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Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density20

functional theory has emerged as a promising first-principles framework to describe electron real-time21

dynamics. Here we discuss recent implementations around this approach, in particular in the context22

of complex, extended systems. Results include an analysis of the computational cost associated with23

numerical propagation and when using absorbing boundary conditions. We extensively explore the24

shortcomings for describing electron-electron scattering in real time and compare to many-body25

perturbation theory. Modern improvements of the description of exchange and correlation are26

reviewed. In this work, we specifically focus on the Qb@ll code, which we have mainly used for27

these types of simulations over the last years, and we conclude by pointing to further progress28

needed going forward.29
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I. INTRODUCTION31

Real-time time-dependent density functional theory32

(RT-TDDFT) has attracted tremendous attention in the33

context of accurate theoretical characterization of mate-34

rials recently and over the years. It is arguably one of35

the most promising approaches to simulate the real-time36

quantum dynamics of electrons as well as its coupling to37

ion dynamics. In particular, its promising balance be-38

tween accuracy and computational cost make this tech-39

nique increasingly applicable also for development, de-40

sign, and discovery of materials including for electronic,41

optical, electrochemical applications, amongst others.142

Recent applications include laser excitation of materials,243

interaction of materials with energetic ions,3 and non-44

linear excitation dynamics.4 The framework is imple-45

mented in many software packages and readily usable46

on a large variety of computational resources, including47

use of graphics processing units (GPUs). This makes the48

technique applicable to many diverse materials from just49

a few atoms to complex extended structures consisting of50

hundreds of atoms.51

In this work we provide examples for recent develop-52

ments and applications that we accomplished and use53

these to illustrate the need for future improvements. This54

includes discussing the underlying approximations and55

the path towards a computationally more feasible and56

widely applicable implementation of this approach for57

complex and extended systems. Simulations of com-58

plex, extended materials can benefit from less main-59

stream approaches such as orbital-free TDDFT,5,6 sub-60

system TDDFT,7 or time-dependent density functional61

tight binding techniques.8 However, in what follows, we62

focus on plane-wave RT-TDDFT and discuss our own63

work of using and extending the Qb@ll code.9–1264

First, the time stepping that is used in RT-TDDFT65

critically determines the computational cost. Second, we66

also give a specific example for how absorbing boundary67

conditions can mitigate high computational cost when68

studying two-dimensional materials. Next, the physics of69

charged projectile ions or electrons interacting with the70

electronic system of the target is briefly discussed and71

the computational cost of using an electron wave packet72

instead of a classical Coulomb potential in a plane-wave73

framework is assessed. Subsequently, we analyze in de-74

tail the RT-TDDFT description of electron dynamics and75

find shortcomings in capturing the time scale of electron-76

electron scattering mediated thermalization. These re-77

sults are compared to the literature and discussed relative78

to GW simulations within many-body perturbation the-79

ory. Finally, we discuss recent progress in describing the80

electron-electron interaction via exchange and correlation81
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in RT-TDDFT, and the associated computational cost.82

All RT-TDDFT simulations presented here were per-83

formed with the Qb@ll code and extensions thereof,9–1284

and we conclude our discussion with a brief outlook on85

future directions of this software, hoping to stimulate ex-86

citing developments in the field of RT-TDDFT for years87

to come, including for computational materials discovery88

and development, as is the goal of this focus issue.89

II. REAL-TIME PROPAGATION OF90

TIME-DEPENDENT KOHN-SHAM EQUATIONS91

Excited electron dynamics can be modeled from first92

principles with real-time time-dependent density func-93

tional theory (TDDFT).13,14 In this approach, the elec-94

tron density n(r, t) evolves over time according to the95

time-dependent Kohn-Sham (TDKS) equations:96

i
∂

∂t
ϕj(r, t) = Ĥ[n](t)ϕj(r, t),

n(r, t) =
∑
j

fj |ϕj(r, t)|2 .
(1)97

Here, ϕj are single-particle Kohn-Sham orbitals with oc-98

cupations fj . The single-particle Hamiltonian,99

Ĥ[n](t) = T̂ + V̂ext(t) + V̂Har[n] + V̂XC[n], (2)100

contains the kinetic energy operator T̂ , the external101

potential V̂ext(t) due to nuclei and any external fields,102

the Hartree electron-electron potential V̂Har[n], and the103

exchange-correlation potential V̂XC[n]. The electronic104

system may be coupled to nuclear motion through Ehren-105

fest dynamics.15106

Explicit time dependence may arise within V̂ext(t)107

from an external perturbation such as a moving pro-108

jectile ion or a dynamic electromagnetic field. De-109

pending on the gauge choice, an external vector po-110

tential Aext(r, t) may enter into the kinetic energy as111

T̂ = 1
2 (−i∇+Aext(r, t))

2
. To apply a uniform external112

electric field to an infinite periodic system, it is often con-113

venient to work in the velocity gauge, where the electric114

field is generated by the vector potential 16–19
115

Eext(t) = −1

c

dAext(t)

