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Abstract Strigolactones (SLs) are a unique and

novel class of phytohormones that regulate numerous

processes of growth and development in plants.

Besides their endogenous functions as hormones,

SLs are exuded by plant roots to stimulate critical

interactions with symbiotic fungi but can also be

exploited by parasitic plants to trigger their seed

germination. In the past decade, since their discovery

as phytohormones, rapid progress has been made in

understanding the SL biosynthesis and signaling

pathway. Of particular interest are the diversification

of natural SLs and their exact mode of perception,

selectivity, and hydrolysis by their dedicated receptors

in plants. Here we provide an overview of the

emerging field of SL perception with a focus on the

diversity of canonical, non-canonical, and synthetic

SL probes. Moreover, this review offers useful

structural insights into SL perception, the precise

molecular adaptations that define receptor-ligand

specificities, and the mechanisms of SL hydrolysis

and its attenuation by downstream signaling

components.
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Introduction

Strigolactones (SLs) are a recently discovered class of

phytohormones that have become the focus of numer-

ous research studies in the last decade. SLs garner

much attention because of their central role in

modulating an increasingly wide range of plant-

developmental and plant-environmental processes.

Since their first discovery, SLs have been character-

ized to have remarkable dual function as both

exogenously secreted signaling molecules and

endogenous hormones.

The first identified SL was the strigol molecule,

which was responsible for stimulating germination of

Striga plants (Cook et al. 1966). Thereafter, an entire

family of Striga-stimulating molecules were identi-

fied, and their unifying structural characteristic con-

tains a lactone ring, hence their name (strigol-

lactones) (Butler 1994). SLs when exuded by host

plants’ roots can stimulate germination of nearby

parasitic witchweeds of Striga and Orobanche spe-

cies. As obligate parasites, members of Striga and

Orobanche have little to no photosynthetic capability

and depend entirely on the host organism for nutrients,

assimilates, and water, posing a major threat to host
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plants and decimating crop yields (Parker 2009;

Westwood et al. 2010). While SLs were discovered

because of this role in parasitism, their exudation was

also found to be of crucial function for the host plants.

It was discovered that SLs serve as critical signals in

establishing symbiotic relationships with arbuscular

mycorrhizal fungi, that help the plants to take up

nutrients from the soil (Akiyama et al. 2005).

As hormones, SLs were first identified to have

endogenous roles in regulating shoot branching

(Gomez-Roldan et al. 2008; Umehara et al. 2008).

Later studies expanded the roles of SLs to modulate

leaf growth, leaf senescence, secondary stem thicken-

ing, formation of adventitious roots, lateral roots, and

root hairs. The list and networks of SL-dependent

phenotypes continue to grow as their roles are studied

in diverse species and contexts (Brewer et al. 2013;

Ruyter-Spira et al. 2013; Bennett and Leyser 2014;

Seto et al. 2014; Smith and Li 2014). Additional

implications of SLs function as well as their crosstalk

with other phytohormone signaling pathways such as

auxin, cytokinin, abscisic acid, gibberellin, jasmonate,

and salicylic acid, have been increasingly revealed in

the recent years (Omoarelojie et al. 2019).

Due to this central role of SL signaling in plant

development and plant-environment interactions, the

research on the mode of SL perception has become a

main focus with over 50 studies in 17 species at the

genetic, phenotypic, biochemical, and structural level.

Over the past decade, these studies have revealed a

complex mode of perception and signaling in plants. A

major leap in understating SLs perception is the

identification of their receptor protein which also acts

as an active catalytic enzyme (Hamiaux et al. 2012;

Nakamura et al. 2013; Zhao et al. 2013). Since this

discovery, the SL receptor has been described in

several species and takes on the name of D14/DAD2/

RMS3/HTL (DWARF14, DECREASED APICAL

DOMINANCE2, RAMOSUS3, HYPOSENSITIVE

TO LIGHT) (Arite et al. 2009; Hamiaux et al. 2012;

Zhao et al. 2013; Toh et al. 2015; de Saint Germain

et al. 2016). The SL receptor was found to be part of a

larger family of proteins, many of which have

diversified or co-evolved to sense specific butenolide

compounds. This family is classified as the D14/KAI2

(KARRIKIN INSENSITIVE 2) family of receptors

(Bythell-Douglas et al. 2017). In order to better

understand the mechanism of signal perception and

transduction by D14 family receptors, several

synthetic SLs including agonists, antagonists, and

other experimental probes have been generated as

research tools to further explore the complexity of SL

perception mechanisms and the potential applications

of these synthetic molecules for research and agricul-

ture. Here we review SL perception including the

diversity of SL molecules and the recent advance-

ments in understanding their selectivity and hydrolysis

mechanisms alongside the divergence between recep-

tor proteins.

Strigolactones as phytohormones

Structural diversity of strigolactones

Plants produce mixtures of structurally diverse SLs.

This endogenous array can vary between as well as

within plant species. The first natural SL was isolated

from the root exudates of cotton and identified to be

the germination stimulant of parasitic Striga, taking on

the name strigol (Cook et al. 1966). Since then, many

more compounds such as sorgolactone, alectrol, and

orobanchol have been identified from the root exu-

dates of diverse plant species (Fig. 1) (Hauck et al.

1992; Müller et al. 1992; Yokota et al. 1998; Mori

et al. 1999; Delaux et al. 2012). This group of

carotenoid-derived terpenoid lactones molecules are

collectively named strigolactones. Strigolactones are

either classified as canonical or non-canonical based

on their chemical structure. Here we discuss the

discovery of a diversity of canonical and non-canon-

ical SLs as well as the novel synthetic probes that have

been generated to better study this emerging field.

