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Abstract Strigolactones (SLs) are a unique and
novel class of phytohormones that regulate numerous
processes of growth and development in plants.
Besides their endogenous functions as hormones,
SLs are exuded by plant roots to stimulate critical
interactions with symbiotic fungi but can also be
exploited by parasitic plants to trigger their seed
germination. In the past decade, since their discovery
as phytohormones, rapid progress has been made in
understanding the SL biosynthesis and signaling
pathway. Of particular interest are the diversification
of natural SLs and their exact mode of perception,
selectivity, and hydrolysis by their dedicated receptors
in plants. Here we provide an overview of the
emerging field of SL perception with a focus on the
diversity of canonical, non-canonical, and synthetic
SL probes. Moreover, this review offers useful
structural insights into SL perception, the precise
molecular adaptations that define receptor-ligand
specificities, and the mechanisms of SL hydrolysis
and its attenuation by downstream signaling
components.
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Introduction

Strigolactones (SLs) are a recently discovered class of
phytohormones that have become the focus of numer-
ous research studies in the last decade. SLs garner
much attention because of their central role in
modulating an increasingly wide range of plant-
developmental and plant-environmental processes.
Since their first discovery, SLs have been character-
ized to have remarkable dual function as both
exogenously secreted signaling molecules and
endogenous hormones.

The first identified SL was the strigol molecule,
which was responsible for stimulating germination of
Striga plants (Cook et al. 1966). Thereafter, an entire
family of Striga-stimulating molecules were identi-
fied, and their unifying structural characteristic con-
tains a lactone ring, hence their name (strigol-
lactones) (Butler 1994). SLs when exuded by host
plants’ roots can stimulate germination of nearby
parasitic witchweeds of Striga and Orobanche spe-
cies. As obligate parasites, members of Striga and
Orobanche have little to no photosynthetic capability
and depend entirely on the host organism for nutrients,
assimilates, and water, posing a major threat to host
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plants and decimating crop yields (Parker 2009;
Westwood et al. 2010). While SLs were discovered
because of this role in parasitism, their exudation was
also found to be of crucial function for the host plants.
It was discovered that SLs serve as critical signals in
establishing symbiotic relationships with arbuscular
mycorrhizal fungi, that help the plants to take up
nutrients from the soil (Akiyama et al. 2005).

As hormones, SLs were first identified to have
endogenous roles in regulating shoot branching
(Gomez-Roldan et al. 2008; Umehara et al. 2008).
Later studies expanded the roles of SLs to modulate
leaf growth, leaf senescence, secondary stem thicken-
ing, formation of adventitious roots, lateral roots, and
root hairs. The list and networks of SL-dependent
phenotypes continue to grow as their roles are studied
in diverse species and contexts (Brewer et al. 2013;
Ruyter-Spira et al. 2013; Bennett and Leyser 2014;
Seto et al. 2014; Smith and Li 2014). Additional
implications of SLs function as well as their crosstalk
with other phytohormone signaling pathways such as
auxin, cytokinin, abscisic acid, gibberellin, jasmonate,
and salicylic acid, have been increasingly revealed in
the recent years (Omoarelojie et al. 2019).

Due to this central role of SL signaling in plant
development and plant-environment interactions, the
research on the mode of SL perception has become a
main focus with over 50 studies in 17 species at the
genetic, phenotypic, biochemical, and structural level.
Over the past decade, these studies have revealed a
complex mode of perception and signaling in plants. A
major leap in understating SLs perception is the
identification of their receptor protein which also acts
as an active catalytic enzyme (Hamiaux et al. 2012;
Nakamura et al. 2013; Zhao et al. 2013). Since this
discovery, the SL receptor has been described in
several species and takes on the name of D14/DAD2/
RMS3/HTL (DWARF14, DECREASED APICAL
DOMINANCE2, RAMOSUS3, HYPOSENSITIVE
TO LIGHT) (Arite et al. 2009; Hamiaux et al. 2012;
Zhao et al. 2013; Toh et al. 2015; de Saint Germain
et al. 2016). The SL receptor was found to be part of a
larger family of proteins, many of which have
diversified or co-evolved to sense specific butenolide
compounds. This family is classified as the D14/KAI2
(KARRIKIN INSENSITIVE 2) family of receptors
(Bythell-Douglas et al. 2017). In order to better
understand the mechanism of signal perception and
transduction by DI14 family receptors, several
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synthetic SLs including agonists, antagonists, and
other experimental probes have been generated as
research tools to further explore the complexity of SL
perception mechanisms and the potential applications
of these synthetic molecules for research and agricul-
ture. Here we review SL perception including the
diversity of SL molecules and the recent advance-
ments in understanding their selectivity and hydrolysis
mechanisms alongside the divergence between recep-
tor proteins.

Strigolactones as phytohormones
Structural diversity of strigolactones

Plants produce mixtures of structurally diverse SLs.
This endogenous array can vary between as well as
within plant species. The first natural SL was isolated
from the root exudates of cotton and identified to be
the germination stimulant of parasitic Striga, taking on
the name strigol (Cook et al. 1966). Since then, many
more compounds such as sorgolactone, alectrol, and
orobanchol have been identified from the root exu-
dates of diverse plant species (Fig. 1) (Hauck et al.
1992; Miiller et al. 1992; Yokota et al. 1998; Mori
et al. 1999; Delaux et al. 2012). This group of
carotenoid-derived terpenoid lactones molecules are
collectively named strigolactones. Strigolactones are
either classified as canonical or non-canonical based
on their chemical structure. Here we discuss the
discovery of a diversity of canonical and non-canon-
ical SLs as well as the novel synthetic probes that have
been generated to better study this emerging field.

Canonical strigolactones

Naturally occurring canonical strigolactones contain
the characteristic feature of a tricyclic lactone ring
(ABC scaffold) which is connected to a common
butenolide ring (D-ring) through the conserved 2'R
configured enol-ether linkage (Butler 1994; Zwanen-
burg et al. 2009; Zwanenburg and Pospisil 2013;
Zwanenburg et al. 2016a, b; Yoneyama et al. 2018)
(Fig. 1).