dt
. (3)116

Alternatively, the length gauge, which instead involves117

the scalar potential Eext(t) · r, can be appropriate for118

finite systems20 or with the use of maximally localized119

Wannier functions.21 Both capabilities have been imple-120

mented in the plane-wave TDDFT code Qbox/Qb@ll,9–11121

with options for static fields, delta kicks, and dynamic122

laser pulses.19,21123

In the vector-potential formulation, the vector poten-124

tial is chosen such that its time derivative gives the proper125

electric field according to Eq. (3). For example, the delta126

kick is implemented by a step function in the vector po-127

tential. In practice this means the propagation is done128

with a constant vector potential whose amplitude is given129

by a desired intensity of the kick (as the initial condition130

is the ground state calculated without a vector poten-131

tial). A laser field is simply simulated by an oscillatory132

electric field with constant or time-dependent amplitude.133

Since the dipole is not properly defined for extended sys-134

tems, the polarization is obtained from the macroscopic135

current.16 We use the usual definition of the quantum-136

mechanical current137

J(t) =

∫
dr

∑
j

fjϕ
∗
j (r, t)∇ϕj(r, t) + c.c. , (4)138

which is not strictly correct when using non-local pseudo-139

potentials.18 However the correction term is small for140

electric perturbations.22141

Both the computational cost and accuracy of real-142

time TDDFT simulations are in large part governed by143

the numerical algorithm used to integrate the TDKS144

equations, Eq. (1). While a simple explicit integration145

scheme such as fourth-order Runge-Kutta (RK4) is suit-146

able for modest-size systems,9 very large supercells and147

short-time propagation require higher accuracy23 offered148

by time-reversible schemes such as the enforced time-149

reversal symmetry (ETRS) method.11,24 We specifically150

showed this for systems containing vacuum.25 More ef-151

ficient algorithms which reduce time-to-solution without152

sacrificing accuracy would accelerate the study of excited153

electron dynamics in materials and enable consideration154

of larger systems of practical interest over longer sim-155

ulation time scales, including defect systems, material156

surfaces, and 2D hetero-structures.157

Below we briefly present our recent efforts towards a158

systematic assessment of numerous explicit time-steppers159

and several variants of the ETRS approach. Interfacing160

Qbox/Qb@ll9,11 with the PETSc numerical library26 pro-161

vided us with seamless access to a wide range of Runge-162

Kutta (RK)27 and strong stability preserving (SSP)163

RK28 methods. Each algorithm’s performance was as-164

sessed for a sodium dimer test system over a range of time165

step sizes ∆t = 0.01 – 0.5 atomic units (at. u.), and com-166

putational cost was measured as the average wall time per167

simulated time. After perturbing the initially ground-168

state system by slightly displacing the atoms away from169

their equilibrium positions, the electronic response was170

evolved for 100 time steps on a single processor. For the171

most promising methods, additional tests on a 112-atom172

graphene supercell confirmed the qualitative trends ob-173

served for the smaller test system.174

Since exact time evolution should conserve both energy175

and charge, we compute an error metric given by the176

product of average errors in total energy E and net charge177

Q per simulation time:178

δQ δE =

〈
Q(t)−Q(0)

t

〉〈
E(t)− E(0)

t

〉
, (5)179
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where brackets denote time averages,180 〈
Q(t)−Q(0)

t

〉
=

1

tf

∫ tf

0

Q(t)−Q(0)

t
dt, (6)181

and tf is the total time. This form was chosen to give182

a reasonable error measure for both linear and oscilla-183

tory error accumulation models. In particular, using184

this definition δQ has a reasonable long-time limit both185

when Q(t) − Q(0) can be modeled as ∝ t and when186

Q(t) − Q(0) can be modeled as ∝ sin(ωt).29 The tol-187

erable error level for a particular application depends on188

the system studied and the observable of interest. For189

example, electronic stopping power calculations in bulk190

materials30–39 extract total energy differences typically191

about 5 – 50Ha over the course of a ∼1 fs simulation, so192

δE ≪ 0.1Ha/at. u. suffices and δQ is not important be-193

yond its correlation with δE. In contrast, simulations of194

ion-irradiated 2D materials25,40–45 involve smaller energy195

transfers around 0.2 – 5Ha and may additionally exam-196

ine sensitive charge transfer processes such as emission of197

0.1 – 10 electrons into vacuum. Thus, these calculations198

require δQ δE ≪ 10−5 eHa/at. u.2199

From our data in Fig. 1 we find that ETRS generally200

outperforms all explicit time steppers tested: it achieves201

lower computational cost at an acceptable error level.202

The only competitive Runge-Kutta scheme is the fifth-203

order Bogacki-Shampine algorithm (RK5BS),46 which is204

even more accurate than ETRS for small step sizes (see205

Fig. 1a). However, while RK5BS becomes unstable for206

∆t ≳ 0.1 at. u. in our sodium dimer simulations, ETRS207

maintains tolerable error rates for step sizes twice as208

large, allowing lower computational cost. Among the209

SSP methods tested, the 4th-order schemes are most suc-210

cessful but do not improve over ETRS’s accuracy, stabil-211

ity, or speed (see Fig. 1b). Lower-order SSP schemes in-212

volving many (≥ 16) stages do allow larger step sizes than213

ETRS, but the expense associated with a large number214

of stages outweighs the increased stability. Overall, we215

find that ETRS achieves lowest time-to-solution. Recent216

work47 also tested the Adams-Bashforth and Adams-217

Bashforth-Moulton classes of explicit time steppers, find-218

ing that these methods can outperform RK under certain219

conditions, but their performance has not yet been com-220

pared to ETRS.221

Several possible schemes exist to approximate the ex-222

ponentials of the Hamiltonian involved in ETRS.24 Here,223

we use Taylor expansions for their simplicity and com-224

pare different orders in Fig. 1c. Consistent with asser-225

tions made in Ref. 24, we find that 4th or 5th-order Tay-226

lor expansions are optimal. A 6th-order expansion is less227

stable, while a 3rd-order expansion sacrifices accuracy228

without significantly reducing computational cost.229

Other implicit methods may yet prove more efficient230

than ETRS. One promising option is Crank-Nicolson231

(CN), which some other TDDFT implementations suc-232

cessfully employ.20,31,48–52 We find that CN is generally233

more accurate than ETRS (see Fig. 1c), perhaps thanks234

to the unitarity of the Padé form of the CN propaga-235
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FIG. 1. Performance of 4th-order ETRS (black stars)
compared to (a) all Runge-Kutta time-steppers available in
PETSc, (b) various strong stability preserving Runge-Kutta
time-steppers available in PETSc, and (c) other variants of
ETRS and a naive application of PETSc’s Crank-Nicolson
(CN). RKN [X] denotes an Nth-order Runge-Kutta scheme
where X is an additional PETSc identifier, typically the ini-
tials of original developers. SSP(M,N) denotes an M -stage,
Nth-order SSPRK method, and ETRSN denotes ETRS using
Nth-order Taylor expansions to approximate exponentials.

