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ABSTRACT

Battery-free and intermittently powered devices offer long life-
times and enable deployment in new applications and environ-
ments. Unfortunately, developing sophisticated inference-capable
applications is still challenging due to the lack of platform sup-
port for more advanced (32-bit) microprocessors and specialized
accelerators—which can execute data-intensive machine learning
tasks, but add complexity across the stack when dealing with in-
termittent power. We present Protean to bridge the platform gap
for inference-capable battery-free sensors. Designed for runtime
scalability, meeting the dynamic range of energy harvesters with
matching heterogeneous processing elements like neural network
accelerators. We develop a modular “plug-and-play” hardware plat-
form, SuperSensor, with a reconfigurable energy storage circuit
that powers a 32-bit ARM-based microcontroller with a convolu-
tional neural network accelerator. An adaptive task-based runtime
system, Chameleon, provides intermittency-proof execution of ma-
chine learning tasks across heterogeneous processing elements.
The runtime automatically scales and dispatches these tasks based
on incoming energy, current state, and programmer annotations. A
code generator, Metamorph, automates conversion of ML models
to intermittent safe execution across heterogeneous compute ele-
ments. We evaluate Protean with audio and image workloads and
demonstrate up to 666x improvement in inference energy efficiency
by enabling usage of modern computational elements within inter-
mittent computing. Further, Protean provides up to 166% higher
throughput compared to non-adaptive baselines.
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Figure 1: SuperSensor: a rapid prototyping system for battery-
free, inference-focused applications. A thermal harvester
board and five (stacked) peripheral boards are connected to
the carrier board. All these boards are controlled and oper-
ated by an accelerator-based ARM MCU (placed on the back.)

1 INTRODUCTION

Today’s smart devices have short battery lifetimes, high installa-
tion and maintenance costs, and rapid obsolescence—all leading to
the explosion of electronic waste in the past two decades. These
problems will worsen as the number of connected devices grows
to one trillion by 2035 [6]. For at least the past decade, researchers
have explored battery-less, energy-harvesting computing devices
as a sustainable alternative. Ambient energy from sunlight, motion,
thermal gradients, and even microbes [37, 63] is stored in capacitors
to power computation, sensing, actuation, and communication.

These battery-less devices compute intermittently due to the
dynamic and unpredictable nature of energy harvesting. Power
failures can occur multiple times a second, whereupon volatile
state (stack, registers, time) is lost. Recovering gracefully and effi-
ciently from those interruptions has been the theme for a decade
of intermittent computing research across hardware [14, 32, 79],
software [34, 59, 77], wireless [25, 55] and tools [12, 23, 30]. These
advances have yielded significant progress: batteryless devices have
been shot into space [57], played Nintendo Game Boy games [16],
been programmed in Python [49], Rust [83], and JavaScript [52],
conducted deep inference [27, 43, 69], and simple vision tasks [18],
and even safeguarded heritage sites [2].

However, expert programmers still find it challenging to quickly
build useful things with these devices, while novices find them
confounding. Furthermore, constrained and weak hardware makes
machine learning or signal processing workloads challenging to ex-
ecute. The most impressive demonstrations of intermittent comput-
ing mentioned above are all highly tuned, bespoke solutions that do
not offer foundations for general approaches. The average battery-
less devices are passive, low capability, unreliable, and less valuable
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for applications where data-intensive operations and inference re-
quire reactive, interactive, or highly dynamic systems. To address
this challenge, this paper describes an end-to-end inference-focused
high-performance “plug-n-play” platform to bring the average up
by tackling the following challenges, see Figure 1.

Low Performance and Scalability: Existing general-purpose plat-
forms for research [14, 18, 32] rely on a decade-old family of Texas
Instruments'16-bit MSP430 FRAM series MCUs [38], which has
only 256 KB of FRAM, 8 KB of SRAM, a single-pipelined processor
clocked at 16 MHz at maximum, and low energy accelerator (LEA)
that supports energy-efficient vector-based signal processing. How-
ever, these MCUs are quite limited for executing data-intensive
computational loads of contemporary machine learning applica-
tions. For instance, neural network inference on these MCUs for
simplistic workloads like MNIST and keyword spotting [27] and
JPEG compression [18] take multiple seconds of continuous com-
putation. To reduce the computational demand of inference and its
execution time to some extent, recent works [43, 69, 87] presented
techniques for multi-exit inference and weight pruning. Several
other studies [27, 47, 54] exploited LEA to accelerate inference,
which can only support limited parallelism for a set of dense vector
operations [27]. The field needs drastically expanded capability to
support future applications and execute highly ‘parallelizable’ and
data-intensive computational loads efficiently.

Lack of Cross-stack Adaptation and Heterogeneity: Energy
harvesters have a wide dynamic power output range. For instance,
a solar panel the size of a credit card can output from hundreds of
microamperes in deep shade to a quarter of an ampere in bright
sunlight—a difference of three to four orders of magnitude. This
solar panel could power a streaming image recognition task using
a neural network accelerator in bright sunlight; on the other hand,
it could barely power motion detection on a 16-bit MCU in a deep
shade. The time-varying power (or energy) creates a possibility
to trade-off latency for performance (for example, accuracy) by
adjusting operations across heterogeneous processing components
of different efficiency and performance [17], to meet the growing
demand for inference-focused battery-free computing applications.

Unfortunately, current batteryless sensing hardware platforms
are monolithic [14, 15, 79, 92], making adaptation across hetero-
geneous hardware fitting a wide dynamic range impossible. Even
“flexible” platforms like Flicker [32] and Capybara [14] only allow
for flexible energy management and peripheral choice, limiting com-
putational resources to a 16-bit microcontroller (TT MSP430 [38]),
losing out on the potential performance increases of modern 32-bit
ARM MCUs and accelerators. Recent trends in computer architec-
ture have made this gap easier to fill; off-chip accelerators are now
available off the shelf, providing for the first time a very dynamic
range of computational resources for small devices, from FPGAs,
vector processors, to CNN accelerators. Existing platforms miss
out on high-performance possible from scaling tasks across het-
erogeneous computing modalities like accelerators and MCUs for
energy-efficient inference-focused applications. We need platforms
that support computing heterogeneity and efficient operation in the
face of dynamic energy harvesting availability and power failures.

Losing to Obsolescence: Upgrading intermittent computing plat-
forms to use more powerful processing elements (e.g., exploiting
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commercial off-the-shelf 32-bit ARM processors paired with on-
board accelerators) keeps with traditions of the community to up-
grade sensor platforms as new paradigms and capabilities emerge.
However, supporting future upgrades is also crucial since the cur-
rent computing landscape is exploding with heterogeneity—from
low-power FPGAs, CGRAs, vector processors, and application-
specific on-chip accelerators. Any “platform” will be immediately
obsolete if it cannot be seamlessly upgraded with the new hardware.

To address above challenges, we present Protean, a multi-part
framework for speeding up prototyping and deployment of robust,
adaptive, and inference-driven battery-free, energy harvesting ap-
plications. Protean consists of three main sub-systems that encap-
sulate specific contributions.

(1) SuperSensor, a modular plug-and-play hardware design
that supports multiple harvesters, sensors, and MCUs with
the help of novel interconnects. It consists of an energy
measurement unit and an adaptive reconfigurable energy
storage unit that powers a carrier board, a processor module,
and up to six peripheral modules. In this paper, we limited
our efforts to one processor module based on an ARM Cortex
MCU with a hardware accelerator, two harvester modules,
and five peripheral modules consisting of six sensors and
two communication modalities. Everything combined allows
for rapid prototyping from very simple to deep-inference
applications.

