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Abstract

Artificial metalloenzymes (ArMs) utilize the best properties of
homogenous transition metal catalysts and naturally occurring
proteins. While synthetic metal complexes offer high tunability
and broad-scope reactivity with a variety of substrates, en-
zymes further endow these complexes with enhanced
aqueous stability and stereoselectivity. For these reasons,
dozens of ArMs have been designed to perform catalytic
asymmetric hydrogenation reactions, and hydrogenase ArMs
are, in fact, the oldest class of ArMs. Herein, we report recent
advances in the design of hydrogenase ArMs, including (i) the
modification of natural [Fe]-hydrogenase by insertion of artifi-
cial metallocofactors, (ii) design of a novel ArM system from the
tractable and inexpensive protein B-lactoglobulin to afford a
high-performing transfer hydrogenase, and (iii) the design of
chimeric streptavidin scaffolds that drastically alter the sec-
ondary coordination sphere of previously reported streptavidin/
biotin transfer hydrogenase ArMs.
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Introduction

Artificial metalloenzymes (ArMs) are a class of hybrid
catalysts wherein a protein (natural, mutant, or ¢ novo)
is given a non-natural, metal-containing cofactor. These
systems leverage the most attractive properties of both
homogenous transition metal catalysts (highly tunable
primary coordination sphere, facile incorporation of
precious metals, and reactivity with a wide range of
substrates) and natural enzymes (high stereoselectivity,

diverse well-defined secondary coordination spheres,
and high turnover numbers). Many ArMs have been
designed to perform asymmetric hydrogenation of un-
saturated functional groups, such as nitriles [1,2], car-
bonyls [3], and imines [3], with H; or H,-donors to yield
a chiral product. Asymmetric hydrogenation is a crucial
step in the synthesis of many pharmaceuticals, agro-
chemicals, fragrances, and other small organic molecules
[4,5], and biocatalysis is predicted to play a crucial role
in the future of industrial small molecule synthesis [6].
The design of the chiral ligands and metal complexes
needed for this catalysis is often significantly more
difficult, time-consuming, and costly than analogous
achiral catalysts. Proteins exist as one stereoisomer,
which can be used to design hybrid systems containing
an achiral metal catalyst embedded in a rigidly defined
chiral environment. Here, we will examine three
different ArM systems using different design ap-
proaches that provided chemically robust, high-
turnover, stereoselective hydrogenation catalysts (sum-
marized in Table 1).

Insertion of synthetic Mn-cofactors into
apo-[Fe]-hydrogenase

Tetrahydromethanopterin - dehydrogenase (Hmd or
[Fe]-hydrogenase) is a homodimeric metalloenzyme
expressed in several species of methanogenic archaea.
The iron-guanosylylpyridinol (FeGP) cofactor in the
active site of Hmd performs heterolytic cleavage
of H; to generate a proton and a hydride, and the latter
is stereoselectively transferred to the wmethenyl-
tetrahydromethanopterin  (methenyl-Hy;MPT™)  sub-
strate, thus providing methylene-tetrahydromethanopter-
in  (methylene-H4MPT) [7] (Figure 1). This
transformation is the third of four reductions in the
metabolism of carbon dioxide to methane but is the only
one that directly uses H; as a reducing equivalent [8].
The FeGP cofactor has been the target of synthetic
modeling by organometallic and bio-inorganic chemists
since the unambiguous structural determination of its
active site in 2009 [9]. While a vast array of Hmd syn-
thetic models have been reported — many recon-
structing the active site primary coordination sphere
with atom-for-atom accuracy — only two models (re-
ported by our group) showed enzyme-like reactivity (in
the absence of a protein environment) [10,11]. One
potential explanation for this lack of reactivity is the
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Table 1

Comparison of design principles employed for recently reported artificial hydrogenases.