tor in contrast to the truncated Taylor expansion used236

in the ETRS implementation. Although CN can main-237

tain accuracy even for large time steps, i.e., stability re-238

strictions do not limit this method, it involves a costly239

nonlinear solve. The large number of Ĥϕ evaluations240

performed by PETSc’s algorithm for this nonlinear solve241

made CN prohibitively expensive in this work (see Fig.242

1c). However, further optimization, efficient precondi-243

tioners, or the use of predictor-corrector methods that244

obviate the nonlinear solve48,53 could alleviate this issue.245

Implicit schemes such as CN could be particularly advan-246

tageous for ultrasoft pseudopotentials or the projector247

augmented-wave method, where the left-hand side of the248

TDKS equations involves an overlap matrix acting on the249

time derivative of the pseudized orbitals.51 Since explicit250

time-stepping schemes require the application of the in-251

verse of this matrix at each time step, this complication252
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narrows the prospective efficiency gap between explicit253

and implicit schemes. However, this work used norm-254

conserving pseudopotentials54 and thus did not benefit255

from CN.256

Explicit RK methods cannot conserve energy, and257

some of the least expensive implicit RK methods, such258

as CN, do not in general. In general, a direct way to alle-259

viate errors in invariant quantities represented by inner-260

product norms is to control the time step. One can re-261

duce the time step adaptively if the energy loss exceeds262

a certain level. Moreover, a promising strategy that also263

applies to explicit methods is to use a time-step adap-264

tation that adjusts step length such that the energy is265

conserved exactly in finite precision. These methods are266

referred to as relaxation RK and rely on modifying the267

prescribed time step (typically reducing it by a small268

fraction) so that the solution at each of these modified269

steps preserves energy.55,56 Explicit methods are condi-270

tionally stable; nevertheless, the stability regions can be271

optimized for a specific eigenvalue portrait, which is a272

promising strategy to improve their performance. Fur-273

thermore, new machine learning developments in neural274

ODE may provide new ways to accelerate the time step-275

ping process.57276

Finally, the parallel transport gauge approach58 ap-277

plies a unitary transformation to the Kohn-Sham orbitals278

to instead solve for slower varying orbitals that reproduce279

the same electron density but introduce an additional280

term in the TDKS equations. This promising method can281

be combined with an efficient time stepper to produce282

speedups of 5 – 50 over standard RK4 for molecules,58283

solids containing up to 1024 atoms,58 and mixed states284

in model systems.59285

III. COMPLEX ABSORBING POTENTIAL FOR286

SECONDARY ELECTRON EMISSION287

After examining the computational cost associated288

with real-time propagation in the previous section, we289

also explored the need for a large vacuum region as part of290

the simulation cell when studying electron emission, e.g.291

from surfaces or two-dimensional (2D) materials. When292

using periodic boundary conditions, vacuum lengths of293

150 a0 or more are necessary to prevent the unphysical294

interaction of the electrons emitted from both sides of295

the 2D material across the boundary of the simulation296

cell, resulting in a high computational demand.43 To ad-297

dress this problem, absorbing boundaries60 are frequently298

employed to emulate open boundary conditions. Absorb-299

ing boundaries based on a complex absorbing potential300

(CAP)61 alter the Hamiltonian, Eq. (2), by adding an301

artificial complex (imaginary) potential in a defined re-302

gion of the simulation cell, resulting in a non-Hermitian303

Hamiltonian and non-unitary time-evolution operator.304

This approach has been successfully used in simulating305

the real time dynamics of wave functions of 2D mate-306

rials, including secondary electron emission due to elec-307
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FIG. 2. Total emitted electrons in vacuum, after a channel-
ing proton43 with a velocity of 1.79 at. u. impacts graphene.
When using a CAP, the difference between different vacuum
sizes converges much earlier.

tron irradiation62 and angular resolved photo-emission308

spectra.60309

We implemented an absorbing potential into the310

Qb@ll9,11 code that follows the form311

VCAP(z) =

{
−i ·W sin2

(
(z−zs)·π

2·dz

)
, zs < z < zs + 2dz

0, otherwise

(7)312

where W defines the maximum of the CAP, and zs and313

dz are the position of the front boundary and the half314

width of the CAP.315

Here, we compare to our previous work on secondary316

electron emission of graphene under proton irradiation,43317

and demonstrate that a CAP can significantly reduce fi-318

nite size effects, leading to an acceleration of the simula-319

tion by reducing the vacuum size. We use the same sim-320

ulation cell and computational parameters as described321

in Ref. 43. The target graphene is placed at the center of322

the simulation cell, at z = 0 on the x-y plane. Emitted323

electrons in vacuum are determined by integrating the324

electron density over a region farther than 10.5 a0 from325

the graphene. We assess finite size effects for different326

vacuum sizes along the direction of proton travel for a327

channeling proton with 1.79 at. u. of velocity. Following328

Ref. 43, we treat the maximum of the emitted electron329

curves in Fig. 2 as the total number of emitted electrons.330

Comparing the resulting number of total emitted elec-331

trons for periodic boundary conditions, the data in Fig. 2332

shows a difference of 3% when 150 a0 and 250 a0 of vac-333

uum are used, whereas the difference is 8.22% between334

100 a0 and 250 a0 of vacuum. This shows that a large335

vacuum size is needed to obtain converged results. For336

comparison, a CAP of the form of Eq. (7) is placed at337

the boundary of the simulation cell. We set W = 15Eh,338

zs = 40 a0, and dz = 10 a0 for 100 a0 of vacuum, and339

W = 20Eh, zs = 63.75 a0, and dz = 11.25 a0 for 150 a0 of340
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vacuum. With these parameters for the CAP, the differ-341