The ongoing identifications of diverse SLs reveal a
variability in the C-ring configuration and provide
further classification of SLs that are originally derived
from 5-Deoxystrigol (5DS) with B-oriented C-ring as
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Fig. 1 Structure and classification of canonical strigolactones.
Strigol type SLs are shown in the upper panel (light purple shade
background, in B-orientation at B-C ring junction). Orobanchol
type SLs are shown in the lower panel (light blue shade

strigol-type (Motonami et al. 2013), and SLs that are
derived from 4-Deoxyorobanchol (4DO) with an o
oriented C-ring as orobanchol-type subfamilies
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background, in o-orientation at B-C ring junction). The
conserved D-ring is shown in 2'R configuration for all structures

(Zhang et al. 2014). In addition to the differences in
the C-ring configuration, the AB rings in all canonical
SLs can be derivatized through hydroxylation,
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Fig. 2 Structure of non-canonical strigolactones. Non-canonical strigolactones retains the intact lactone D-ring in 2'R configuration

that is connected to distinct moieties

methylation, acetylation, ketolation, and epoxidation
(Al-Babili and Bouwmeester 2015). The substitution
of the A-ring to benzene also diversifies the growing
list of SLs from plants (Xie et al. 2007). To date, nearly
30 distinct naturally occurring SLs have been identi-
fied (Fig. 1), with diverse roles in growth, develop-
ment, and as plant-environment signaling molecules.
While some plant species such as tomato, petunia, pea,
and poplar synthesize only orobanchol-type SLs,
tobacco and sorghum can produce both types of
canonical (orobanchol and strigol types) SLs (Xie
et al. 2007; Mohemed et al. 2016; Gobena et al. 2017).

The canonical SLs diversity and species-specificity
has been shown to be largely controlled by a central
biosynthesis cytochrome P450 enzyme, CYP722C.
CYP722C is suggested to be the key player in
synthesizing both strigol and orobanchol type SLs
from the SL precursor molecule carlactone (Wak-
abayashi et al. 2019, 2020; Mori et al. 2020a, b). For
example, in Solanum lycopersicum (Sl), SICYP722C
was found to be necessary for the synthesis of
orobanchol-type SLs (Wakabayashi et al. 2019).
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Similarly, CYP722C from Lotus japonicus and
Gossypium arboreum were implicated in the biosyn-
thesis of strigol-type SLs (Mori et al. 2020a, b;
Wakabayashi et al. 2020). For more comprehensive
review of SLs biosynthesis, we recommend several
excellent reviews including Yoneyama and Brewer
and Zorrilla et al. (Yoneyama and Brewer 2021;
Zorrilla et al. 2022). Future investigations of
CYP722C genes from various plants will shed light
on the biochemical diversification of canonical SLs
and how this large repertoire arose in different plant
species.

Non-canonical strigolactones

Non-canonical SLs are characterized as molecules that
lack the typical ABC-ring yet contain the 2'R config-
ured enol-ether linkage and D-ring moiety (Kim et al.
2014; Umehara et al. 2014; Charnikhova et al. 2017;
Xie et al. 2017, 2019) (Fig. 2). Non-canonical SLs
represent any SL that does not fall into the canonical
category. While there are no defined classes for non-



Phytochem Rev

canonical SLs nor a common core enzyme or precur-
sor, the biosynthesis enzymes in different species are
responsible for the resulting diversity of the mole-
cules. For example, Lateral Branching Oxidoreductase
(LBO) in Arabidopsis and its homologs in maize,
sorghum and tomato, are involved in the metabolism
of the non-canonical SL precursor molecule Methyl-
carlactonate (MeCLA, a derivative of carlactone)
(Yoneyama et al. 2020). The LBO enzyme can convert
MeCLA to hydroxymethylCLA, both of which seem
to be bioactive non-canonical SLs (Alder et al.
2012; Abe et al. 2014; Seto et al 2014; Yoneyama
et al. 2018; Mashiguchi et al. 2022). Additionally,
MeCLA can be further derivatized and its substruc-
tures have been found in various species such as
helicolactone from sunflower, lotuslactone from lotus
and methyl zealactone from maize (Ueno et al. 2014;
Charnikhova et al. 2017; Xie et al. 2017, 2019). One
identified enzyme that is involved in this derivatiza-
tion is 2-oxoglutarate-dependent dioxygenase, which
was found to play role in the biosynthesis of lotuslac-
tone (Mori et al. 2020a, b).

Interestingly, some plant species such as Arabidop-
sis, maize, and poplar produce both canonical and non-
canonical SLs. Therefore, further identification of new
metabolic precursors and SLs biosynthesis enzymes
will illuminate the diversification of canonical and
non-canonical SLs across plants.

Synthetic strigolactones as research tools

Both canonical and non-canonical SLs are generally
unstable compounds that can spontaneously disinte-
grate into inactive ABC and D-ring products in
alkaline conditions (Yoneyama and Brewer 2021).
Additionally, the laborious process to isolate the
natural SLs from plants yields only trace amounts
(picomolar to nanomolar) (Yoneyama and Brewer
2021). Therefore, a multitude of synthesis efforts have
been made including the first reported synthesis of
strigol as early as 1966 (Cook et al. 1966). Since this
breakthrough, several procedures are now available to
synthesize various derivatives of SLs. Among the
methods, the most common way to synthesize SLs
starts with the preparation of ABC scaffold followed
by selective oxidation of either A-ring or B-ring to
produce strigol or orobanchol type precursors. The
synthesis is then completed by the addition of a
butenolide ring connected via an enol-ether linkage,

which yields the racemic mixtures of strigol/oroban-
chol and their corresponding enantiomers (2’epimers)
(Zwanenburg and PospiSil 2013; Zwanenburg et al.
2016a, b). These mixtures are often purified through
enantioselective High Performance Liquid Chro-
matography (HPLC) or through the asymmetric syn-
thesis to yield pure and distinct SL enantiomers. While
this results in higher yield than isolating SLs from
plants, synthetic preparation of natural SLs are often
time consuming, not scalable and generate poor yields
regardless of the methods (either racemic or pure
enantiomer) (Zwanenburg et al. 2016a, b).

