext}}(\mathbf{r}, t)$ may enter into the kinetic energy as $\hat{T} = \frac{1}{2} (-i\nabla + \mathbf{A}_{\text{ext}}(\mathbf{r}, t))^2$. To apply a uniform external electric field to an infinite periodic system, it is often convenient to work in the velocity gauge, where the electric field is generated by the vector potential^{16–19}

$$\mathbf{E}_{\text{ext}}(t) = -\frac{1}{c} \frac{d\mathbf{A}_{\text{ext}}(t)}{dt}. \quad (3)$$

Alternatively, the length gauge, which instead involves the scalar potential $\mathbf{E}_{\text{ext}}(t) \cdot \mathbf{r}$, can be appropriate for finite systems²⁰ or with the use of maximally localized Wannier functions.²¹ Both capabilities have been implemented in the plane-wave TDDFT code Qbox/Qb@ll,^{9–11}¹⁷⁶ with options for static fields, delta kicks, and dynamic laser pulses.^{19,21}

In the vector-potential formulation, the vector potential is chosen such that its time derivative gives the proper electric field according to Eq. (3). For example, the delta

kick is implemented by a step function in the vector potential. In practice this means the propagation is done with a constant vector potential whose amplitude is given by a desired intensity of the kick (as the initial condition is the ground state calculated without a vector potential). A laser field is simply simulated by an oscillatory electric field with constant or time-dependent amplitude. Since the dipole is not properly defined for extended systems, the polarization is obtained from the macroscopic current.¹⁶ We use the usual definition of the quantum-mechanical current

$$J(t) = \int d\mathbf{r} \sum_j f_j \phi_j^*(\mathbf{r}, t) \nabla \phi_j(\mathbf{r}, t) + c.c. , \quad (4)$$

which is not strictly correct when using non-local pseudopotentials.¹⁸ However the correction term is small for electric perturbations.²²

Both the computational cost and accuracy of real-time TDDFT simulations are in large part governed by the numerical algorithm used to integrate the TDKS equations, Eq. (1). While a simple explicit integration scheme such as fourth-order Runge-Kutta (RK4) is suitable for modest-size systems,⁹ very large supercells and short-time propagation require higher accuracy²³ offered by time-reversible schemes such as the enforced time-reversal symmetry (ETRS) method.^{11,24} We specifically showed this for systems containing vacuum.²⁵ More efficient algorithms which reduce time-to-solution without sacrificing accuracy would accelerate the study of excited electron dynamics in materials and enable consideration of larger systems of practical interest over longer simulation time scales, including defect systems, material surfaces, and 2D hetero-structures.

Below we briefly present our recent efforts towards a systematic assessment of numerous explicit time-steppers and several variants of the ETRS approach. Interfacing Qbox/Qb@ll^{9,11} with the PETSc numerical library²⁶ provided us with seamless access to a wide range of Runge-Kutta (RK)²⁷ and strong stability preserving (SSP) RK²⁸ methods. Each algorithm's performance was assessed for a sodium dimer test system over a range of time step sizes $\Delta t = 0.01 – 0.5$ atomic units (at. u.), and computational cost was measured as the average wall time per simulated time. After perturbing the initially ground-state system by slightly displacing the atoms away from their equilibrium positions, the electronic response was evolved for 100 time steps on a single processor. For the most promising methods, additional tests on a 112-atom graphene supercell confirmed the qualitative trends observed for the smaller test system.

Since exact time evolution should conserve both energy and charge, we compute an error metric given by the product of average errors in total energy E and net charge Q per simulation time:

$$\delta Q \delta E = \left\langle \frac{Q(t) - Q(0)}{t} \right\rangle \left\langle \frac{E(t) - E(0)}{t} \right\rangle , \quad (5)$$

180 where brackets denote time averages,

$$\left\langle \frac{Q(t) - Q(0)}{t} \right\rangle = \frac{1}{t_f} \int_0^{t_f} \frac{Q(t) - Q(0)}{t} dt, \quad (6)$$

182 and t_f is the total time. This form was chosen to give
 183 a reasonable error measure for both linear and oscillatory
 184 error accumulation models. In particular, using
 185 this definition δQ has a reasonable long-time limit both
 186 when $Q(t) - Q(0)$ can be modeled as $\propto t$ and when
 187 $Q(t) - Q(0)$ can be modeled as $\propto \sin(\omega t)$.²⁹ The tol-
 188 erable error level for a particular application depends on
 189 the system studied and the observable of interest. For
 190 example, electronic stopping power calculations in bulk
 191 materials^{30–39} extract total energy differences typically
 192 about 5–50 Ha over the course of a ~ 1 fs simulation, so
 193 $\delta E \ll 0.1$ Ha/at. u. suffices and δQ is not important be-
 194 yond its correlation with δE . In contrast, simulations of
 195 ion-irradiated 2D materials^{25,40–45} involve smaller energy
 196 transfers around 0.2–5 Ha and may additionally exam-
 197 ine sensitive charge transfer processes such as emission of
 198 0.1–10 electrons into vacuum. Thus, these calculations
 199 require $\delta Q \delta E \ll 10^{-5}$ e Ha/at. u.²

200 From our data in Fig. 1 we find that ETRS generally
 201 outperforms all explicit time steppers tested: it achieves
 202 lower computational cost at an acceptable error level.
 203 The only competitive Runge-Kutta scheme is the fifth-
 204 order Bogacki-Shampine algorithm (RK5BS),⁴⁶ which is
 205 even more accurate than ETRS for small step sizes (see
 206 Fig. 1a). However, while RK5BS becomes unstable for
 207 $\Delta t \gtrsim 0.1$ at. u. in our sodium dimer simulations, ETRS
 208 maintains tolerable error rates for step sizes twice as
 209 large, allowing lower computational cost. Among the
 210 SSP methods tested, the 4th-order schemes are most suc-
 211 cessful but do not improve over ETRS’s accuracy, stabil-
 212 ity, or speed (see Fig. 1b). Lower-order SSP schemes in-
 213 volving many (≥ 16) stages do allow larger step sizes than
 214 ETRS, but the expense associated with a large number
 215 of stages outweighs the increased stability. Overall, we
 216 find that ETRS achieves lowest time-to-solution. Recent
 217 work⁴⁷ also tested the Adams-Bashforth and Adams-
 218 Bashforth-Moulton classes of explicit time steppers, find-
 219 ing that these methods can outperform RK under certain²³⁶
 220 conditions, but their performance has not yet been com-²³⁷
 221 pared to ETRS. ²³⁸

222 Several possible schemes exist to approximate the ex-²³⁹
 223 ponentials of the Hamiltonian involved in ETRS.²⁴ Here,²⁴⁰
 224 we use Taylor expansions for their simplicity and com-²⁴¹
 225 pare different orders in Fig. 1c. Consistent with asser-²⁴²
 226 tions made in Ref. 24, we find that 4th or 5th-order Tay-²⁴³
 227 lor expansions are optimal. A 6th-order expansion is less²⁴⁴
 228 stable, while a 3rd-order expansion sacrifices accuracy²⁴⁵
 229 without significantly reducing computational cost. ²⁴⁶

230 Other implicit methods may yet prove more efficient²⁴⁷
 231 than ETRS. One promising option is Crank-Nicolson²⁴⁸
 232 (CN), which some other TDDFT implementations suc-²⁴⁹
 233 cessfully employ.^{20,31,48–52} We find that CN is generally²⁵⁰
 234 more accurate than ETRS (see Fig. 1c), perhaps thanks²⁵¹
 235 to the unitarity of the Padé form of the CN propaga-²⁵²

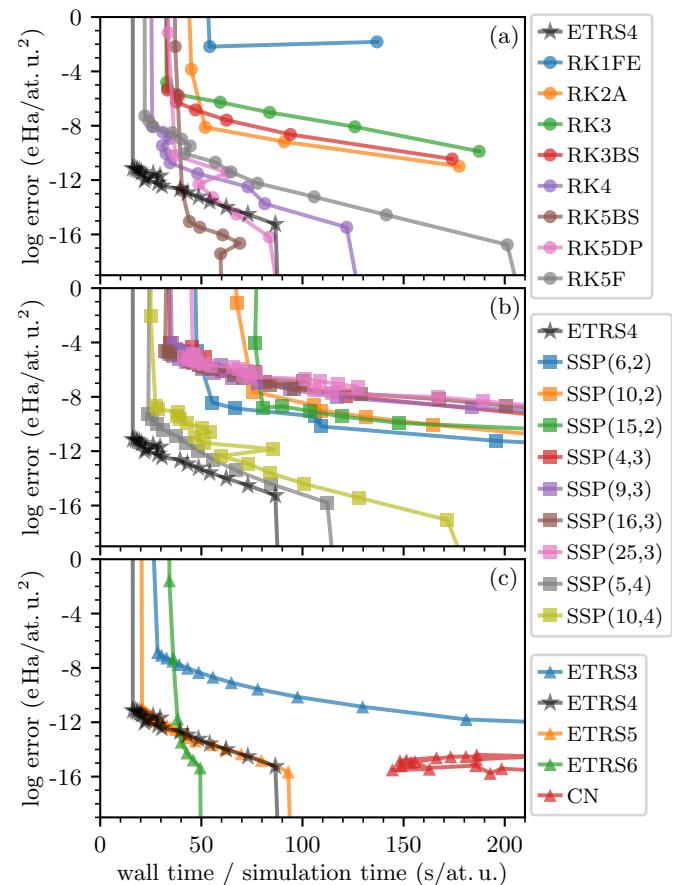


FIG. 1. Performance of 4th-order ETRS (black stars) compared to (a) all Runge-Kutta time-steppers available in PETSc, (b) various strong stability preserving Runge-Kutta time-steppers available in PETSc, and (c) other variants of ETRS and a naive application of PETSc’s Crank-Nicolson (CN). RKN[X] denotes an N th-order Runge-Kutta scheme where X is an additional PETSc identifier, typically the initials of original developers. SSP(M, N) denotes an M -stage, N th-order SSPRK method, and ETRSN denotes ETRS using N th-order Taylor expansions to approximate exponentials.

tor in contrast to the truncated Taylor expansion used in the ETRS implementation. Although CN can maintain accuracy even for large time steps, i.e., stability restrictions do not limit this method, it involves a costly nonlinear solve. The large number of $\hat{H}\phi$ evaluations performed by PETSc’s algorithm for this nonlinear solve made CN prohibitively expensive in this work (see Fig. 1c). However, further optimization, efficient preconditioners, or the use of predictor-corrector methods that obviate the nonlinear solve^{48,53} could alleviate this issue. Implicit schemes such as CN could be particularly advantageous for ultrasoft pseudopotentials or the projector augmented-wave method, where the left-hand side of the TDKS equations involves an overlap matrix acting on the time derivative of the pseudized orbitals.⁵¹ Since explicit time-stepping schemes require the application of the inverse of this matrix at each time step, this complication

narrows the prospective efficiency gap between explicit and implicit schemes. However, this work used norm-conserving pseudopotentials⁵⁴ and thus did not benefit from CN.