ence of emitted electrons for 100 a0 and 150 a0 of vacuum342

is 1.14%. The reduced finite size error with a CAP allows343

using smaller vacuum regions of 100 a0 or less, instead of344

150 a0, reducing the simulation time per iteration from345

61.44 core hours to 40.96 core hours, a 33% speedup,346

when running on ALCF Theta. In general, depending on347

the targeted problem, a careful convergence test of the348

vacuum size is required for 2D systems.349

IV. QUANTUM-MECHANICAL PROJECTILE:350

ELECTRON WAVE PACKET351

In the previous section and in most of the literature352

on electronic stopping, the excitation mechanism is de-353

scribed using a classical projectile, i.e., a time-dependent354

Coulomb potential moving at constant velocity. It is355

currently unclear to what extent this approximation be-356

comes unreliable for light projectiles such as protons or357

electrons. Electrons are particularly small and light-358

weight compared to protons or heavy-ion projectiles and359

the electronic wavelength can reach the scale of inter-360

atomic distances. Hence, the approximation of using a361

classical Coulomb potential to describe electron projec-362

tiles is expected to be more severe. The explicit break-363

down of this approximation is currently not studied well364

and systematically.365

Treating the incident electron fully quantum-366

mechanically is, hence, a promising alternative.367

Following the work by Tsubonoya et al.,63 the initial368

incident electron can be modeled as a Gaussian-shaped369

wave packet at the start of simulation,370

ψWP(r, t0) ≡
(

1

πd2

) 3
4

exp

[
− (r− b)2

2d2
+ ik · r

]
, (8)371

where d, b, and k are the parameters for defining the372

spread, the center location, and the wave vector of the373

wave packet, respectively. The wave vector k represents374

the group velocity of the incident electron and is the sin-375

gle parameter that controls the kinetic energy of the inci-376

dent electron. The time-evolution of this wave packet is377

described by the time-dependent Kohn-Sham equations,378

Eq. (1), on the same footing as the rest of the system.379

Thus, the time-dependent Kohn-Sham orbitals include380

all electrons in the target material and the incident elec-381

tron of the wave packet. The electron density is then the382

sum of the electron density of the target material and the383

electron density of the wave packet,384

n(r, t) =

N/2∑
i=1

|ψi(r, t)|2 +
∣∣ψWP(r, t)

∣∣2 , (9)385

whereN is the number of electrons in the target material.386

In the following we characterize the convergence be-387

havior of the Gaussian wave packet with respect to plane-388

wave cutoff energy (see Fig. 3). We simulate Gaussian389

FIG. 3. Dependence of the total energy of electron wave
packets with different kinetic energy moving through vacuum
on the plane-wave cutoff used for the simulation.

wave packets with different velocities and find that high390

cutoff values are necessary to converge fast wave packets,391

possibly leading to a limitation of these simulations. We392

also note that the wave packet itself spreads over time,393

rendering comparison to the classical electron approx-394

imation challenging. Finally, the computation of elec-395

tronic stopping power S is complicated by the fact that396

the projectile, if treated quantum mechanically, is part397

of the electronic system and the approach of computing398

the stopping power from the increase dE/dx of the elec-399

tronic total energy is no longer applicable. Solving this400

problem remains an open question for future work.401

V. REAL-TIME ELECTRON DYNAMICS IN402

ALUMINUM403

In the following, we explore using real-time TDDFT404

to simulate electronic thermalization in metals, which is405

generally assumed to be fast, on the order of 10 – 100 fs.406

Previous studies applying the GW method to compute407

the self energy for Al support this assumption, where408

the lifetimes mediated by electron-electron scattering are409

found to be a few tens of fs at energies further away from410

the Fermi energy and on the order of 100 fs when nearing411

the Fermi energy.64,65 Given these short time scales, real-412

time TDDFT in principle can be used to perform statisti-413

cal ensemble sampling of an electronic system in internal414

thermodynamic equilibrium and to calculate expectation415

values of an observable under different conditions.66 This416

is similar to Mermin DFT,67 but such a real-time ap-417

proach can potentially capture additional dynamic effects418

using the same exchange-correlation functional.419

To this end, Modine et al.66 previously explored the420

idea of performing statistical mechanics on electronic sys-421

tems, in analogy to simulations of statistical thermody-422

namics using classical molecular dynamics. As a first423
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FIG. 4. Electron dynamics computed for Al with fixed ions
using real-time TDDFT. In (a) we show occupation numbers
of the different Kohn-Sham states, averaged over 315 fs of
simulation time, as a function of their Kohn-Sham energy.
“000 fs” shows the average taken from t=0 fs to t=315 fs etc.
In (b) we plot a single snapshot at shown simulation time for
high-energy eigenstates. Semi-transparent grey arrows guide
the eyes for how occupation numbers evolve over time.

