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Electron dynamics in extended systems within real-time time-dependent density
functional theory
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Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density
functional theory has emerged as a promising first-principles framework to describe electron real-time
dynamics. Here we discuss recent implementations around this approach, in particular in the context
of complex, extended systems. Results include an analysis of the computational cost associated with
numerical propagation and when using absorbing boundary conditions. We extensively explore the
shortcomings for describing electron-electron scattering in real time and compare to many-body
perturbation theory. Modern improvements of the description of exchange and correlation are
reviewed. In this work, we specifically focus on the Qb@Ill code, which we have mainly used for
these types of simulations over the last years, and we conclude by pointing to further progress

needed going forward.

Keywords: computation/computing, quantum effects, radiation effects, metal, semiconducting, 2D materials

I. INTRODUCTION 56

57

Real-time time-dependent density functional theory %
(RT-TDDFT) has attracted tremendous attention in the *
context of accurate theoretical characterization of mate-
rials recently and over the years. It is arguably one of ®
the most promising approaches to simulate the real-time
quantum dynamics of electrons as well as its coupling to
ion dynamics. In particular, its promising balance be- %
tween accuracy and computational cost make this tech- e
nique increasingly applicable also for development, de- e
sign, and discovery of materials including for electronic, ¢
optical, electrochemical applications, amongst others.! e
Recent applications include laser excitation of materials,? e
interaction of materials with energetic ions,® and non-
linear excitation dynamics.* The framework is imple- ~
mented in many software packages and readily usable -
on a large variety of computational resources, including -
use of graphics processing units (GPUs). This makes the 7
technique applicable to many diverse materials from just s
a few atoms to complex extended structures consisting of 7
hundreds of atoms. 7

In this work we provide examples for recent develop-
ments and applications that we accomplished and use 7
these to illustrate the need for future improvements. This s
includes discussing the underlying approximations and &

the path towards a computationally more feasible and
widely applicable implementation of this approach for
complex and extended systems. Simulations of com-
plex, extended materials can benefit from less main-
stream approaches such as orbital-free TDDFT,>6 sub-
system TDDFT,” or time-dependent density functional
tight binding techniques.® However, in what follows, we
focus on plane-wave RT-TDDFT and discuss our own
work of using and extending the Qb@ll code.” 2

First, the time stepping that is used in RT-TDDFT
critically determines the computational cost. Second, we
also give a specific example for how absorbing boundary
conditions can mitigate high computational cost when
studying two-dimensional materials. Next, the physics of
charged projectile ions or electrons interacting with the
electronic system of the target is briefly discussed and
the computational cost of using an electron wave packet
instead of a classical Coulomb potential in a plane-wave
framework is assessed. Subsequently, we analyze in de-
tail the RT-TDDFT description of electron dynamics and
find shortcomings in capturing the time scale of electron-
electron scattering mediated thermalization. These re-
sults are compared to the literature and discussed relative
to GW simulations within many-body perturbation the-
ory. Finally, we discuss recent progress in describing the
electron-electron interaction via exchange and correlation
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in RT-TDDFT, and the associated computational cost.i
All RT-TDDFT simulations presented here were per-izs
formed with the Qb@Il code and extensions thereof,? 212
and we conclude our discussion with a brief outlook oniz
future directions of this software, hoping to stimulate ex-1x
citing developments in the field of RT-TDDFT for yearsis
to come, including for computational materials discoveryuss
and development, as is the goal of this focus issue. 134
135
136
II. REAL-TIME PROPAGATION OF 137
TIME-DEPENDENT KOHN-SHAM EQUATIONS

138
Excited electron dynamics can be modeled from first
principles with real-time time-dependent density func-
tional theory (TDDFT).'3! In this approach, the elec-1x
tron density n(r,t) evolves over time according to thein
time-dependent Kohn-Sham (TDKS) equations: 141

142

i%d)j(r,t) = Hn|(t) ¢;(r, 1), 143
_ ) (1)144
n(r,t) = Z filgi(x, 0. 145

146

147

Here, ¢; are single-particle Kohn-Sham orbitals with oc-4s
cupations f;. The single-particle Hamiltonian, 149
150

H[TL] (t) = T + ext (t) + VHar [Tl] + VXC [n]v (2)151

152

contains tbe kinetic energy operator T , the externaliss
potential Viy(t) due to nuclei and any external fields,ss
the Hartree electron-electron potential VHar [n], and thes
exchange-correlation potential Vxc[n]. The electronic’®
system may be coupled to nuclear motion through Ehren-**'
fest dynamics.'® 158
Explicit time dependence may arise within Vi (t)
from an external perturbation such as a moving pro-'®
jectile ion or a dynamic electromagnetic field. De-"*
pending on the gauge choice, an external vector po-'®
tential Aexi(r,t) may enter into the kinetic energy as'

T= 1 (—iV + Aex (T, £))?. To apply a uniform external®
electric field to an infinite periodic system, it is often con-'*"
venient to work in the velocity gauge, where the electric'®

field is generated by the vector potential 619 1
168

1 dA oy (t 169
171
Alternatively, the length gauge, which instead involvesi»
the scalar potential Eq(t) - r, can be appropriate foris
finite systems?® or with the use of maximally localizedi
Wannier functions.?! Both capabilities have been imple-irs
mented in the plane-wave TDDFT code Qbox/Qb@I1,% 1117
with options for static fields, delta kicks, and dynamicin
laser pulses.!?:2!
In the vector-potential formulation, the vector poten-
tial is chosen such that its time derivative gives the proper
electric field according to Eq. (3). For example, the delta™

159

Eext(t) =

178

kick is implemented by a step function in the vector po-
tential. In practice this means the propagation is done
with a constant vector potential whose amplitude is given
by a desired intensity of the kick (as the initial condition
is the ground state calculated without a vector poten-
tial). A laser field is simply simulated by an oscillatory
electric field with constant or time-dependent amplitude.
Since the dipole is not properly defined for extended sys-
tems, the polarization is obtained from the macroscopic
current.'® We use the usual definition of the quantum-
mechanical current

J(t) = / A L5060 e, ()

which is not strictly correct when using non-local pseudo-
potentials.'® However the correction term is small for
electric perturbations.??