Canonical strigolactones

Naturally occurring canonical strigolactones contain

the characteristic feature of a tricyclic lactone ring

(ABC scaffold) which is connected to a common

butenolide ring (D-ring) through the conserved 20R
configured enol-ether linkage (Butler 1994; Zwanen-

burg et al. 2009; Zwanenburg and Pospı́šil 2013;

Zwanenburg et al. 2016a, b; Yoneyama et al. 2018)

(Fig. 1).

The ongoing identifications of diverse SLs reveal a

variability in the C-ring configuration and provide

further classification of SLs that are originally derived

from 5-Deoxystrigol (5DS) with b-oriented C-ring as
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strigol-type (Motonami et al. 2013), and SLs that are

derived from 4-Deoxyorobanchol (4DO) with an a
oriented C-ring as orobanchol-type subfamilies

(Zhang et al. 2014). In addition to the differences in

the C-ring configuration, the AB rings in all canonical

SLs can be derivatized through hydroxylation,

Fig. 1 Structure and classification of canonical strigolactones.

Strigol type SLs are shown in the upper panel (light purple shade

background, in b-orientation at B-C ring junction). Orobanchol

type SLs are shown in the lower panel (light blue shade

background, in a-orientation at B-C ring junction). The

conserved D-ring is shown in 20R configuration for all structures
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methylation, acetylation, ketolation, and epoxidation

(Al-Babili and Bouwmeester 2015). The substitution

of the A-ring to benzene also diversifies the growing

list of SLs from plants (Xie et al. 2007). To date, nearly

30 distinct naturally occurring SLs have been identi-

fied (Fig. 1), with diverse roles in growth, develop-

ment, and as plant-environment signaling molecules.

While some plant species such as tomato, petunia, pea,

and poplar synthesize only orobanchol-type SLs,

tobacco and sorghum can produce both types of

canonical (orobanchol and strigol types) SLs (Xie

et al. 2007; Mohemed et al. 2016; Gobena et al. 2017).

The canonical SLs diversity and species-specificity

has been shown to be largely controlled by a central

biosynthesis cytochrome P450 enzyme, CYP722C.

CYP722C is suggested to be the key player in

synthesizing both strigol and orobanchol type SLs

from the SL precursor molecule carlactone (Wak-

abayashi et al. 2019, 2020; Mori et al. 2020a, b). For

example, in Solanum lycopersicum (Sl), SlCYP722C

was found to be necessary for the synthesis of

orobanchol-type SLs (Wakabayashi et al. 2019).

Similarly, CYP722C from Lotus japonicus and

Gossypium arboreum were implicated in the biosyn-

thesis of strigol-type SLs (Mori et al. 2020a, b;

Wakabayashi et al. 2020). For more comprehensive

review of SLs biosynthesis, we recommend several

excellent reviews including Yoneyama and Brewer

and Zorrilla et al. (Yoneyama and Brewer 2021;

Zorrilla et al. 2022). Future investigations of

CYP722C genes from various plants will shed light

on the biochemical diversification of canonical SLs

and how this large repertoire arose in different plant

species.

Non-canonical strigolactones

Non-canonical SLs are characterized as molecules that

lack the typical ABC-ring yet contain the 20R config-

ured enol-ether linkage and D-ring moiety (Kim et al.

2014; Umehara et al. 2014; Charnikhova et al. 2017;

Xie et al. 2017, 2019) (Fig. 2). Non-canonical SLs

represent any SL that does not fall into the canonical

category. While there are no defined classes for non-

Fig. 2 Structure of non-canonical strigolactones. Non-canonical strigolactones retains the intact lactone D-ring in 20R configuration

that is connected to distinct moieties
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canonical SLs nor a common core enzyme or precur-

sor, the biosynthesis enzymes in different species are

responsible for the resulting diversity of the mole-

cules. For example, Lateral Branching Oxidoreductase

(LBO) in Arabidopsis and its homologs in maize,

sorghum and tomato, are involved in the metabolism

of the non-canonical SL precursor molecule Methyl-

carlactonate (MeCLA, a derivative of carlactone)

(Yoneyama et al. 2020). The LBO enzyme can convert

MeCLA to hydroxymethylCLA, both of which seem

to be bioactive non-canonical SLs (Alder et al.

2012; Abe et al. 2014; Seto et al 2014; Yoneyama

et al. 2018; Mashiguchi et al. 2022). Additionally,

MeCLA can be further derivatized and its substruc-

tures have been found in various species such as

helicolactone from sunflower, lotuslactone from lotus

and methyl zealactone from maize (Ueno et al. 2014;

Charnikhova et al. 2017; Xie et al. 2017, 2019). One

identified enzyme that is involved in this derivatiza-

tion is 2-oxoglutarate-dependent dioxygenase, which

was found to play role in the biosynthesis of lotuslac-

tone (Mori et al. 2020a, b).

Interestingly, some plant species such as Arabidop-

sis, maize, and poplar produce both canonical and non-

canonical SLs. Therefore, further identification of new

metabolic precursors and SLs biosynthesis enzymes

will illuminate the diversification of canonical and

non-canonical SLs across plants.

Synthetic strigolactones as research tools

Both canonical and non-canonical SLs are generally

unstable compounds that can spontaneously disinte-

grate into inactive ABC and D-ring products in

alkaline conditions (Yoneyama and Brewer 2021).

Additionally, the laborious process to isolate the

natural SLs from plants yields only trace amounts

(picomolar to nanomolar) (Yoneyama and Brewer

2021). Therefore, a multitude of synthesis efforts have

been made including the first reported synthesis of

strigol as early as 1966 (Cook et al. 1966). Since this

breakthrough, several procedures are now available to

synthesize various derivatives of SLs. Among the

methods, the most common way to synthesize SLs

starts with the preparation of ABC scaffold followed

by selective oxidation of either A-ring or B-ring to

produce strigol or orobanchol type precursors. The

synthesis is then completed by the addition of a

butenolide ring connected via an enol-ether linkage,

which yields the racemic mixtures of strigol/oroban-

chol and their corresponding enantiomers (20epimers)

(Zwanenburg and Pospı́šil 2013; Zwanenburg et al.