(2) Chameleon, an adaptive task-based runtime that maintains
forward progress and memory consistency despite intermit-
tent power. It dynamically switches between different perfor-
mance tiers of an application (that may map across multiple
computational elements, i.e., accelerator, MCU) based on
predicted energy. Chameleon is the first general, adaptive
runtime system for ARM-based MCUs that makes the best
use of available energy by dynamically switching between
multiple tiers of computation for a single application.

(3) Metamorph, a code generating tool that takes user input, and
standard CNN (TinyML) models and outputs an intermittence-
safe task-based implementation. It allows for quick experi-
mentation of different configurations of computing elements,
including accelerator and MCUs.

At the time of publication, we will release the Protean platform
as an open-source, open hardware resource for the research com-
munity and will share a kit consisting of all hardware modules we
developed with interested groups at the conference. We envision
Protean as stimuli for batteryless sensing research that enables
researchers from the broader systems community to easily build
and test new batteryless applications.

2 BATTERYLESS PLATFORM (R)EVOLUTION

Battery-free embedded systems are enabling technologies for fu-
ture applications in smart energy, transportation, environmental
monitoring, wearables, smart cities, and beyond. They offer a more
sustainable, long-term solution compared to traditional battery-
powered sensors. Intermittent computing is the fundamental model
of computation underlying battery-free embedded systems. Relying
on volatile harvested energy makes computation, communication,
and actuation very likely to be intermittent. Figure 2 shows this
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Figure 2: Battery-free energy-harvesting computers fail in-
termittently. Research problems come from preserving the
state of execution across power failures.

intermittent operation where power failures intermingle with mo-
ments of operation, and the runtime must string together fragments
of execution to meet application goals. Power failures become a
frequent occurrence. Recovering gracefully and efficiently from
those power failures has been the theme for intermittent comput-
ing research [33, 56] since 2011.

Intermittent computing has gone from a niche exploration in
2011 to an area with significant academic and industrial research
efforts. With battery-free devices safeguarding national monu-
ments [2], in space [57], and in homes [45], and in gaming con-
soles [16]. Industry efforts like Arm’s Triffid project [70] are build-
ing low-power microprocessors meant for battery-free operation,
noting that “The greatest challenge the Internet of things faces is
how those ’things’ will be powered.” Nokia Bell Labs’ has initiated
efforts on wearable computing, angling towards battery-free wear-
ables [69], and Communications of the ACM did multiple features
on battery-free systems [48, 68, 71, 84], and most recently, a feature
with an explicit focus on intermittent computing [80].

As intermittent computing has grown, so too has the maker
movement. The maturity of the maker movement and stability
of longtime hardware manufacturers AdaFruit and Sparkfun has
led to standardization across hardware platforms in many ways,
from communication protocols to interconnects (like Adafruit’s
Feather specification and Sparkfun’s MicroMod platform), and sen-
sor breakouts. Beyond hobbyists, students, and makers, experts in
research labs and industry regularly rely on these vendors and their
platforms to rapidly prototype high-performing inference-capable
sensing applications. These community-supporting platforms with
built-in modularity, and standardization, which include support for
diverse sensors and computational resources, provide a blueprint
for any platform for intermittent computing, as well as a backbone
of components and tools for hardware prototyping.

2.1 Intermittent Computing Platform Progress

Intermittent computing platforms generally employ a non-volatile
memory [77], typically a FRAM [14, 32] due to its higher endurance
compared to FLASH and longer lifetime, that allows for fast check-
pointing of the program state between power failures [3, 10]. Initial
work in the space focused on software that tried to mitigate the
shortcomings of intermittent operation either by instrumenting
programs with checkpoints [46, 58, 77], or by rewriting applications
using task-based programming models [34, 59, 89]. Hardware and
platform approaches have focused on reducing the cost of check-
pointing [36], managing energy more efficiently to reduce power
failures, increasing event detection [14, 31, 32], and getting a rough
estimation of the time elapsed between power failures [35, 76].
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Energy management drove platform development, with Feder-
ated Energy [31] providing a way to partition energy per compo-
nent, which reduces power failures due to error (i.e., the tragedy of
the common energy store), and provides simpler scheduling around
energy dynamics. Flicker [32] and Capybara [14] took this further
with programmable energy storage, enabling dynamic hardware
that could associate individual energy stores with computational
and sensing tasks. Both tasks and energy stores could be fine-tuned
and changed over time, providing great flexibility to the developer.

These general-purpose platforms provided crucial things: Flicker
and Capybara provided a means of scalability where energy could
be stored longer to be used for specific tasks. Both provided pro-
grammability, exposing hardware knobs to the programmer for
increased control despite intermittent power. Flicker provided mod-
ularity by allowing a developer to mix-and-match sensors, periph-
erals, and harvesters, to compose an application. However, these
platforms miss out on the high performance possible from scaling
tasks across heterogeneous computing modalities like accelerators
and MCUs for energy-efficient inference-focused applications.

2.2 Moving Forward

From this broader context, we distill four trends, or requirements (R)
from recent work in intermittent computing, the maker movement,
and the sensor networks community, as a way to guide platform
development and sustain research.

R1: Inference. Machine learning in battery-free platforms relies
upon application-tailored software support [27, 43, 69] or custom
hardware [28]. These tailored solutions are not scalable as they can-
not support heterogeneous hardware and diverse energy sources.
Needed are mechanisms to scale inference ability based on energy.

R2: Energy-Aware Adaptation and Scalability All approaches
around energy-aware intermittent-computing adaptation in ex-
isting literature use software-based techniques [43, 61] or heuris-
tics [9, 69] to estimate energy availability due to the lack of hard-
ware support. Predictions stemming from these approaches are
prone to error and are not energy-efficient. Moreover, existing adap-
tive runtime systems only focus on adjusting compute complexity
based on harvesting conditions and lack in changing the hardware
configurations (for example, energy harvesting and storage circuity)
to get better energy efficiency. Dynamically adjusting energy stor-
age capacity based on workload/task size has been proposed [14],
but still lack in energy-aware adaptation. Scaling architectures
for intermittent computing have also been proposed [17], and are
needed to support advanced and robust applications.

R3: Modularity. Modularity and expandability have been critical
components of hardware platforms due to the high cost (in expertise,
time, and money) of building hardware from scratch [21, 32]. In the
past few years, major platforms have been introduced that embrace
modularity and have broad maker industry support, including the
Sparkfun MicroMod [82] platform, which allows modularity up
to and including the processor itself (via the standardized on the
M.2 interconnect). Our design is inspired by the MicroMod model.
While we cannot predict the future, this level of community buy-in
and existing infrastructure makes us stronger in our belief that
we can build devices and frameworks that can hang around for a
longer time, supporting a research community.
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Figure 3: The three main components of Protean and how

they interact to support adaptive accelerated applications.

R4: Programmability. Recent work has enabled intermittent com-
puting of applications programmed with Python [49], Block-based
languages [52], and Rust [83]. Tools for profiling [9], debugging [12],
and simulation or emulation of energy harvesting [30] have been
released to aid the developer. In this vein, future platforms, like ours,
must strongly consider the developer at the other end, who often
struggle to compose a batteryless program in order to ensure for-
ward progress and memory consistency [9, 13, 51, 89]. Simplifying
the workflow is key to an effective platform.

3 PROTEAN OVERVIEW

We design and build Protean around the four requirements estab-
lished above, intended for developers who want to build inference-
focused, adaptive, robust battery-free applications. Our goal is to (i)
provide multiple hardware options in terms of computing modali-
ties, peripherals, and harvesting technologies, (ii) enable energy-
efficient inference applications, (iii) provide resilient runtime sup-
port for managing program state and memory across power failures,
and (iv) allow rapid development and testing of different configura-
tions of machine learning models.