Both the computational cost and accuracy of real-
time TDDFT simulations are in large part governed by
the numerical algorithm used to integrate the TDKS
equations, Eq. (1). While a simple explicit integration
scheme such as fourth-order Runge-Kutta (RK4) is suit-
able for modest-size systems,” very large supercells and
short-time propagation require higher accuracy?? offered
by time-reversible schemes such as the enforced time-
reversal symmetry (ETRS) method.''?* We specifically
showed this for systems containing vacuum.?® More ef-
ficient algorithms which reduce time-to-solution without
sacrificing accuracy would accelerate the study of excited
electron dynamics in materials and enable consideration
of larger systems of practical interest over longer sim-
ulation time scales, including defect systems, material
surfaces, and 2D hetero-structures.

Below we briefly present our recent efforts towards a
systematic assessment of numerous explicit time-steppers
and several variants of the ETRS approach. Interfacing
Qbox/Qb@I1%! with the PETSc numerical library?® pro-
vided us with seamless access to a wide range of Runge-
Kutta (RK)?" and strong stability preserving (SSP)
RK?® methods. Each algorithm’s performance was as-
sessed for a sodium dimer test system over a range of time
step sizes At = 0.01-0.5 atomic units (at.u.), and com-
putational cost was measured as the average wall time per
simulated time. After perturbing the initially ground-
state system by slightly displacing the atoms away from
their equilibrium positions, the electronic response was
evolved for 100 time steps on a single processor. For the
most promising methods, additional tests on a 112-atom
graphene supercell confirmed the qualitative trends ob-
served for the smaller test system.

Since exact time evolution should conserve both energy
and charge, we compute an error metric given by the
product of average errors in total energy F and net charge
Q@ per simulation time:

sse - (A0 (BO-EOY
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where brackets denote time averages,

(a0 _1 [1e0-00,
0

t 7 t ’

and ¢y is the total time. This form was chosen to give
a reasonable error measure for both linear and oscilla-
tory error accumulation models. In particular, using
this definition 6@ has a reasonable long-time limit both
when Q(t) — Q(0) can be modeled as o t and when
Q(t) — Q(0) can be modeled as o sin(wt).?? The tol-
erable error level for a particular application depends on
the system studied and the observable of interest. For
example, electronic stopping power calculations in bulk
materials3? 39 extract total energy differences typically
about 5—50 Ha over the course of a ~1 fs simulation, so
dF < 0.1Ha/at. u. suffices and §@Q is not important be-
yond its correlation with JE. In contrast, simulations of
ion-irradiated 2D materials?>4%45 involve smaller energy
transfers around 0.2—5Ha and may additionally exam-
ine sensitive charge transfer processes such as emission of
0.1-10 electrons into vacuum. Thus, these calculations
require 6Q 0F < 10~° e Ha/at. u.?

From our data in Fig. 1 we find that ETRS generally
outperforms all explicit time steppers tested: it achieves
lower computational cost at an acceptable error level.
The only competitive Runge-Kutta scheme is the fifth-
order Bogacki-Shampine algorithm (RK5BS),*¢ which is
even more accurate than ETRS for small step sizes (see
Fig. 1a). However, while RK5BS becomes unstable for
At 2 0.lat.u. in our sodium dimer simulations, ETRS
maintains tolerable error rates for step sizes twice as
large, allowing lower computational cost. Among the
SSP methods tested, the 4th-order schemes are most suc-
cessful but do not improve over ETRS’s accuracy, stabil-
ity, or speed (see Fig. 1b). Lower-order SSP schemes in-
volving many (> 16) stages do allow larger step sizes than
ETRS, but the expense associated with a large number
of stages outweighs the increased stability. Overall, we
find that ETRS achieves lowest time-to-solution. Recent
work?” also tested the Adams-Bashforth and Adams-
Bashforth-Moulton classes of explicit time steppers, find-
ing that these methods can outperform RK under certainass
conditions, but their performance has not yet been com-2s
pared to ETRS. 238

Several possible schemes exist to approximate the ex-23
ponentials of the Hamiltonian involved in ETRS.?* Here, 2o
we use Taylor expansions for their simplicity and com-2u
pare different orders in Fig. 1c. Consistent with asser-2s
tions made in Ref. 24, we find that 4th or 5th-order Tay-2a
lor expansions are optimal. A 6th-order expansion is lessau
stable, while a 3rd-order expansion sacrifices accuracyazss
without significantly reducing computational cost. 26

Other implicit methods may yet prove more efficients
than ETRS. One promising option is Crank-Nicolsonass
(CN), which some other TDDFT implementations suc-»s
cessfully employ.2?3148-52 We find that CN is generallyzso
more accurate than ETRS (see Fig. 1c¢), perhaps thanks:s
to the unitarity of the Padé form of the CN propaga-2s:

(6)
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= RK2A

=
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} J
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3] 1 W "
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3 ] - CN

UL L B L B AL
0 50 100 150 200
wall time / simulation time (s/at.u.)
FIG. 1. Performance of 4th-order ETRS (black stars)

compared to (a) all Runge-Kutta time-steppers available in
PETSc, (b) various strong stability preserving Runge-Kutta
time-steppers available in PETSc, and (c) other variants of
ETRS and a naive application of PETSc’s Crank-Nicolson
(CN). RKN[X] denotes an Nth-order Runge-Kutta scheme
where X is an additional PETSc identifier, typically the ini-
tials of original developers. SSP(M, N) denotes an M-stage,
Nth-order SSPRK method, and ETRSN denotes ETRS using
Nth-order Taylor expansions to approximate exponentials.