2016a, b). These mixtures are often purified through

enantioselective High Performance Liquid Chro-

matography (HPLC) or through the asymmetric syn-

thesis to yield pure and distinct SL enantiomers. While

this results in higher yield than isolating SLs from

plants, synthetic preparation of natural SLs are often

time consuming, not scalable and generate poor yields

regardless of the methods (either racemic or pure

enantiomer) (Zwanenburg et al. 2016a, b).

The great efforts to generate simplified versions of

SLs enabled the development of the most widely used

SL analogs (or agonists), the GR compounds such as

GR24, GR7 and GR5 (Fig. 3), named after Gerald

Rosebery (Johnson et al. 1976). Similar to the

synthesis of natural SLs, the production of GR24

initiates with the preparation of ABC scaffold from

1-indanone which is then attached to the chiral

butenolide ring and thus generates two diastereoiso-

mers and their corresponding enantiomers possibly

mimicking the deoxy SLs (5DS and 4DO) (Mangnus

et al. 1992). The GR24 with the configuration

mimicking the 4DO is generally omitted as it was

reported to be less active in germinating the parasitic

plants whereas the GR245DS and GR24ent-5DS are

retained as a racemic mixture ( ±)-GR24 and referred

as rac-GR24 or maintained as pure enantiomers.

Molecules lacking the A-ring and AB-ring of GR24

such as GR7 and GR5 were also shown to be bioactive

Striga germination stimulants (Nefkens et al. 1997).

rac-GR24 is the most widely used compound to study

the inhibition of shoot branching, the activity of SL

receptor, and as a stimulant for Striga management

(Johnson et al. 1976; Mangnus and Zwanenburg

1992). However, compounds with A-ring, AB-ring,

D-ring, D-ring with ethoxy group, methyl substituent

of D-ring, and molecules lacking the D-ring were

shown to be biologically inactive in inducing Striga

germination (Mangnus and Zwanenburg 1992; Zwa-

nenburg et al. 2009; Zwanenburg et al. 2016a, b) or

downstream signaling (Hamiaux et al. 2012). There-

fore, the bioactiphore of strigolactone lies in the

D-ring and is essential for bioactivity (Mangnus and

Zwanenburg 1992; Zwanenburg et al. 2009; Zwanen-

burg et al. 2016a, b). This inspired the synthesis of

various new SL mimic molecules that lack the ABC

scaffold but retain the D-ring structure (Fukui et al.
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2011, 2013; Boyer et al. 2014; Takahashi et al. 2016).

This includes saccharine (Zwanenburg and Mwak-

aboko 2011), furanone derivatives like debranone,

carbamate derivative T010, and phthalimide

derivatives such as nijmegen-1, nijmegen-1Me

(Fig. 3) (Nefkens et al. 1997; Samejima et al. 2016).

The development of SL agonists also led to the

synthesis of fluorogenic probes such as

Fig. 3 Structures of representative strigolactone analogs,

agonists, antagonists, and fluorogenic probes. Strigolactone

(SL) analogs contain intact D-ring that are connected to distinct

ring system via enol-ether bridge, shown in upper left panel

(pale yellow background). SL agonists/mimics retains the intact

D-ring but lacks the enol-ether linkage, shown in middle-left

panel (light purple background). SL antagonists lacking both the

conserved enol-ether bridge and the intact D-ring, shown in

lower left panel (pink background). In the structures of

fluorogenic probes shown in right panel (pale green back-

ground), the ABC tricyclic lactone ring is replaced by various

fluorescent moieties that are connected to the D-ring. In all the

relevant structures, the D-ring is shown in 20R configuration
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Yoshimulactone green (YLG) (Tsuchiya et al. 2015),

Xilatone Red (XLR) (Wang et al. 2021), and Guil-

laume Clave series (GC) compounds (de Saint

Germain et al. 2022) (Fig. 3). These were designed

as tools to investigate and understand the mechanism

of SL perception and monitor its hydrolysis. Gener-

ally, these probes are designed as molecules comprise

of the butenolide D-ring attached to the various

editable fluorophores. The fluorescent signals of these

pro-fluorophores are detected only after hydrolysis.

This enables monitoring of the enzymatic activity and

serves as a signal reporter of the SL receptor in vitro

(Tsuchiya et al. 2015; de Saint Germain et al. 2016;

Wang et al. 2021) and in planta (Tsuchiya et al. 2015;

Wang et al. 2021).

Interestingly, a group of sulfonamide-related com-

pounds called cotylimides (CTLs) which lacks the

D-ring has been identified (Tsuchiya et al. 2010)

(Fig. 3). These molecules can bind AtHTL/KAI2 and

mediate the interaction with downstream signaling

component MAX2 (see section below) yet have not

been shown to serve as hydrolytic ligand by these

receptors (Toh et al. 2014). Such molecules have the

potential to be utilized as probes to study the distinct

function and biological consequences of non-hy-

drolysable SLs.

In addition to SL agonists, various antagonists were

also discovered through virtual screening of com-

pounds that could fit into the catalytic cavity of the SL

receptors (Mashita et al. 2016). Among the tested

compounds is the 2-Methoxy-1-Naphthaldehyde (2-

MN) that has been shown to inhibit the interaction of

D14 with D53 (downstream SL signaling protein, see

section below), rescue the rice tillering buds sup-

pressed by SL, and has an inhibitory effect on SL-

induced germination of Striga. Another antagonist

molecule, soporidine, was identified in a chemical

screen and was shown to bind Striga HTL (ShHTL)

and inhibit Striga germination (Holbrook-Smith et al.