Hmd

BLG Sav

Hydrogenation mechanism Fe-mediated heterolytic

H> cleavage

Transfer hydrogenation Transfer hydrogenation

Metallocofactor binding
mechanism

Coordination of Cys to
metal center

Hydrophobic interaction of
nonpolar ligand with calyx

H-bonding to biotin moiety
on cofactor

Design innovation Non-native [Mn] cofactor

Novel use of a commercially
available protein scaffold

Alteration of protein scaffold’s
tertiary structure

Transition metals Fe(ll), Mn(l)

Rh(lll), Ru(ll) Ir(111)

secondary interactions between the protein scaffold and
the FeGP cofactor that exist in the natural enzyme but
are difficult to reproduce in a small molecule system.
First, a hydrogen bond interaction between the amide
backbone of Cys176 and the acyl oxygen of the FeGP
cofactor may cause contraction of the Fe—Cgey bond to a
remarkably short 1.88 A [12]. This more Fischer
carbene-type structure (Fe=C—O) of the Fe-acyl (Fe—
C=0) unit likely has a great effect on the interaction of
the Fe center with H;. Second, QM/MM computational
studies have invoked His14 as a crucial general base,
allowing thermonecutral deprotonation of the FeGP
pyridinol moiety that precedes H; activation [13]. Hu
et al. — noting that even the natural FeGP cofactor
extracted from Hmd exhibits hydrogenase reactivity
only when bound to the Hmd protein — reasoned that
incorporation of Hmd synthetic models into a protein
environment may result in catalytic enhancement. In
their first report [14], reconstitution of apo-Hmd from
Methanocaldococcus jannaschii (jJHmd) with the iron pyri-
dinol complex 1 (Figure 2) resulted in a reactive bio-
conjugate 1CjHmd with ~ 1% of the specific activity of
the natural enzyme. Even so, 1 CjHmd exhibits a higher
turnover frequency (2 s~ ! for the forward reaction and 1
s~! for the reverse) than a number of known Fe-based
hydrogenation catalysts (1()_3’—10_1 s_l) [15,16].
Importantly, 1 exhibited no hydrogenation reactivity in
the absence of jJHmd.

Because the [Fe]-hydrogenase model 1CjHmd exhibi-
ted low activity, the design was repurposed to develop a
family of [Mn]-hydrogenase ArMs [17,18]. Isoelectronic
Mn(I) analogs of the ferrous carbonyls are of interest as
Mn(I) complexes often display both greater hydroge-
nation and transfer hydrogenation reactivity and
enhanced stability [19] causing one to question the
reason Nature never evolved a hydrogenation catalyst
using a Mn active site. Reconstitution of jHmd with 2
(Figure 2) afforded their first [Mn]-hydrogenase ArM
[17]. The calculated active site occupancy was only
about 20%, and FTIR indicated that a significant pro-
portion of 2 binds nonspecifically, possibly attributable

to the unfavorable CO ligand displacement needed to
bond 2 to Cys176. When adjusted for active site occu-
pancy, the [Mn]-hydrogenase displayed greatly
enhanced activity for hydrogenation of H4MPT* and
turnover frequency, outperforming semi-synthetic [Fe]-
hydrogenase and, therefore, most iron-based hydroge-
nation catalysts. Remarkably, the [Mn]-hydrogenase was
strongly biased toward the forward hydrogenation reac-
tion, whereas all the [Fe]-hydrogenases (natural and
artificial) display only a slight bias toward the forward
reaction. This bias toward the forward reaction was
attributed to the higher pK, of the 2-hydroxy group of 2
compared with its Fe(II) analogs, hindering the ability of
2 to protonate a putative Fe—H intermediate to form H;
in the dehydrogenation reaction.

In a following report [18], Hu et al. developed a series of
[Mn]-hydrogenase ArMs with the aim of demonstrating
the necessary presence of an internal base on the
metallocofactor for efficient hydrogenation/dehydroge-
nation catalysis to occur. Apo-jHmd was reconstituted
with a number of derivatives of complex 2, each
featuring different functionalities at the acyl methylene
and 2-pyridine positions (Figure 2). As it has been hy-
pothesized that either of these sites could act as a
pendant base during H; activation, each of these models
was designed to exclude one or both sites to probe the
effect  on catalysis. Interestingly, only [Mn]-
hydrogenases reconstituted with metal complexes
containing a pendant base functionality (2, 3, 4, and 5)
showed hydrogenase reactivity. In addition, mutation of
crucial amino acid residues (Cys176 or His14) rendered
the resulting ArMs negligibly active or completely
inactive. The development of Hmd-derived ArMs has
proven impactful in the elucidation of the natural en-
zyme’s Hj heterolysis mechanism, as well as high-
lighting the importance of the enzyme scaffold for
catalytic activity. Designing such ArMs affords re-
searchers the opportunity to wield precise synthetic
control over the metallocofactor catalyst, thus
discerning the effects of single functional group sub-
stitutions or amino acid mutations on catalysis.
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Figure 1
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X-ray crystal structure of Hmd in the open confirmation (PDB 6HAV) and catalytic hydride transfer/abstraction of methenyl-H4MPT*/methylene-H4MPT.
The proposed transition state of the H, heterolysis step is shown in the outset. HyMPT*, methenyl-tetrahydromethanopterin.