tor in contrast to the truncated Taylor expansion used
in the ETRS implementation. Although CN can main-
tain accuracy even for large time steps, i.e., stability re-
strictions do not limit this method, it involves a costly
nonlinear solve. The large number of H¢ evaluations
performed by PETSc’s algorithm for this nonlinear solve
made CN prohibitively expensive in this work (see Fig.
1c). However, further optimization, efficient precondi-
tioners, or the use of predictor-corrector methods that
obviate the nonlinear solve*®?3 could alleviate this issue.
Implicit schemes such as CN could be particularly advan-
tageous for ultrasoft pseudopotentials or the projector
augmented-wave method, where the left-hand side of the
TDKS equations involves an overlap matrix acting on the
time derivative of the pseudized orbitals.?! Since explicit
time-stepping schemes require the application of the in-
verse of this matrix at each time step, this complication
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narrows the prospective efficiency gap between explicit
and implicit schemes. However, this work used norm-
conserving pseudopotentials®® and thus did not benefit
from CN.

Explicit RK methods cannot conserve energy, and
some of the least expensive implicit RK methods, such
as CN, do not in general. In general, a direct way to alle-
viate errors in invariant quantities represented by inner-
product norms is to control the time step. One can re-
duce the time step adaptively if the energy loss exceeds
a certain level. Moreover, a promising strategy that also
applies to explicit methods is to use a time-step adap-
tation that adjusts step length such that the energy is
conserved exactly in finite precision. These methods are
referred to as relaxation RK and rely on modifying the
prescribed time step (typically reducing it by a small
fraction) so that the solution at each of these modified
steps preserves energy.’®%% Explicit methods are condi-
tionally stable; nevertheless, the stability regions can be
optimized for a specific eigenvalue portrait, which is a
promising strategy to improve their performance. Fur-
thermore, new machine learning developments in neural
ODE may provide new ways to accelerate the time Step—308
ping process.’” 3

Finally, the parallel transport gauge approach®® ap-
plies a unitary transformation to the Kohn-Sham orbitals™
to instead solve for slower varying orbitals that reproduce
the same electron density but introduce an additional
term in the TDKS equations. This promising method can
be combined with an efficient time stepper to produce,,
speedups of 5—50 over standard RK4 for molecules,58313
solids containing up to 1024 atoms,’® and mixed states_,
in model systems."?

310

315
316

317

COMPLEX ABSORBING POTENTIAL FOR
SECONDARY ELECTRON EMISSION 310
320

After examining the computational cost associatedsz
with real-time propagation in the previous section, wes
also explored the need for a large vacuum region as part ofs:
the simulation cell when studying electron emission, e.g.32
from surfaces or two-dimensional (2D) materials. Whenszs
using periodic boundary conditions, vacuum lengths ofszs
150 ag or more are necessary to prevent the unphysicalsz
interaction of the electrons emitted from both sides ofzs
the 2D material across the boundary of the simulationszs
cell, resulting in a high computational demand.*® To ad-3%
dress this problem, absorbing boundaries®® are frequentlyss:
employed to emulate open boundary conditions. Absorb-ss
ing boundaries based on a complex absorbing potentialsss
(CAP)S! alter the Hamiltonian, Eq. (2), by adding anss
artificial complex (imaginary) potential in a defined re-sss
gion of the simulation cell, resulting in a non-Hermitiansss
Hamiltonian and non-unitary time-evolution operator.ss
This approach has been successfully used in simulatingsss
the real time dynamics of wave functions of 2D mate-ss
rials, including secondary electron emission due to elec-3w

III1.

0.6 “::"— T
wn r 7/
[=} /
o /
B I /
§ 0'4_' ," —— CAP vac=100aqay
g i ,'l CAP vac=150aqy
_g 02+ ," ---- Periodic vac=100aq -
u% i | Periodic vac=150a,
- | ---- Periodic vac=250ao
O'O C ---I-’ L L L L 1 L L L L 1 L L L L 1 1 ]
0 1 2 3

Time after impact (fs)

FIG. 2. Total emitted electrons in vacuum, after a channel-
ing proton*® with a velocity of 1.79 at. u. impacts graphene.
When using a CAP, the difference between different vacuum
sizes converges much earlier.

tron irradiation®® and angular resolved photo-emission
Spectra.ﬁo

We implemented an absorbing potential into the
Qb@I%!"! code that follows the form

—i- W sin? (%), 2 < 2 < zg + 2d,

, otherwise

Vear(z) = {

(7)
where W defines the maximum of the CAP, and 2z, and
d, are the position of the front boundary and the half
width of the CAP.

Here, we compare to our previous work on secondary
electron emission of graphene under proton irradiation,*3
and demonstrate that a CAP can significantly reduce fi-
nite size effects, leading to an acceleration of the simula-
tion by reducing the vacuum size. We use the same sim-
ulation cell and computational parameters as described
in Ref. 43. The target graphene is placed at the center of
the simulation cell, at z = 0 on the z-y plane. Emitted
electrons in vacuum are determined by integrating the
electron density over a region farther than 10.5ag from
the graphene. We assess finite size effects for different
vacuum sizes along the direction of proton travel for a
channeling proton with 1.79 at.u. of velocity. Following
Ref. 43, we treat the maximum of the emitted electron
curves in Fig. 2 as the total number of emitted electrons.