step towards this idea, they initiated a 100 fs RT-TDDFT424

simulation using adiabatic LDA for an excited electronic425

system of Al with fixed ions. They showed that although426

the distribution of the time-averaged occupation numbers427

is Fermi-like, it seems to decrease more sharply near the428

Fermi energy and takes longer to reach asymptotic val-429

ues.66 To further understand this behavior, we performed430

significantly longer RT-TDDFT simulations (> 1 ps) for431

the same Al system. We used the same plane-wave cut-432

off energy of 20Ry, Γ-only Brillouin zone sampling, and433

the same 32-atom cell. In our simulations, this 32-atom434

cell is either an ideal crystal or a snapshot of a molecular435

dynamics simulation with a temperature of 7900K.436

In Fig. 4a we show the resulting long-term electron437

dynamics in Al with fixed ions, simulated with real-time438

TDDFT up to ∼ 6 ps. Following the approach by Modine439

et al.,66 the initial wavefunction was prepared in such a440

way that the distribution of its occupation numbers is441

close to the Fermi distribution at a given temperature.442

For Fig. 4 we used 7900K and at t = 0, we can see that443

the dark blue dots loosely follow the Fermi distribution of444

the same temperature. This is, by construction, expected445

for initial states that are thermal states.66 We would then446

expect the occupation numbers to fluctuate around an447

average that corresponds to this Fermi distribution.448

In contrast to this expectation, Fig. 4a clearly shows449

that the distribution deviates more and more from the450

initial Fermi distribution as time propagates, indicated451

by semi-transparent gray arrows. If we focus on the dy-452

namics near the Fermi energy, the drop in occupations453

at the Fermi surface becomes steeper and steeper, which454

is usually associated with lower electronic temperature.455

However, the total energy of the system is conserved.456

To analyze this further, we also investigate high-energy457

eigenstates in Fig. 4b, showing that their occupation458

numbers grow over time, indicating that electrons are459

promoted to higher energy states and providing a mech-460

anism for energy conservation.461

Since scattering of electrons into higher energy states462

during electronic thermalization is counter-intuitive, we463

first thoroughly examine the effect of the initial wave-464

function and several numerical parameters. We ensured465

that over the simulation time of about 6.3 ps, the total466

energy of the system remains conserved within acceptable467

numerical error of < 0.1meV/atom, suggesting that the468

numerical time integrator remains stable for the whole469

simulation. We also tested that this behavior is inde-470

pendent of the cell size by comparing the dynamics of471

occupation numbers of high-energy eigenstates in the 32-472

atom cell to a 108-atom cell, finding again a high-energy473

tail emerging over time. Furthermore, we excluded the474

symmetry of the lattice as a factor by comparing the475

dynamics for relaxed (T = 0 K) atomic positions vs.476

a T = 7900K molecular dynamics snapshot. In addi-477

tion, we excluded an influence of the particular real-time478

TDDFT implementation by comparing the Qb@ll and479

Soccoro68 codes.480

The occupation number of eigenstate i at simulation481

time t, fi(t), is defined as482

fi(t) =
∑
j=1

|⟨ϕi|ψj(t)⟩|2 , (10)483

where the reference states ϕi can be either the DFT484

ground state or instantaneous adiabatic eigenstates of485

the time-dependent KS Hamiltonian. An influence of the486

reference states used to compute the occupation number487

was excluded by comparing the adiabatic ground state488

and the eigenstates of the instantaneous TDKS for pro-489

jection. Finally, we also compared different approaches490

of creating the initial electronic excitation by (i) using491

the above described thermal state,66 (ii) promoting one492

electron from valence to conduction band by changing493

the Kohn-Sham occupation number, and (iii) imposing494

a vigorous time-dependent displacement of randomly se-495

lected atoms. In all cases we observed the same behavior496
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FIG. 5. Occupation number as a function of simulation
time for selected eigenstates. These, otherwise randomly cho-
sen, eigenstates have initial occupation numbers of roughly
0.0, 0.5, 1.0, 1.5, and 2.0. Red dashed curves show the fit
against the exponential a+ b · exp(−t/c) to extract the char-
acteristic time scale. Grey dashed horizontal lines indicate
the expected occupation number for a given eigenstate under
Fermi distribution. Texts describe the band index (BI) and
energy difference from Fermi energy at T = 7900 K. We found
no clear connection of the occupation number dynamics with
the energy of the state.

shown in Fig. 4.497

Next, we extract a characteristic relaxation time by498

fitting this data to an exponential decay. We randomly499

select a few eigenstates across the energy spectrum with500

initial occupations of about 0.0, 0.5, 1.0, 1.5, and 2.0501

and show their dynamics in Fig. 5. For the following502

discussion, we refer to them by their band index (BI =503

0, 39, 47, 48, 53, and 95, respectively). Figure 5 shows504

that BI=48, which is above the Fermi energy, couples505

with BI=47, which is below the Fermi energy, since their506

dynamics shows the same oscillation frequency but is an-507

tiphase. The frequency of these oscillations is about 8 –508

10 THz, which equals half the energy distance between509

these states. We conclude that the observed oscillations510

0 1000 2000 3000 4000 5000 6000
Simulation time (fs)

3

2

1

0

1

2

xx
(a

t.
u.

)

Ground state
exp( t

268 fs )
After excitation

FIG. 6. Time dynamics of the σxx component of the stress
tensor, after starting from a thermal state generated with a
Fermi temperature of 7900 K. Stresses are sampled sparsely
across the whole simulation and, at each sampled time point,
the stress values of the subsequent 10 fs are collected to
compute average (solid circles) and standard deviation (error
bars). The red curve shows a fit against σxx = a+b·exp(−t/c)
to extract the characteristic time scale.

are associated with TDDFT electron-hole excitation en-511

ergies. The expectation that temperature induced ex-512

citations are most dominant near the Fermi energy is513

consistent with our observation of such oscillations only514

between electrons and holes near the Fermi energy.515

Next, we notice that all states are evolving away from516

the occupation number expected based on a Fermi dis-517

tribution of T = 7900 K (gray dashed horizontal lines518

in Fig. 5). We also notice that the dynamics for the519

BI=95 state is not monotonic and the occupation num-520

ber changes in a completely different direction before and521

after the reflection at around 700 fs. In addition, fit-522

ting the data before 700 fs leads to a characteristic time523

much shorter than the fit to the data after 700 fs. Such524

non-monotonic behavior is not limited to eigenstates with525

large BI but is commonly observed for other eigenstates.526

For these, we only extract the characteristic time for the527

second part of the dynamics (see the red dashed curve528

for the BI=95 example in Fig. 5). From the extracted529

characteristic times we found that BI=95, which is far530

from the Fermi energy, relaxes more slowly than BI=48,531

which is near the Fermi energy. This behavior is different532

from Fermi liquid theory, which predicts that the lifetime533

of an eigenstate is longer when its energy is close to the534

Fermi energy.69 For this reason, and because the excited535

Al system evolves away from a Fermi distribution, appli-536

cability of this relation between Fermi level and lifetime537

remain unclear.538

The result is an important, albeit negative, result that539

points to the inhability of a theory such a TDDFT (at540

least in its current form) to thermalize electrons. One541

potential shortcoming of this analysis may be that from542
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a fundamental point of view, the Kohn-Sham occupation543