2016) (Fig. 3). Moreover, the detergent, Triton-X-

100, was found in a crystal structure of ShHTL7 and

proposed to block the catalytic pocket resulting in a

moderate inhibitory impact on Striga germination

(Sahul Hameed et al. 2022). Recently, a more potent

antagonist piperazine derivative, dormirazine, has

been identified and shown to occupy the catalytic

cavity of ShHTL7 and inhibit Striga germination

(Arellano-Saab et al. 2022). Lastly, triazole urea

derivatives named KK compounds, were developed to

serve as covalent inhibitors by binding the catalytic

serine of rice D14. Among the KK derivatives that

were reported to impact SL signaling either as agonists

or antagonists, KK094 was found to be the most potent

antagonist exhibiting SL signaling inhibition in rice

(Nakamura et al. 2019; Jamil et al. 2021) (Fig. 3).

Together, the continuous efforts to develop SL agonist

and antagonists further underline the increasing

demand to synthesize better molecular probes to serve

in agricultural applications as well as research tools to

study SL perception and signal transduction.

Strigolactone perception by D14 family proteins

Identification of strigolactone receptors

The receptor for SL was first identified as a dwarf

mutant in rice that was later characterized as SL-

insensitive, named DWARF14 or OsD14 (Oryza

sativa) (Ishikawa et al. 2005; Arite et al. 2009). This

was followed by the identification and characteriza-

tion of these proteins as definitive SL receptors in

petunia, DAD2 (Hamiaux et al. 2012). Then, the D14

ortholog in Arabidopsis thaliana, AtD14 was identi-

fied as well as the paralogous D14 family receptor

KAI2 (Waters et al. 2012). Following these findings,

an increasing number of studies identified and exam-

ined of SL-receptor function in many other plant

species including chrysanthemum (Wen et al. 2015),

Medicago (Lauressergues et al. 2015), barley (Marzec

et al. 2016), poplar (Zheng et al. 2016), pea (de Saint

Germain et al. 2016), soybean (Ahmad et al. 2020),

cotton (Wang et al. 2019), lotus (Carbonnel et al.

2020), wheat (Liu et al. 2021), canola (Stanic et al.

2021), sugarcane (Hu et al. 2021), tobacco (Li et al.

2020; White et al. 2022), and importantly in SL-

induced parasitic plants such as Striga and Pheli-

panche ramosa (Toh et al. 2015; de Saint Germain

et al. 2021). Additionally, sequence analyses identified

putative SL receptor homologs in 143 species and

classified evolutionary sub-families within the larger

a/b D14 family receptors including D14s and related

butenolide receptors–KAI2s as well as DLK2s (D14-

LIKE2) (Bythell-Douglas et al. 2017). The character-

ization of SL-receptors in these and many other plant

species as well as their spatio-temporal expression are

subjects of ongoing investigation in this field.
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The specificity of strigolactone receptors

D14 receptors are able to perceive a wide breadth of

SLs, and their distinct diversification within the family

and between species have allowed for extensive ligand

sensitivities. For example, the extended D14/KAI2

family of enzymes exhibit mutually exclusive func-

tions in plants even though D14 and KAI2 are

evolutionarily related. D14 and KAI2 have specific

ligand selectivity for different stereoisomers of

butenolide compounds. In general, D14 receptors

preferentially perceive SLs where the D ring is in 20R
configuration (Fig. 1), whilst KAI2 receptors prefer

the 20S configuration (Scaffidi et al. 2014; de Saint

Germain et al. 2016; Carbonnel et al. 2020; de Saint

Germain et al. 2021; Guercio et al. 2022). Even within

D14 and KAI2 families, these receptors have acquired

adaptive sensitivity to different species and/or con-

text-specific SLs, allowing these receptors to represent

a wider diversity of ligand specificities.

a/b hydrolase fold

a/b hydrolases represent a large family of enzymes

present in all living organisms. In plants, a/b hydro-

lases are implicated in several cellular processes

including signal transduction pathways (phytohor-

mone SLs, GAs, and karrikin/KAI2-ligand) (Shimada

et al. 2008; Hamiaux et al. 2012; Kagiyama et al. 2013;

Mindrebo et al. 2016). First described by Ollis et al. in

1992, the a/b hydrolase fold is comprised of a core

8-stranded b-sheet surrounded by a-helices (Ollis

et al. 1992). As members of the a/b hydrolase

superfamily, D14s have a subset of * 4 helices that

form a lid whilst the remaining helices and beta strands

form a base (Fig. 4A). This assembly forms a largely

hydrophobic ligand-binding pocket centered in

between the lid and the base (Kagiyama et al. 2013).

Typical to serine hydrolases, the serine catalytic triad

is structurally positioned in the rear of the ligand-

binding pocket and considered to be functionally

active for all D14s and KAI2s (Fig. 4B). This is not the

case for the GA receptor protein, GID1, where the

catalytic histidine has been substituted to valine.

GID1, therefore, acts solely as a receptor and not as an

enzyme (Shimada et al. 2008; Mindrebo et al. 2016).

Therefore, the dual receptor-hydrolase function of

D14s/KAI2s represents a unique mode of hormone

perception in phytohormone signaling pathways (Min-

drebo et al. 2016).

Strigolactone binding pocket: from structure

to function

The advancements in resolving the crystal structures

of D14 and KAI2 receptors have enabled a deeper

understanding of perception mechanisms and revealed

structurally similar receptors with distinct functions

(Table 1). In the past decade an increasing number of

studies have investigated the causal divergences that

result in differential ligand selectivity between D14

orthologs and paralogs. The hydrophobic ligand-

binding pocket has been a topic of great interest

because of its importance in SLs accessibility and

perception. Across species and paralogs, the D14

structures provide evidence on how sequence variation

can alter the receptor towards different ligands.