We achieve these goals with a cross-stack approach (see Fig. 3),
building (i) SuperSensor, a modular hardware platform inspired by
Sparkfun’s MicroMod [82] interconnect method, with a dynamically
reconfigurable energy storage circuit, (ii) Chameleon, an adaptive
task-based runtime system that provides intermittency-proof ex-
ecution of adaptive machine learning tasks across heterogeneous
processing elements (in our prototype, a 32-bit ARM core, and a
CNN accelerator). The runtime dynamically dispatches these tasks
based on incoming energy and program state, and arbitrates data
movement for greater energy efficiency; and (iii) Metamorph, a code
generator for transforming ML models developed in state-of-the-
art frameworks (TensorFlow, PyTorch) into intermittence-safe C
programs with little to no user intervention. The following sections
present a detailed design of Protean’s components (see Figure 4).
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3.1 SuperSensor: Modular Platform Design

SuperSensor is a modular plug-and-play hardware design that sup-
ports four distinct modules—harvesters boards, sensors and radio
peripheral boards, processors boards, and the carrier/main board.
The boards, functions, and an example of how they work together
are shown in Figure 4. The design is partly influenced by a leading
maker company, Sparkfun, which has lent strong support in the
past few years to the MicroMod ecosystem [82]. MicroMod sep-
arates dedicated processor boards (i.e., Teensy, Artemis, RPi ICs
with minimal supporting circuitry), and carrier boards that host
broadly application-specific functions (e.g., LCDs, environmental
sensing). Much like MicroMod, SuperSensor is a solderless, modu-
lar interface ecosystem that uses the M.2 standard. SuperSensor
separates carrier and processor boards, but we go a step further
to allow more fine-grained control of peripherals (radios, sensors),
which can be stacked on top of each other. Finally, we developed
energy harvesting boards, similar to Flicker [32], that can be at-
tached to any carrier board. We discuss specific functionalities per
board below.

Carrier Board: This board is the brawn of SuperSensor. The in-
tention of the carrier board is to fit all the absolute necessities for
successful intermittent computing into one place, encompassing
the lessons and designs of the last decade. Each of these functions
must exist outside of the main processing unit. Those essential
functions are: checkpoint memory, energy management, timekeeping,
debugging, and expansion interconnects. Checkpoint memory (usu-
ally FRAM) is an external byte-addressable non-volatile memory for
checkpoint storage between power failures. This is essential since
very few MCUs beyond the MSP430FR series have this onboard.
Energy management is essential to both extract the most energy
from a harvester, as well as carefully distribute energy to needed
peripherals, and at the right times. To allow for greater flexibility for
developing adaptive runtimes, we include power measurement cir-
cuitry on the carrier board as part of the energy management unit.
MCU-external timekeeping circuitry is needed since internal clocks
lose state on power failure. Previous work has shown the criticality
of timekeeping for maintaining data freshness, and scheduling tasks
despite outages [34, 35, 43, 61]. We use the recently proposed Cas-
caded Hierarchical Remanence Timekeeper (CHRT) [15] that offers
time tracking for long periods with high resolution. Finally, the
carrier board includes dedicated interconnects for all other boards,
peripherals, processors, and harvesters. A block diagram is shown
at the bottom of Figure 3.

Processor Board: This is the brain of SuperSensor consisting of
a microcontroller (MCU) and minimum supporting circuitry. By
separating the processor and carrier boards, SuperSensor remains
agile to new developments in MCUs, allowing for upgrades and
alternate builds without significant disruption to the ecosystem.
The processor board is programmed by the developer and hosts the
runtime that maintains the forward progress and memory consis-
tency of intermittently running applications. It manages peripheral
control, energy, adaptation, etc. The processor board connects to
the carrier board via a standard M.2 connector and is compatible
with the Sparkfun's MicroMod processor board pinouts [82]. Thus
any available Sparkfun MicroMod microcontroller board (Artemis,
Teensy, RPi, ESP32) can be used with our carrier board, allowing
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prototyping for sophisticated batteryless devices.

for significant flexibility. In the future, as system-on-chips become
more heterogeneous (e.g., the MAX78000 [19] which consists of an
ARM Cortex M4 core, RISC-V core, and a CNN accelerator), these
can also be supported.

Peripheral Boards: Peripheral boards connect to the carrier board
to add functionality via sensors, actuators, radios, and other break-
out modules. All peripherals boards use a common peripheral bus
of our design that provides analog IOs, digital IOs, and digital bus
lines, including QSPI, SPI, I12C, UART, 12S, and a parallel camera
interface (PCIF). This shared bus supports the vast majority of avail-
able sensors and peripherals and enables SuperSensor to be used
in various applications as almost all off-the-shelf sensing, and com-
munication components use one of the interfaces our peripheral
bus supports. These are comparable to “function” boards within
the MicroMod system, providing a dedicated “function” for the
entire build. Unlike MicroMod, we enable a through board stacking
capability to not limit the number of peripherals that can be used.

Harvester Boards: These boards harvest energy from different
environmental sources. Many energy sources exist—solar, kinetic,
vibration, radio frequency (RF), thermal, and microbial—all of them
provide energy differently. Some provide direct current (DC) while
others generate alternating current (AC) and at a variety of different
voltages and currents. Also, every harvester has different internal
characteristics that require different circuitry to pull out maximum
power in a particular context. The harvester boards are meant to
support all these operations without requiring any change on the
rest of the circuitry (carrier, processor, and peripheral boards.) These
have no analog in the MicroMod platform, which was designed for
tethered, or battery-powered operation.

3.2 Adaptive Reconfigurable Energy Storage

Within SuperSensor, energy management and storage must be
paid special attention, just as in previous platforms for intermit-
tent computing (which were nearly completely focused on this
aspect [14, 29, 32]). The key focus of the energy management sys-
tem (called the Chameleon Reconfigurable Energy Management

Unit) is to scale, as in, to be dynamically configurable to provide
energy for different tiers of execution, with tiers taking increas-
ingly more energy (see top of Figure 3). The main challenge is in
balancing capacitor size and program responsiveness.

Capacitor size in intermittently-powered systems is a trade-off
between responsiveness and run-time energy requirements. A big-
ger capacitor will keep the device operating for longer, but will
also take a long time to charge (and even longer when ambient
energy is scarce). In a scenario with a single static capacitor with
a constant energy input, the capacitor needs to be able to sustain
the system for the longest uninterruptible system task. For smaller
uninterruptible tasks, the system still must wait untill a full charge,
introducing a penalty in the form of latency.

Existing reconfigurable energy storage options have tried to ad-
dress this issue, which include a federated storage approach [31]
where each peripheral has its own capacitor and is charged only
when needed, or an array of capacitors that are switched in and
out [14] based on application requirements. Both require multiple
components for controlling the charge of each capacitor, are there-
fore costly, and result in energy fragmentation [91]. Another ap-
proach, Morphy [88], adjusts storage capacity programmatically but
is not resilient to power failures. A combination of these approaches,
malleable storage capacity, runtime control, and responsiveness, is
needed to enable scalable machine learning applications.

SuperSensor addresses this need with a new kind of reconfig-
urable energy storage architecture built around a single supercapac-
itor and single control unit. The architecture dynamically adapts
the charging threshold of a single supercapacitor, effectively mod-
ifying the amount of energy stored in the system. Lowering the
threshold increases responsiveness, and increasing the threshold
leads to a longer on-time. The threshold is set with a non-volatile
potentiometer and a comparator via the runtime. When enough
energy is harvested in the supercapacitor, the comparator triggers
a latch turning the system on. With the system on, another com-
parator monitors the supercapacitor voltage, turning the latch off
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tions.

when the voltage drops too low, and switching the system off (Fig-
ure 5). The non-volatile potentiometer retains the same resistor
value unless changed by the runtime and is therefore agnostic to
frequent power failure. This architecture greatly simplifies recon-
figurable storage and could easily be integrated into custom silicon.
We will discuss in later sections how this reconfigurability allows
for runtime adaptation to achieve higher throughput.