Explicit RK methods cannot conserve energy, and some of the least expensive implicit RK methods, such as CN, do not in general. In general, a direct way to alleviate errors in invariant quantities represented by inner-product norms is to control the time step. One can reduce the time step adaptively if the energy loss exceeds a certain level. Moreover, a promising strategy that also applies to explicit methods is to use a time-step adaptation that adjusts step length such that the energy is conserved exactly in finite precision. These methods are referred to as relaxation RK and rely on modifying the prescribed time step (typically reducing it by a small fraction) so that the solution at each of these modified steps preserves energy.^{55,56} Explicit methods are conditionally stable; nevertheless, the stability regions can be optimized for a specific eigenvalue portrait, which is a promising strategy to improve their performance. Furthermore, new machine learning developments in neural ODE may provide new ways to accelerate the time step³⁰⁸ping process.⁵⁷

Finally, the parallel transport gauge approach⁵⁸ applies a unitary transformation to the Kohn-Sham orbitals to instead solve for slower varying orbitals that reproduce the same electron density but introduce an additional term in the TDKS equations. This promising method can be combined with an efficient time stepper to produce speedups of 5–50 over standard RK4 for molecules,⁵⁸ solids containing up to 1024 atoms,⁵⁸ and mixed states³¹⁴ in model systems.⁵⁹

III. COMPLEX ABSORBING POTENTIAL FOR SECONDARY ELECTRON EMISSION

After examining the computational cost associated with real-time propagation in the previous section, we also explored the need for a large vacuum region as part of the simulation cell when studying electron emission, e.g. from surfaces or two-dimensional (2D) materials. When using periodic boundary conditions, vacuum lengths of 150 a_0 or more are necessary to prevent the unphysical interaction of the electrons emitted from both sides of the 2D material across the boundary of the simulation cell, resulting in a high computational demand.⁴³ To address this problem, absorbing boundaries⁶⁰ are frequently employed to emulate open boundary conditions. Absorbing boundaries based on a complex absorbing potential (CAP)⁶¹ alter the Hamiltonian, Eq. (2), by adding an artificial complex (imaginary) potential in a defined region of the simulation cell, resulting in a non-Hermitian Hamiltonian and non-unitary time-evolution operator.³³⁷ This approach has been successfully used in simulating the real time dynamics of wave functions of 2D materials, including secondary electron emission due to elec-

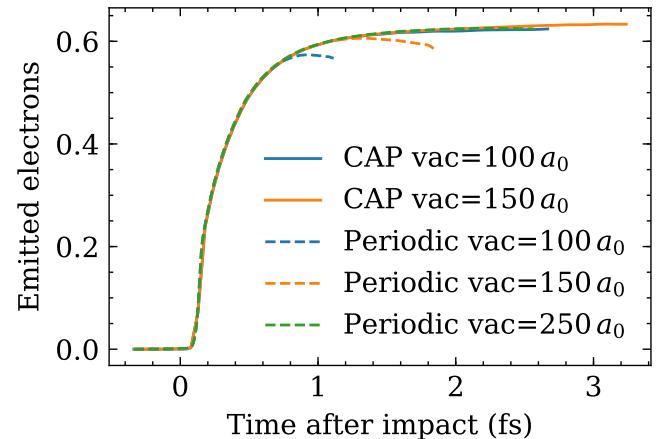


FIG. 2. Total emitted electrons in vacuum, after a channeling proton⁴³ with a velocity of 1.79 at. u. impacts graphene. When using a CAP, the difference between different vacuum sizes converges much earlier.

tron irradiation⁶² and angular resolved photo-emission spectra.⁶⁰

We implemented an absorbing potential into the Qb@ll^{9,11} code that follows the form

$$V_{\text{CAP}}(z) = \begin{cases} -i \cdot W \sin^2 \left(\frac{(z-z_s) \cdot \pi}{2 \cdot d_z} \right), & z_s < z < z_s + 2d_z \\ 0, & \text{otherwise} \end{cases} \quad (7)$$

where W defines the maximum of the CAP, and z_s and d_z are the position of the front boundary and the half width of the CAP.

Here, we compare to our previous work on secondary electron emission of graphene under proton irradiation,⁴³ and demonstrate that a CAP can significantly reduce finite size effects, leading to an acceleration of the simulation by reducing the vacuum size. We use the same simulation cell and computational parameters as described in Ref. 43. The target graphene is placed at the center of the simulation cell, at $z = 0$ on the x - y plane. Emited electrons in vacuum are determined by integrating the electron density over a region farther than $10.5 a_0$ from the graphene. We assess finite size effects for different vacuum sizes along the direction of proton travel for a channeling proton with 1.79 at. u. of velocity. Following Ref. 43, we treat the maximum of the emitted electron curves in Fig. 2 as the total number of emitted electrons.

Comparing the resulting number of total emitted electrons for periodic boundary conditions, the data in Fig. 2 shows a difference of 3 % when 150 a_0 and 250 a_0 of vacuum are used, whereas the difference is 8.22 % between 100 a_0 and 250 a_0 of vacuum. This shows that a large vacuum size is needed to obtain converged results. For comparison, a CAP of the form of Eq. (7) is placed at the boundary of the simulation cell. We set $W = 15 E_h$, $z_s = 40 a_0$, and $d_z = 10 a_0$ for 100 a_0 of vacuum, and $W = 20 E_h$, $z_s = 63.75 a_0$, and $d_z = 11.25 a_0$ for 150 a_0 of

vacuum. With these parameters for the CAP, the difference of emitted electrons for 100 a_0 and 150 a_0 of vacuum is 1.14 %. The reduced finite size error with a CAP allows using smaller vacuum regions of 100 a_0 or less, instead of 150 a_0 , reducing the simulation time per iteration from 61.44 core hours to 40.96 core hours, a 33 % speedup, when running on ALCF Theta. In general, depending on the targeted problem, a careful convergence test of the vacuum size is required for 2D systems.

350 IV. QUANTUM-MECHANICAL PROJECTILE: 351 ELECTRON WAVE PACKET

352 In the previous section and in most of the literature
353 on electronic stopping, the excitation mechanism is de-
354 scribed using a *classical* projectile, i.e., a time-dependent
355 Coulomb potential moving at constant velocity. It is
356 currently unclear to what extent this approximation be-
357 comes unreliable for light projectiles such as protons or
358 electrons. Electrons are particularly small and light-
359 weight compared to protons or heavy-ion projectiles and
360 the electronic wavelength can reach the scale of inter-
361 atomic distances. Hence, the approximation of using a
362 classical Coulomb potential to describe electron projec-
363 tiles is expected to be more severe. The explicit break-
364 down of this approximation is currently not studied well
365 and systematically.

366 Treating the incident electron fully quantum-
367 mechanically is, hence, a promising alternative.
368 Following the work by Tsubonoya *et al.*,⁶³ the initial
369 incident electron can be modeled as a Gaussian-shaped
370 wave packet at the start of simulation,

$$371 \psi^{\text{WP}}(\mathbf{r}, t_0) \equiv \left(\frac{1}{\pi d^2} \right)^{\frac{3}{4}} \exp \left[-\frac{(\mathbf{r} - \mathbf{b})^2}{2d^2} + i\mathbf{k} \cdot \mathbf{r} \right], \quad (8)$$

372 where d , \mathbf{b} , and \mathbf{k} are the parameters for defining the
373 spread, the center location, and the wave vector of the
374 wave packet, respectively. The wave vector \mathbf{k} represents
375 the group velocity of the incident electron and is the sin-
376 gle parameter that controls the kinetic energy of the inci-
377 dent electron. The time-evolution of this wave packet is
378 described by the time-dependent Kohn-Sham equations,
379 Eq. (1), on the same footing as the rest of the system.
380 Thus, the time-dependent Kohn-Sham orbitals include
381 all electrons in the target material and the incident elec-
382 tron of the wave packet. The electron density is then the
383 sum of the electron density of the target material and the
384 electron density of the wave packet,

$$385 n(\mathbf{r}, t) = \sum_{i=1}^{N/2} |\psi_i(\mathbf{r}, t)|^2 + |\psi^{\text{WP}}(\mathbf{r}, t)|^2, \quad (9)$$