Comparing the resulting number of total emitted elec-
trons for periodic boundary conditions, the data in Fig. 2
shows a difference of 3 % when 150 a¢ and 250 ag of vac-
uum are used, whereas the difference is 8.22 % between
100 ag and 250ag of vacuum. This shows that a large
vacuum size is needed to obtain converged results. For
comparison, a CAP of the form of Eq. (7) is placed at
the boundary of the simulation cell. We set W = 15 F,
zs = 40ag, and d, = 10ag for 100 ag of vacuum, and
W =20 Ey, zs = 63.75a9, and d, = 11.25 ag for 150 ag of
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vacuum. With these parameters for the CAP, the differ-
ence of emitted electrons for 100 ag and 150 a¢ of vacuum
is 1.14 %. The reduced finite size error with a CAP allows
using smaller vacuum regions of 100 ag or less, instead of
150 ag, reducing the simulation time per iteration from
61.44 core hours to 40.96 core hours, a 33 % speedup,
when running on ALCF Theta. In general, depending on
the targeted problem, a careful convergence test of the
vacuum size is required for 2D systems.

IV. QUANTUM-MECHANICAL PROJECTILE:
ELECTRON WAVE PACKET

In the previous section and in most of the literature
on electronic stopping, the excitation mechanism is de-
scribed using a classical projectile, i.e., a time-dependent
Coulomb potential moving at constant velocity. It is
currently unclear to what extent this approximation be-
comes unreliable for light projectiles such as protons or
electrons. Electrons are particularly small and light-
weight compared to protons or heavy-ion projectiles andsso
the electronic wavelength can reach the scale of inter-so
atomic distances. Hence, the approximation of using as
classical Coulomb potential to describe electron projec-ses
tiles is expected to be more severe. The explicit break-3o
down of this approximation is currently not studied wellsos
and systematically. 396

Treating the incident electron fully quantum-ss
mechanically is, hence, a promising alternative.sss
Following the work by Tsubonoya et al.,% the initialse
incident electron can be modeled as a Gaussian-shapedao
wave packet at the start of simulation, 401

402

i ERRY
WP (r, o) = (71_22> exp [_(I‘Qd? +ik-r|, (8)
403
where d, b, and k are the parameters for defining the
spread, the center location, and the wave vector of the ”
wave packet, respectively. The wave vector k represents_
the group velocity of the incident electron and is the bln—4
gle parameter that controls the kinetic energy of the i 111(31—407
dent electron. The time-evolution of this wave packet is .
described by the time-dependent Kohn-Sham equatlons
Eq. (1), on the same footing as the rest of the system o
Thus, the time-dependent Kohn-Sham orbitals 1nclude411
all electrons in the target material and the incident elec—
tron of the wave packet. The electron density is then the s
sum of the electron density of the target material and the »

electron density of the wave packet, s

N/2 416

2 WP 2
=3l + [Vt )
=t 419
where N is the number of electrons in the target material.so
In the following we characterize the convergence be-s
havior of the Gaussian wave packet with respect to plane-a
wave cutoff energy (see Fig. 3). We simulate Gaussianas

70 1

&

Total Energy (Ry)

[N}
o

b
o

=]

25 50 75 100 125 150 175 200
Ecut (Ry)

FIG. 3. Dependence of the total energy of electron wave
packets with different kinetic energy moving through vacuum
on the plane-wave cutoff used for the simulation.

wave packets with different velocities and find that high
cutoff values are necessary to converge fast wave packets,
possibly leading to a limitation of these simulations. We
also note that the wave packet itself spreads over time,
rendering comparison to the classical electron approx-
imation challenging. Finally, the computation of elec-
tronic stopping power S is complicated by the fact that
the projectile, if treated quantum mechanically, is part
of the electronic system and the approach of computing
the stopping power from the increase dE/dx of the elec-
tronic total energy is no longer applicable. Solving this
problem remains an open question for future work.

V. REAL-TIME ELECTRON DYNAMICS IN
ALUMINUM

In the following, we explore using real-time TDDFT
to simulate electronic thermalization in metals, which is
generally assumed to be fast, on the order of 10-100 fs.
Previous studies applying the GW method to compute
the self energy for Al support this assumption, where
the lifetimes mediated by electron-electron scattering are
found to be a few tens of fs at energies further away from
the Fermi energy and on the order of 100 fs when nearing
the Fermi energy.%% Given these short time scales, real-
time TDDFT in principle can be used to perform statisti-
cal ensemble sampling of an electronic system in internal
thermodynamic equilibrium and to calculate expectation
values of an observable under different conditions.%® This
is similar to Mermin DFT,5” but such a real-time ap-
proach can potentially capture additional dynamic effects
using the same exchange-correlation functional.

To this end, Modine et al.%® previously explored the
idea of performing statistical mechanics on electronic sys-
tems, in analogy to simulations of statistical thermody-
namics using classical molecular dynamics. As a first
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FIG. 4. Electron dynamics computed for Al with fixed ionsars
using real-time TDDFT. In (a) we show occupation numbers,
of the different Kohn-Sham states, averaged over 315 fs of,,
simulation time, as a function of their Kohn-Sham energy.,
“000 fs” shows the average taken from ¢=0 fs to =315 fs etc.,_
In (b) we plot a single snapshot at shown simulation time for478
high-energy eigenstates. Semi-transparent grey arrows guide

. . 479
the eyes for how occupation numbers evolve over time.
480

481

482

step towards this idea, they initiated a 100 fs RT-TDDFT
simulation using adiabatic LDA for an excited electronic
system of Al with fixed ions. They showed that although483
the distribution of the time-averaged occupation numbers
is Fermi-like, it seems to decrease more sharply near thes
Fermi energy and takes longer to reach asymptotic val-sgs
ues.% To further understand this behavior, we performed.ss
significantly longer RT-TDDFT simulations (> 1ps) forss
the same Al system. We used the same plane-wave cut-sss
off energy of 20 Ry, I'-only Brillouin zone sampling, andase
the same 32-atom cell. In our simulations, this 32-atomug
cell is either an ideal crystal or a snapshot of a molecular,y
dynamics simulation with a temperature of 7900 K. 202
In Fig. 4a we show the resulting long-term electromnaos
dynamics in Al with fixed ions, simulated with real-timeas
TDDEFT up to ~ 6 ps. Following the approach by Modineass
et al.,% the initial wavefunction was prepared in such aass

way that the distribution of its occupation numbers is
close to the Fermi distribution at a given temperature.
For Fig. 4 we used 7900K and at ¢ = 0, we can see that
the dark blue dots loosely follow the Fermi distribution of
the same temperature. This is, by construction, expected
for initial states that are thermal states.%% We would then
expect the occupation numbers to fluctuate around an
average that corresponds to this Fermi distribution.