Bovine B-lactoglobulin as a novel scaffold
for asymmetric transfer hydrogenation
Bovine B-lactoglobulin (BLG) is the most abundant whey
protein found in bovine milk, comprising some 50—60%
of total whey composition. While the complete physio-
logical function of BLG is still unknown, it is believed to
be involved in the transport of small hydrophobic mole-
cules, such as fatty acids, phospholipids and steroids [20].
Among the benefits of the BLG system for designing
ArMs is the protein’s high affinity for fatty acids, with Kp
values ranging from 0.49 UM for palmitic acid (Cyg) to
5.9 UM for lauric acid (Cyz) [21]. The binding of fatty
acids is influenced by three factors, (i) hydrophobic in-
teractions of the long aliphatic chain with residues in the
interior of the calyx, (ii) polar interactions with charged
amino acids at the aperture of the calyx, and (ii1) pH-
induced conformational changes which restrict access to
the calyx below pH 7 [22,23]. It is commercially available
in high purity and low cost (~$2/mg), exhibits high
stability and has well-characterized behavior across a
fairly wide range of conditions [24,25]. Metal complexes
can be easily modified to include a high-affinity binding
moiety through either condensation with a fatty acid
derivative or substitution with an #-halogenated linear
hydrocarbon. Thus, BLG represents an attractive ArM
design template.

The first ArMs to use BLG were reported by Chevalley
and Salmain [26]. Their designs featured Rh** or Ru®™
half-sandwich complexes ligated by 2,2’-dipyridylamine,
which was functionalized with either lauric or palmitic
acid. The binding of this family of complexes to BLG
was qualitatively determined by circular dichroism
wherein the association of an achiral guest molecule to
the chiral protein resulted in a significant spectral in-
tensity shift. The crystal structure of one of these ArMs,
7 C BLG (Figure 2B) was later determined [27], showing
that the Rh cofactor binds to BLG in the expected
fashion; however, while the aliphatic ‘tail’ appeared
well-ordered in their solved structure, the metal-
containing ‘head’ was poorly defined in the observed
electron density. Nonetheless, 7C LG was shown to
catalyze the enantioselective transfer hydrogenation of
2,2,2-trifluoroacetophenone  to the corresponding
alcohol at 72% yield and 24% ee (versus 50% yield and 0%
ee for 7 alone).

In a later report [28], this group reported another series
of BLLG-derived ArMs, again based on transition metal
half-sandwich complexes. In this case, however, Ru2+,
Rh** and Ir** precursors of the form [M(Ar) (u-Cl)Cl];
were first hydrolyzed to give a mixture of monomer and
dimer species and then incubated with PLG. Their
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The FeGP cofactor of Hmd and its synthetic models used to generate artificial [Fe]- and [Mn]-hydrogenases. FeGP, iron-guanosylylpyridinol; Hmd,

tetrahydromethanopterin dehydrogenase.