3.3 Multi-tiered Tasks Runtime: Chameleon

SuperSensor provides a number of useful tools: energy monitoring
and management, timekeeping, access to peripherals, and access to
multiple computational elements. But hardware support alone can-
not ensure the best configuration for the platform under variable
energy conditions and unavoidable power failures of batteryless sys-
tems [7]. We developed Chameleon to leverage the capability of the
hardware for scalable, inference-focused intermittent computing.

Runtime systems for intermittent computing checkpoint state
before a power failure at compiler or programmer specified bound-
aries, and restore state after a power failure, resuming execution
from the checkpoint. Task-based systems wrap program functions
into atomic tasks and connect those tasks in a task graph. The state
is saved at the task boundaries. Task-based intermittent computing
runtime systems offer a high degree of programmability and low
overhead [3, 9, 10, 13, 34, 60, 62, 77, 89] over automatic compila-
tion approaches. Checkpointing adds overhead, thus reducing the
energy available for program execution [10]. This translates into
latency and missed events/deadlines. Tasks are rigid; if the task
energy cost is higher than the energy ever harvested, the task will
never execute. Suppose the frequency of power failures and the
length of power outages is higher than usual. In that case, these
systems fail to produce useful outputs within a reasonable time and
waste vital energy on checkpointing and non-useful computations.

Adapting task energy cost increases availability and responsive-
ness. Recent work has adapted task-based execution by degrading
tasks to meet deadlines [62], combining tasks when energy is avail-
able to save overhead [62], and using software techniques to scale
machine learning based on energy trends [9, 43, 69].

However, none of these techniques scale tasks across hetero-
geneous hardware. Likely because these approaches used 16-bit
platforms, which constrained the scope of contributions. Support-
ing adaptation across heterogeneous computing platforms is non-
trivial, as the same task might be drastically different depending on
where it is executed. Put simply, a signal processing routine on an
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Figure 6: Illustration how Protean adaptively scales its exe-
cution across different hardware components. A simulated
trace of the energy stored is shown. As energy harvesting
slows down, Chameleon moves execution to a lower tier (from
CNN accelerator to the MCU) to provide timely computation.

Stored Energy

FPGA would be written in Verilog, a CNN would require trained
weights, while an MCU would execute instructions. Furthermore, a
CNN might host various implementations of the same routine that
may trade off latency for performance. The central question is then:
how can a programmer design and manage task replicas that can
be dispatched by a runtime system to various computing elements,
and at various quality, depending on available energy?

The core idea of Chameleon is to embrace scalability in hard-
ware as well as software, providing a seamless way to degrade or
upgrade tasks across diverse computational units. The basic idea
is shown in Figure 6: as the rate of energy decreases (shown in
the lower slope of the stored energy line), Chameleon changes the
threshold for starting computation, and switches to a lower tier,
which in this case means switching the main inference task from
being hosted on the CNN accelerator, to host on the MCU (in a
lighter form). Basically, a tier is a set of tasks that together form
a control flow graph, whereas tasks are atomic code blocks that
perform sensing, computations, communication, etc. [13, 34, 59, 89].
Chameleon allows the programmer to write multiple tiers of the
same application with lower computational complexity—which can
execute on different computational units (e.g., MCU, accelerators,
or both)—that can help maintain the latency and deadlines require-
ments under changing energy conditions. Each tier is a complete
application with potentially different approaches to solving the
same inference problem (i.e., deep learning, signal processing) and
is computationally independent of all other tiers. A lower tier must
require less energy than a higher tier. Chameleon’s scheduler (tier
selector) can automatically adapt to the best tier under given energy
conditions, as shown in Figure 3. Threshold and tier selection is
assisted by an energy prediction model which leverages energy
measurements and other heuristics for estimating current and fu-
ture energy availability and choosing which tier to dispatch.

3.4 Metamorph: Intermittent-Safe CodeGen

Runtime systems cannot do everything, and developing multiple
tiers of a single application can be challenging. Using standard
tools for TinyML in an intermittent computing workflow becomes
challenging as these tools have no conception of how to persist
state across power failures. Metamorph is a developer-facing code
generation tool, that bridges the gap between existing ML tools
like PyTorch and TensorFlow [65, 74, 85], and intermittent com-
puting. Further, Metamorph simplifies the development of multi-
tier inference-focused applications for intermittently powered de-
vices. We built Metamorph, as the glue holding the runtime system
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Figure 7: Typical workflow for programmers developing inference-focused applications with Protean. Models that are designed
and trained using state-of-the-art frameworks are too computationally intensive to execute in one power cycle. Metamorph
transforms large models into smaller chunks for execution across multi-tier compute elements with low programmer burden.

Step 3: Metamorph trained
model into an intermittence-
proof tasked-based code.

Step 4: Add sensing and
other app-specific tasks not
a part of the trained model.

Step 5: Develop other tiers for
the application, with varied
energy requirements.

Step 6: Tune harvester,
on/off thresholds, and
adaptation knobs.

Step 7: Compile, debug, link
with Chamelon runtime,
flash on Supersensor.

(Chameleon) and heterogeneous hardware platform (SuperSensor)
together.

Metamorph wraps existing workflows to provide an automated
way of generating intermittence-safe application code. Utilizing
Metamorph, a developer can iteratively explore different design
points of the application without dealing with underlying code
generation frameworks or worrying about power failures. With
Metamorph, the programmer only specifies different design points,
i.e., the type of code to be generated as well as the number of
layers (for CNNs) and tasks for the application. Based on these in-
puts, Metamorph automatically generates relevant code by invoking
the right commands with correct compiler flag invocations. Then,
Metamorph parses generated code to extract all functions from the
code and classifies them into two categories. The first category of
functions is specific to each task and has to be tailored according to
the inputs and outputs of the task. In contrast, functions belonging
to the second category must be performed only once during the
application execution. These functions are called either at the start
or end of the application. Metamorph first wraps all such functions
with appropriate language constructs of Chameleon’s runtime so
that they are intermittence safe and identifies data across each task
that needs to be saved across reboots. Variables are assigned to a
special language construct exposed by Chameleon’s runtime that
allocates them in the non-volatile memory (FRAM) while ensuring
a copy of these variables is also placed in the SRAM for faster ac-
cess. These steps are necessary to ensure that the code generated by
Metamorph allows safe resumption of code even after power failure
and the least number of computations are lost.

4 IMPLEMENTATION

Herein we describe the particular design and implementation details
to realize a full-featured, end-to-end platform. Importantly, we
specify the workflow, shown in Figure 7, of a typical developer
using Protean.

4.1 SuperSensor Hardware Platform

We proceed with the description of the hardware components of
SuperSensor. Figure 4 shows individual modules currently built,
and an example of how things connect.

Carrier Board: The board was designed for ease of use and ex-
tensive flexibility for benchtop and real-world experimentation.
Sparkfun’s MicroMod [82] M.2 connector is used to connect pro-
cessor boards to the carrier. An array of eight tantalum capacitors
(removable) provide energy storage, and a screw terminal allows
energy storage expansion for radial capacitors. For the dynamic
turn-on voltage of the system, a Maxim Integrated’s non-volatile
digital potentiometer [42] is used. The voltage threshold is set by
changing the resistance of one of its resistors which is done by
Chameleon via an SPI transaction. Two 1 MB FRAMs [40] are pro-
vided for checkpoint memory which potentially enough for the
target applications. For each peripheral board, two 20-pin slim stack
Molex connectors [67] are used. The carrier board has five such
connectors, allowing for connecting six peripheral boards and one
harvester board at a time. Carrier board also houses energy manage-
ment and measurement circuit, Cascaded Hierarchical Remanence
Timekeeper (CHRT) [15], commonly used IMU, temperature and
humidity sensors, SWD debugging connectors, USB-C for serial
messages and power while testing, LEDs and push-buttons. Eight
load switches are used on the board to control power individually
to six external peripheral boards and the onboard sensors. These
load switches are controlled by a shift register which reduces the
required GPIOs for power control from eight to three. Finally, a
Qwiic connector [81] enables quick interfacing SuperSensor with
off-the-shelf sensors and other peripherals.