In contrast to this expectation, Fig. 4a clearly shows
that the distribution deviates more and more from the
initial Fermi distribution as time propagates, indicated
by semi-transparent gray arrows. If we focus on the dy-
namics near the Fermi energy, the drop in occupations
at the Fermi surface becomes steeper and steeper, which
is usually associated with lower electronic temperature.
However, the total energy of the system is conserved.
To analyze this further, we also investigate high-energy
eigenstates in Fig. 4b, showing that their occupation
numbers grow over time, indicating that electrons are
promoted to higher energy states and providing a mech-
anism for energy conservation.

Since scattering of electrons into higher energy states
during electronic thermalization is counter-intuitive, we
first thoroughly examine the effect of the initial wave-
function and several numerical parameters. We ensured
that over the simulation time of about 6.3 ps, the total
energy of the system remains conserved within acceptable
numerical error of < 0.1 meV/atom, suggesting that the
numerical time integrator remains stable for the whole
simulation. We also tested that this behavior is inde-
pendent of the cell size by comparing the dynamics of
occupation numbers of high-energy eigenstates in the 32-
atom cell to a 108-atom cell, finding again a high-energy
tail emerging over time. Furthermore, we excluded the
symmetry of the lattice as a factor by comparing the
dynamics for relaxed (T = 0 K) atomic positions vs.
a T = 7900 K molecular dynamics snapshot. In addi-
tion, we excluded an influence of the particular real-time
TDDFT implementation by comparing the Qb@QIll and
Soccoro®® codes.

The occupation number of eigenstate ¢ at simulation
time ¢, f;(t), is defined as

£ilt) = D Kol (o) (10)

where the reference states ¢; can be either the DFT
ground state or instantaneous adiabatic eigenstates of
the time-dependent KS Hamiltonian. An influence of the
reference states used to compute the occupation number
was excluded by comparing the adiabatic ground state
and the eigenstates of the instantaneous TDKS for pro-
jection. Finally, we also compared different approaches
of creating the initial electronic excitation by (i) using
the above described thermal state,’® (ii) promoting one
electron from valence to conduction band by changing
the Kohn-Sham occupation number, and (iii) imposing
a vigorous time-dependent displacement of randomly se-
lected atoms. In all cases we observed the same behavior
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FIG. 5. Occupation number as a function of simulation

time for selected eigenstates. These, otherwise randomly cho-""
sen, eigenstates have initial occupation numbers of roughly®™
0.0, 0.5, 1.0, 1.5, and 2.0. Red dashed curves show the fit®°
against the exponential a + b - exp(—t/c) to extract the char-52
acteristic time scale. Grey dashed horizontal lines indicates2
the expected occupation number for a given eigenstate undersz2
Fermi distribution. Texts describe the band index (BI) ands;
energy difference from Fermi energy at 7' = 7900 K. We found,,,
no clear connection of the occupation number dynamics with,,
the energy of the state.

526
527
528
shown in Fig. 4. 529

Next, we extract a characteristic relaxation time byss
fitting this data to an exponential decay. We randomlyss
select a few eigenstates across the energy spectrum withss
initial occupations of about 0.0, 0.5, 1.0, 1.5, and 2.0ss
and show their dynamics in Fig. 5. For the followingss
discussion, we refer to them by their band index (BI =ss
0, 39, 47, 48, 53, and 95, respectively). Figure 5 showssss
that BI=48, which is above the Fermi energy, couplesss
with BI=47, which is below the Fermi energy, since theirsss
dynamics shows the same oscillation frequency but is an-ss
tiphase. The frequency of these oscillations is about 8 —s«
10 THz, which equals half the energy distance betweensa
these states. We conclude that the observed oscillationsss

---- Ground state

—t
x eXPlzggr)

¢ After excitation

O (at. u.)

L] T T T T T T
0 1000 2000 3000 4000 5000 6000
Simulation time (fs)

FIG. 6. Time dynamics of the o,, component of the stress
tensor, after starting from a thermal state generated with a
Fermi temperature of 7900 K. Stresses are sampled sparsely
across the whole simulation and, at each sampled time point,
the stress values of the subsequent 10 fs are collected to
compute average (solid circles) and standard deviation (error
bars). The red curve shows a fit against oz» = a+b-exp(—t/c)
to extract the characteristic time scale.

are associated with TDDFT electron-hole excitation en-
ergies. The expectation that temperature induced ex-
citations are most dominant near the Fermi energy is
consistent with our observation of such oscillations only
between electrons and holes near the Fermi energy.

Next, we notice that all states are evolving away from
the occupation number expected based on a Fermi dis-
tribution of T = 7900 K (gray dashed horizontal lines
in Fig. 5). We also notice that the dynamics for the
BI=95 state is not monotonic and the occupation num-
ber changes in a completely different direction before and
after the reflection at around 700 fs. In addition, fit-
ting the data before 700 fs leads to a characteristic time
much shorter than the fit to the data after 700 fs. Such
non-monotonic behavior is not limited to eigenstates with
large BI but is commonly observed for other eigenstates.
For these, we only extract the characteristic time for the
second part of the dynamics (see the red dashed curve
for the BI=95 example in Fig. 5). From the extracted
characteristic times we found that BI=95, which is far
from the Fermi energy, relaxes more slowly than BI=48,
which is near the Fermi energy. This behavior is different
from Fermi liquid theory, which predicts that the lifetime
of an eigenstate is longer when its energy is close to the
Fermi energy.%” For this reason, and because the excited
Al system evolves away from a Fermi distribution, appli-
cability of this relation between Fermi level and lifetime
remain unclear.