The great efforts to generate simplified versions of
SLs enabled the development of the most widely used
SL analogs (or agonists), the GR compounds such as
GR24, GR7 and GRS (Fig. 3), named after Gerald
Rosebery (Johnson et al. 1976). Similar to the
synthesis of natural SLs, the production of GR24
initiates with the preparation of ABC scaffold from
l-indanone which is then attached to the chiral
butenolide ring and thus generates two diastereoiso-
mers and their corresponding enantiomers possibly
mimicking the deoxy SLs (5DS and 4DO) (Mangnus
et al. 1992). The GR24 with the configuration
mimicking the 4DO is generally omitted as it was
reported to be less active in germinating the parasitic
plants whereas the GR24°5 and GR24°™°PS are
retained as a racemic mixture ( ££)-GR24 and referred
as rac-GR24 or maintained as pure enantiomers.
Molecules lacking the A-ring and AB-ring of GR24
such as GR7 and GRS were also shown to be bioactive
Striga germination stimulants (Nefkens et al. 1997).
rac-GR24 is the most widely used compound to study
the inhibition of shoot branching, the activity of SL
receptor, and as a stimulant for Striga management
(Johnson et al. 1976; Mangnus and Zwanenburg
1992). However, compounds with A-ring, AB-ring,
D-ring, D-ring with ethoxy group, methyl substituent
of D-ring, and molecules lacking the D-ring were
shown to be biologically inactive in inducing Striga
germination (Mangnus and Zwanenburg 1992; Zwa-
nenburg et al. 2009; Zwanenburg et al. 2016a, b) or
downstream signaling (Hamiaux et al. 2012). There-
fore, the bioactiphore of strigolactone lies in the
D-ring and is essential for bioactivity (Mangnus and
Zwanenburg 1992; Zwanenburg et al. 2009; Zwanen-
burg et al. 2016a, b). This inspired the synthesis of
various new SL mimic molecules that lack the ABC
scaffold but retain the D-ring structure (Fukui et al.
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Fig. 3 Structures of representative strigolactone analogs,
agonists, antagonists, and fluorogenic probes. Strigolactone
(SL) analogs contain intact D-ring that are connected to distinct
ring system via enol-ether bridge, shown in upper left panel
(pale yellow background). SL agonists/mimics retains the intact
D-ring but lacks the enol-ether linkage, shown in middle-left
panel (light purple background). SL antagonists lacking both the

2011, 2013; Boyer et al. 2014; Takahashi et al. 2016).
This includes saccharine (Zwanenburg and Mwak-
aboko 2011), furanone derivatives like debranone,
carbamate derivative TO010, and phthalimide
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conserved enol-ether bridge and the intact D-ring, shown in
lower left panel (pink background). In the structures of
fluorogenic probes shown in right panel (pale green back-
ground), the ABC tricyclic lactone ring is replaced by various
fluorescent moieties that are connected to the D-ring. In all the
relevant structures, the D-ring is shown in 2'R configuration

derivatives such as nijmegen-1, nijmegen-1Me
(Fig. 3) (Nefkens et al. 1997; Samejima et al. 2016).

The development of SL agonists also led to the
synthesis of fluorogenic probes such as
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Yoshimulactone green (YLG) (Tsuchiya et al. 2015),
Xilatone Red (XLR) (Wang et al. 2021), and Guil-
laume Clave series (GC) compounds (de Saint
Germain et al. 2022) (Fig. 3). These were designed
as tools to investigate and understand the mechanism
of SL perception and monitor its hydrolysis. Gener-
ally, these probes are designed as molecules comprise
of the butenolide D-ring attached to the various
editable fluorophores. The fluorescent signals of these
pro-fluorophores are detected only after hydrolysis.
This enables monitoring of the enzymatic activity and
serves as a signal reporter of the SL receptor in vitro
(Tsuchiya et al. 2015; de Saint Germain et al. 2016;
Wang et al. 2021) and in planta (Tsuchiya et al. 2015;
Wang et al. 2021).

Interestingly, a group of sulfonamide-related com-
pounds called cotylimides (CTLs) which lacks the
D-ring has been identified (Tsuchiya et al. 2010)
(Fig. 3). These molecules can bind AtHTL/KAI2 and
mediate the interaction with downstream signaling
component MAX2 (see section below) yet have not
been shown to serve as hydrolytic ligand by these
receptors (Toh et al. 2014). Such molecules have the
potential to be utilized as probes to study the distinct
function and biological consequences of non-hy-
drolysable SLs.

In addition to SL agonists, various antagonists were
also discovered through virtual screening of com-
pounds that could fit into the catalytic cavity of the SL
receptors (Mashita et al. 2016). Among the tested
compounds is the 2-Methoxy-1-Naphthaldehyde (2-
MN) that has been shown to inhibit the interaction of
D14 with D53 (downstream SL signaling protein, see
section below), rescue the rice tillering buds sup-
pressed by SL, and has an inhibitory effect on SL-
induced germination of Striga. Another antagonist
molecule, soporidine, was identified in a chemical
screen and was shown to bind Striga HTL (ShHTL)
and inhibit Striga germination (Holbrook-Smith et al.
2016) (Fig. 3). Moreover, the detergent, Triton-X-
100, was found in a crystal structure of ShHTL7 and
proposed to block the catalytic pocket resulting in a
moderate inhibitory impact on Striga germination
(Sahul Hameed et al. 2022). Recently, a more potent
antagonist piperazine derivative, dormirazine, has
been identified and shown to occupy the catalytic
cavity of ShHTL7 and inhibit Striga germination
(Arellano-Saab et al. 2022). Lastly, triazole urea
derivatives named KK compounds, were developed to

serve as covalent inhibitors by binding the catalytic
serine of rice D14. Among the KK derivatives that
were reported to impact SL signaling either as agonists
or antagonists, KK094 was found to be the most potent
antagonist exhibiting SL signaling inhibition in rice
(Nakamura et al. 2019; Jamil et al. 2021) (Fig. 3).
Together, the continuous efforts to develop SL agonist
and antagonists further underline the increasing
demand to synthesize better molecular probes to serve
in agricultural applications as well as research tools to
study SL perception and signal transduction.

Strigolactone perception by D14 family proteins
Identification of strigolactone receptors

The receptor for SL was first identified as a dwarf
mutant in rice that was later characterized as SL-
insensitive, named DWARFI14 or OsD14 (Oryza
sativa) (Ishikawa et al. 2005; Arite et al. 2009). This
was followed by the identification and characteriza-
tion of these proteins as definitive SL receptors in
petunia, DAD2 (Hamiaux et al. 2012). Then, the D14
ortholog in Arabidopsis thaliana, AtD14 was identi-
fied as well as the paralogous D14 family receptor
KAI2 (Waters et al. 2012). Following these findings,
an increasing number of studies identified and exam-
ined of SL-receptor function in many other plant
species including chrysanthemum (Wen et al. 2015),
Medicago (Lauressergues et al. 2015), barley (Marzec
et al. 2016), poplar (Zheng et al. 2016), pea (de Saint
Germain et al. 2016), soybean (Ahmad et al. 2020),
cotton (Wang et al. 2019), lotus (Carbonnel et al.
2020), wheat (Liu et al. 2021), canola (Stanic et al.
2021), sugarcane (Hu et al. 2021), tobacco (Li et al.
2020; White et al. 2022), and importantly in SL-
induced parasitic plants such as Striga and Pheli-
panche ramosa (Toh et al. 2015; de Saint Germain
etal. 2021). Additionally, sequence analyses identified
putative SL receptor homologs in 143 species and
classified evolutionary sub-families within the larger
o/B D14 family receptors including D14s and related
butenolide receptors—KAI2s as well as DLK2s (D14-
LIKE2) (Bythell-Douglas et al. 2017). The character-
ization of SL-receptors in these and many other plant
species as well as their spatio-temporal expression are
subjects of ongoing investigation in this field.
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The specificity of strigolactone receptors