386 where N is the number of electrons in the target material.⁴²⁰

387 In the following we characterize the convergence be-
388 havior of the Gaussian wave packet with respect to plane-
389 wave cutoff energy (see Fig. 3). We simulate Gaussian⁴²¹

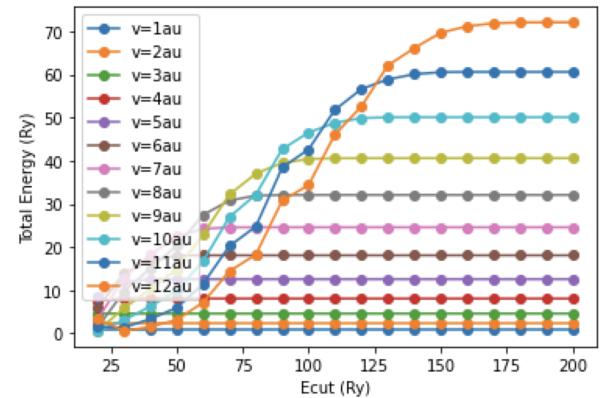


FIG. 3. Dependence of the total energy of electron wave packets with different kinetic energy moving through vacuum on the plane-wave cutoff used for the simulation.

wave packets with different velocities and find that high cutoff values are necessary to converge fast wave packets, possibly leading to a limitation of these simulations. We also note that the wave packet itself spreads over time, rendering comparison to the classical electron approximation challenging. Finally, the computation of electronic stopping power S is complicated by the fact that the projectile, if treated quantum mechanically, is part of the electronic system and the approach of computing the stopping power from the increase dE/dx of the electronic total energy is no longer applicable. Solving this problem remains an open question for future work.

390 V. REAL-TIME ELECTRON DYNAMICS IN 391 ALUMINUM

392 In the following, we explore using real-time TDDFT
393 to simulate electronic thermalization in metals, which is
394 generally assumed to be fast, on the order of 10–100 fs.
395 Previous studies applying the *GW* method to compute
396 the self energy for Al support this assumption, where
397 the lifetimes mediated by electron-electron scattering are
398 found to be a few tens of fs at energies further away from
399 the Fermi energy and on the order of 100 fs when nearing
400 the Fermi energy.^{64,65} Given these short time scales, real-
401 time TDDFT in principle can be used to perform statistical
402 ensemble sampling of an electronic system in internal
403 thermodynamic equilibrium and to calculate expectation
404 values of an observable under different conditions.⁶⁶ This
405 is similar to Mermin DFT,⁶⁷ but such a real-time ap-
406 proach can potentially capture additional dynamic effects
407 using the same exchange-correlation functional.

408 To this end, Modine *et al.*⁶⁶ previously explored the
409 idea of performing statistical mechanics on electronic sys-
410 tems, in analogy to simulations of statistical thermody-
411 namics using classical molecular dynamics. As a first

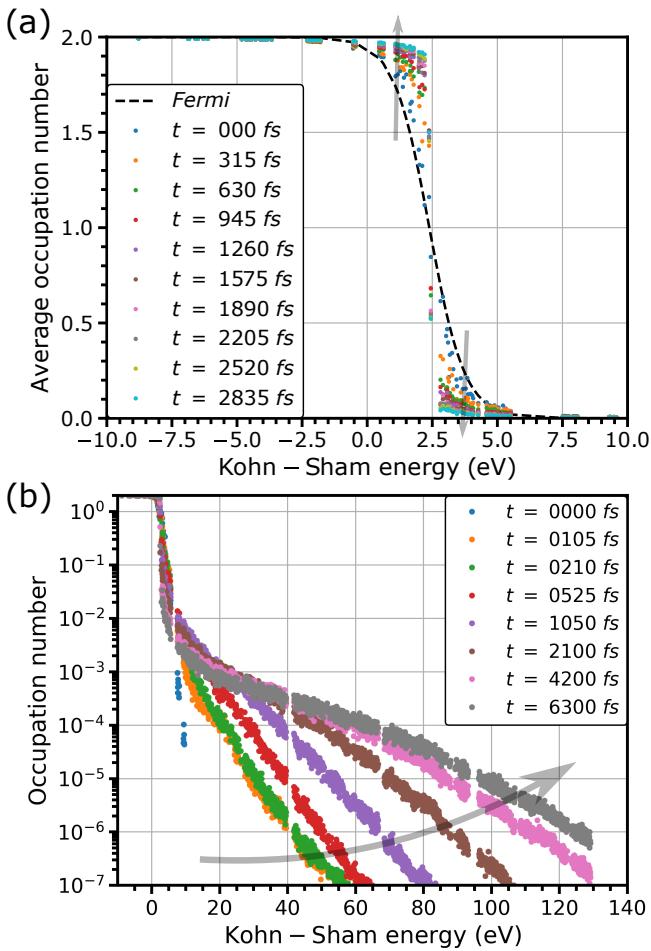


FIG. 4. Electron dynamics computed for Al with fixed ions using real-time TDDFT. In (a) we show occupation numbers of the different Kohn-Sham states, averaged over 315 fs of simulation time, as a function of their Kohn-Sham energy. “000 fs” shows the average taken from $t=0$ fs to $t=315$ fs etc. In (b) we plot a single snapshot at shown simulation time for high-energy eigenstates. Semi-transparent grey arrows guide the eyes for how occupation numbers evolve over time.

way that the distribution of its occupation numbers is close to the Fermi distribution at a given temperature. For Fig. 4 we used 7900 K and at $t = 0$, we can see that the dark blue dots loosely follow the Fermi distribution of the same temperature. This is, by construction, expected for initial states that are thermal states.⁶⁶ We would then expect the occupation numbers to fluctuate around an average that corresponds to this Fermi distribution.

In contrast to this expectation, Fig. 4a clearly shows that the distribution deviates more and more from the initial Fermi distribution as time propagates, indicated by semi-transparent gray arrows. If we focus on the dynamics near the Fermi energy, the drop in occupations at the Fermi surface becomes steeper and steeper, which is usually associated with lower electronic temperature. However, the total energy of the system is conserved. To analyze this further, we also investigate high-energy eigenstates in Fig. 4b, showing that their occupation numbers grow over time, indicating that electrons are promoted to higher energy states and providing a mechanism for energy conservation.

Since scattering of electrons into higher energy states during electronic thermalization is counter-intuitive, we first thoroughly examine the effect of the initial wavefunction and several numerical parameters. We ensured that over the simulation time of about 6.3 ps, the total energy of the system remains conserved within acceptable numerical error of < 0.1 meV/atom, suggesting that the numerical time integrator remains stable for the whole simulation. We also tested that this behavior is independent of the cell size by comparing the dynamics of occupation numbers of high-energy eigenstates in the 32-atom cell to a 108-atom cell, finding again a high-energy tail emerging over time. Furthermore, we excluded the symmetry of the lattice as a factor by comparing the dynamics for relaxed ($T = 0$ K) atomic positions vs. a $T = 7900$ K molecular dynamics snapshot. In addition, we excluded an influence of the particular real-time TDDFT implementation by comparing the Qb@ll and Soccero⁶⁸ codes.

The occupation number of eigenstate i at simulation time t , $f_i(t)$, is defined as

$$f_i(t) = \sum_{j=1} |\langle \phi_i | \psi_j(t) \rangle|^2, \quad (10)$$

where the reference states ϕ_i can be either the DFT ground state or instantaneous adiabatic eigenstates of the time-dependent KS Hamiltonian. An influence of the reference states used to compute the occupation number was excluded by comparing the adiabatic ground state and the eigenstates of the instantaneous TDKS for projection. Finally, we also compared different approaches of creating the initial electronic excitation by (i) using the above described thermal state,⁶⁶ (ii) promoting one electron from valence to conduction band by changing the Kohn-Sham occupation number, and (iii) imposing a vigorous time-dependent displacement of randomly selected atoms. In all cases we observed the same behavior

step towards this idea, they initiated a 100 fs RT-TDDFT simulation using adiabatic LDA for an excited electronic system of Al with fixed ions. They showed that although the distribution of the time-averaged occupation numbers is Fermi-like, it seems to decrease more sharply near the Fermi energy and takes longer to reach asymptotic values.⁶⁶ To further understand this behavior, we performed significantly longer RT-TDDFT simulations (> 1 ps) for the same Al system. We used the same plane-wave cut-off energy of 20 Ry, Γ -only Brillouin zone sampling, and the same 32-atom cell. In our simulations, this 32-atom cell is either an ideal crystal or a snapshot of a molecular dynamics simulation with a temperature of 7900 K.