Analysis of the SL-binding pocket morphology of

D14s shows alterations in pocket entrance, diameter,

shape, as well as the pocket depth, width, and

accessibility to the catalytic serine (Table 1 and

Fig. 4B). For example, the Striga SL receptor,

ShHTL7, has been proposed as a hyper-sensitive

receptor in planta (picomolar sensitivities for 5DS and

sorgolactones, and nanomolar sensitivities to strigol

(Toh et al. 2015)). ShHTL7 can also perceive a larger

compilation of SL molecules, and its pocket is

amongst the largest in size, diameter, and volume.

On the other hand, ShHTL1 seems to be much less

perceptive to synthetic SLs, likely due to a much

smaller binding pocket (Table 1) (Toh et al. 2015; Xu

et al. 2018).

These differences in ligand sensitivity and pocket

size have been correlated to specific amino acid

alterations that fall into two broad classes. One class

includes mutations in the conserved connecting loops

that participate in positioning the helices of the

receptor’s lid, which directly affect the pocket size,

shape, and accessibility (Xu et al. 2018; Bürger et al.

2019; Bürger and Chory 2020; Lee et al. 2020)

(Fig. 4A). Examples include divergence within Striga

HTLs which contain either a tyrosine or phenylalanine

at position 150 (Y152 in Arabidopsis) on the loop

connecting aT1–aT2 helices (Fig. 4A) (Xu et al.

2018). A substitution in HTLs 4, 5, and 7 to

phenylalanine at this residue results in loss of hydro-

gen bonds between helices aT1 and aT3, which
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increases the plasticity and creates a larger, more

accessible pocket, and thus a more ligand-sensitive

receptor (Fig. 4A and Table 1) (Xu et al. 2018; Bürger

and Chory 2020). Similarly, in Physcomitrella patens

(Pp), the ancestral D14 family proteins have an altered

pocket size, due to a S166A substitution in the loop

connecting aT2-aT3 (Bürger et al. 2019) (166 in

Arabidopsis Fig. 4A and Table 1). Here again, the

serine to alanine substitution results in the loss of a

hydrogen bond which enlarges the binding pocket and

increases ligand sensitivity for all PpKAI2-like pro-

teins containing this substitution (Bürger et al. 2019;

Bürger and Chory 2020). The second class of substi-

tutions informing divergence in ligand selectivity

includes mutations that directly alter the SL-binding

cavity, which is the focus of the next section

Diverged pocket residues inform differential

ligand selectivity

The SL binding pocket, while only composed of * 25

amino acids (12% of total protein length), can harbor

substitutions that alter ligand selectivity between

paralogs or orthologs (Table 2). Among these residues,

eight are invariant (positions relative to AtD14: H26,

G27, G29, H96, S97, F175, D218, H247) including the

three catalytic triad residues S97, D218, and H247

(Bythell-Douglas et al. 2017) (Fig. 4B). The conser-

vation of these residues across the D14/KAI2 family is

likely to maintain the receptors’ function and ligand

accessibility. This is exemplified wherein the mutation

of G28D in pea resulted in drastic overall instability of

RMS3 (position relative to AtD14 = G27D, Fig. 4B)

(de Saint Germain et al. 2016).

Sixteen pocket residues have been shown in

multiple studies to evolutionarily diverge between

and/or within species and as a result alter ligand

selectivity. These 16 residues relative to AtD14 are in

positions 28, 98, 123, 126, 136, 140, 144, 145, 148,

155, 159, 162, 163, 191, 195, and 220, and are

highlighted in Table 2 and Fig. 4C. Orthologs have

evolved differential ligand selectivity likely to per-

ceive taxon-specific signaling molecules (Mindrebo

et al. 2016), while paralogs exhibit differential selec-

tivity likely to allow a specie to perceive a diversity of

SL molecules (Carbonnel et al. 2020; Guercio et al.

2022). Recent studies examined the ability to direct

ligand specificity by swapping residues between

diverged D14 family paralogs (Tables 1 and 2)

(Carbonnel et al. 2020; Arellano-Saab et al. 2021;

Guercio et al. 2022). For example, substitutions in

residues L160M and S190L (AtD14: L162M and

S191L) are necessary to alter ligand selectivity

between paralogous receptors in pea (Guercio et al.

2022). Similarly, in lotus, divergence between par-

alogs at the same positions as well as F157W (residue

159 in AtD14) were sufficient to swap selectivity

(Carbonnel et al. 2020). Another study in Arabidopsis,

Fig. 4 Overview of the structure of strigolactone receptor and

its SL-binding pocket. A Representative Arabidopsis thaliana
D14 structure (based on PBD ID: 4IH4) is shown as cartoon.

B Close-up view into the SL-binding pocket. Invariant residues

are shown in cyan sticks and the catalytic triad in green sticks.