D14 receptors are able to perceive a wide breadth of
SLs, and their distinct diversification within the family
and between species have allowed for extensive ligand
sensitivities. For example, the extended D14/KAI2
family of enzymes exhibit mutually exclusive func-
tions in plants even though DI4 and KAI2 are
evolutionarily related. D14 and KAI2 have specific
ligand selectivity for different stereoisomers of
butenolide compounds. In general, D14 receptors
preferentially perceive SLs where the D ring is in 2'R
configuration (Fig. 1), whilst KAI2 receptors prefer
the 2’S configuration (Scaffidi et al. 2014; de Saint
Germain et al. 2016; Carbonnel et al. 2020; de Saint
Germain et al. 2021; Guercio et al. 2022). Even within
D14 and KAI2 families, these receptors have acquired
adaptive sensitivity to different species and/or con-
text-specific SLs, allowing these receptors to represent
a wider diversity of ligand specificities.

o/ hydrolase fold

o/ hydrolases represent a large family of enzymes
present in all living organisms. In plants, o/f hydro-
lases are implicated in several cellular processes
including signal transduction pathways (phytohor-
mone SLs, GAs, and karrikin/KAI2-ligand) (Shimada
etal. 2008; Hamiaux et al. 2012; Kagiyama et al. 2013;
Mindrebo et al. 2016). First described by Ollis et al. in
1992, the o/f hydrolase fold is comprised of a core
8-stranded B-sheet surrounded by o-helices (Ollis
et al. 1992). As members of the o/f hydrolase
superfamily, D14s have a subset of ~ 4 helices that
form a lid whilst the remaining helices and beta strands
form a base (Fig. 4A). This assembly forms a largely
hydrophobic ligand-binding pocket centered in
between the lid and the base (Kagiyama et al. 2013).
Typical to serine hydrolases, the serine catalytic triad
is structurally positioned in the rear of the ligand-
binding pocket and considered to be functionally
active for all D14s and KAI2s (Fig. 4B). This is not the
case for the GA receptor protein, GID1, where the
catalytic histidine has been substituted to valine.
GID1, therefore, acts solely as a receptor and not as an
enzyme (Shimada et al. 2008; Mindrebo et al. 2016).
Therefore, the dual receptor-hydrolase function of
D14s/KAI2s represents a unique mode of hormone
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perception in phytohormone signaling pathways (Min-
drebo et al. 2016).

Strigolactone binding pocket: from structure
to function

The advancements in resolving the crystal structures
of D14 and KAI2 receptors have enabled a deeper
understanding of perception mechanisms and revealed
structurally similar receptors with distinct functions
(Table 1). In the past decade an increasing number of
studies have investigated the causal divergences that
result in differential ligand selectivity between D14
orthologs and paralogs. The hydrophobic ligand-
binding pocket has been a topic of great interest
because of its importance in SLs accessibility and
perception. Across species and paralogs, the D14
structures provide evidence on how sequence variation
can alter the receptor towards different ligands.
Analysis of the SL-binding pocket morphology of
D14s shows alterations in pocket entrance, diameter,
shape, as well as the pocket depth, width, and
accessibility to the catalytic serine (Table 1 and
Fig. 4B). For example, the Striga SL receptor,
ShHTL7, has been proposed as a hyper-sensitive
receptor in planta (picomolar sensitivities for 5DS and
sorgolactones, and nanomolar sensitivities to strigol
(Toh et al. 2015)). ShHTL7 can also perceive a larger
compilation of SL molecules, and its pocket is
amongst the largest in size, diameter, and volume.
On the other hand, ShHTL1 seems to be much less
perceptive to synthetic SLs, likely due to a much
smaller binding pocket (Table 1) (Toh et al. 2015; Xu
et al. 2018).

These differences in ligand sensitivity and pocket
size have been correlated to specific amino acid
alterations that fall into two broad classes. One class
includes mutations in the conserved connecting loops
that participate in positioning the helices of the
receptor’s lid, which directly affect the pocket size,
shape, and accessibility (Xu et al. 2018; Biirger et al.
2019; Biirger and Chory 2020; Lee et al. 2020)
(Fig. 4A). Examples include divergence within Striga
HTLs which contain either a tyrosine or phenylalanine
at position 150 (Y152 in Arabidopsis) on the loop
connecting oT1-oT2 helices (Fig. 4A) (Xu et al.
2018). A substitution in HTLs 4, 5, and 7 to
phenylalanine at this residue results in loss of hydro-
gen bonds between helices oT1 and oT3, which
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Fig. 4 Overview of the structure of strigolactone receptor and
its SL-binding pocket. A Representative Arabidopsis thaliana
D14 structure (based on PBD ID: 4IH4) is shown as cartoon.
B Close-up view into the SL-binding pocket. Invariant residues

increases the plasticity and creates a larger, more
accessible pocket, and thus a more ligand-sensitive
receptor (Fig. 4A and Table 1) (Xu et al. 2018; Biirger
and Chory 2020). Similarly, in Physcomitrella patens
(Pp), the ancestral D14 family proteins have an altered
pocket size, due to a S166A substitution in the loop
connecting oT2-oT3 (Biirger et al. 2019) (166 in
Arabidopsis Fig. 4A and Table 1). Here again, the
serine to alanine substitution results in the loss of a
hydrogen bond which enlarges the binding pocket and
increases ligand sensitivity for all PpKAI2-like pro-
teins containing this substitution (Biirger et al. 2019;
Biirger and Chory 2020). The second class of substi-
tutions informing divergence in ligand selectivity
includes mutations that directly alter the SL-binding
cavity, which is the focus of the next section

Diverged pocket residues inform differential
ligand selectivity

The SL binding pocket, while only composed of ~ 25
amino acids (12% of total protein length), can harbor
substitutions that alter ligand selectivity between
paralogs or orthologs (Table 2). Among these residues,
eight are invariant (positions relative to AtD14: H26,
G27,G29, H96, S97,F175, D218, H247) including the
three catalytic triad residues S97, D218, and H247
(Bythell-Douglas et al. 2017) (Fig. 4B). The conser-
vation of these residues across the D14/KAI2 family is

are shown in cyan sticks and the catalytic triad in green sticks.
C Diverged residues (see also Table 1) are shown in purple
sticks. 3D structure illustration and analysis were generated
using PyMOL Molecular Graphics System, Schrodinger, LLC

likely to maintain the receptors’ function and ligand
accessibility. This is exemplified wherein the mutation
of G28D in pea resulted in drastic overall instability of
RMS3 (position relative to AtD14 = G27D, Fig. 4B)
(de Saint Germain et al. 2016).