The result is an important, albeit negative, result that
points to the inhability of a theory such a TDDFT (at
least in its current form) to thermalize electrons. One
potential shortcoming of this analysis may be that from



543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

a fundamental point of view, the Kohn-Sham occupation
number is not an observable in TDDFT; although that
would be an illuminating reason for this inability.

To address this concern, we also analyze stress, which is
a functional of the time-dependent electron charge den-
sity. In Fig. 6, we show the real-time dynamics of the
stress on the simulation cell after excitation for the oy
component of the stress tensor. Fitting to this data yields
a characteristic time of 268 fs. The o, and 0., compo-
nents have significantly different characteristic times of
889 and 691 fs, respectively, but their dynamics are also
monotonic. Since a set of independent complex numbers
with random phases and magnitudes are drawn from a
distribution to construct the initial thermal state,%% the
stress and its dynamics are not expected to be isotropic
for any given thermal state, but would average out over
many thermal states for the same temperature. We note
that these time scales are in the same range as those
of dynamics of the eigenstates with monotonic behavior.
Hence, based on the dynamics of occupation numbers
and stress, we conclude that equilibrium is reached over
a time scale of 1 ps. At energies above the Fermi level,
E — Ep, of about 1.0 eV, experimental results report val-
ues around 15 fs.”® Computational results include around
30 fs in Ref. 69, 20 fs from the GW +T method,%® and 70
fs in Ref. 64. There is an unresolved discrepancy between
Ref. 64 and 69, but the literature agrees Al qualitatively
follows Fermi liquid theory with band structure effects
only giving rise to small quantitative differences. Not
only is this electron-electron relaxation time significantly
longer than these results, but we also find that the system
evolves into an unknown distribution with a lower Fermi
temperature near the Fermi level and with high-energy
tails, compared to the initial Fermi distribution.

In order to address these discrepancies, it is necessary
to incorporate electron-electron and electron-phonon de-
cay channels into the RT-TDDFT Ehrenfest molecular
dynamics framework. Electron-electron scattering mech-
anisms should be treated on the level of the exchange-
correlation functional and we view hybrid functionals and
overcoming the adiabatic approximation typically used
in TDDFT as possible paths forward. In addition, ef-
forts to better describe the energy decay channels from
excited electrons into the system of ions are appearing
in the literature.”’ In addition, we note that these diffi-
culties in modeling relaxation times within RT-TDDFT
are exacerbated in strongly correlated systems, requiring
adequate approximations to exchange and correlation.

Next, we pursue an alternative route to computeso
the electron-electron scattering lifetime from first prin-so
ciples, based on equating the scattering term to thesos
imaginary part of the electronic self-energy, I'px =60
—2Im {%(enk)} /A Computing the imaginary part ofsos
the self energy within the GW framework provides life-60s
times, using a procedure described by Ladstédter et al.5%sor
Here we use a computationally more efficient approachsos
by fitting —2Im {¥(e,x)} to a scattering rate of theso
form a(enx — Er)?, predicted by Landau’s theory of theswo
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FIG. 7. Convergence of GoWy calculations with increas-

ing k-point sampling. The inset shows the results of the
10 x 10 x 10 k-point calculations with three different n val-
ues. The energy range of the inset is the same energy range
used for the electron-electron lifetime fit (see text).
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FIG. 8. Electron-electron lifetimes obtained from the fit

to Landau’s theory of the Fermi liquid for the first conduc-
tion band at the I' point, computed using a 10 x 10 x 10 k-
point grid and n = 0.005 eV. Data points were calculated by
Ladstédter et al.®* The error bars show the standard devia-
tion for relaxation times from different k-point grids and 7
values.

Fermi liquid.”? We compute the imaginary part of the
self-energy by performing a GoWj calculation where the
complex shift 1 of the Kramers-Kronig transformation is
set to a value much smaller than what is used in typi-
cal GW band structure calculations. This allows us to
accurately resolve the imaginary part of the self-energy
near the Fermi energy, see inset of Fig. 7, and Fig. 7 also
illustrates k-point grid convergence tests of our GoWj
calculations.

Next, we fit the —2Im {X(e,x)} values for the first
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conduction band at the I' point, computed using aeer
10 x 10 x 10 k-point grid and the smallest value of 1 =ees
0.005 eV, over an energy range between 0 and 18 eV toes
the form from Landau’s theory of the Fermi liquid. Thesero
value of « from this fit gives the hot electron lifetimes asen
59 fs eV "

ke = | °° (11)

enk — Ep)?’