C Diverged residues (see also Table 1) are shown in purple

sticks. 3D structure illustration and analysis were generated

using PyMOL Molecular Graphics System, Schrödinger, LLC
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Table 1 Diversity in SL binding pocket structures. Oryza
sativa OsD14 crystal structure (PDB ID: 3W04) is shown in

cartoon (gray) as a representation for the pocket orientation

(purple, header). Solvent accessible surface areas were gener-

ated to represent the SL-binding pocket shape for: OsD14;

Arabidopsis thaliana (At) AtD14 (PDB ID: 4IH4); Petunia
hybrida DAD2 (PDB ID: 4DNP); Saccharum spontaneum
SsD14a (PDB ID: 7F5W); Striga hermonthica ShD14 (PDB

ID: 6XFO), ShHTL1 (PDB ID: 5Z7W), ShHTL4 (PDB ID:

5Z7X), ShHTL5 (PDB ID: 5CBK), ShHTL7 (PDB ID: 5Z7Y),

ShHTL8 (PDB ID: 6J2R); Physcomitrella patens PpKAI2C

(PDB ID: 6ATX), PpKAI2E (PDB ID: 6AZB), PpKAI2H

(PDB ID: 6AZD); AtKAI2 (PDB ID: 4JYP); Pisum sativum
PsKAI2B (PDB ID: 7K2Z). Residues defining pocket surface

and solvent accessible (SA) volume were identified using

CASTp with a 1.2 Å probe radius (Tian et al. 2018). Structural

illustrations, and pocket surface calculations were generated

and analyzed using PyMOL Molecular Graphics System,

Schrödinger, LLC
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shows that swapping three endogenous residues

W153L, F157T, and G190T (positions relative to

AtD14: 155, 159, 191), are sufficient to switch the

karrikin (KAR) receptor, KAI2, to an SL receptor

(Arellano-Saab et al. 2021). The W153L and F157T

directly result in a larger more accessible pocket. The

direct implication of the G189T mutation remains

unclear, yet the combination of these mutations

enabled the receptor to behave more promiscuously

and perceive a larger diversity of SL ligands.

A selection of reported residues with functional

significance for ligand selectivity are highlighted in

Table 2. It is clear that many alterations in charge, size,

and hydrophobicity will modify the binding-pocket

morphology and selectivity, however, the precise

mechanism(s) of how exactly these differential sub-

stitutions fine tune ligand specificity as well as the

receptor’s catalytic function remain to be further

explored both in vitro and in planta. In the following

section we discuss the mode of action of D14 as SL

hydrolases.

Hydrolysis of strigolactones by D14 family

hydrolases

The catalytic triad and SL hydrolysis mechanism

In all D14s, the serine-histidine-aspartic acid catalytic

triad is highly conserved and positioned at the bottom

of the ligand-binding pocket (Fig. 4B and Fig. 5A)

(Bythell-Douglas et al. 2017). D14s catalytic triad

operates as a charge relay system together with an

oxyanion hole that can stabilize high-energy transition

states and hydrolysis intermediates of SL. Therefore,

amino acid substitutions in the catalytic site result in a

loss or decrease of SL-sensitivity (Hamiaux et al.

2012; Abe et al. 2014; de Saint Germain et al. 2016;

Seto et al. 2019; de Saint Germain et al. 2021).

The mechanism of ligand hydrolysis by D14 has

been a topic of interest and debate since before the

formal identification of the receptor itself. The first

proposed mechanism was generated by Mangnus and

Zwanenburg in 1992 and was based on the activity of a

unique synthetic SL on Striga germination. This study

used a modified ‘reduced’ GR24 in which the enol-

ether double bond is replaced by a single bond

(Mangnus and Zwanenburg 1992). This modified

GR24 failed to induce germination of Striga and

Orobanche species and led to the suggestion that the

enol-ether linkage connecting the C and D-ring is

essential to retain activity. Hence, a reaction

scheme was proposed in which the hydrolysis pro-

ceeds through a nucleophilic attack on enol-ether

linkage (Fig. 5B and D) which results in two products:

a D-ring (as a leaving group), and an intact ABC-

scaffold (Mangnus and Zwanenburg 1992).

Later, Fukui et al. examined the effects of synthetic

SLs, debranones (Fig. 3), on SL biosynthesis rice

mutants. Debranones lack the enol-ether linkage can

rescue the SL-biosynthetic mutant phenotypes and

serve as bioactive SL, therefore providing counter

evidence to the Magnus 1992 hypothesis (Fukui et al.

2011). Similarly, at the same year, Zwanenburg and

Mwakaboko synthesized yet additional SL mimics,

one of which also lacked the enol-ether linkage and

was highly bioactive in stimulating Striga and

Orobanche germination despite lacking this previ-

ously expected crucial linkage (Zwanenburg and

Mwakaboko 2011).

After the discovery of the SL receptor, D14, and the

identification of the homologous signaling pathway of

KARs, a new model was proposed that could explain

how both ligands can be hydrolyzed independent of

Table 1 continued

Oryza sativa OsD14 crystal structure (PDB ID: 3W04) is shown in cartoon (gray) as a representation for the pocket orientation

(purple, header). Solvent accessible surface areas were generated to represent the SL-binding pocket shape for: OsD14; Arabidopsis
thaliana (At) AtD14 (PDB ID: 4IH4); Petunia hybrida DAD2 (PDB ID: 4DNP); Saccharum spontaneum SsD14a (PDB ID: 7F5W);

Striga hermonthica ShD14 (PDB ID: 6XFO), ShHTL1 (PDB ID: 5Z7W), ShHTL4 (PDB ID: 5Z7X), ShHTL5 (PDB ID: 5CBK),

ShHTL7 (PDB ID: 5Z7Y), ShHTL8 (PDB ID: 6J2R); Physcomitrella patens PpKAI2C (PDB ID: 6ATX), PpKAI2E (PDB ID:

6AZB), PpKAI2H (PDB ID: 6AZD); AtKAI2 (PDB ID: 4JYP); Pisum sativum PsKAI2B (PDB ID: 7K2Z). Residues defining pocket

surface and solvent accessible (SA) volume were identified using CASTp with a 1.2Å probe radius (Tian et al. 2018). Structural

illustrations and pocket surface calculations were generated and analyzed using PyMOL Molecular Graphics System, Schrödinger,