Sixteen pocket residues have been shown in
multiple studies to evolutionarily diverge between
and/or within species and as a result alter ligand
selectivity. These 16 residues relative to AtD14 are in
positions 28, 98, 123, 126, 136, 140, 144, 145, 148,
155, 159, 162, 163, 191, 195, and 220, and are
highlighted in Table 2 and Fig. 4C. Orthologs have
evolved differential ligand selectivity likely to per-
ceive taxon-specific signaling molecules (Mindrebo
et al. 2016), while paralogs exhibit differential selec-
tivity likely to allow a specie to perceive a diversity of
SL molecules (Carbonnel et al. 2020; Guercio et al.
2022). Recent studies examined the ability to direct
ligand specificity by swapping residues between
diverged D14 family paralogs (Tables 1 and 2)
(Carbonnel et al. 2020; Arellano-Saab et al. 2021;
Guercio et al. 2022). For example, substitutions in
residues L160M and S190L (AtD14: L162M and
S191L) are necessary to alter ligand selectivity
between paralogous receptors in pea (Guercio et al.
2022). Similarly, in lotus, divergence between par-
alogs at the same positions as well as F157W (residue
159 in AtD14) were sufficient to swap selectivity
(Carbonnel et al. 2020). Another study in Arabidopsis,
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Table 1 Diversity in SL binding pocket structures. Oryza
sativa OsD14 crystal structure (PDB ID: 3W04) is shown in
cartoon (gray) as a representation for the pocket orientation
(purple, header). Solvent accessible surface areas were gener-
ated to represent the SL-binding pocket shape for: OsD14;
Arabidopsis thaliana (At) AtD14 (PDB ID: 4IH4); Petunia
hybrida DAD2 (PDB ID: 4DNP); Saccharum spontaneum
SsD14a (PDB ID: 7F5W); Striga hermonthica ShD14 (PDB
ID: 6XFO), ShHTL1 (PDB ID: 5Z7W), ShHTL4 (PDB ID:
5Z7X), ShHTLS5 (PDB ID: 5CBK), ShHTL7 (PDB ID: 5Z7Y),

Top Side 90°
i
% Volume
Receptor Ly (SA)
protein
3 \'%) AS
0sD14 & ‘ 126.674
AtD14 ﬁ@ @) 241.686
DAD2 . ‘ 150.815
SsD14a &, &J; 172,593
ShD14 ‘ ‘ 226.697
ShHTLA ® ‘ 75.157
N
ShHTL4 & 283.310
ShHTL5 * ‘ 315.617
ShHTL? * q 381.049
ShHTLS * ?? 314.690
PpKAI2C §P a 82.258
PPKAI2E g ’ 112.326
PpKAI2H 62 (‘; 61.870
AKAI2 & < 119.594
PsKAI2B @ é’ 190.731
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ShHTLS (PDB ID: 6J2R); Physcomitrella patens PpKAI2C
(PDB ID: 6ATX), PpKAIRE (PDB ID: 6AZB), PpKAI2H
(PDB ID: 6AZD); AtKAI2 (PDB ID: 4JYP); Pisum sativum
PsKAI2B (PDB ID: 7K2Z). Residues defining pocket surface
and solvent accessible (SA) volume were identified using
CASTp with a 1.2 A probe radius (Tian et al. 2018). Structural
illustrations, and pocket surface calculations were generated
and analyzed using PyMOL Molecular Graphics System,
Schrédinger, LLC
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Table 1 continued

Oryza sativa OsD14 crystal structure (PDB ID: 3WO04) is shown in cartoon (gray) as a representation for the pocket orientation
(purple, header). Solvent accessible surface areas were generated to represent the SL-binding pocket shape for: OsD14; Arabidopsis
thaliana (At) AtD14 (PDB ID: 41H4); Petunia hybrida DAD2 (PDB ID: 4DNP); Saccharum spontaneum SsD14a (PDB ID: 7F5W);
Striga hermonthica ShD14 (PDB ID: 6XFO), ShHTL1 (PDB ID: 5Z7W), ShHTL4 (PDB ID: 5Z7X), ShHTL5 (PDB ID: 5CBK),
ShHTL7 (PDB ID: 5Z7Y), ShHTL8 (PDB ID: 6J2R); Physcomitrella patens PpKAI2C (PDB ID: 6ATX), PpKAI2E (PDB ID:
6AZB), PpKAI2H (PDB ID: 6AZD); AtKAI2 (PDB ID: 4JYP); Pisum sativum PsKAI2B (PDB ID: 7K2Z). Residues defining pocket
surface and solvent accessible (SA) volume were identified using CASTp with a 1.2A probe radius (Tian et al. 2018). Structural
illustrations and pocket surface calculations were generated and analyzed using PyMOL Molecular Graphics System, Schrodinger,

LLC.

shows that swapping three endogenous residues
WI53L, F157T, and GI190T (positions relative to
AtD14: 155, 159, 191), are sufficient to switch the
karrikin (KAR) receptor, KAI2, to an SL receptor
(Arellano-Saab et al. 2021). The W153L and F157T
directly result in a larger more accessible pocket. The
direct implication of the G189T mutation remains
unclear, yet the combination of these mutations
enabled the receptor to behave more promiscuously
and perceive a larger diversity of SL ligands.

A selection of reported residues with functional
significance for ligand selectivity are highlighted in
Table 2. It is clear that many alterations in charge, size,
and hydrophobicity will modify the binding-pocket
morphology and selectivity, however, the precise
mechanism(s) of how exactly these differential sub-
stitutions fine tune ligand specificity as well as the
receptor’s catalytic function remain to be further
explored both in vitro and in planta. In the following
section we discuss the mode of action of D14 as SL
hydrolases.

Hydrolysis of strigolactones by D14 family
hydrolases

The catalytic triad and SL hydrolysis mechanism

In all D14s, the serine-histidine-aspartic acid catalytic
triad is highly conserved and positioned at the bottom
of the ligand-binding pocket (Fig. 4B and Fig. 5A)
(Bythell-Douglas et al. 2017). D14s catalytic triad
operates as a charge relay system together with an
oxyanion hole that can stabilize high-energy transition
states and hydrolysis intermediates of SL. Therefore,
amino acid substitutions in the catalytic site result in a
loss or decrease of SL-sensitivity (Hamiaux et al.