Processor Board: For the first processor board, we chose a Maxim
Integrated’s MAX78000 MCU [19] as it is an advanced system-
on-chip (SoC) featuring an Arm Cortex-M4, an ultra-low-power
deep neural-network accelerator, and extensive memory resources.
Its highly flexible accelerator architecture allows networks to be
trained in conventional tools like PyTorch and TensorFlow. These
networks can then be converted for execution on the MAX78000
using tools provided by Maxim. The processor board is attached to
the carrier board via an M.2 connector that exposes power, UART,
SPI, 12C, CAN, USB, AUDIO, SWD, analog IOs, and digital IOs to the
rest of the components. This allows the processor to have control
over everything in SuperSensor. For instance, REMU is controlled
via SPI and an analog IO, CHRT via three analog and three digital
10s, FRAM via SPI, and peripheral boards via other interfaces as
required. If an MCU does not have enough pins, it may still be used
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for the processor board, but may not have access to all the features
of SuperSensor.

Peripheral Board: Peripheral boards can be connected to the
carrier board to add functionality to the device. We have built
peripheral boards for a microphone, radio, backscatter, camera, and
pin breakouts. The carrier board has two parallel peripheral board
slots, and each peripheral board can stack other peripherals on
top, up to a max of three boards in a stack using 20-pin slim stack
Molex connectors [67]. This enables us to support six peripheral
boards with a single carrier board. Each peripheral board slot has
access to an independent I2C, SPI, and UART, which allows most
peripherals to be used in either slot. Some interfaces are specific to
the module slot: only one peripheral connector has access to the
12S audio interface, while the second peripheral has access to PCIF
for a camera.

Harvester Board: We have developed a solar and a thermometric
harvester using Texas Instrument’s BQ25570 [41] maximum power
point tracking chip, and Matrix Mercury [39] boost converter. Har-
vester boards sit on top of the 20-pin slim stack connector. Each
harvester board has access to 2 GPIO pins for control over the
harvester circuit. These pins can also be used for harvesters that
communicate while providing power wirelessly (RF, NFC, etc.).

4.2 Chameleon Runtime

In this section, we describe implementation details of Chameleon
to enable multi-tier task execution for intermittent computing.

Efficient State Retention: We implemented Chameleon on top of
InK [89]. InK reads/writes data at each task boundary, which worked
well for MSP430FR series MCUs that have on-chip (small) FRAM,
but is not ideal for our larger, off-chip, and more data-intensive
platform (i.e., more data over a slower bus). We address this in
two ways. First, we employ a hybrid approach by maintaining two
copies of the program state and memory, one in SRAM and another
in FRAM, as memory is abundant compared to 16-bit platforms,
but the bus between them is slow. All data accesses are done from
the SRAM, which allows faster reads and writes. Whenever the
program execution crosses a task boundary, data is written back to
FRAM to ensure persistence in case a power failure occurs. Second,
we skip copying data to the FRAM by specifying a threshold energy
for the capacitor, i.e., a Just-In-Time (JIT) technique, used by many
previous approaches [10, 62]. The threshold energy corresponds
to the maximum energy required to save the state at each task
boundary. At each task boundary, Chameleon either continues on
without saving, avoiding redundant checkpoints (if enough energy),
or saves everything onto FRAM to preserve progress.

Chameleon uses double buffers checkpoints similar to TICS [51],
using two non-volatile memory buffers (active and scratch) to guard
against data loss when power failure happens during checkpointing.
Whenever there is a need to copy the data from SRAM to FRAM,
it always writes data onto the scratch buffer and switches buffers
only when the write is successfully completed.

Energy Prediction: The Chameleon Reconfigurable Energy Man-
agement Unit (Chameleon REMU) allows the system to measure
harvested power at any instance of time. Chameleon periodically
measures the harvested power P using the current sensor on the
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carrier board that sits between the harvester connector and the rest
of the circuit of SuperSensor. It pushes measured power to a FIFO
vector containing the last few samples and calculates a moving
average Peyrr of this vector. The predicted energy (Epreq) is then
assigned to one of three values, HIGH, MEDIUM and LOW, calculated
as

Epred = {MEDIUM,  if 0.6Pmax < Peurr < 0.8Pmax. (1)
LOW, if Peurr < 0.6Pmays

HIGH,  if Peyrr > 0.8Pmax,

where Py is the maximum harvestable power (which can be found
in datasheet or via measurement.) From Equation (1), if the current
harvested power is greater than 80% of the maximum harvestable
power of a particular harvester, Chameleon considers/predicts it as
HIGH energy, MEDIUM if between 60% and 80%, and LOW otherwise.
Once a prediction is made, Chameleon sets a turn-on threshold
of the SuperSensor based on this predicted energy availability.
If harvested energy is HIGH, a higher threshold is set so that the
system can accumulate more energy, thus allowing it to do more
computations (Figure 6). These power windows and their corre-
sponding voltage thresholds are configurable in Chameleon. In our
implementation, we use 3.15V for HIGH, 3V for MEDIUM, and 2.85V
for LOW energy.

Multi-Tier Execution: Chameleon allows developers to switch
dynamically among multiple tiers of an application. All tiers provide
a level of application quality. When multiple tiers are defined by
the user using the above described energy prediction approach,
Chameleon dispatches the appropriate tier so that a tier with high
energy requirement can be matched with HIGH energy availability.
The tier-switching is done using the following adaptation logic.

T, iprred # LOWand Tyyin < T(2) < %Tmax)
T(t+1)=1T(t)l, ifEpreq # HIGHand 5 Tinay < T(t) < Trpax.  (2)

T(t), ifEpreq = MEDIUMand § Tnax <T(t) < 5 Tinax.

where T(t) represents the current tier at time ¢, T and | show adapt-
ing up and down (i.e., moving towards a higher or a lower-tier, one
tier at a time), respectively, and Tax and Ty correspond to the
highest and lowest tier, respectively. The basic idea behind equation
(2) is to upgrade or degrade application compute complexity de-
pending on predicted energy and past trends by trying to map HIGH
energy to top 33%, LOW energy to lowest 33%, and MEDIUM energy
to middle 34% of the tiers.

Both dynamic turn-on thresholds, and multi-tier adaptive exe-
cution, can be independently enabled/disabled using a predefined
macro in Chameleon's configuration file. If developers cannot imple-
ment lower tiers of the application, they can simply enable dynamic
thresholding while keeping the multi-tier execution disabled, and
Chameleon will still be able to adapt and provide higher overall
energy efficiency with better response time, as we will see in Sec-
tion 5.

4.3 Metamorph Code Generator

We combine insights on program transformation for intermittent
safe execution along with industry-standard tools and workflows
so that trained CNNs can be converted for execution on Protean
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(specifically the MAX78000). Metamorph uses Maxim’s SDK [65]
for code generation in a three-stage pipeline—all implemented in
Python, see Figure 7.