In Fig. 4a we show the resulting long-term electron dynamics in Al with fixed ions, simulated with real-time TDDFT up to ~ 6 ps. Following the approach by Modine⁴⁹⁵ *et al.*,⁶⁶ the initial wavefunction was prepared in such a

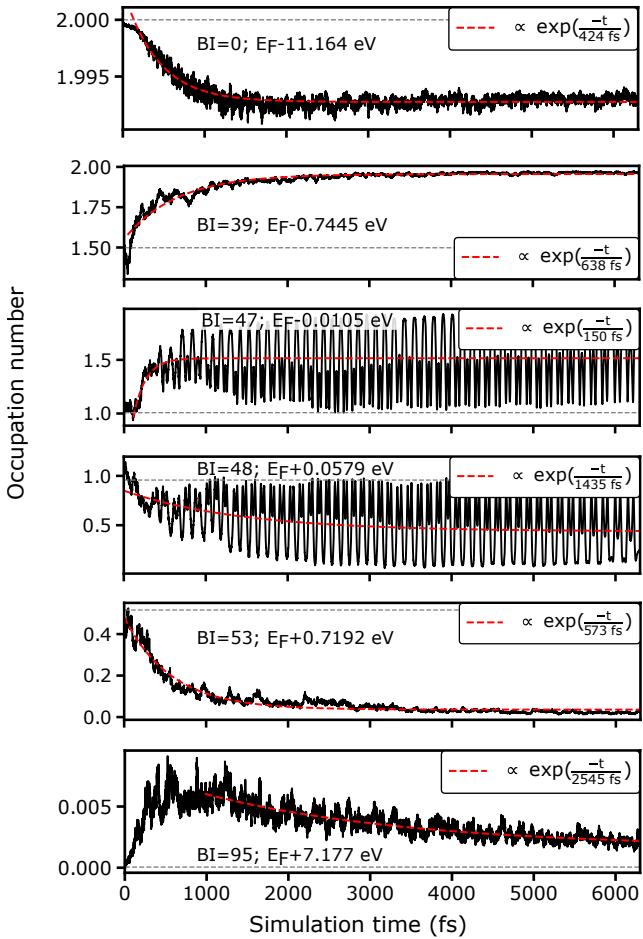


FIG. 5. Occupation number as a function of simulation time for selected eigenstates. These, otherwise randomly chosen, eigenstates have initial occupation numbers of roughly 0.0, 0.5, 1.0, 1.5, and 2.0. Red dashed curves show the fit against the exponential $a + b \cdot \exp(-t/c)$ to extract the characteristic time scale. Grey dashed horizontal lines indicate the expected occupation number for a given eigenstate under Fermi distribution. Texts describe the band index (BI) and energy difference from Fermi energy at $T = 7900$ K. We found no clear connection of the occupation number dynamics with the energy of the state.

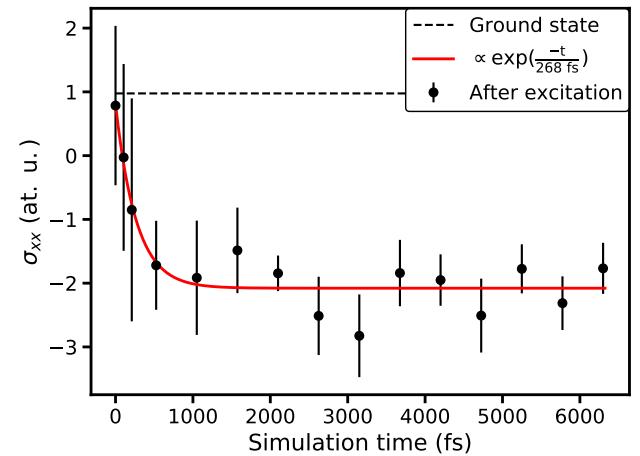


FIG. 6. Time dynamics of the σ_{xx} component of the stress tensor, after starting from a thermal state generated with a Fermi temperature of 7900 K. Stresses are sampled sparsely across the whole simulation and, at each sampled time point, the stress values of the subsequent 10 fs are collected to compute average (solid circles) and standard deviation (error bars). The red curve shows a fit against $\sigma_{xx} = a + b \cdot \exp(-t/c)$ to extract the characteristic time scale.

511 are associated with TDDFT electron-hole excitation energies. The expectation that temperature induced excitations are most dominant near the Fermi energy is consistent with our observation of such oscillations only 512 between electrons and holes near the Fermi energy.

513 Next, we notice that all states are evolving away from 514 the occupation number expected based on a Fermi distribution of $T = 7900$ K (gray dashed horizontal lines in 515 Fig. 5). We also notice that the dynamics for the 516 BI=95 state is not monotonic and the occupation number 517 changes in a completely different direction before and 518 after the reflection at around 700 fs. In addition, fitting 519 the data before 700 fs leads to a characteristic time 520 much shorter than the fit to the data after 700 fs. Such 521 non-monotonic behavior is not limited to eigenstates with 522 large BI but is commonly observed for other eigenstates. 523 For these, we only extract the characteristic time for the 524 second part of the dynamics (see the red dashed curve 525 for the BI=95 example in Fig. 5). From the extracted 526 characteristic times we found that BI=95, which is far 527 from the Fermi energy, relaxes more slowly than BI=48, 528 which is near the Fermi energy. This behavior is different 529 from Fermi liquid theory, which predicts that the lifetime 530 of an eigenstate is longer when its energy is close to the 531 Fermi energy.⁶⁹ For this reason, and because the excited 532 Al system evolves away from a Fermi distribution, applicability 533 of this relation between Fermi level and lifetime 534 remain unclear.

535 The result is an important, albeit negative, result that 536 points to the inapplicability of a theory such as TDDFT (at 537 least in its current form) to thermalize electrons. One 538 potential shortcoming of this analysis may be that from 539

497 shown in Fig. 4.

498 Next, we extract a characteristic relaxation time by 500 fitting this data to an exponential decay. We randomly 501 select a few eigenstates across the energy spectrum with 502 initial occupations of about 0.0, 0.5, 1.0, 1.5, and 2.0 503 and show their dynamics in Fig. 5. For the following 504 discussion, we refer to them by their band index (BI = 505 0, 39, 47, 48, 53, and 95, respectively). Figure 5 shows 506 that BI=48, which is above the Fermi energy, couples 507 with BI=47, which is below the Fermi energy, since their 508 dynamics shows the same oscillation frequency but is an- 509 tiphasic. The frequency of these oscillations is about 510 10 THz, which equals half the energy distance between 511 these states. We conclude that the observed oscillations 512

543 a fundamental point of view, the Kohn-Sham occupation
 544 number is not an observable in TDDFT; although that
 545 would be an illuminating reason for this inability.

546 To address this concern, we also analyze stress, which is
 547 a functional of the time-dependent electron charge density.
 548 In Fig. 6, we show the real-time dynamics of the
 549 stress on the simulation cell after excitation for the σ_{xx}
 550 component of the stress tensor. Fitting to this data yields
 551 a characteristic time of 268 fs. The σ_{yy} and σ_{zz} compo-
 552 nents have significantly different characteristic times of
 553 889 and 691 fs, respectively, but their dynamics are also
 554 monotonic. Since a set of independent complex numbers
 555 with random phases and magnitudes are drawn from a
 556 distribution to construct the initial thermal state,⁶⁶ the
 557 stress and its dynamics are not expected to be isotropic
 558 for any given thermal state, but would average out over
 559 many thermal states for the same temperature. We note
 560 that these time scales are in the same range as those
 561 of dynamics of the eigenstates with monotonic behavior.
 562 Hence, based on the dynamics of occupation numbers
 563 and stress, we conclude that equilibrium is reached over
 564 a time scale of 1 ps. At energies above the Fermi level,
 565 $E - E_F$, of about 1.0 eV, experimental results report val-
 566 ues around 15 fs.⁷⁰ Computational results include around
 567 30 fs in Ref. 69, 20 fs from the $GW + T$ method,⁶⁵ and 70
 568 fs in Ref. 64. There is an unresolved discrepancy between
 569 Ref. 64 and 69, but the literature agrees Al qualitatively
 570 follows Fermi liquid theory with band structure effects
 571 only giving rise to small quantitative differences. Not
 572 only is this electron-electron relaxation time significantly
 573 longer than these results, but we also find that the system
 574 evolves into an unknown distribution with a lower Fermi
 575 temperature near the Fermi level and with high-energy
 576 tails, compared to the initial Fermi distribution.

577 In order to address these discrepancies, it is necessary
 578 to incorporate electron-electron and electron-phonon de-
 579 cay channels into the RT-TDDFT Ehrenfest molecular
 580 dynamics framework. Electron-electron scattering mech-
 581 anisms should be treated on the level of the exchange-
 582 correlation functional and we view hybrid functionals and
 583 overcoming the adiabatic approximation typically used
 584 in TDDFT as possible paths forward. In addition, ef-
 585 forts to better describe the energy decay channels from
 586 excited electrons into the system of ions are appearing
 587 in the literature.⁷¹ In addition, we note that these diffi-
 588 culties in modeling relaxation times within RT-TDDFT
 589 are exacerbated in strongly correlated systems, requiring
 590 adequate approximations to exchange and correlation.

591 Next, we pursue an alternative route to compute⁶⁰¹
 592 the electron-electron scattering lifetime from first prin-⁶⁰²
 593 ciples, based on equating the scattering term to the⁶⁰³
 594 imaginary part of the electronic self-energy, $\Gamma_{n\mathbf{k}} =$ ⁶⁰⁴
 595 $-2 \text{Im} \{ \Sigma(\varepsilon_{n\mathbf{k}}) \} / \hbar$.⁷² Computing the imaginary part of⁶⁰⁵
 596 the self energy within the GW framework provides life-⁶⁰⁶
 597 times, using a procedure described by Ladstädter *et al.*⁶⁴⁶⁰⁷
 598 Here we use a computationally more efficient approach⁶⁰⁸
 599 by fitting $-2 \text{Im} \{ \Sigma(\varepsilon_{n\mathbf{k}}) \}$ to a scattering rate of the⁶⁰⁹
 600 form $\alpha(\varepsilon_{n\mathbf{k}} - E_F)^2$, predicted by Landau's theory of the⁶¹⁰

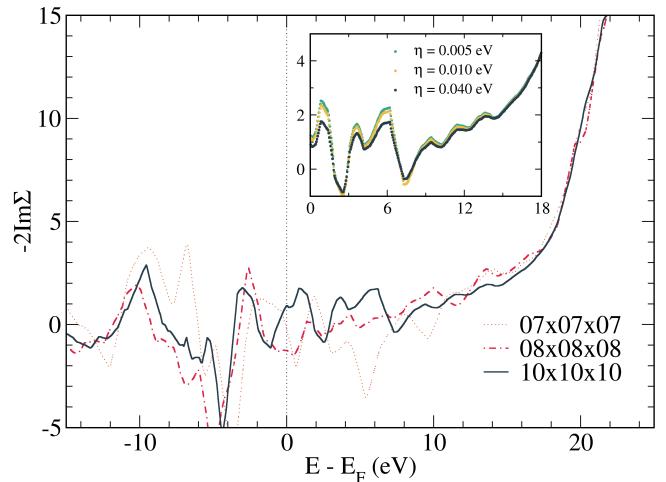


FIG. 7. Convergence of G_0W_0 calculations with increasing \mathbf{k} -point sampling. The inset shows the results of the $10 \times 10 \times 10$ \mathbf{k} -point calculations with three different η values. The energy range of the inset is the same energy range used for the electron-electron lifetime fit (see text).