LLC.
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Table 2 Divergence in SL binding pocket residues. Arabidop-
sis thaliana D14 serves as the representative model. Column 1

shows amino acid position (based on PDB ID: 4IH4); column 2

shows the corresponding reported alternative residues in other

plants. The equivalent position of each residue (green sphere)

is shown in AtD14 (gray cartoon). The implications on the

binding pocket as well as the research studies reporting the

diverged residues are shown in columns 3 and 4. The 3D

structure illustration and analysis were generated using

PyMOL Molecular Graphics System, Schrödinger, LLC
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the enol-ether bridge (Scaffidi et al. 2012). This

mechanism follows a Michael reaction wherein a

nucleophilic attack by the catalytic serine at the C50

position of the D-ring results in similar products (D-

ring and ABC scaffold) (Scaffidi et al. 2012) (see

Fig. 5B and E for more details). This hydrolysis

mechanism has been widely accepted as the most

probable mode of action and is further supported by

biochemical and structural evidence (Zhao et al. 2013;

Nakamura et al. 2013; Yao et al. 2016; Takeuchi et al.

2018; Yao et al. 2017; de Saint Germain et al. 2016;

Guercio et al. 2022).

To corroborate the proposed reaction mechanisms

for SL hydrolysis, methods in structural biology and

Mass Spectrometry (MS) have been used to determine

various intermediate states in ligand hydrolysis. Two

studies by Yao et al. have proposed an intermediate

state where the D-ring of SL becomes covalently

linked between the catalytic serine (at C50 of SL) and
the histidine (at C10 of SL) (Fig. 5A, B, C and E) (Yao

et al. 2016, 2017). Another study identified a stable hy-

drolysis intermediate where the D ring is covalently

linked to the catalytic histidine of the receptor (de

Saint Germain et al. 2016). This study further showed

that the conserved methyl group at the 70 position of

SL is required for the reaction mechanism. Here, after

the first nucleophilic attack by serine on C50 of SL,
there is an additional nucleophilic attack by the

nitrogen atom of the histidine’s imidazole on the

aldehyde intermediate at the C20 of SL thus forming a

covalent bond with the D ring (Fig. 5A, B, C and E)

(de Saint Germain et al. 2016). A recent study on the

crystal structure of pea KAI2 reported yet another

form of SL intermediate covalently linked to the

catalytic serine. This study also found the previously

identified SL-histidine intermediate using MS on pea

KAI2 (Guercio et al. 2022). Taken together, the

favored mechanism of SL hydrolysis requires a

successful nucleophilic attack on the C50 of SL by

the catalytic serine and is likely followed by multiple

intermediate states. These covalently linked interme-

diates have been proposed to alter the receptors

enzymatic activity and supported by the relatively

slow turnover rates of D14s (Hamiaux et al. 2012; de

Saint Germain et al. 2016; Shabek et al. 2018; Guercio

et al. 2022; Tal et al. 2022). Despite the advancement

in understanding the enzymatic aspects of SL recep-

tors, the precise functional ramification of SL inter-

mediate states on the perception and/or downstream

signaling events remains to be further elucidated.

Impacts on perception and hydrolysis

of strigolactone by signaling partners

Perception and hydrolysis of SLs has been considered

to be the very first step of the much larger cascade of

the signaling pathway. Three key proteins are required

to transduce the SL signal: the SL receptor D14, the

D3/MAX2 (DWARF 3/ MORE AUXILLARY

BRANCHES 2) ubiquitin (Ub) ligase F-box protein,

and the target for proteasomal degradation, the

transcriptional co-repressor proteins D53/SMXLs

(DWARF 53 / SUPRESSOR OF MAX2-LIKE) (Nel-

son et al. 2011; Zhou et al. 2013; Soundappan et al.

2015; Wang et al. 2015; Kerr et al. 2021; Tal et al.

2022). These key players have been shown to form an

SL-dependent protein complex and facilitate the

ubiquitination and degradation of D53/SMXLs (Zhou

et al. 2013; Shabek et al. 2018; Tal et al. 2022)

(Fig. 5A and C). To date, the chronology of the

binding events, and whether SL hydrolysis is required

for formation of the signaling complexes, remains to

be resolved.

Through structural examinations in vitro, one

model has been proposed wherein SL hydrolysis is

Table 2 continued

Arabidopsis thaliana serves as the representative model. Column 1 shows amino acid position (based on PDB ID: 4IH4); column 2

shows the corresponding reported alternative residues in other plants. The equivalent position of each residue (green sphere) is shown

in AtD14 (gray cartoon). The implications on the binding pocket as well as the research studies reporting the diverged residues are

shown in columns 3 and 4. The 3D structure illustration and analysis were generated using PyMOL Molecular Graphics System,

Schrödinger, LLC.
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required for complex formation (Yao et al. 2016). A

crystal structure revealed an SL-hydrolysis state with

an altered structure of D14 in a complex with D3.

Here, instead of the wide-open V-shaped a-helices of
the lid, D14 is found in a closed conformation forming

an additional interface with the rice D3 (Fig. 5A and

C). This model suggests that the induced conforma-

tional changes during hydrolysis play an important

role in the recruitment of D14 by D3.

In another model of SL complex formation,

hydrolysis is not required for signal transduction (Seto

et al. 2019). This is showcased by aspartic acid

catalytic mutant, AtD14D218A, that lacks enzymatic

activity yet can complement the atd14 mutant pheno-

type in an SL-dependent manner. In this model, the

active signaling state of D14 is triggered upon intact

SL binding, but not by hydrolysis intermediate(s) or

product(s). Therefore, it is proposed that the hydrol-

ysis functions to deactivate the bioactive SLs post-

signal transduction, but not for complex formation.

Given the slow turnover of SL receptors compared to

the proteasomal degradation rate of the target sub-

strates in SL signaling, hydrolysis of SLs may not be

required for D14-SL-D3-D53 complex formation

(Hamiaux et al. 2012; Nakamura et al. 2013; Zhao

et al. 2013).