The first stage parses a JSON file that includes the programmer’s
specifications, including the number of accelerator cores to be used
and the task division configuration, to know the type of code to be
generated. Metamorph can generate three types of intermittence-
safe code; vanilla, layer-wise, and with custom-layer division.
In vanilla, all layers of the network are executed in one task,
whereas the 1ayer-wise has one layer per task. In custom-1layers,
Metamorph reads programmer desired number of layers per applica-
tion task. Any of these configurations may be required depending
on the application. For instance, if the application is to be deployed
in a very low energy harvesting environment, the vanilla configu-
ration might not be the best as it may never complete any inference
due to continuous interruption by power outages. Based on the
programmer’s specifications, which are informed by application
requirements, Metamorph passes the appropriate flags to the Maxim
tools to generate the code for each application task.

In the second stage, Metamorph creates all tasks based on pro-
grammer specifications, using APIs and the CNN synthesis tool
developed by Maxim [66]. Specifically, for a Tier; implementa-
tion, the stage configures input channels, loads weights and bias
values for the task associated with each set of layers, and adds
enable/disable code at the start/end of each task to make sure the
accelerator is ON only when the task is performing the inference
Afterward, Metamorph identifies the data shared between tasks and
allocates global variables accordingly.

The third stage is responsible for making the program inter-
mittent safe. It wraps the code into Chameleon’s API to ensure
that each layer’s output is read and written correctly and persists
across reboots. Checkpoint/restore logic operations are inserted at
task boundaries. All global variables are mapped to a shared space
using the __shared() API of Chameleon that remains persistent
across reboots. Additionally, each task must use correct addresses to
load the input and copy the output from/to the accelerator SRAM;
otherwise, the output of the layer would be incorrect. To ensure
this, Metamorph identifies addresses for each task to (un)load data
from/to the accelerator’s SRAM to/from MAX78000’s SRAM to en-
sure correct resumption/restart of each task upon power failure
and ensure energy-efficient execution of code.

5 EVALUATION

We test Protean components across a variety of applications, bench-
marks, and energy conditions. We find that: Protean reduces en-
ergy per inference; tiered execution provides up to 8x more infer-
ences in varied environments; and that we see up to 667x speedup
on common ML benchmarks.

Applications/Benchmarks. We evaluate Protean using three dif-
ferent acoustic and vision applications/benchmarks, each having

three tiers that utilize different processing units on the SuperSensor.

Table 1 shows details of the different tiers of the applications along
with the utilized processing unit. Tier; is a deep learning algorithm,
while the other tiers are signal processing or classic machine learn-
ing algorithms. We use standard datasets to train the networks. For
speech recognition, referred to as Keyword Spotting (KWS), we
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Table 1: Selected applications to evaluate Protean.

Application Speech Recognition Image Recognition Face Identification

Key Word Spotting  Image Classification ~ Face Recognition

Algo. 4x ConviD 6x Conv2D 8x Conv2D
Tier; 5x CONV2D 5x FC 1x FC
1X FC
Proc. MCU + Accelerator MCU + Accelerator MCU + Accelerator
Voice Detection Image Classification Face Detection
. Algo. VAD BNN Classifier Binary Classifier
Tier;
3x FC
Proc. MCU MCU MCU
Algo Sound Detection Object Detection Object Detection
Tiers : Signal Variance Color Variance Color Variance
Proc. MCU MCU MCU

use a subset of Google’s Speech Command dataset [86] where we
have 20 different words, e.g., Up, One, Right, to detect. For image
recognition, we used the CIFAR-10 dataset [53] consisting of ten
classes of 32x32 pixel color images of automobiles and animals. For
face identification, referred to as Face ID, we use MaximCeleb [64],
a dataset created by Maxim containing the faces of 30 celebrities.

Performance Metric. We consider the following performance
metrics for the evaluation.

o Energy per Inference is the energy required to finish processing
inference of one data sample. This metric represents the efficiency
of energy usage.

® Recovery Time is the time between two active/power-on cycles.
Recovery time reflects the responsiveness of the system.

o Throughput is the number of inferences performed by the system.
It shows the amount of computation that can be performed by the
system in a certain duration.

® Memory Profile is the memory consumed by different tiers of the
application.

e Developer Effort is a way of anticipating programmer’s burden
based on the lines of code they have to write.

Note that the chosen application algorithms are taken from ex-
isting literature as they only matter in providing computational
complexity for evaluating Protean. Moreover, Protean’s focus is
only on the energy and latency of algorithm execution. In other
words, the goal of Protean is to provide high throughput with
lower recovery time and energy per inference. Therefore, the accu-
racy of the algorithms is out of the scope of this paper.

Energy conditions. In order to fully understand the benefits of
different components of Protean, we conduct experiments in a
controlled environment to test the resilience of Protean in ex-
treme settings. For that, we synthesize three power traces and
emulate them via Qoitech’s Otii Arc [75]. These synthetic traces
represent low (Ejow), high (Epigh), and variable (Eyariable) energy
conditions in the wild. We also record and emulate RF traces for the
whole system evaluation in real-world settings. We use a 915 MHz
Powercast transmitter TX91501B [73] with the Powercast P2110B
controller [72] and record traces with a dipole and a patch antenna.
While harvesting with the dipole antenna, the power is variable
because of external factors like people walking between transmitter
and receiver (RFy), and with the patch antenna, the power is rather
consistent with minor variability (RFz). These traces are recorded
and emulated via Ekho [30] so that every run of the experiment
gets the same repeatable conditions.
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to time spent on data movement from accelerator RAM to
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optimize our implementation to access FRAM only when the
capacitor voltage falls below a certain threshold.

FaceID

5.1 Micro-Evaluation

Before diving deep into the end-to-end Protean evaluation, we first
dissect the performance of individual components of the Protean
system that are essential to the gains achieved overall. It will enable
us to understand the reasoning behind why Protean is able to
achieve better performance compared to other implementations of
the application.

5.1.1 Energy per Inference. We start by evaluating our system on
continuous power to measure the overhead incurred to ensure safe
execution under the intermittent power supply. Figure 8 shows the
results for energy-per-inference for different application configura-
tions generated by Metamorph.

We can observe that the application configurations having more
than one task (CNNz, CNN3, and CNNJayer wise) incur a significant
amount of energy overhead due to FRAM reads/writes at each task
boundary. The overhead is directly proportional to the number of
tasks in the application and the amount of data being read/written
from/to the FRAM. We optimize our implementation to reduce this
overhead by skipping FRAM reads/writes if the capacitor voltage is
above a certain threshold, i.e., Chameleon will read/write to/from
the FRAM only if a power failure is imminent. This allows for sav-
ing energy which is used to perform useful computations and to
make more progress on the same charge. This optimization’s out-
come is also shown in Figure 8. As can be observed, it significantly
reduces the overhead and makes the energy-per-inference com-
parable to the execution of the CNNy, il (one task only), which
is not intermittence-safe in extreme energy harvesting conditions.
We can observe this behavior, especially, in CIFAR’s CNNjayer wise
configuration. As the size of task-shared variables is bigger than
other applications, CNNJayer wise has a very high energy overhead
compared with other configurations, and the same reasoning holds
for all applications. It must be noted that for some configurations
of the FaceID application, we could not run the application as it
was impossible to load the code in memory as the size was too big.

Figure 9 shows the benefit of increasing the number of tasks per
application. Increasing the number of tasks in an application de-
creases the workload per task, reducing the energy required to run
the task and causing a reduction in the size of the capacitor needed
for executing that workload, thus ensuring a faster recovery from

10
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Figure 10: Lowering the threshold configuration (2.85 V) is
more responsive but not energy-efficient (completes fewer
inferences) due to program state backup/recovery overhead.
Dynamic thresholding is as efficient as a higher threshold
configuration (3.15 V) but with a much better response time.

power failures. It must be noted that if the system decides to save
the data onto FRAM, our optimized version’s energy consumption
will still be similar to what we have for CNNJayer wise- Existing
literature has proposed a wide range of solutions for reducing the
data saved at each task boundary [3, 13, 16, 59, 77]. Our system can
benefit from any of the works to reduce the energy overhead even
further. Proposing a new method to reduce the overhead is out of
the scope of this paper.