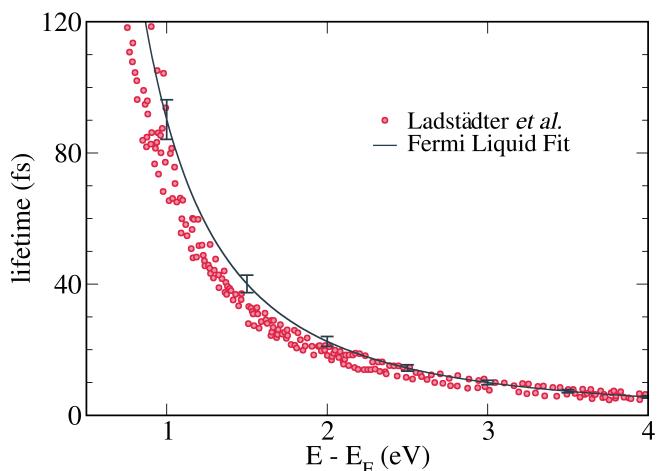


FIG. 8. Electron-electron lifetimes obtained from the fit to Landau's theory of the Fermi liquid for the first conduction band at the Γ point, computed using a $10 \times 10 \times 10$ \mathbf{k} -point grid and $\eta = 0.005$ eV. Data points were calculated by Ladstädter *et al.*⁶⁴ The error bars show the standard deviation for relaxation times from different \mathbf{k} -point grids and η values.

Fermi liquid.⁷² We compute the imaginary part of the self-energy by performing a G_0W_0 calculation where the complex shift η of the Kramers-Kronig transformation is set to a value much smaller than what is used in typical GW band structure calculations. This allows us to accurately resolve the imaginary part of the self-energy near the Fermi energy, see inset of Fig. 7, and Fig. 7 also illustrates \mathbf{k} -point grid convergence tests of our G_0W_0 calculations.

Next, we fit the $-2 \text{Im} \{ \Sigma(\varepsilon_{n\mathbf{k}}) \}$ values for the first

611 conduction band at the Γ point, computed using a₆₆₇
 612 $10 \times 10 \times 10$ \mathbf{k} -point grid and the smallest value of $\eta =$ ₆₆₈
 613 0.005 eV, over an energy range between 0 and 18 eV to₆₆₉
 614 the form from Landau's theory of the Fermi liquid. The₆₇₀
 615 value of α from this fit gives the hot electron lifetimes as₆₇₁

$$616 \quad \tau_{n\mathbf{k}} = \frac{59 \text{ fs eV}^2}{(\varepsilon_{n\mathbf{k}} - E_F)^2}, \quad (11)$$

617 and is plotted in Fig. 8. We include standard deviation₆₇₃
 618 error bars at integer and half-integer energy values which
 619 compares the lifetimes of the $10 \times 10 \times 10$ and $\eta = 0.005$ ₆₇₄
 620 eV case to the lifetimes computed from $8 \times 8 \times 8$ \mathbf{k} -point₆₇₅
 621 grids with η values of 0.005, 0.01, and 0.04 eV and life₆₇₆
 622 times from $10 \times 10 \times 10$ \mathbf{k} -point grids with η values of₆₇₇
 623 0.01 and 0.04 eV. The average of the α values from this₆₇₈
 624 set of calculations was computed to be 0.0116 (eV)^{-1} .₆₇₉
 625 We are satisfied with the use of a $10 \times 10 \times 10$ \mathbf{k} -point₆₈₀
 626 grid and $\eta = 0.005$ eV due to the error bars being small₆₈₁
 627 and the relative error of α being 3.4% when compared₆₈₂
 628 to the average α value. Figure 8 shows that our calcu₆₈₃
 629 lated electron-electron lifetimes from the Fermi liquid fit₆₈₄
 630 match the lifetimes from the full GW method₆₄ well, jus₆₈₅
 631 tifying the future use of this method. In particular, we₆₈₆
 632 note that this approach reduces the computational cost₆₈₇
 633 compared to full GW simulations, possibly extending its₆₈₈
 634 range of applicability into the high-excitation or warm₆₈₉
 635 dense matter regime. Our calculation of the electron₆₉₀
 636 electron lifetimes predicts that electrons located close to₆₉₁
 637 the Fermi energy have lifetimes that are on the order of₆₉₂
 638 a few hundred femtoseconds and larger. For electrons at₆₉₃
 639 energies further away from the Fermi energy, our calcu₆₉₄
 640 lation predicts smaller lifetimes on the order of tens of₆₉₅
 641 femtoseconds and smaller.₆₉₆

642 The relaxation times from the GW electronic self en₆₉₇
 643 ergy are about one order of magnitude smaller than our₆₉₈
 644 results from TDDFT. Since we have excluded numerical₆₉₉
 645 convergence parameters and finite size effects as possible₇₀₀
 646 reasons, we tentatively attribute the unexpected behavior₇₀₁
 647 observed in our TDDFT simulations to the limitations of₇₀₂
 648 ALDA, which is local in time and space. The limitations₇₀₃
 649 of ALDA for electron-electron scattering were studied be₇₀₄
 650 fore for 1-D model systems⁷³ and ALDA is expected to₇₀₅
 651 underestimate the scattering probability. In addition,₇₀₆
 652 even the “exact” adiabatic functional lacks the “peak₇₀₇
 653 and valley” features observed in truly exact exchange₇₀₈
 654 correlation potentials and gives rise to spurious oscillations₇₀₉
 655 in charge density.⁷³ More generally an explanation₇₀₉
 656 for the lack of electron-electron thermalization could be
 657 related to the lack of explicit static correlation in the
 658 theory, similarly to the problem of electron-*ion* thermal-₇₁₀
 659 ization.⁷⁴ One could imagine that the promotion of elec₇₁₁
 660 trons into higher energy states in a 3D metal might be₇₁₂
 661 analogous to the charge oscillations observed in the 1-₇₁₃
 662 D model. However, the actual limit of adiabatic semi-₇₁₄
 663 local functionals like ALDA remains unclear for con-₇₁₄
 664 densed systems. Future investigation using XC function-₇₁₅
 665 als that address self interaction errors (see e.g. Sec. VI)₇₁₆
 666 or non-adiabatic memory effects (e.g. the Vignale-Kohn₇₁₇

functional^{75,76}) are needed. However, such computationally intensive simulations remain impractical at the point of writing. We also note that other considerations such as choice of pseudopotentials or convergence with respect to Brillouin zone sampling could potentially affect the results to a minor extent.

VI. EXCHANGE AND CORRELATION

Local or semi-local approximations of exchange and correlation (XC) are most prevalent in applications of TDDFT to study the dynamics of interacting electrons. This typically means using the adiabatic local-density approximation (ALDA) or its generalized gradient approximation (GGA) extension, but in more recent works^{77,78} also modern meta-GGA approximations such as the strongly constrained and appropriately normed (SCAN) functional^{79,80} are employed within RT-TDDFT. More accurate and computationally tractable functionals are always desirable and specifically the influence of long-range corrections, self-interaction errors, and the adiabatic approximation remain unexplored e.g. for electron capture and emission processes. First-principles simulations are particularly likely to provide most urgently needed insight when applied to *complex* or heterogeneous systems such as molecules adsorbed at semiconductor surfaces. For these, it becomes important to examine and advance the extent to which XC functionals can correctly model long-range charge transfer and exciton formation/dissociation in RT-TDDFT.

As a practical approach to move forward, recent progress includes using hybrid XC functionals within RT-TDDFT.⁸¹ However, the plane-wave implementation would carry a computational cost typically about two orders of magnitude higher than that of semi-local functionals,⁷⁷ rendering applications to complex, extended systems challenging. The dominant cost of these calculations is the evaluation of exchange integrals. To alleviate this problem, some of us pursued the propagation of maximally localized Wannier functions⁸² in RT-TDDFT, significantly reducing the computational cost of evaluating exact exchange integrals.⁷⁷ Maximally-localized Wannier functions (MLWF) are propagated by²¹

$$i \frac{\partial}{\partial t} w_l(\mathbf{r}, t) = [\hat{A}^{ML} + \hat{H}[\{w_i\}]] w_l(\mathbf{r}, t), \quad (12)$$

where the maximal localization operator \hat{A}^{ML} is an exponential of a unitary matrix that minimizes the spread of the propagating Wannier functions, $\min \left\{ \sum_n^N \left[\langle w_n | \hat{\mathbf{r}}^2 | w_n \rangle - \langle w_n | \hat{\mathbf{r}} | w_n \rangle^2 \right] \right\}_U$, and the position operator is $\langle \hat{\mathbf{r}} \rangle = \frac{L}{2\pi} \text{Im} \left\{ \ln \langle \psi | e^{\frac{i2\pi}{L} \hat{\mathbf{r}}} | \psi \rangle \right\}$. For insulating systems with a finite energy gap, the nearsightedness principle of electrons⁸³ allows high spatial localization of time-dependent MLWF orbitals. This can then be