2012; Abe et al. 2014; de Saint Germain et al. 2016;
Seto et al. 2019; de Saint Germain et al. 2021).

The mechanism of ligand hydrolysis by D14 has
been a topic of interest and debate since before the
formal identification of the receptor itself. The first
proposed mechanism was generated by Mangnus and
Zwanenburg in 1992 and was based on the activity of a
unique synthetic SL on Striga germination. This study
used a modified ‘reduced’” GR24 in which the enol-
ether double bond is replaced by a single bond
(Mangnus and Zwanenburg 1992). This modified
GR24 failed to induce germination of Striga and
Orobanche species and led to the suggestion that the
enol-ether linkage connecting the C and D-ring is
essential to retain activity. Hence, a reaction
scheme was proposed in which the hydrolysis pro-
ceeds through a nucleophilic attack on enol-ether
linkage (Fig. 5B and D) which results in two products:
a D-ring (as a leaving group), and an intact ABC-
scaffold (Mangnus and Zwanenburg 1992).

Later, Fukui et al. examined the effects of synthetic
SLs, debranones (Fig. 3), on SL biosynthesis rice
mutants. Debranones lack the enol-ether linkage can
rescue the SL-biosynthetic mutant phenotypes and
serve as bioactive SL, therefore providing counter
evidence to the Magnus 1992 hypothesis (Fukui et al.
2011). Similarly, at the same year, Zwanenburg and
Mwakaboko synthesized yet additional SL mimics,
one of which also lacked the enol-ether linkage and
was highly bioactive in stimulating Striga and
Orobanche germination despite lacking this previ-
ously expected crucial linkage (Zwanenburg and
Mwakaboko 2011).

After the discovery of the SL receptor, D14, and the
identification of the homologous signaling pathway of
KARs, a new model was proposed that could explain
how both ligands can be hydrolyzed independent of
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Table 2 Divergence in SL binding pocket residues. Arabidop-
sis thaliana D14 serves as the representative model. Column 1
shows amino acid position (based on PDB ID: 4IH4); column 2
shows the corresponding reported alternative residues in other
plants. The equivalent position of each residue (green sphere)

is shown in AtD14 (gray cartoon). The implications on the
binding pocket as well as the research studies reporting the
diverged residues are shown in columns 3 and 4. The 3D
structure illustration and analysis were generated using
PyMOL Molecular Graphics System, Schrodinger, LLC

@ Springer

hydrophobicity

Residue . .
i~ Residue Spatial e
(# position) o N Implication References
. variations location
in AtD14
1,’,;.: . o Kagiyama et al., Genes Cells 2013; Toh et al., Science 2015; Zhao et al.,
‘_‘,/”' (% affecting accessibility to the CHfE A0l e s i A it @, 0E
1 R : akeuchi et al., Plant Cell Physiol. 2018; Burger et al. Cell Rep. 2019;
F28 YIAILIV B catalytic Ser and the Arllano-Sa ot a, PNAS 2021 Marinez 1 al. Plat Prysio 2022
.éé:‘ )\ “.g’ hydrophobicity of the pocket Guercio et al., Commun Biol. 2022
S
AR
. o Kagiyama et al., Genes Cells 2013; Zhao et al., Cell Res. 2015; Takeuchi
affedmg accessibility to the tha\ N P\ar‘\l(‘)egPhysm\ éo:ai‘;Azaznunez etal,, Plant Physiol. 2022;
) . uercio et al, Commun Bio
Vo8 M/LN catalytic Ser and hydrophobicity of
the pocket
Toh et al., Science 2015; Martinez et al., Plant Physiol. 2022
123 TIC affecting the diameter of the
middle section of the cavity
. . Zhao et al., Cell Res. 2013; Toh et al, Science 2015; Zhao et ., Cell
affecting the diameer ofthe P S e
" . N : Arellano-Saab et .. : Martinez ot aL., Plant Physio
F126 Y/MILIWWNV middle section of the cavity, the 2022 ’
polarity, and hydrophobicity
i i Nakamura et al., Nat Commun. 2013; Kagiyama et al., Genes Cells 2013;
izl (s Al @il Ton et Seioics 2015, v ot - Col o 2015 Coesen 110
entrance and middle section of the  Exp Bot 2018; Xu et al., Nat Commun. 2018; Burger et al, Cell Rep.
F136 THIL 3 - 2019; Le et al., J Biol Chem. 2020; Martinez et al., Plant Physiol. 2022
cavity, the polarity and
hydrophobicity
Zhao et al., Cell Res. 2015; Martinez et al., Plant Physiol. 2022
. . N ys
affecting the diameter of the cavity
E140 DITV entrance, its polarity, charge, and
hydrophobicity
Nakamura et al., Nat Commun. 2013; Kagiyama et al., Genes Cells 2013;
. . " giy:
affecting the diameter of the cavity =~ Tohetal, Science 2015; Zhao et al., Cell Res. 2015; Uraguchi et al,
. . Science 2018; Xu et al., Nat Commun. 2018; Takeuchi et al., Plant Cell
V144 L/T/IM entrance and its polarity and Physiol. 2018; Burger et al., Cell Rep. 2019; Arellano-Saab et al., PNAS
hydrophobicity 2021; Chen et al, J Biol Chem. 2021; Martinez et a., Plant Physiol. 2022
. . N Zhao et al., Cell Res. 2013; Toh et al., Science 2015; Xu et al., Nat
LINIMISIQY affecting the diameter of the cavity Commun. 2018; Martinez et al., Plant Physiol. 2022
F145 YINIAIC entrance and its polarity; charge;
and hydrophobicity
Toh et al., Science 2015; Zhao et al, Cell Res. 2015; Xu et al., Nat
3 . " Commun. 2018; Burger et al., Cell Rep. 2019; Martinez et al., Plant
M148 VILIF affecting the diameter of the cavity ~ Physiol 2022
entrance and its hydrophobicity
Zhao et al., Cell Res. 2013; Nakamura et al, Nat Commun. 2013;
iy . : . Sci : N
- . . Kagiyama et al., Genes Cells 2013; Toh et al., Science 2015; Zhao et al.
affecting the diameter of the cavity ~ CellRes. 2015 Xu et al., Nat Commun. 2018; Takeuchi et a., Plant Cell
W155 M/LIF N - Physiol. 2018; Burger et al., Cell Rep. 2019; Arellano-Saab et al., PNAS
entrance and its hydrophobicity 2021; Martinez et al., Plant Physiol. 2022
Zhao et al., Cell Res. 2013; Nakamura et al., Nat Commun. 2013;
affecting the diameter of the cavity DT St e LT 0 o 2
i i Cell Physiol. 2018; Xu et al., Nat Commun. 2018; Burger et al., Cell Rep.
F1 59 Y/W/T/S/L Sntrance, Its pOIBrIty’ and 2(?19‘ gar‘bonne\ et a‘\J., PLoS Gsn:trnm;l)‘ Am\\anu‘irsaarbeet al., :NA;
hydrophobicity 2021; Chen et al., J Biol Chem. 2021; Martinez et al., Plant Physiol. 2022
o . . Carbonnel et al., PLoS Genet. 2020; Martinez et al., Plant Physiol. 2022;
affecting the diameter of the cavity =~ Guercio etal. Commun Biol. 2022
L162 M/ entrance, its polarity, and
hydrophobicity
. . B Toh et al., Science 2015; Uraguchi et al., Science 2018; Martinez et al.,
affecting the diameter of the cavity  PiantPhysil. 2022
A163 V/I/ILICIM entrance, its polarity, and
hydrophobicity
Faching the diameter of Kagiyama et a., Genes Cells 2013; Toh et al., Science 2015; Zhao et al.
affecting the diameter of the Gell Res. 2015; Takeuch et l., Plant Cell Physiol. 2018; Carbonnel et a.,
CIAILIGITIVI . N P PLoS Genet. 2020; Martinez et al., Plant Physiol, 2022; Guercio et al.,
$191 . middle section of the cavity, its Commun 8ot 2022 . o
polarity and hydrophobicity
A . . Zhao et al., Cell Res. 2013; Nakamura et al., Nat Commun. 2013;
2 ’,’:"ul affecting the diameter of the éaﬁléﬂmazeuté\ ‘CGeInes Cel\slﬂzié Tth ftzaéissc‘hence 2:15;, Z‘hasm etal,
< v . . . o ell Res. ; Carlsson et al., J Exp Bot ; Uraguchi et al., Science
F195 Y/N/CIHIS '*’) el middle section of the cavity, its 2018; Xu et al., Nat Commun. 2018; Takeuchi et al., Plant Cell Physiol.
\:éé';j‘v‘;f‘ polarity and hydrophoblclty gg;g Arellano-Saab et al., PNAS 2021; Martinez et al., Plant Physiol.
% 3
. . . Nakamura et al., Nat Commun. 2013; Kagiyama et al., Genes Cells 2013;
affecting the diameter of the cavity Tohetal, Science 2015, Zhao et a, el Res. 2015; Uraguchi et al,
. ) cience 2018; Chen et al., J Biol Chem. 2021; Martinez et al. Plant
S220 ANVIM/L entrance, its polarity and Physiol. 2022