report focuses on the 8 € BLG system, which demon-
strated the most impressive catalytic activity. Although
no aliphatic moiety was appended to this metal-
locofactor, inductively coupled plasma optical emission
spectroscopy (ICP-OES) of metal-incubated BLG (pu-
rified by gel desalting) showed Ru/BLG ratios of 1:1.
Native mass spectrometry corroborated this Ru/BLG
ratio, furthermore showing that a detectable population
of BLG with two Ru complexes bound; indeed, a puta-
tive second binding site has long been postulated for
BLG [29]. The hybrid 8CPBLG showed remarkable
catalytic enhancement in asymmetric transfer hydroge-
nation versus the mixture resulting from the hydrolysis
of [Ru(n(’-benz)(,u-Cl)Cl]z. Using sodium formate as
the sacrificial hydrogen donor, 8 CBLG converted
trifluoroacetophenone to its corresponding alcohol with
87% vyield and an impressive 82% ee (versus 28% vyield
and 0% ee for 8 alone) (Figure 3c¢). This finding is quite
remarkable as it suggests that the well-defined, highly
specific binding of a synthetic metallocofactor to LG is
possible without the inclusion of a long aliphatic binding
moiety. In fact, designing a metallocofactor that binds to
BLG in the same manner as natural fatty acids may serve
to erode ¢e, as the cofactor may rotate freely in the calyx
and not exhibit one preferred binding mode.

Designing chimeric streptavidin scaffolds
to enhance transfer hydrogenation

reactivity

The streptavidin (Sav)/biotin bioconjugate system rep-
resents perhaps the best-developed family of ArMs. As
reported by Whitesides in 1978 [30], avidin (a close

structural relative of Sav) was in fact the first example of a
well-defined ArM. This system featured a biotinylated
Rh(I) pincer complex bound to Sav, catalyzing asym-
metric olefin hydrogenation with 41% e¢¢ and an impres-
sive turnover frequency of 500 s~!. Since then, dozens of
Sav/biotin-based ArMs have been designed and studied.
This ArM system is particularly robust as biotin binds
essentially irreversibly to Sav (Kp = 10~ M) [31]. Since

Figure 3
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Highlighted features of b-lactoglobulin-based transfer hydrogenases. (a)
Metallocofactors 7 and 8 used to make reactive pLG-derived ArMs. (b) X-
ray crystal structure of 7c BLG (PDB 4KIl). Metallocofactor 7 is shown in
magenta. (c) Transfer hydrogenation of 2,2,2-trifluoroacetophenone to
2,2,2-trifluoro-1-phenylethanol catalyzed by 8 < BLG.
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2003, Chatterjee et al. [32] have vastly expanded the
scope of reactions catalyzed by Sav/biotin-derived ArMs
to include such exotic non-natural transformations as
Suzuki cross-couplings, olefin metathesis [33,34], and
transfer hydrogenation [35—37]. Through almost 20
years of work with Sav/biotin hydrogenase ArMs, this
group has developed an impressive biochemical toolbox
whereby the Sav protein scaffold can be modified to tune
the reactivity and selectivity of a metallocofactor. Their
streamlined procedure for expressing and screening Sav
mutants allows for rapid identification of promising new
protein scaffolds that enhance the yield and e of their
previously developed metallocofactors [38]. This is quite
the converse approach to the systems previously
discussed in this review, although it must be noted that
Hmd and PLG ArMs systems are in a far earlier stage
of development.

While the optimization of Sav/biotin hydrogenase ArMs
focused on the identification of new Sav mutants that
enhanced catalysis compared with wild-type Sav or
previously characterized mutants, they recently noted
that there may be an optimization ceiling for this
method. Point mutations often do not result in a sig-
nificant change of the secondary, tertiary, or quaternary
structure of a protein, thus limiting the possible scaf-
folds for hydrogenation catalyst to structures that closely
resemble wild-type Sav. Chimeric Savs allow for entire
novel protein subunits to be appended to or inserted
into Sav, allowing for a far greater variety of protein

Figure 4
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scaffold structural motifs. In the first report of chimeric
Sav hydrogenase ArMs [39], a number of Sav variants
containing loops expanded with exogenous peptide
fragments with well-defined secondary structures were
overexpressed in FEscherichia coli. "These fragments
featuring o-helices and B-sheets were inserted into one
of several unstructured loops that surround the ‘vesti-
bule’ or metallocofactor-binding active site of Sav. The
chimeric Savs were then treated with the Ir(III) half-
sandwich complex 9 (Figure 4a), which has been used
in previously reported Sav transfer hydrogenase ArMs
[40,41]. Insertion of two of the a-helix loop fragments
into Sav loop 3/4 resulted in ArMs with enhanced TON
and ee for transfer hydrogenation of cyclic imine sub-
strates, improving TON by up to 700% relative to pre-
viously reported non-chimeric Sav variants. It was
hypothesized that insertion into loop 3/4 projects the
appended peptide sequence into the closest proximity
of 9 as compared to insertion into other loops, thus
affording the best catalytic enhancement; however, all
crystal structures of these chimeric Sav ArMs were
highly disordered at the expanded loops, so a definitive
structural argument for this hypothesis is at this time
not possible.