718 exploited for efficiently implementing hybrid exchange-⁷⁷⁴
 719 correlation functionals. In particular, the spatially lo-⁷⁷⁵
 720 calized nature allows to reduce the number of exchange-⁷⁷⁶
 721 integrals

$$722 \quad EX = -\frac{1}{2} \sum_{ij} \iint d\mathbf{r} d\mathbf{r}' \frac{w_i^*(\mathbf{r}, t) w_j(\mathbf{r}, t) w_j^*(\mathbf{r}', t) w_i(\mathbf{r}', t)}{|\mathbf{r} - \mathbf{r}'|} \quad 778$$

$$723 \quad (13) \quad 781$$

724 that needs to be evaluated. While time-dependent Kohn-⁷⁸²
 725 Sham states are generally itinerant, only minimal spa-⁷⁸³
 726 tial overlap is expected for distant time-dependent ML-⁷⁸⁴
 727 WFs and neglecting exchange integrals based on the ge-⁷⁸⁵
 728 ometric centers and spreads of the time-dependent ML-⁷⁸⁶
 729 WFs in the integrand significantly reduces computational-⁷⁸⁷
 730 cost.⁷⁷ Table I illustrates this reduction of computational-⁷⁸⁸
 731 cost for a system of 512 crystalline silicon atoms (2048⁷⁸⁹
 732 electrons), when using a cutoff distance for evaluating-⁷⁹⁰
 733 the exchange integrals needed for the PBE0 hybrid XC-⁷⁹¹
 734 approximation.⁷⁷ For this test system the computational-⁷⁹²
 735 cost is reduced by an order of magnitude, using a cutoff-⁷⁹³
 736 distance of $25 a_0$. We note that due to the nearsighted-⁷⁹⁴
 737 ness principle, this required cutoff distance does not scale-⁷⁹⁵
 738 with system size. Consequently, the MLWF approach be-⁷⁹⁶
 739 comes increasingly appealing for simulations of large sys-⁷⁹⁷
 740 tems, because a larger fraction of the exchange integrals-⁷⁹⁸
 741 can be removed while preserving accuracy. For ground-⁷⁹⁹
 742 state calculations, such efforts exist^{84,85} and we expect⁸⁰⁰
 743 the MLWF approach to be crucial to making hybrid XC-⁸⁰¹
 744 functionals applicable also in the context of RT-TDDFT⁸⁰²
 745 for studying complex systems in the near future.

746 As an alternative hardware-based paradigm, the high-⁸⁰⁴
 747 computational efficiency of hybrid XC functional for-⁸⁰⁵
 748 planewave (RT-TD)DFT codes can be alleviated by-⁸⁰⁶
 749 adopting GPU architectures. This is also driven by-⁸⁰⁷
 750 the growing hybrid CPU/GPU architecture for high-⁸⁰⁸
 751 performance computing, aiming to achieve exascale su-⁸⁰⁹
 752 percomputers. Such approach has been successful for-⁸¹⁰
 753 ground-state DFT calculations^{86,87} and RT-TDDFT sim-⁸¹¹
 754 ulations using parallel transport gauge.⁸⁸ Andrade *et*⁸¹²
 755 *al.* developed a new planewave (TD)DFT code, INQ,⁸⁹
 756 based on GPU architectures. Computationally intensive⁸¹⁴
 757 methods like hybrid XC functionals are supported in INQ,⁸¹⁵
 758 but the speedup remains to be explored in the future.

759 In terms of how hybrid XC approximations can-⁸¹⁷
 760 advance (RT-TD)DFT methodologies, screened-⁸¹⁸
 761 range-separated⁹⁰ and dielectric-dependent hybrid-⁸¹⁹
 762 approximations⁹¹ have emerged as an interesting-⁸²⁰
 763 paradigm in recent years. Such advanced hybrid XC-⁸²¹
 764 approximations could provide an alternative to the-⁸²²
 765 computationally expensive many-body perturbation-⁸²³
 766 theory framework and potentially enable an accurate-⁸²⁴
 767 description of exciton dynamics in large and complex-⁸²⁵
 768 systems within RT-TDDFT. Screened range-separated
 769 hybrid functionals have been used in linear-response
 770 TDDFT to successfully model excitonic features in⁸²⁶
 771 the absorption spectrum. These effects, as well as
 772 an accurate description of long-range charge-transfer-⁸²⁷
 773 excitations, typically go beyond standard semilocal⁸²⁸

774 approximations for exchange and correlation. Range-⁷⁷⁵
 775 separated hybrid XC approximations are expected to
 776 enable a description of charge-transfer dynamics in het-⁷⁷⁷
 777 erogeneous systems⁹² such as molecule-semiconductor
 778 interfaces within RT-TDDFT in combination with the
 779 MLWF approach.

780 While the above-discussed approaches renders hy-⁷⁸¹
 781 brid XC functionals more attractive, the computational-⁷⁸²
 782 cost still remains significantly higher than for local and-⁷⁸³
 783 semi-local approximations. Alternatively, we recently-⁷⁸⁴
 784 demonstrated¹⁹ the use of a long-range corrected (LRC)-⁷⁸⁵
 785 kernel in the context of RT-TDDFT. The resulting vector-⁷⁸⁶
 786 potential accounts for the long-range screened electron-⁷⁸⁷
 787 hole interaction and is capable of describing excitonic-⁷⁸⁸
 788 effects in optical spectra. At the same time, this RT-⁷⁸⁹
 789 TDDFT implementation exhibits computational benefits-⁷⁹⁰
 790 using massively parallel computing and retains a descrip-⁷⁹¹
 791 tion of nonlinear effects that are not accessible within the-⁷⁹²
 792 linear response approximation. We also note that this en-⁷⁹³
 793 ables more general future developments around real-time-⁷⁹⁴
 794 TD current-DFT.

795 Finally, we note that recent work on the temperature-⁷⁹⁶
 796 dependence of exchange-correlation models is instruc-⁷⁹⁷
 797 tive to consider in working toward a dynamical treat-⁷⁹⁸
 798 ment of thermalization based on TDDFT. Numerous-⁷⁹⁹
 799 results have established formal foundations for incorpo-⁸⁰⁰
 800 rating electronic temperature in DFT⁹³ and TDDFT^{94,95}
 801 beyond the standard Mermin approach.⁶⁷ Building on-⁸⁰²
 802 these foundations, high-quality reference calculations for-⁸⁰³
 803 the uniform electron gas at non-zero temperature^{96,97}
 804 have been used to create exchange-correlation function-⁸⁰⁵
 805 als⁹⁸ and applied to materials in extreme but equili-⁸⁰⁶
 806 brated conditions.⁹⁹ However, these results concern elec-⁸⁰⁷
 807 trons that are equilibrated at a fixed temperature, not elec-⁸⁰⁸
 808 trons that are in the process of equilibrating. Because the thermal contribution to exchange-correlation-⁸⁰⁹
 809 is typically relatively small, it is reasonable to assume-⁸¹⁰
 810 that thermalization through electron-ion scattering can-⁸¹¹
 811 be captured by existing adiabatic functionals. However, thermalization through electron-electron scattering will-⁸¹²
 812 require accounting for physics beyond the adiabatic ap-⁸¹³
 813 proximation, which is notoriously challenging. We note-⁸¹⁴
 814 one potentially promising direction from plasma physics, in-⁸¹⁵
 815 which a correction accounting for electron-electron-⁸¹⁶
 816 scattering beyond a mean-field treatment was proposed-⁸¹⁷
 817 as a mechanism to improve agreement with quantum-⁸¹⁸
 818 kinetic theory¹⁰⁰ for the thermal conductivity of non-⁸¹⁹
 819 degenerate hydrogen plasmas. Investigations of discrep-⁸²⁰
 820 ancies in TDDFT or *GW* for comparably simple systems-⁸²¹
 821 might yield insights into deficiencies in these approaches, though extrapolating to degenerate systems would likely-⁸²²
 822 be a challenge.

VII. SUMMARY AND FUTURE DIRECTIONS

823 We discussed various interesting lines of recent devel-⁸²⁴
 824 opment in the context of using real-time time-dependent

TABLE I. The wall-clock time per iteration for modeling crystalline silicon using a 512-atom simulation cell with the periodic boundary conditions. The planewave cutoff energy of 25 Ry was used with PBE norm-conserving pseudopotentials. ETRS integrator was used with the integration time step of 0.05 at.u. The calculations were performed on 704 processors on 16 Broadwell nodes (Intel Xeon E5-2699A v4 -2.4 GHz) of Dogwood cluster at the University of North Carolina at Chapel Hill. Only MPI (no open-MP/SIMD) was used for this assessment.