5.1.2  Dynamic Thresholding. Protean is equipped with an adap-
tive reconfigurable energy management unit that allows Chameleon
to turn the MCU ON at any voltage level. Here, we evaluate the
performance of Protean’s dynamic thresholding subsystem on
two workloads. The first one (W1) uses MCU and the accelerator,
whereas the second (W3) uses only the MCU. We report the number
of inferences performed as well as response time for both work-
loads. Figure 10 shows the results for these two metrics under three
different synthetic energy profiles and compares the result against
a fixed threshold setting for 2.85V and 3.15V, respectively.

Seeing Figure 10 (left), we can observe that the number of infer-
ences performed by fixed 3.15V is always greater than that of fixed
2.85 V. It is primarily because at 3.15 V the capacitor can accumulate
more energy compared to when it is allowed to charge until 2.85 V.
Therefore, more energy allows the application to go farther on the
same charge, and the application is able to perform more inferences
compared to 2.85V threshold. However, an increase in the number
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execution dynamically switches between application tiers based on predicted energy and completes more inferences than
non-adaptive Tier; executions while incurring a very low overhead.

of inferences comes at the cost of increased response time. For
fixed 3.15V configuration, the capacitor needs to wait for a longer
duration of time until voltage reaches 3.15 V before turning on the
MCU (Figure 10 (right)). This is a problem as most intermittent
computing applications have tasks with real-time deadlines/events
or may want to run the system at a lower voltage for better energy
consumption [4, 43, 61].

With Chameleon’s dynamic voltage thresholding, Protean al-
lows the system to dynamically adapt to the changing energy con-
ditions, thus allowing it to start early when energy is low (i.e., faster
recovery) and perform more inferences by charging the capacitor
to a higher threshold when energy is high (i.e., higher throughput).
Compared to the fixed 3.15V configuration, the system performs
a similar number of inferences and has a similar response time as
fixed 2.85V configuration. This can be validated from the result
shown in Figure 10 (right). The response time of the Protean is
better than the fixed thresholding method, especially when the
incoming energy is low—a norm with batteryless systems.

5.1.3  Multi-Tier Execution. We now dissect the performance of
Chameleon’s multi-tier execution capability, which allows for run-
ning different versions of an application with varying computa-
tional complexity (application tiers) while maintaining desired
throughput and responsiveness under variable energy supply. We
compare the number of inferences performed by each tier of an
application with a multi-tier approach and show that it performs
better than running a single tier. Figure 11 shows the number of
inferences performed by each application configuration on three
synthetic power profiles.

Running Tier; most of the time is desired as it is more accurate.
However, running this tier may not always be possible as the energy
required to run Tier; is very high. Chameleon’s multi-tier execution
allows the system to automatically shift to a lower tier requiring
smaller energy to perform the inference if the incoming energy is
low and vice versa. It enables the system to perform more inferences
than Tier; or Tier; would do when running alone. It can also be
noted that the number of inferences for the Multi-Tiery, approach
is slightly smaller than that of Tier;. This configuration is running
three tiers, but all of them have the same Tier; program running.
We do this specifically to measure the overhead of switching from
one tier to the other, and as can be seen in Figure 11, this overhead
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Table 2: Comparison of energy usage of Protean.

Dataset Protean Existing SotA Improvement
#classes (mJ) #classes  (m))

KWS 20 123 10[69] 313 254.47%

CIFAR 10 212 2[8] 17 8.02x

Face ID 30 2.32 - - -

MNIST 10 0.06 10 [27] 40,27 666.7X, 450X

is minimal as the number of inferences performed by the system is

almost the same as the Tier; configuration.
5.1.4 Comparison with State-of-the-Art. We compare our platform

with state-of-the-art systems and show Protean performs better
in terms of energy consumption when using the same benchmarks
used by existing approaches. Table 2 lists the comparison.

We observe that Protean outperforms the existing state-of-the-
art system by showing an improvement of 666X for MNIST, 82x
for the KWS application, and the trend holds for CIFAR. It must be
noted here that this is the least we can achieve with our platform
as the number of classes supported by existing systems are very
small. With the higher number of classes, the complexity of the
machine learning model increases, and so does its computational
complexity and energy consumption at run-time. Due to Protean
enabling us to use accelerators on intermittent power, making a
one-to-one comparison with existing systems will always favor
Protean in terms of performance (by multiple orders of magni-
tude). In a sense, this is important, as Protean is the first to allow
access to these powerful computational resources for intermittent
computing. Then, due to our low energy consumption, we are able
to run an emerging Face ID application that, to the best of our
knowledge, has not been done before in the intermittent computing
domain. With our platform design and novel interconnection of
peripherals, memory, and MCU, we have significantly reduced the
energy consumption of the applications.

5.2 Memory Overhead

Table 3 shows the memory overhead of the multi-tier approach used
by Chameleon. Tier; is the default configuration for the runtime.
Tiery and Tiers are the implementations that allow the degraded
inference to ensure that the responsiveness and throughput re-
quirements of the application are met. These tiers add a memory
overhead of 38.7% in addition to Tier;’s implementation for the
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Table 3: Memory Overhead for multi-tier approach.

Application Configuration VrI:’]Iemory Usage (KB)

.bss text  .data
Tiery 324 18.14 280.39 2.44
Tier; 16.16 9.36 77.84 244
K
AR Tiers 4.16 3.36 67.31 2.5
Multi-tier 52.44 28.14 324.11 2.5
Tiery 128.27 66.14 397.17 2.44
Tier; 2.66 2.6 56.25 21.01
IFA
¢ R Tiers 0.16 1.35 59.04 2.44
Multi-tier 130.79 67.14 411.15 21.01
Tiery 85.53 44.64 321.18 2.44
Face ID T%erz 2.98 2.76  133.18 2.44
Tiers 2.98 2.76 130.22 2.44
Multi-tier 98.19 47.64 483.16 2.44

Table 4: Size of application implementations (Lines of Code)
in Protean.

Protean
Applicati ill.
pplication Tier; Tier, Tiers; Total Vanilla
KWS 11589 816 674 13079 8689
CIFAR 15925 840 200 16965 12365
Face ID 10562 3695 2489 16746 9781

KWS application. The memory overhead for CIFAR and FacelD
applications is 2% and 6%, respectively. The memory overhead is
overshadowed by the increase in the number of inferences and im-
proved response time. Note that Tier,’s and Tiers’s implementation
for each application is not Protean dependent and can be written
by the programmer in any way required.

5.3 Developer Effort

Table 4 shows the number of lines of code a developer has to use
with Protean. Vanilla is the version that is preferred by the pro-
grammer to run on the device. This version is mostly generated
with the help of Maxim’s SDK as it involves memory mapping,
loading/unloading thousands of weights and bias values, etc.; how-
ever, it is unsafe to run on harvested energy. To convert it into a
Tier;’s implementation, the programmer needs to add almost ~3000
lines of code. This is cumbersome and difficult for the programmer.
Metamorph can automatically generate most code required for con-
version with minimal support from the programmer. For Tierz and
Tiers, the developer only has to add 11% , 6%, and 37% additional
lines of code for KWS, CIFAR, and FacelD applications, respectively,
which again is application-specific.