In a subsequent report [42], Ward et al. applied a
chimeric Sav/biotin hydrogenase ArM in an iz vivo
system. Here, Sav was modified by insertion of an FPD
peptide between residues 115 and 117 of the previously
mentioned unorganized loop. This chimeric Sav was

E. coli cells, 9cSav-FDP,
CHOONa, Cu(gly),, MOPS
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Highlighted features of chimeric streptavidin ArMs. (a) Metallocofactor 9 used in both chimeric Sav ArMs [31,34]. The protein-binding biotin moiety is
highlighted in purple. (b) Transfer hydrogenation of self-immolative substrate catalyzed by 9 C Sav-FDP S112V K121A. (c) Partial X-ray crystal structure of
chimeric 9 C Sav (PDB 3PK2). The termini of the partially-solved FDP loop are shown in cyan. (d) FDP loop fragment (PDB 3U0S) appended to loop 3/4 of

Sav. ArMs, artificial metalloenzymes.
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loaded with 9 and catalyzed the transfer hydrogenation
of a self-immolative substrate. In this transformation
(Figure 4b), hydrogenation of the quinolinium substrate
causes a C—O bond cleavage, which releases a fluo-
rophore fragment. This not only allows for facile reaction
progress monitoring by fluorescence spectroscopy but
also has applications in prodrugs [43] and biomolecular
imaging [44,45]. E. coli engineered to express Sav-FDP
(Figure 4c and d) in their periplasm were incubated
with 9 and then washed with Cu(gly),; to remove
glutathione present in the periplasm, which poisons the
Ir catalyst. In the presence of formate and substrate, the
self-immolative release of fluorophore in 33% vyield was
observed (versus 1—8% for 9 in the absence of Sav-FDP
under various conditions). To optimize this system, a
library of Sav-FDP mutants was screened. The highest-
performing mutant, Sav-FDP S112V K121A, was char-
acterized by X-ray crystallography; however, the struc-
ture of the appended FDP peptide could not be solved
(as before), most likely due to its conformational flexi-
bility. Interestingly, metallocofactor 9 was found to have
a significantly higher occupancy in this structure than in
WT-Sav (80% versus 50%), indicating that the FDP loop
serves to shield the active site. The development of
chimeric Sav variants represent a new chapter in ArM
design. The decades of study of Sav in ArM systems
have shown that alteration of secondary structure about
a bound synthetic metallocofactor can only improve
catalytic efficiency up to a point. Through the addition
of entirely new structural domains to Sav, researchers
may now modify the tertiary structure of Sav, affording
the opportunity to access improved or entirely novel
reactivity for this system.

Conclusion and outlook

The development of hydrogenase ArMs began with the
very first ArM reported by Whitesides over 40 years ago
[30]. In the intervening decades, great strides have
been taken to develop robust ArMs that perform cata-
lytic hydrogenation reactions on a variety of functional
groups and with high yield and stereoselectivity. With
both yield and ¢¢ approaching 100% for ArMs reported
in the 2010s [46], bioinorganic chemists sought to
develop systems that combine these efficiencies with
loftier goals, such as using inexpensive durable protein
scaffolds such as BLG, taking advantage of modern
synthetic biology to custom design structurally diverse
chimeric Savs or screening a library of synthetic metal
cofactors in Hmd to elucidate the still unverified
mechanism of H; cleavage in natural [Fe]-hydrogenase.
These lines of inquiry have proven promising in the last
few years; however, these systems with more ambitious
designs still fall short of the high conversions and
stereoselectivity of previously developed models. Just
as there exists no universally ideal, multifunctional
hydrogenase enzyme in nature, there is similarly
not likely to be a universally ideal hydrogenase

ArM that is concomitantly broad in substrate scope,
highly stereoselective and highly active. Therefore, the
development of numerous hydrogenase ArMs based on
a variety of design principles will be critical in the
coming years to expand both the scope and efficacy of
this utile class of catalysts.
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