	Cutoff distance (a_0)	EXX integrals evaluated (%)	Energy drift per iteration (E_h)	Timer per iteration (s)	Relative iteration time
PBE	N/A	N/A	$\leq 1.0 \times 10^{-10}$	19.9	0.009
PBE0	N/A	100	$\leq 1.0 \times 10^{-10}$	2227.8	1
PBE0	25	7.4	4.1×10^{-7}	271.3	0.12
PBE0	30	9.0	3.6×10^{-7}	278.4	0.13

829 density functional theory for simulations of electron dy-⁸⁷⁰
 830 namics on femto- to pico-second time scales. While our⁸⁷¹
 831 efforts have not yet revealed an integrator that outper-⁸⁷²
 832 forms the enforced time-reversal symmetry method, op-
 833 timization of the stability region of explicit methods, or
 834 incorporation of machine-learning techniques may turn
 835 out promising. Periodic boundary conditions straight-⁸⁷³
 836 forwardly reduce computational cost in particular for fi-
 837 nite systems. Treating the projectile particle quantum⁸⁷⁴
 838 mechanically is within reach, albeit expensive, but diffi-⁸⁷⁵
 839 culties around the vanishing distinction of projectile elec-⁸⁷⁶
 840 tron and those of the host material require further devel-⁸⁷⁷
 841 opment efforts. Based on our detailed simulation results,⁸⁷⁸
 842 we conclude that reconciling electron-electron scattering⁸⁷⁹
 843 from real-time propagation with many-body perturba-⁸⁸⁰
 844 tion theory will require advances in the description of ex-⁸⁸¹
 845 change and correlation. Finally, such advances seem pos-⁸⁸²
 846 sible, involving maximally localized Wannier functions or⁸⁸³
 847 a long-range corrected approach to exchange and corre-⁸⁸⁴
 848 lation.⁸⁸⁵

849 All of these future developments will undoubtedly be⁸⁸⁶
 850 impactful for materials discovery and development and⁸⁸⁷
 851 can facilitate the tight integration of electronic excita-⁸⁸⁸
 852 tions and ion dynamics. Efforts in such directions, in-⁸⁸⁹
 853 cluding those involving machine learning, are currently⁸⁹⁰
 854 underway in many groups worldwide. Going beyond⁸⁹¹
 855 the scope of this present work are interesting and nec-⁸⁹²
 856 essary developments that couple electrons and ions, e.g.⁸⁹³
 857 within Ehrenfest dynamics, or even treat ions quantum-⁸⁹⁴
 858 mechanically. At the same time, such developments in⁸⁹⁵
 859 most cases will lead to moderately or significantly in-⁸⁹⁶
 860 creased computational cost. Taking ongoing develop-⁸⁹⁷
 861 ments of modern supercomputing architectures into ac-⁸⁹⁸
 862 count, this will require simulation codes which can ef-⁸⁹⁹
 863 ficiently benefit from graphics processing units, such as⁹⁰⁰
 864 the INQ code,⁸⁹ the successor to Qb@ll.⁹⁰¹

sonable request.

Funding sources are acknowledge in the following section.

ACKNOWLEDGMENTS

This material is based upon work supported by the Office of Naval Research (Grant No. N00014-18-1-2605) and the National Science Foundation (Grant No. OAC-1740219). A. K., B. R., and A. D. B. were supported by Sandia's Laboratory Directed Research and Development (LDRD) Project No. 218456 and the US Department of Energy's Science Campaign 1. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-NA0003525. X. A. and A. A. C. work was supported by the Center for Non-Perturbative Studies of Functional Materials Under Non-Equilibrium Conditions (NPNEQ) funded by the Materials Sciences and Engineering Division, Computational Materials Sciences Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Y. Y. and Y. K. were supported by the National Science Foundation under Award Nos. CHE-1954894 and OAC-17402204. Support from the IAEA F11020 CRP "Ion Beam Induced Spatio-temporal Structural Evolution of Materials: Accelerators for a New Technology Era" is gratefully acknowledged. This research is partially supported by the NCSA-Inria-ANL-BSC-JSC-Riken-UTK Joint-Laboratory for Extreme Scale Computing (JLESC, <https://jlesc.github.io/>). A. Schleife acknowledges support as Mercator Fellow within SFB 1242 at the University Duisburg-Essen. E. Constantinescu was supported by DOE Office of Advanced Scientific Computing Research under Contract DE-AC02-06CH11357. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility op-

DECLARATIONS

866 On behalf of all authors, the corresponding author⁹⁰⁷
 867 states that there is no conflict of interest.⁹⁰⁸

868 The data that support the findings of this study are⁹⁰⁹
 869 available from the corresponding author, A.S., upon rea-⁹¹⁰

erated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract 89233218CNA000001) and Sandia National Laboratories (Contract DE-NA-0003525)

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work made use of the Illinois Campus

Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from the University of Illinois at Urbana-Champaign. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

* schleife@illinois.edu

- ¹ J. Lloyd-Hughes, P. Oppeneer, T. P. dos Santos, A. Schleife, S. Meng, M. A. Sentef, M. Ruggenthaler, A. Rubio, I. Radu, M. Murnane, X. Shi, H. Kapteyn, B. Stadtmüller, K. M. Dani, F. da Jornada, E. Prinz, M. Aeschlimann, R. Miltot, M. Burdanova, J. Boland, T. L. Cocker, and F. A. Hegmann, *J. Phys. Cond. Mat.* **33**, 353001 (2021).
- ² Y. Miyamoto, *Scientific Reports* **11**, 14626 (2021).
- ³ A. A. Correa, *Comput. Mater. Sci.* **150**, 291 (2018).
- ⁴ M. Uemoto, Y. Kuwabara, S. A. Sato, and K. Yabana, *J. Chem. Phys.* **150**, 094101 (2019).
- ⁵ K. Jiang and M. Pavanello, *Phys. Rev. B* **103**, 245102 (2021).
- ⁶ C. Covington, J. Malave, and K. Varga, *Phys. Rev. B* **103**, 075119 (2021).
- ⁷ G. Giannone, S. Śmiga, S. D'Agostino, E. Fabiano, and F. Della Sala, *J. Phys. Chem. A* **125**, 7246 (2021).
- ⁸ F. P. Bonafé, B. Aradi, B. Hourahine, C. R. Medrano, F. J. Hernández, T. Frauenheim, and C. G. Sánchez, *Chem. Theor. Comput.* **16**, 4454 (2020).
- ⁹ A. Schleife, E. W. Draeger, Y. Kanai, and A. A. Correa, *J. Chem. Phys.* **137**, 22A546 (2012).
- ¹⁰ A. Schleife, E. W. Draeger, V. M. Anisimov, A. A. Correa, and Y. Kanai, *Comput. Sci. Eng.* **16**, 54 (2014).
- ¹¹ E. W. Draeger, X. Andrade, J. A. Gunnels, A. Bhatele, A. Schleife, and A. A. Correa, *J. Parallel Distr. Com.* **106**, 205 (2017).
- ¹² F. Gygi, *IBM J. Res. Dev.* **52**, 137 (2008).
- ¹³ E. Runge and E. K. U. Gross, *Phys. Rev. Lett.* **52**, 997 (1984).
- ¹⁴ C. A. Ullrich, *Time-Dependent Density-Functional Theory: Concepts and Applications* (Oxford University Press, 2012).
- ¹⁵ X. Andrade, A. Castro, D. Zueco, J. Alonso, P. Echenique, F. Falceto, and A. Rubio, *J. Chem. Theo. Comput.* **5**, 728 (2009).
- ¹⁶ G. F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana, *Phys. Rev. B* **62**, 7998 (2000).
- ¹⁷ K. Yabana, T. Nakatsukasa, J.-I. Iwata, and G. F. Bertsch, *physica status solidi (b)* **243**, 1121 (2006).
- ¹⁸ X. Andrade, S. Hamel, and A. A. Correa, *Eur. Phys. J. B* **91**, 229 (2018).
- ¹⁹ J. Sun, C.-W. Lee, A. Kononov, A. Schleife, and C. A. Ullrich, *Phys. Rev. Lett.* **127**, 077401 (2021).
- ²⁰ A. Tsolakidis, D. Sánchez-Portal, and R. M. Martin, *Phys. Rev. B* **66**, 235416 (2002).
- ²¹ D. C. Yost, Y. Yao, and Y. Kanai, *J. Chem. Phys.* **150**, 194113 (2019).
- ²² E. Luppi, H.-C. Weissker, S. Bottaro, F. Sottile, V. Veniard, L. Reining, and G. Onida, *Phys. Rev. B* **78**, 245124 (2008).
- ²³ K. Kang, A. Kononov, C.-W. Lee, J. A. Leveillee, E. P. Shapera, X. Zhang, and A. Schleife, *Comput. Mater. Sci.* **160**, 207 (2019).
- ²⁴ A. Castro, M. A. L. Marques, and A. Rubio, *J. Chem. Phys.* **121**, 3425 (2004).
- ²⁵ A. Kononov and A. Schleife, *Phys. Rev. B* **102**, 165401 (2020).
- ²⁶ S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, *PETSc Users Manual*, Tech. Rep. ANL-95/11 - Revision 3.13 (Argonne National Laboratory, 2020).
- ²⁷ J. Butcher, *Appl. Numer. Math.* **20**, 247 (1996).
- ²⁸ S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, *Strong stability preserving Runge-Kutta and multistep time discretizations* (World Scientific, 2011).
- ²⁹ A. Kononov, *Energy and charge dynamics in ion-irradiated surfaces and 2D materials from first principles*, Ph.D. thesis, University of Illinois at Urbana-Champaign (2020).
- ³⁰ A. Schleife, Y. Kanai, and A. A. Correa, *Phys. Rev. B* **91**, 014306 (2015).
- ³¹ R. J. Magyar, L. Shulenburger, and A. D. Baczewski, *Contrib. Plasm. Phys.* **56**, 459 (2016).
- ³² A. Lim, W. M. C. Foulkes, A. P. Horsfield, D. R. Mason, A. Schleife, E. W. Draeger, and A. A. Correa, *Phys. Rev. Lett.* **116**, 043201 (2016).
- ³³ D. C. Yost and Y. Kanai, *Phys. Rev. B* **94**, 115107 (2016).
- ³⁴ D. C. Yost, Y. Yao, and Y. Kanai, *Phys. Rev. B* **96**, 115134 (2017).
- ³⁵ C.-W. Lee and A. Schleife, *Eur. Phys. J. B* **91**, 222 (2018).
- ³⁶ R. Ullah, E. Artacho, and A. A. Correa, *Phys. Rev. Lett.* **121**, 116401 (2018).
- ³⁷ C.-W. Lee and A. Schleife, *Nano Lett.* **19**, 3939 (2019).
- ³⁸ C.-W. Lee, J. A. Stewart, R. Dingreville, S. M. Foiles, and A. Schleife, *Phys. Rev. B* **102**, 024107 (2020).
- ³⁹ X. Qi, F. Bruneval, and I. Maliyov, *Phys. Rev. Lett.* **128**, 043401 (2022).
- ⁴⁰ H. Zhang, Y. Miyamoto, and A. Rubio, *Phys. Rev. Lett.* **109**, 265505 (2012).