number is not an observable in TDDFT; although that544

would be an illuminating reason for this inability.545

To address this concern, we also analyze stress, which is546

a functional of the time-dependent electron charge den-547

sity. In Fig. 6, we show the real-time dynamics of the548

stress on the simulation cell after excitation for the σxx549

component of the stress tensor. Fitting to this data yields550

a characteristic time of 268 fs. The σyy and σzz compo-551

nents have significantly different characteristic times of552

889 and 691 fs, respectively, but their dynamics are also553

monotonic. Since a set of independent complex numbers554

with random phases and magnitudes are drawn from a555

distribution to construct the initial thermal state,66 the556

stress and its dynamics are not expected to be isotropic557

for any given thermal state, but would average out over558

many thermal states for the same temperature. We note559

that these time scales are in the same range as those560

of dynamics of the eigenstates with monotonic behavior.561

Hence, based on the dynamics of occupation numbers562

and stress, we conclude that equilibrium is reached over563

a time scale of 1 ps. At energies above the Fermi level,564

E−EF , of about 1.0 eV, experimental results report val-565

ues around 15 fs.70 Computational results include around566

30 fs in Ref. 69, 20 fs from the GW +T method,65 and 70567

fs in Ref. 64. There is an unresolved discrepancy between568

Ref. 64 and 69, but the literature agrees Al qualitatively569

follows Fermi liquid theory with band structure effects570

only giving rise to small quantitative differences. Not571

only is this electron-electron relaxation time significantly572

longer than these results, but we also find that the system573

evolves into an unknown distribution with a lower Fermi574

temperature near the Fermi level and with high-energy575

tails, compared to the initial Fermi distribution.576

In order to address these discrepancies, it is necessary577

to incorporate electron-electron and electron-phonon de-578

cay channels into the RT-TDDFT Ehrenfest molecular579

dynamics framework. Electron-electron scattering mech-580

anisms should be treated on the level of the exchange-581

correlation functional and we view hybrid functionals and582

overcoming the adiabatic approximation typically used583

in TDDFT as possible paths forward. In addition, ef-584

forts to better describe the energy decay channels from585

excited electrons into the system of ions are appearing586

in the literature.71 In addition, we note that these diffi-587

culties in modeling relaxation times within RT-TDDFT588

are exacerbated in strongly correlated systems, requiring589

adequate approximations to exchange and correlation.590

Next, we pursue an alternative route to compute591

the electron-electron scattering lifetime from first prin-592

ciples, based on equating the scattering term to the593

imaginary part of the electronic self-energy, Γnk =594

−2 Im {Σ(εnk)} /ℏ.72 Computing the imaginary part of595

the self energy within the GW framework provides life-596

times, using a procedure described by Ladstädter et al.64597

Here we use a computationally more efficient approach598

by fitting −2 Im {Σ(εnk)} to a scattering rate of the599

form α(εnk −EF )
2, predicted by Landau’s theory of the600

FIG. 7. Convergence of G0W0 calculations with increas-
ing k-point sampling. The inset shows the results of the
10× 10× 10 k-point calculations with three different η val-
ues. The energy range of the inset is the same energy range
used for the electron-electron lifetime fit (see text).

FIG. 8. Electron-electron lifetimes obtained from the fit
to Landau’s theory of the Fermi liquid for the first conduc-
tion band at the Γ point, computed using a 10× 10× 10 k-
point grid and η = 0.005 eV. Data points were calculated by
Ladstädter et al.64 The error bars show the standard devia-
tion for relaxation times from different k-point grids and η
values.

Fermi liquid.72 We compute the imaginary part of the601

self-energy by performing a G0W0 calculation where the602

complex shift η of the Kramers-Kronig transformation is603

set to a value much smaller than what is used in typi-604

cal GW band structure calculations. This allows us to605

accurately resolve the imaginary part of the self-energy606

near the Fermi energy, see inset of Fig. 7, and Fig. 7 also607

illustrates k-point grid convergence tests of our G0W0608

calculations.609

Next, we fit the −2 Im {Σ(εnk)} values for the first610
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conduction band at the Γ point, computed using a611