This has been further supported by other studies

(Shabek et al. 2018; Seto et al. 2019) centered on the

findings that a pre-hydrolysis state of D14-SL is

required for the recruitment of both D3 and its target

protein D53/SMXLs. It has been proposed that a

dynamic conformational change in the C-terminal

helix (CTH) of D3 facilitates the recruitment of SL-

bound D14-D53/SMXLs where D3 further attenuates

the SL hydrolysis rate to allow effective ubiquitination

and degradation of the D53/SMXLs (Shabek et al.

2018; Sobecks et al. 2022) (Fig. 5A and C). An

intriguing mode of action has recently demonstrated

that a primary metabolite such as citrate or citrate-like

molecules could effectively trigger D3-CTH confor-

mation and may serve as a link between specific

environmental conditions and D3-D14-SL activation

(Tal et al. 2022).

Implications and conclusions

A deeper understanding of SL biosynthesis, their

catalysis, and the structure of their receptors has

allowed for the development of targeted agonists and

antagonists not only as research tools, but also for

agricultural applications. Synthetic SLs have the

potential to serve a more potent or specific function

than natural SLs and could provide a precise control of

SL-influenced processes without off-target effects

(Boyer et al. 2012). Hence, synthetic SLs hold promise

as agrichemicals used in crop production and/or crop

management strategies. For example, the development

of synthetic SLs can aid to circumvent the devastating

effect of SL-induced parasitic plant germination.

Striga infestation impacts Sub-Saharan Africa, the

Middle East, and parts of Asia, particularly by

parasitizing and decimating staple cereal crops such

as maize and sorghum (Parker 2009; Jamil et al. 2021).

To this end, various agonists were developed to

stimulate germination of Striga without a host, which

will result in death of the obligate parasite (Toh et al.

2014; Takahashi and Asami 2018). This provides a

crop management strategy for cereal farmers to

deplete the soil of Striga before planting crops.

Another strategy for crop protection is the develop-

ment of antagonists that can target the Striga SL

receptors to inhibit SL-dependent seed germination

(Mashita et al. 2016; Takahashi and Asami 2018).

In addition, synthetic SLs can be utilized for

precision farming to improve crops. Due to SLs’ role

in inhibiting branching, SL antagonists can be used as

yield stimulants by increasing the number of produc-

tive branches or tillers in crops such as grains (Mashita

bFig. 5 Proposed mechanism for strigolactone hydrolysis and

signaling. A Schematic representation of SL receptor D14.

V-shaped helices (aT1-aT4) are shown as cartoon in the open

conformation and the catalytic triad residues serine, histidine,

and aspartic acid (denoted S97-H247-D218) are shown in sticks.

B Representative structure of SL (shown as ( ?)-GR24). The

brown and blue arrows indicate the proposed nucleophilic

attacks on carbons 60 or 50. C Proposed model for strigolactone

signaling pathway. (i) SL (purple triangle) is perceived by D14

(open conformation). D3/MAX2 with a dislodged C-terminal

helix (CTH) recruits D14-SL and inhibits SL hydrolysis. (ii-iii)
D3/MAX2-D14-SL targets and polyubiquitinates (U denotes

ubiquitin) D53/SMXLs resulting in proteasomal degradation of

D53/SMXLs, concurrent hydrolysis of SL (pink pentagon), and

conformational changes in D14 (indicated by dashed arrows).

(iv-v) Post SL hydrolysis, D14 is subsequently targeted by D3/

MAX2 and degraded by the proteasome. Schematics were

created with Bio-render.com D, E Proposed mechanisms of SL

hydrolysis which results in D-ring and ABC-scaffold products

by initiating nucleophilic attack on enol-ether linkage at C60 D,
or by initiating nucleophilic attack on C50 E
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et al. 2016; Takahashi and Asami 2018). Alternatively,

SL agonists can be applied to reduce the number of

non-productive branches, especially in single-flower

ornamental plants. SLs were also shown to impact

secondary growth, and as such, SL agonists could be

beneficial in increasing tuber yield of root veg-

etable crops as well as in stabilizing grain crops at

risk of lodging (Agusti et al. 2011; Pasare et al. 2013;

Takahashi and Asami 2018). The application of SL

analogs could also increase crop tolerances to abiotic

stress such as drought and salinity (Ha et al. 2014). The

function of SL-induced AM symbiosis is yet another

potential for utilizing synthetic agonists, especially

due to the additional positive impacts of these

symbioses including increased stress resistance and

tolerance (Pozo and Azcón-Aguilar 2007; Evelin et al.

2009).

Overall, our understanding of the SL signaling

pathway in the past decade has been increasingly

advanced. In this review we highlight the central

aspects of SL diversity, perception, and hydrolysis,

however, there are many other facets and open

questions that remain to be addressed. These include

further elucidation of diversified SL biosynthesis, the

precise molecular mechanism of the signal transduc-

tion cascade, the implications of SL crosstalk with

other phytohormones, and the application of SLs in

agriculture.
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Bouwmeester H, Bécard G, Beveridge CA, Rameau C,

Rochange SF (2008) Strigolactone inhibition of shoot

branching. Nature 455(7210):189–194. https://doi.org/10.

1038/nature07271

Guercio AM, Torabi S, Cornu D, Dalmais M, Bendahmane A,

Le Signor C, Pillot JP, Le Bris P, Boyer FD, Rameau C,

Gutjahr C, de Saint GA, Shabek N (2022) Structural and

functional analyses explain Pea KAI2 receptor diversity

and reveal stereoselective catalysis during signal percep-

tion. Commun Biol 5(1):126. https://doi.org/10.1038/

s42003-022-03085-6
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