1027 41 A. Ojanperä, A. V. Krasheninnikov, and M. Puska, *Phys. Rev. B* **89**, 035120 (2014). 1092

1028 42 S. Zhao, W. Kang, J. Xue, X. Zhang, and P. Zhang, *J. Phys. Condens. Mat.* **27**, 025401 (2015). 1093

1029 43 A. Kononov and A. Schleife, *Nano Lett.* **21**, 4816 (2021). 1095

1030 44 H. Vázquez, A. Kononov, A. Kyritsakis, N. Medvedev, A. Schleife, and F. Djurabekova, *Phys. Rev. B* **103**, 224306 (2021). 1097

1031 45 A. Kononov, A. Olmstead, A. D. Baczeswski, and A. Schleife, *arXiv* (2022), 10.48550/arXiv.2201.05207. 1100

1032 2201.05207. 1101

1033 46 P. Bogacki and L. F. Shampine, *Comput. Math. Appl.* **32**, 1102

1034 15 (1996). 1103

1035 47 D. A. Rehn, Y. Shen, M. E. Buchholz, M. Dubey, R. Nam, and E. J. Reed, *J. Chem. Phys.* **150**, 014101 (2019). 1104

1036 48 X. Qian, J. Li, X. Lin, and S. Yip, *Phys. Rev. B* **73**, 035408 (2006). 1106

1037 49 S. Meng and E. Kaxiras, *J. Chem. Phys.* **129**, 054110 (2008). 1108

1038 50 A. Ojanperä, V. Havu, L. Lehtovaara, and M. Puska, *J. Chem. Phys.* **136**, 144103 (2012). 1110

1039 51 A. D. Baczeswski, L. Shulenburger, M. P. Desjarlais, and R. J. Magyar, (2014), 10.2172/1204090. 1112

1040 52 A. D. Baczeswski, L. Shulenburger, M. Desjarlais, S. Hansen, and R. Magyar, *Phys. Rev. Lett.* **116**, 115004 (2016). 1115

1041 53 M. Walter, H. Häkkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, and J. J. Mortensen, *Journal of Chemical Physics* **128**, 244101 (2008). 1118

1042 54 N. Troullier and J. L. Martins, *Phys. Rev. B* **43**, 1993 (1991). 1120

1043 55 S. Kang and E. M. Constantinescu, *arXiv* (2021), 10.48550/arXiv.2108.08908, 2108.08908. 1122

1044 56 D. I. Ketcheson, *SIAM J. Numer. Anal.* **57**, 2850 (2019). 1124

1045 57 S. Liang, Z. Huang, and H. Zhang, in *International Conference on Learning Representations* (2022). 1126

1046 58 W. Jia, D. An, L.-W. Wang, and L. Lin, *J. Chem. Theory Comput.* **14**, 5645 (2018). 1127

1047 59 D. An, D. Fang, and L. Lin, *J. Comput. Phys.* **451**, 110850 (2022). 1129

1048 60 P. Wopperer, U. De Giovannini, and A. Rubio, *Eur. Phys. J. B* **90**, 51 (2017). 1131

1049 61 J. Muga, J. Palao, B. Navarro, and I. Egusquiza, *Phys. Rep.* **395**, 357 (2004). 1133

1050 62 Y. Ueda, Y. Suzuki, and K. Watanabe, *Phys. Rev. B* **97**, 075406 (2018). 1135

1051 63 K. Tsubonoya, C. Hu, and K. Watanabe, *Phys. Rev. B* **90**, 035416 (2014). 1137

1052 64 F. Ladstädter, U. Hohenester, P. Puschnig, and C. Ambrosch-Draxl, *Phys. Rev. B* **70**, 235125 (2004). 1139

1053 65 V. P. Zhukov, E. V. Chulkov, and P. M. Echenique, *Phys. Rev. B* **72**, 155109 (2005). 1141

1054 66 N. A. Modine and R. M. Hatcher, *J. Chem. Phys.* **142**, 204111 (2015). 1143

1055 67 N. D. Mermin, *Phys. Rev.* **137**, A1441 (1965). 1145

1056 68 “Socorro.” <http://dft.sandia.gov/socorro>. 1146

1057 69 I. Campillo, J. M. Pitarke, A. Rubio, E. Zarate, and P. M. Echenique, *Phys. Rev. Lett.* **83**, 2230 (1999). 1147

1058 70 M. Bauer, A. Marienfeld, and M. Aeschlimann, *Progress in Surface Science* **90**, 319 (2015). 1149

1059 71 A. Tamm, M. Caro, A. Caro, G. Samolyuk, M. Klintenberg, and A. A. Correa, *Phys. Rev. Lett.* **120**, 185501 (2018). 1151

1060 72 P. Kratzer and M. Zahedifar, *New J. Phys.* **21**, 123023 (2019). 1154

1061 73 L. Lacombe, Y. Suzuki, K. Watanabe, and N. T. Maitra, *Eur. Phys. J. B* **91**, 96 (2018). 1155

1062 74 V. Rizzi, T. N. Todorov, J. J. Kohanoff, and A. A. Correa, *Phys. Rev. B* **93**, 024306 (2016). 1156

1063 75 G. Vignale and W. Kohn, *Phys. Rev. Lett.* **77**, 2037 (1996). 1157

1064 76 H. O. Wijewardane and C. A. Ullrich, *Phys. Rev. Lett.* **95**, 086401 (2005). 1158

1065 77 C. Shepard, R. Zhou, D. C. Yost, Y. Yao, and Y. Kanai, *J. Chem. Phys.* **155**, 100901 (2021). 1159

1066 78 Y. Yao, D. C. Yost, and Y. Kanai, *Phys. Rev. Lett.* **123**, 066401 (2019). 1160

1067 79 J. Sun, A. Ruzsinszky, and J. P. Perdew, *Phys. Rev. Lett.* **115**, 036402 (2015). 1161

1068 80 Y. Yao and Y. Kanai, *J. Chem. Phys.* **146**, 224105 (2017). 1162

1069 81 C. D. Pemmaraju, F. D. Vila, J. J. Kas, S. A. Sato, J. J. Rehr, and K. Yabana, *Comput. Phys. Commun.* **226**, 30 (2018). 1163

1070 82 N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, *Rev. Mod. Phys.* **84**, 1419 (2012). 1164

1071 83 E. Prodan and W. Kohn, *Proc. Natl. Acad. Sci.* **102**, 11635 (2005). 1165

1072 84 P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, *J. Chem. Phys.* **152**, 154105 (2020). 1166

1073 85 H.-Y. Ko, J. Jia, B. Santra, X. Wu, R. Car, and R. A. DiStasio Jr., *J. Chem. Theor. Comput.* **16**, 3757 (2020). 1167

1074 86 M. Hutchinson and M. Widom, *Computer Physics Communications* **183**, 1422 (2012). 1168

1075 87 X. Andrade and A. Aspuru-Guzik, *J. Chem. Theo. Comput.* **9**, 4360 (2013). 1169

1076 88 W. Jia, L.-W. Wang, and L. Lin, in *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, SC ’19 (Association for Computing Machinery, New York, NY, USA, 2019). 1170

1077 89 X. Andrade, C. D. Pemmaraju, A. Kartsev, J. Xiao, A. Lindenberg, S. Rajpurohit, L. Z. Tan, T. Ogitsu, and A. A. Correa, *J. Chem. Theor. Comput.* **17**, 7447 (2021). 1171

1078 90 D. Wing, J. B. Haber, R. Noff, B. Barker, D. A. Egger, A. Ramasubramaniam, S. G. Louie, J. B. Neaton, and L. Kronik, *Phys. Rev. Materials* **3**, 064603 (2019). 1172

1079 91 H. Zheng, M. Govoni, and G. Galli, *Phys. Rev. Materials* **3**, 073803 (2019). 1173

1080 92 T. Stein, L. Kronik, and R. Baer, *J. Chem. Phys.* **131**, 244119 (2009). 1174

1081 93 A. Pribam-Jones and K. Burke, *Phys. Rev. B* **93**, 205140 (2016). 1175

1082 94 K. Burke, J. C. Smith, P. E. Grabowski, and A. Pribam-Jones, *Phys. Rev. B* **93**, 195132 (2016). 1176

1083 95 A. Pribam-Jones, P. E. Grabowski, and K. Burke, *Phys. Rev. Lett.* **116**, 233001 (2016). 1177

1084 96 E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, *Phys. Rev. Lett.* **110**, 146405 (2013). 1178

1085 97 T. Dornheim, S. Groth, and M. Bonitz, *Phys. Rep.* **744**, 1 (2018). 1179

1086 98 V. V. Karasiev, J. W. Duffy, and S. Trickey, *Phys. Rev. Lett.* **120**, 076401 (2018). 1180

1087 99 V. Karasiev, S. Hu, M. Zaghoo, and T. Boehly, *Phys. Rev. B* **99**, 214110 (2019). 1181

1088 100 M. P. Desjarlais, C. R. Scullard, L. X. Benedict, H. D. Whitley, and R. Redmer, *Phys. Rev. E* **95**, 033203 (2017). 1182