Phytochem Rev

Table 2 continued

Arabidopsis thaliana serves as the representative model. Column 1 shows amino acid position (based on PDB ID: 4IH4); column 2
shows the corresponding reported alternative residues in other plants. The equivalent position of each residue (green sphere) is shown
in AtD14 (gray cartoon). The implications on the binding pocket as well as the research studies reporting the diverged residues are
shown in columns 3 and 4. The 3D structure illustration and analysis were generated using PyMOL Molecular Graphics System,

Schrédinger, LLC.

the enol-ether bridge (Scaffidi et al. 2012). This
mechanism follows a Michael reaction wherein a
nucleophilic attack by the catalytic serine at the C5’
position of the D-ring results in similar products (D-
ring and ABC scaffold) (Scaffidi et al. 2012) (see
Fig. 5B and E for more details). This hydrolysis
mechanism has been widely accepted as the most
probable mode of action and is further supported by
biochemical and structural evidence (Zhao et al. 2013;
Nakamura et al. 2013; Yao et al. 2016; Takeuchi et al.
2018; Yao et al. 2017; de Saint Germain et al. 2016;
Guercio et al. 2022).

To corroborate the proposed reaction mechanisms
for SL hydrolysis, methods in structural biology and
Mass Spectrometry (MS) have been used to determine
various intermediate states in ligand hydrolysis. Two
studies by Yao et al. have proposed an intermediate
state where the D-ring of SL becomes covalently
linked between the catalytic serine (at C5’ of SL) and
the histidine (at C1’ of SL) (Fig. 5A, B, C and E) (Yao
etal. 2016, 2017). Another study identified a stable hy-
drolysis intermediate where the D ring is covalently
linked to the catalytic histidine of the receptor (de
Saint Germain et al. 2016). This study further showed
that the conserved methyl group at the 7' position of
SL is required for the reaction mechanism. Here, after
the first nucleophilic attack by serine on C5’ of SL,
there is an additional nucleophilic attack by the
nitrogen atom of the histidine’s imidazole on the
aldehyde intermediate at the C2’ of SL thus forming a
covalent bond with the D ring (Fig. SA, B, C and E)
(de Saint Germain et al. 2016). A recent study on the
crystal structure of pea KAI2 reported yet another
form of SL intermediate covalently linked to the
catalytic serine. This study also found the previously
identified SL-histidine intermediate using MS on pea
KAI2 (Guercio et al. 2022). Taken together, the
favored mechanism of SL hydrolysis requires a

successful nucleophilic attack on the C5’ of SL by
the catalytic serine and is likely followed by multiple
intermediate states. These covalently linked interme-
diates have been proposed to alter the receptors
enzymatic activity and supported by the relatively
slow turnover rates of D14s (Hamiaux et al. 2012; de
Saint Germain et al. 2016; Shabek et al. 2018; Guercio
et al. 2022; Tal et al. 2022). Despite the advancement
in understanding the enzymatic aspects of SL recep-
tors, the precise functional ramification of SL inter-
mediate states on the perception and/or downstream
signaling events remains to be further elucidated.

Impacts on perception and hydrolysis
of strigolactone by signaling partners

Perception and hydrolysis of SLs has been considered
to be the very first step of the much larger cascade of
the signaling pathway. Three key proteins are required
to transduce the SL signal: the SL receptor D14, the
D3/MAX2 (DWARF 3/ MORE AUXILLARY
BRANCHES 2) ubiquitin (Ub) ligase F-box protein,
and the target for proteasomal degradation, the
transcriptional co-repressor proteins D53/SMXLs
(DWAREF 53 / SUPRESSOR OF MAX2-LIKE) (Nel-
son et al. 2011; Zhou et al. 2013; Soundappan et al.
2015; Wang et al. 2015; Kerr et al. 2021; Tal et al.
2022). These key players have been shown to form an
SL-dependent protein complex and facilitate the
ubiquitination and degradation of D53/SMXLs (Zhou
et al. 2013; Shabek et al. 2018; Tal et al. 2022)
(Fig. 5A and C). To date, the chronology of the
binding events, and whether SL hydrolysis is required
for formation of the signaling complexes, remains to
be resolved.