10× 10× 10 k-point grid and the smallest value of η =612

0.005 eV, over an energy range between 0 and 18 eV to613

the form from Landau’s theory of the Fermi liquid. The614

value of α from this fit gives the hot electron lifetimes as615

τnk =
59 fs eV2

(εnk − EF )2
, (11)616

and is plotted in Fig. 8. We include standard deviation617

error bars at integer and half-integer energy values which618

compares the lifetimes of the 10× 10× 10 and η = 0.005619

eV case to the lifetimes computed from 8× 8× 8 k-point620

grids with η values of 0.005, 0.01, and 0.04 eV and life-621

times from 10× 10× 10 k-point grids with η values of622

0.01 and 0.04 eV. The average of the α values from this623

set of calculations was computed to be 0.0116 (eV)−1.624

We are satisfied with the use of a 10× 10× 10 k-point625

grid and η = 0.005 eV due to the error bars being small626

and the relative error of α being 3.4% when compared627

to the average α value. Figure 8 shows that our calcu-628

lated electron-electron lifetimes from the Fermi liquid fit629

match the lifetimes from the full GW method64 well, jus-630

tifying the future use of this method. In particular, we631

note that this approach reduces the computational cost632

compared to full GW simulations, possibly extending its633

range of applicability into the high-excitation or warm634

dense matter regime. Our calculation of the electron-635

electron lifetimes predicts that electrons located close to636

the Fermi energy have lifetimes that are on the order of637

a few hundred femtoseconds and larger. For electrons at638

energies further away from the Fermi energy, our calcu-639

lation predicts smaller lifetimes on the order of tens of640

femtoseconds and smaller.641

The relaxation times from the GW electronic self en-642

ergy are about one order of magnitude smaller than our643

results from TDDFT. Since we have excluded numerical644

convergence parameters and finite size effects as possible645

reasons, we tentatively attribute the unexpected behavior646

observed in our TDDFT simulations to the limitations of647

ALDA, which is local in time and space. The limitations648

of ALDA for electron-electron scattering were studied be-649

fore for 1-D model systems73 and ALDA is expected to650

underestimate the scattering probability. In addition,651

even the “exact” adiabatic functional lacks the “peak652

and valley” features observed in truly exact exchange-653

correlation potentials and gives rise to spurious oscilla-654

tions in charge density.73 More generally an explanation655

for the lack of electron-electron thermalization could be656

related to the lack of explicit static correlation in the657

theory, similarly to the problem of electron-ion thermal-658

ization.74 One could imagine that the promotion of elec-659

trons into higher energy states in a 3D metal might be660

analogous to the charge oscillations observed in the 1-661

D model. However, the actual limit of adiabatic semi-662

local functionals like ALDA remains unclear for con-663

densed systems. Future investigation using XC function-664

als that address self interaction errors (see e.g. Sec. VI)665

or non-adiabatic memory effects (e.g. the Vignale-Kohn666

functional75,76) are needed. However, such computation-667

ally intensive simulations remain impractical at the point668

of writing. We also note that other considerations such669

as choice of pseudopotentials or convergence with respect670

to Brillouin zone sampling could potentially affect the re-671

sults to a minor extent.672

VI. EXCHANGE AND CORRELATION673

Local or semi-local approximations of exchange and674

correlation (XC) are most prevalent in applications of675

TDDFT to study the dynamics of interacting electrons.676

This typically means using the adiabatic local-density ap-677

proximation (ALDA) or its generalized gradient approx-678

imation (GGA) extension, but in more recent works77,78679

also modern meta-GGA approximations such as the680

strongly constrained and appropriately normed (SCAN)681

functional79,80 are employed within RT-TDDFT. More682

accurate and computationally tractable functionals are683

always desirable and specifically the influence of long-684

range corrections, self-interaction errors, and the adia-685

batic approximation remain unexplored e.g. for electron686

capture and emission processes. First-principles simu-687

lations are particularly likely to provide most urgently688

needed insight when applied to complex or heterogeneous689

systems such as molecules adsorbed at semiconductor690

surfaces. For these, it becomes important to examine691

and advance the extent to which XC functionals can cor-692

rectly model long-range charge transfer and exciton for-693

mation/dissociation in RT-TDDFT.694

As a practical approach to move forward, recent695

progress includes using hybrid XC functionals within696

RT-TDDFT.81 However, the plane-wave implementa-697

tion would carry a computational cost typically about698

two orders of magnitude higher than that of semi-local699

functionals,77 rendering applications to complex, ex-700

tended systems challenging. The dominant cost of these701

calculations is the evaluation of exchange integrals. To702

alleviate this problem, some of us pursued the prop-703

agation of maximally localized Wannier functions82 in704

RT-TDDFT, significantly reducing the computational705

cost of evaluating exact exchange integrals.77 Maximally-706

localized Wannier functions (MLWF) are propagated707

by21708

i
∂

∂t
wl(r, t) =

[
ÂML + Ĥ[{wi}]

]
wl(r, t), (12)709

where the maximal localization operator ÂML is710

an exponential of a unitary matrix that minimizes711

the spread of the propagating Wannier functions,712

min
{∑N

n

[〈
wn

∣∣r̂2∣∣wn

〉
− ⟨wn|r̂|wn⟩2

]}
U
, and the posi-713

tion operator is ⟨r̂⟩ = L
2π Im

{
ln |ψ|e i2π

L r̂|ψ⟩
}
. For insu-714

lating systems with a finite energy gap, the nearsighted-715

ness principle of electrons83 allows high spatial localiza-716

tion of time-dependent MLWF orbitals. This can then be717
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exploited for efficiently implementing hybrid exchange-718

correlation functionals. In particular, the spatially lo-719

calized nature allows to reduce the number of exchange720

integrals721

EX = −1

2

∑
ij

∫∫
drdr′

w∗
i (r, t)wj(r, t)w

∗
j (r

′, t)wi (r
′, t)