and is plotted in Fig. 8. We include standard deviation®”
error bars at integer and half-integer energy values which
compares the lifetimes of the 10 x 10 x 10 and 1 = 0.00567
eV case to the lifetimes computed from 8 x 8 x 8 k-pointsr
grids with 7 values of 0.005, 0.01, and 0.04 eV and life-67
times from 10 x 10 x 10 k-point grids with n values ofs7
0.01 and 0.04 eV. The average of the « values from thissw
set of calculations was computed to be 0.0116 (eV)~l.sm
We are satisfied with the use of a 10 x 10 x 10 k-pointes
grid and 1 = 0.005 eV due to the error bars being smallss
and the relative error of o being 3.4% when comparedes
to the average a value. Figure 8 shows that our calcu-ess
lated electron-electron lifetimes from the Fermi liquid fites
match the lifetimes from the full GW method®* well, jus-es
tifying the future use of this method. In particular, wesss
note that this approach reduces the computational costes
compared to full GW simulations, possibly extending itssess
range of applicability into the high-excitation or warmsso
dense matter regime. Our calculation of the electron-so
electron lifetimes predicts that electrons located close toso
the Fermi energy have lifetimes that are on the order ofs»
a few hundred femtoseconds and larger. For electrons atees
energies further away from the Fermi energy, our calcu-e
lation predicts smaller lifetimes on the order of tens ofess
femtoseconds and smaller. 696
The relaxation times from the GW electronic self en-eo
ergy are about one order of magnitude smaller than ouress
results from TDDFT. Since we have excluded numericalsss
convergence parameters and finite size effects as possiblero
reasons, we tentatively attribute the unexpected behavioro
observed in our TDDFT simulations to the limitations of7o
ALDA, which is local in time and space. The limitationsos
of ALDA for electron-electron scattering were studied be-704
fore for 1-D model systems™ and ALDA is expected toros
underestimate the scattering probability. In addition,os
even the “exact” adiabatic functional lacks the “peakror
and valley” features observed in truly exact exchange-oes
correlation potentials and gives rise to spurious oscilla-
tions in charge density.”® More generally an explanation,
for the lack of electron-electron thermalization could be
related to the lack of explicit static correlation in the
theory, similarly to the problem of electron-ion thermal-71
ization.”™ One could imagine that the promotion of elec-"
trons into higher energy states in a 3D metal might be™2
analogous to the charge oscillations observed in the 1-71;
D model. However, the actual limit of adiabatic semi-
local functionals like ALDA remains unclear for con-"*
densed systems. Future investigation using XC function-7s
als that address self interaction errors (see e.g. Sec. VI)ns
or non-adiabatic memory effects (e.g. the Vignale-Kohni

9

functional™7%) are needed. However, such computation-
ally intensive simulations remain impractical at the point
of writing. We also note that other considerations such
as choice of pseudopotentials or convergence with respect
to Brillouin zone sampling could potentially affect the re-
sults to a minor extent.

VI. EXCHANGE AND CORRELATION

Local or semi-local approximations of exchange and
correlation (XC) are most prevalent in applications of
TDDEFT to study the dynamics of interacting electrons.
This typically means using the adiabatic local-density ap-
proximation (ALDA) or its generalized gradient approx-
imation (GGA) extension, but in more recent works’">"®
also modern meta-GGA approximations such as the
strongly constrained and appropriately normed (SCAN)
functional”™-#" are employed within RT-TDDFT. More
accurate and computationally tractable functionals are
always desirable and specifically the influence of long-
range corrections, self-interaction errors, and the adia-
batic approximation remain unexplored e.g. for electron
capture and emission processes. First-principles simu-
lations are particularly likely to provide most urgently
needed insight when applied to complex or heterogeneous
systems such as molecules adsorbed at semiconductor
surfaces. For these, it becomes important to examine
and advance the extent to which XC functionals can cor-
rectly model long-range charge transfer and exciton for-
mation/dissociation in RT-TDDFT.

As a practical approach to move forward, recent
progress includes using hybrid XC functionals within
RT-TDDFT.8! However, the plane-wave implementa-
tion would carry a computational cost typically about
two orders of magnitude higher than that of semi-local
functionals,”” rendering applications to complex, ex-
tended systems challenging. The dominant cost of these
calculations is the evaluation of exchange integrals. To
alleviate this problem, some of us pursued the prop-
agation of maximally localized Wannier functions®? in
RT-TDDFT, significantly reducing the computational
cost of evaluating exact exchange integrals.”” Maximally-
loczalized Wannier functions (MLWF) are propagated
by?!

0 SO
i, t) = [AME + H[{w}]wi(r,t),  (12)
where the maximal localization operator AML g

an exponential of a unitary matrix that minimizes
the spread of the propagating Wannier functions,

min {ij [(wn T2 wp) — (wy, |?|wn>2} }U, and the posi-
) |
lating systems with a finite energy gap, the nearsighted-
ness principle of electrons®® allows high spatial localiza-
tion of time-dependent MLWF orbitals. This can then be

. For insu-

tion operator is (F) = £ Im {111 |
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exploited for efficiently implementing hybrid exchange-r
correlation functionals. In particular, the spatially lo-7s
calized nature allows to reduce the number of exchangers

integrals m
778

1 ,wi(r, w; (v, )w; (v 1) wi (x',1) 7
Ex——2izj//drdr Ty .
(13)781

that needs to be evaluated. While time-dependent Kohn-"*
Sham states are generally itinerant, only minimal spa-"*’
tial overlap is expected for distant time-dependent ML-"
WFs and neglecting exchange integrals based on the ge-"
ometric centers and spreads of the time-dependent ML-"
WF's in the integrand significantly reduces computational
cost.”” Table I illustrates this reduction of computational
cost for a system of 512 crystalline silicon atoms (2048
electrons), when using a cutoff distance for evaluating™
the exchange integrals needed for the PBEO hybrid XC™
approximation.”” For this test system the computational™
cost is reduced by an order of magnitude, using a cutoff’™
distance of 25 ag. We note that due to the nearsighted-"*
ness principle, this required cutoff distance does not scale
with system size. Consequently, the MLWF approach be-*
comes increasingly appealing for simulations of large sys-""
tems, because a larger fraction of the exchange integrals™
can be removed while preserving accuracy. For ground-"*
state calculations, such efforts exist®»®> and we expect™
the MLWEF approach to be crucial to making hybrid XC**
functionals applicable also in the context of RT-TDDFT**
for studying complex systems in the near future. 803

As an alternative hardware-based paradigm, the high®
computational efficiency of hybrid XC functional for®”
planewave (RT-TD)DFT codes can be alleviated by™
adopting GPU architectures. This is also driven by™
the growing hybrid CPU/GPU architecture for high-**
performance computing, aiming to achieve exascale su-"*
percomputers. Such approach has been successful for®
ground-state DFT calculations®®3” and RT-TDDFT sim-""
ulations using parallel transport gauge.®® Andrade et
al. developed a new planewave (TD)DFT code, INQ,3%
based on GPU architectures. Computationally intensive™
methods like hybrid XC functionals are supported in INQ*®
but the speedup remains to be explored in the future.