5.4 End-to-end System Evaluation

We now evaluate our system with dynamic voltage thresholding
configured and tier-switching ON. Figure 12 reflects the throughput
(number of inferences) and response time of Protean for two differ-
ent RF energy traces. We observe 12% to 166% improvement in infer-
ence throughput and up to 11% faster recovery from non-adaptive
baselines across all applications. Face ID application achieves the
maximum performance boost over the baseline for variable low
energy trace, i.e., RFq, as SuperSensor supports dynamic turn-on
voltage based on incoming energy facilitating tier adaptation to
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Figure 12: Protean has higher throughput with less recovery
time when powered using real-world RF energy trace.

make the best use of the variable available energy. Higher vari-
ability in the energy results in more adaptation by Chameleon to
ensure the system provides timely output. This end-to-end analy-
sis shows the performance of Protean with real-world harvested
energy, which further validates the results of our micro-evaluation
in complex and real scenarios.

6 RELATED WORK

In this section, we summarize other related and complementary
works beyond those described in the background (Section 2).

Energy Harvesting Sensing Platforms: Many general-purpose
platforms have been proposed since the early days of wireless sen-
sor networks [1, 14, 32, 44]. Some use MSP430FR series MCUs [14,
15, 32] while others do not [1, 21, 44, 79], depending whether the
target is an intermittent computing application or just an energy-
harvesting/energy-neutral deployment, respectively, as the former
offer fast and efficient on-chip non-volatile FRAM, which is crucial
for all intermittent computing systems. Other platforms are either
tied to specific applications [22], a particular harvesting environ-
ment [79], or are inconvenient to support intensive intermittent
machine learning inference while providing ease of development.
Various vector-dataflow designs [28] and coarse-grained reconfig-
urable architectures [11, 26] have been proposed for the low-power
acceleration at the edge. However, the feasibility of these solutions
in a real-world scenario is yet to be tested. In a nutshell, no platform
exists that allows the integration of new (future) MCUs to enable
long-term real-world deployments required for testing the feasi-
bility of new systems. Protean, in general, and SuperSensor, in
particular, is build on these efforts to enable the rapid development
of the next generation of compute-intensive intermittent inference
applications via different energy sources, heterogeneous processing
elements, and multiple peripherals.

Intermittent Computing: In software-based solutions to inter-
mittent computing, programmers need to use checkpoints in their
programs [3, 50, 51, 77] or write their code using task-based pro-
gramming models [34, 59, 78, 89, 90]. Checkpoints and tasks ensure
computation progress and memory consistency of programs despite
frequent power outages. While these solutions made battery-free in-
termittent computing possible, they come with additional overhead
(especially for memory-intensive operations [27]) and require code
restructuring and porting for different energy environments [20].
Some studies focused on reducing the intermittent computing over-
head and power failures with efficient checkpointing [3, 51] and
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efficient energy management [10, 14, 88]. Protean is complemen-
tary to these efforts, and as these designs become more widely
available, they can easily be integrated into the Protean ecosystem,
with minor modifications in Chameleon.

Adaptation in Intermittent Computing: Adapting application
execution based on the incoming energy is crucial to maximiz-
ing application throughput in a battery-free system. Protean is
not the first to explore adaptation for intermittent computing. Zy-
garde [43], Catnap [61], Eperceptive [69], and REHASH [9] all
develop energy-aware task schedulers, many for machine learning
tasks. Zygarde [43] is an energy-aware task scheduler that uses
a model of the harvested energy to schedule tasks. However, its
adaptiveness focuses on executing different depths of a neural net-
work and is not generalized for all applications. Catnap [61] isolates
energy for real-time tasks and uses the remaining energy to run
other tasks. Morphy [88] employs adaptive energy management
algorithms for fast charging to an operational voltage to maximize
active time. Eperceptive [69] performs the best effort solution where
multi-resolution inputs are used based on different energy avail-
ability. REHASH [9] performs adaptation based on software-based
heuristics to enable higher sensor coverage, completion rates, or
throughput, depending on the application. Adamica [5] dynami-
cally reconfigures multicore architecture to use the power most
optimally. Contrary to these systems, Protean is the first to explore
adaptive execution across heterogeneous system components.

7 DISCUSSION AND FUTURE WORK

The work in this paper is a start towards more capable applications
with energy harvesting (and usually battery-free) devices. We antic-
ipate the platform serving as a jumping-off point for many lines of
research. In this section, we discuss current limitations of Protean,
and describe some potential avenues for future research.

Intra-tier Adaptation. Chameleon focuses on increasing through-
put and responsiveness by switching between tiers of different
accuracy, i.e., (inter-tier adaptation) based on the available energy.
We did not consider intra-tier adaptation by trading-off accuracy
within a tier. In the future, we plan to design a scheduler that opti-
mizes the throughput, responsiveness, and accuracy by employing
a hybrid scheduling algorithm.

Multicore Adaptation. Multi-tier execution might not be the only
method for adapting compute complexity. As in Adamica [5], we
tried multicore adaptation to scale the number of active cores to in-
crease/decrease the parallelism and energy consumption. However,
we did not see significant improvements with multicore adaptation
on MAX78000. The latency increased by decreasing the number of
cores while power decreased, and vice versa, but the energy per
inference remained more or less the same. Nevertheless, Metamorph
can automatically generate multiple tiers of the same model for
future MCUs offering multicore adaptation benefits. This feature
would reduce the programmers’ burden as they will not need to
develop low-energy tiers manually for a particular application.

Diving Deep into Heterogeneity. Besides MAX78000, which has
an on-chip accelerator but does not have embedded non-volatile
memory, Ambiq’s Apollo 4 MCU is also a good fit for SuperSensor
since it has an on-chip non-volatile memory. SuperSensor can also
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be extended by utilizing an ultra-low-power FPGA as an adaptive
and flexible accelerator. In the future, we would like to bring more
hardware heterogeneity to SuperSensor to boost computational
power that will enable more applications on the battery-free edge.

Energy Prediction. Chameleon’s energy monitoring support paves
the path for developing sophisticated energy prediction algorithms.
Most works in the literature can perform long-term energy predic-
tions (e.g., from hours to weeks [24]). However, in many scenarios,
e.g., kinetic energy harvesting while walking, energy distribution
changes much more rapidly. Zygarde [43] proposed a probability
metric (y-factor) for predicting energy availability, but it requires
collecting large amounts of data offline. Though we opt for a sim-
ple online moving average based energy prediction approach to
show the effectiveness of SuperSensor and Chameleon in regards
to adaptation, future work on Protean will focus on more advanced
short-term energy prediction algorithms (having more time granu-
larity) that does not require large amounts of data collection.

Code Generator Improvements. Now that the baseline code
generating tool is implemented in the Protean ecosystem in the
form of Metamorph, support of more architectures can be imagined.
Though Metamorph's current implementation is based on Maxim’s
SDK, the three-stage pipeline will remain unchanged even if any
other SoC/architecture is used. We anticipate that with the open-
source release, we can partner with the community to improve the
integration of other SoCs/SDKs, and enable future research.

8 CONCLUSION

This paper presents Protean, a unified framework for robust and
adaptive execution of inference-driven applications on a battery-
free platform. Protean contributes to the entire development stack
with SuperSensor, a modular plug-and-play hardware; Chameleon,
an adaptive task-based runtime system for heterogeneous inter-
mittent systems; and Metamorph, a code generator to convert tra-
ditional CNN models to intermittent-safe task-based CNN models.
SuperSensor pushes the boundary of battery-free computing sys-
tems by supporting more efficient ARM-based MCUs and CNN
accelerators that achieve 666X more energy-efficient inferences
than traditional battery-free platforms. Chameleon reduces the re-
covery time from power failure by 11% while achieving 166% higher
throughput than non-adaptive counterparts in real-world settings.
Finally, Metamorph speeds up the development process while re-
ducing programmer burden.
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