|r− r′|
(13)722

that needs to be evaluated. While time-dependent Kohn-723

Sham states are generally itinerant, only minimal spa-724

tial overlap is expected for distant time-dependent ML-725

WFs and neglecting exchange integrals based on the ge-726

ometric centers and spreads of the time-dependent ML-727

WFs in the integrand significantly reduces computational728

cost.77 Table I illustrates this reduction of computational729730

cost for a system of 512 crystalline silicon atoms (2048731

electrons), when using a cutoff distance for evaluating732

the exchange integrals needed for the PBE0 hybrid XC733

approximation.77 For this test system the computational734

cost is reduced by an order of magnitude, using a cutoff735

distance of 25 a0. We note that due to the nearsighted-736

ness principle, this required cutoff distance does not scale737

with system size. Consequently, the MLWF approach be-738

comes increasingly appealing for simulations of large sys-739

tems, because a larger fraction of the exchange integrals740

can be removed while preserving accuracy. For ground-741

state calculations, such efforts exist84,85 and we expect742

the MLWF approach to be crucial to making hybrid XC743

functionals applicable also in the context of RT-TDDFT744

for studying complex systems in the near future.745

As an alternative hardware-based paradigm, the high746

computational efficiency of hybrid XC functional for747

planewave (RT-TD)DFT codes can be alleviated by748

adopting GPU architectures. This is also driven by749

the growing hybrid CPU/GPU architecture for high-750

performance computing, aiming to achieve exascale su-751

percomputers. Such approach has been successful for752

ground-state DFT calculations86,87 and RT-TDDFT sim-753

ulations using parallel transport gauge.88 Andrade et754

al. developed a new planewave (TD)DFT code, INQ,89755

based on GPU architectures. Computationally intensive756

methods like hybrid XC functionals are supported in INQ757

but the speedup remains to be explored in the future.758

In terms of how hybrid XC approximations can759

advance (RT-TD)DFT methodologies, screened760

range-separated90 and dielectric-dependent hybrid761

approximations91 have emerged as an interesting762

paradigm in recent years. Such advanced hybrid XC763

approcimations could provide an alternative to the764

computationally expensive many-body perturbation765

theory framework and potentially enable an accurate766

description of exciton dynamics in large and complex767

systems within RT-TDDFT. Screened range-separated768

hybrid functionals have been used in linear-response769

TDDFT to successfully model excitonic features in770

the absorption spectrum. These effects, as well as771

an accurate description of long-range charge-transfer772

excitations, typically go beyond standard semilocal773

approximations for exchange and correlation. Range-774

separated hybrid XC approximations are expected to775

enable a description of charge-transfer dynamics in het-776

erogeneous systems92 such as molecule-semiconductor777

interfaces within RT-TDDFT in combination with the778

MLWF approach.779

While the above-discussed approaches renders hy-780

brid XC functionals more attractive, the computational781

cost still remains significantly higher than for local and782

semi-local approximations. Alternatively, we recently783

demonstrated19 the use of a long-range corrected (LRC)784

kernel in the context of RT-TDDFT. The resulting vector785

potential accounts for the long-range screened electron-786

hole interaction and is capable of describing excitonic787

effects in optical spectra. At the same time, this RT-788

TDDFT implementation exhibits computational benefits789

using massively parallel computing and retains a descrip-790

tion of nonlinear effects that are not accessible within the791

linear response approximation. We also note that this en-792

ables more general future developments around real-time793

TD current-DFT.794

Finally, we note that recent work on the temperature795

dependence of exchange-correlation models is instruc-796

tive to consider in working toward a dynamical treat-797

ment of thermalization based on TDDFT. Numerous re-798

sults have established formal foundations for incorporat-799

ing electronic temperature in DFT93 and TDDFT94,95
800

beyond the standard Mermin approach.67 Building on801

these foundations, high-quality reference calculations for802

the uniform electron gas at non-zero temperature96,97803

have been used to create exchange-correlation function-804

als98 and applied to materials in extreme but equili-805

brated conditions.99 However, these results concern elec-806

trons that are equilibrated at a fixed temperature, not807

electrons that are in the process of equilibrating. Be-808

cause the thermal contribution to exchange-correlation809

is typically relatively small, it is reasonable to assume810

that thermalization through electron-ion scattering can811

be captured by existing adiabatic functionals. However,812

thermalization through electron-electron scattering will813

require accounting for physics beyond the adiabatic ap-814

proximation, which is notoriously challenging. We note815

one potentially promising direction from plasma physics,816

in which a correction accounting for electron-electron817

scattering beyond a mean-field treatment was proposed818

as a mechanism to improve agreement with quantum819

kinetic theory100 for the thermal conductivity of non-820

degenerate hydrogen plasmas. Investigations of discrep-821

ancies in TDDFT or GW for comparably simple systems822

might yield insights into deficiencies in these approaches,823

though extrapolating to degenerate systems would likely824

be a challenge.825

VII. SUMMARY AND FUTURE DIRECTIONS826

We discussed various interesting lines of recent devel-827

opment in the context of using real-time time-dependent828
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TABLE I. The wall-clock time per iteration for modeling crystalline silicon using a 512-atom simulation cell with the periodic
boundary conditions. The planewave cutoff energy of 25 Ry was used with PBE norm-conserving pseudopotentials. ETRS
integrator was used with the integration time step of 0.05 at. u. The calculations were performed on 704 processors on 16
Broadwell nodes (Intel Xeon E5-2699A v4 -2.4 GHz) of Dogwood cluster at the University of North Carolina at Chapel Hill.
Only MPI (no open-MP/SIMD) was used for this assessment.

Cutoff distance EXX integrals Energy drift Timer per Relative
(a0) evaluated (%) per iteration (Eh) iteration (s) iteration time

PBE N/A N/A ≤ 1.0 × 10−10 19.9 0.009
PBE0 N/A 100 ≤ 1.0 × 10−10 2227.8 1
PBE0 25 7.4 4.1 × 10−7 271.3 0.12
PBE0 30 9.0 3.6 × 10−7 278.4 0.13

density functional theory for simulations of electron dy-829

namics on femto- to pico-second time scales. While our830

efforts have not yet revealed an integrator that outper-831

forms the enforced time-reversal symmetry method, op-832

timization of the stability region of explicit methods, or833

incorporation of machine-learning techniques may turn834

out promising. Periodic boundary conditions straight-835

forwardly reduce computational cost in particular for fi-836

nite systems. Treating the projectile particle quantum837

mechanically is within reach, albeit expensive, but diffi-838

culties around the vanishing distinction of projectile elec-839

tron and those of the host material require further devel-840

opment efforts. Based on our detailed simulation results,841

we conclude that reconciling electron-electron scattering842

from real-time propagation with many-body perturba-843

tion theory will require advances in the description of ex-844

change and correlation. Finally, such advances seem pos-845

sible, involving maximally localized Wannier functions or846

a long-range corrected approach to exchange and corre-847

lation.848

All of these future developments will undoubtedly be849

impactful for materials discovery and development and850

can facilitate the tight integration of electronic excita-851

tions and ion dynamics. Efforts in such directions, in-852

cluding those involving machine learning, are currently853

underway in many groups worldwide. Going beyond854

the scope of this present work are interesting and nec-855

essary developments that couple electrons and ions, e.g.856

within Ehrenfest dynamics, or even treat ions quantum-857

mechanically. At the same time, such developments in858

most cases will lead to moderately or significantly in-859

creased computational cost. Taking ongoing develop-860

ments of modern supercomputing architectures into ac-861

count, this will require simulation codes which can ef-862

ficiently benefit from graphics processing units, such as863

the INQ code,89 the successor to Qb@ll.864
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