Through structural examinations in vitro, one
model has been proposed wherein SL hydrolysis is
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«Fig. 5 Proposed mechanism for strigolactone hydrolysis and
signaling. A Schematic representation of SL receptor D14.
V-shaped helices (aT1-0T4) are shown as cartoon in the open
conformation and the catalytic triad residues serine, histidine,
and aspartic acid (denoted S97-H247-D218) are shown in sticks.
B Representative structure of SL (shown as ( +)-GR24). The
brown and blue arrows indicate the proposed nucleophilic
attacks on carbons 6’ or 5. C Proposed model for strigolactone
signaling pathway. (i) SL (purple triangle) is perceived by D14
(open conformation). D3/MAX2 with a dislodged C-terminal

D3/MAX2-D14-SL targets and polyubiquitinates (U denotes
ubiquitin) D53/SMXLs resulting in proteasomal degradation of
D53/SMXLs, concurrent hydrolysis of SL (pink pentagon), and
conformational changes in D14 (indicated by dashed arrows).
(iv-v) Post SL hydrolysis, D14 is subsequently targeted by D3/
MAX?2 and degraded by the proteasome. Schematics were
created with Bio-render.com D, E Proposed mechanisms of SL
hydrolysis which results in D-ring and ABC-scaffold products
by initiating nucleophilic attack on enol-ether linkage at C6' D,
or by initiating nucleophilic attack on C5' E

required for complex formation (Yao et al. 2016). A
crystal structure revealed an SL-hydrolysis state with
an altered structure of D14 in a complex with D3.
Here, instead of the wide-open V-shaped a-helices of
the lid, D14 is found in a closed conformation forming
an additional interface with the rice D3 (Fig. 5A and
C). This model suggests that the induced conforma-
tional changes during hydrolysis play an important
role in the recruitment of D14 by D3.

In another model of SL complex formation,
hydrolysis is not required for signal transduction (Seto
et al. 2019). This is showcased by aspartic acid
catalytic mutant, AtD14D218A, that lacks enzymatic
activity yet can complement the atd/4 mutant pheno-
type in an SL-dependent manner. In this model, the
active signaling state of D14 is triggered upon intact
SL binding, but not by hydrolysis intermediate(s) or
product(s). Therefore, it is proposed that the hydrol-
ysis functions to deactivate the bioactive SLs post-
signal transduction, but not for complex formation.
Given the slow turnover of SL receptors compared to
the proteasomal degradation rate of the target sub-
strates in SL signaling, hydrolysis of SLs may not be
required for D14-SL-D3-D53 complex formation
(Hamiaux et al. 2012; Nakamura et al. 2013; Zhao
et al. 2013).

This has been further supported by other studies
(Shabek et al. 2018; Seto et al. 2019) centered on the
findings that a pre-hydrolysis state of D14-SL is
required for the recruitment of both D3 and its target

protein D53/SMXLs. It has been proposed that a
dynamic conformational change in the C-terminal
helix (CTH) of D3 facilitates the recruitment of SL-
bound D14-D53/SMXLs where D3 further attenuates
the SL hydrolysis rate to allow effective ubiquitination
and degradation of the D53/SMXLs (Shabek et al.
2018; Sobecks et al. 2022) (Fig. SA and C). An
intriguing mode of action has recently demonstrated
that a primary metabolite such as citrate or citrate-like
molecules could effectively trigger D3-CTH confor-
mation and may serve as a link between specific
environmental conditions and D3-D14-SL activation
(Tal et al. 2022).

Implications and conclusions

A deeper understanding of SL biosynthesis, their
catalysis, and the structure of their receptors has
allowed for the development of targeted agonists and
antagonists not only as research tools, but also for
agricultural applications. Synthetic SLs have the
potential to serve a more potent or specific function
than natural SLs and could provide a precise control of
SL-influenced processes without off-target effects
(Boyer et al. 2012). Hence, synthetic SLs hold promise
as agrichemicals used in crop production and/or crop
management strategies. For example, the development
of synthetic SLs can aid to circumvent the devastating
effect of SL-induced parasitic plant germination.
Striga infestation impacts Sub-Saharan Africa, the
Middle East, and parts of Asia, particularly by
parasitizing and decimating staple cereal crops such
as maize and sorghum (Parker 2009; Jamil et al. 2021).
To this end, various agonists were developed to
stimulate germination of Striga without a host, which
will result in death of the obligate parasite (Toh et al.
2014; Takahashi and Asami 2018). This provides a
crop management strategy for cereal farmers to
deplete the soil of Striga before planting crops.
Another strategy for crop protection is the develop-
ment of antagonists that can target the Striga SL
receptors to inhibit SL-dependent seed germination
(Mashita et al. 2016; Takahashi and Asami 2018).

In addition, synthetic SLs can be utilized for
precision farming to improve crops. Due to SLs’ role
in inhibiting branching, SL antagonists can be used as
yield stimulants by increasing the number of produc-
tive branches or tillers in crops such as grains (Mashita
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et al. 2016; Takahashi and Asami 2018). Alternatively,
SL agonists can be applied to reduce the number of
non-productive branches, especially in single-flower
ornamental plants. SLs were also shown to impact
secondary growth, and as such, SL agonists could be
beneficial in increasing tuber yield of root veg-
etable crops as well as in stabilizing grain crops at
risk of lodging (Agusti et al. 2011; Pasare et al. 2013;
Takahashi and Asami 2018). The application of SL
analogs could also increase crop tolerances to abiotic
stress such as drought and salinity (Ha et al. 2014). The
function of SL-induced AM symbiosis is yet another
potential for utilizing synthetic agonists, especially
due to the additional positive impacts of these
symbioses including increased stress resistance and
tolerance (Pozo and Azcon-Aguilar 2007; Evelin et al.
2009).

Overall, our understanding of the SL signaling
pathway in the past decade has been increasingly
advanced. In this review we highlight the central
aspects of SL diversity, perception, and hydrolysis,
however, there are many other facets and open
questions that remain to be addressed. These include
further elucidation of diversified SL biosynthesis, the
precise molecular mechanism of the signal transduc-
tion cascade, the implications of SL crosstalk with
other phytohormones, and the application of SLs in
agriculture.
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