In terms of how hybrid XC approximations can®

5

787

788

795

0

816

7

advance  (RT-TD)DFT  methodologies,  screened™
range-separated”® and dielectric-dependent  hybrid®”
approximations?’ have emerged as an interesting™®

Such advanced hybrid XC™

822

paradigm in recent years.
approcimations could provide an alternative to the
computationally expensive many-body perturbation®
theory framework and potentially enable an accurate®
description of exciton dynamics in large and complex™
systems within RT-TDDFT. Screened range-separated
hybrid functionals have been used in linear-response
TDDFT to successfully model excitonic features in
the absorption spectrum. These effects, as well as
an accurate description of long-range charge-transferss:
excitations, typically go beyond standard semilocals:s

3

4

826

10

approximations for exchange and correlation. Range-
separated hybrid XC approximations are expected to
enable a description of charge-transfer dynamics in het-
erogeneous systems’? such as molecule-semiconductor
interfaces within RT-TDDFT in combination with the
MLWF approach.

While the above-discussed approaches renders hy-
brid XC functionals more attractive, the computational
cost still remains significantly higher than for local and
semi-local approximations. Alternatively, we recently
demonstrated!? the use of a long-range corrected (LRC)
kernel in the context of RT-TDDFT. The resulting vector
potential accounts for the long-range screened electron-
hole interaction and is capable of describing excitonic
effects in optical spectra. At the same time, this RT-
TDDFT implementation exhibits computational benefits
using massively parallel computing and retains a descrip-
tion of nonlinear effects that are not accessible within the
linear response approximation. We also note that this en-
ables more general future developments around real-time
TD current-DFT.

Finally, we note that recent work on the temperature
dependence of exchange-correlation models is instruc-
tive to consider in working toward a dynamical treat-
ment of thermalization based on TDDFT. Numerous re-
sults have established formal foundations for incorporat-
ing electronic temperature in DFT?% and TDDFT?4%
beyond the standard Mermin approach.5” Building on
these foundations, high-quality reference calculations for
the uniform electron gas at non-zero temperature’®°7
have been used to create exchange-correlation function-
als?® and applied to materials in extreme but equili-
brated conditions.?® However, these results concern elec-
trons that are equilibrated at a fixed temperature, not
electrons that are in the process of equilibrating. Be-
cause the thermal contribution to exchange-correlation
is typically relatively small, it is reasonable to assume
that thermalization through electron-ion scattering can
be captured by existing adiabatic functionals. However,
thermalization through electron-electron scattering will
require accounting for physics beyond the adiabatic ap-
proximation, which is notoriously challenging. We note
one potentially promising direction from plasma physics,
in which a correction accounting for electron-electron
scattering beyond a mean-field treatment was proposed
as a mechanism to improve agreement with quantum
kinetic theory'?’ for the thermal conductivity of non-
degenerate hydrogen plasmas. Investigations of discrep-
ancies in TDDFT or GW for comparably simple systems
might yield insights into deficiencies in these approaches,
though extrapolating to degenerate systems would likely
be a challenge.

VII. SUMMARY AND FUTURE DIRECTIONS

We discussed various interesting lines of recent devel-
opment in the context of using real-time time-dependent
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TABLE I. The wall-clock time per iteration for modeling crystalline silicon using a 512-atom simulation cell with the periodic
boundary conditions. The planewave cutoff energy of 25 Ry was used with PBE norm-conserving pseudopotentials. ETRS
integrator was used with the integration time step of 0.05 at.u. The calculations were performed on 704 processors on 16
Broadwell nodes (Intel Xeon E5-2699A v4 -2.4 GHz) of Dogwood cluster at the University of North Carolina at Chapel Hill.

Only MPI (no open-MP/SIMD) was used for this assessment.

Cutoff distance EXX integrals

(ao)

Energy drift
evaluated (%) per iteration (E},) iteration (s) iteration time

Timer per Relative

PBE N/A N/A <10x 10" 19.9 0.009
PBEO N/A 100 <1.0x 1071 2227.8 1

PBEO 25 7.4 4.1 x 1077 271.3 0.12
PBEO 30 9.0 3.6 x 1077 278.4 0.13

density functional theory for simulations of electron dy-srw
namics on femto- to pico-second time scales. While ourg,
efforts have not yet revealed an integrator that outper-g,
forms the enforced time-reversal symmetry method, op-
timization of the stability region of explicit methods, or
incorporation of machine-learning techniques may turn
out promising. Periodic boundary conditions straight-
forwardly reduce computational cost in particular for fi-
nite systems. Treating the projectile particle quantumsr.
mechanically is within reach, albeit expensive, but diffi-es
culties around the vanishing distinction of projectile elec-ss
tron and those of the host material require further devel-sx
opment efforts. Based on our detailed simulation results,ss
we conclude that reconciling electron-electron scatteringsr
from real-time propagation with many-body perturba-ss
tion theory will require advances in the description of ex-ss
change and correlation. Finally, such advances seem pos-ss
sible, involving maximally localized Wannier functions orsss
a long-range corrected approach to exchange and corre-ss
lation. 885

All of these future developments will undoubtedly besss
impactful for materials discovery and development andss
can facilitate the tight integration of electronic excita-sss
tions and ion dynamics. Efforts in such directions, in-sso
cluding those involving machine learning, are currentlyswo
underway in many groups worldwide. Going beyondsa
the scope of this present work are interesting and nec-so
essary developments that couple electrons and ions, e.g.sss
within Ehrenfest dynamics, or even treat ions quantum-ss
mechanically. At the same time, such developments insss
most cases will lead to moderately or significantly in-ses
creased computational cost. Taking ongoing develop-ss
ments of modern supercomputing architectures into ac-sss
count, this will require simulation codes which can ef-so
ficiently benefit from graphics processing units, such asoo
the INQ code,? the successor to Qb@IL. 901
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