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Momentum-space gravity from the quantum geometry and entropy of Bloch electrons
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Quantum geometry is a key quantity that distinguishes electrons in a crystal from those in the vacuum. Its
study continues to provide insights into quantum materials, uncovering new design principles for their discovery.
However, unlike the Berry curvature, an intuitive understanding of the quantum metric is lacking. Here, we show
that the quantum metric of Bloch electrons leads to a momentum-space gravity. In particular, by extending the
semiclassical formulation of electron dynamics to second order, we find that the resulting velocity is modified
by a geodesic term and becomes the momentum-space dual of the Lorentz force in curved space. We calculate
this geodesic response for magic-angle twisted bilayer graphene and show that moiré systems with flat bands are
ideal candidates to observe this effect. Extending this analogy with gravity further, we find that the momentum-
space dual of the Einstein field equations remains sourceless for pure states, while for mixed states it acquires
a source term that depends on the von Neumann entropy for small entropies. We compare this stress-energy
equation with the weak-field limit of general relativity, and we conclude that the von Neumann entropy is the
momentum-space dual of the gravitational potential. Consequently, the momentum-space geodesic equation for
mixed states is modified by a term resembling an entropic force. Our results highlight connections between
quantum geometry, momentum-space gravity, and quantum information, prompting further exploration of this

dual gravity in quantum materials.
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I. INTRODUCTION

The study of electrons in solids is one of the central themes
in condensed-matter physics. While an electronic band the-
ory of crystals was developed soon after the formalization
of quantum mechanics and is tremendously successful at ex-
plaining many electronic and optical properties of solids, over
the past few decades it has become clear that the traditional
approach involving only the energy dispersion of electrons
is incomplete. Our understanding of the quantum Hall effect
has brought to the forefront quantum geometric quantities of
Bloch states, such as Berry curvature, which are key ingredi-
ents of several topological phases of matter [1-5]. The study
of such geometric quantities is particularly relevant since
their gauge-invariant nature often makes them physically ob-
servable. Indeed, Berry curvature has been a revolutionary
concept in explaining a range of physical phenomena such
as anomalous Hall effects [6,7], electronic polarization and
orbital magnetization in solids [8—11], and adiabatic charge
pumping [12], to name a few. Besides single-particle prop-
erties, it also affects Coulomb-correlated bound states such as

“These authors contributed equally to this work.
Tajit.srivastava@emory.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2022/4(1)/013217(18) 013217-1

excitons in crystals [13,14], and it could play an important role
in our understanding of interacting many-electron systems.

In addition to Berry curvature, another fundamental geo-
metric quantity is the quantum metric, which measures the
infinitesimal distance between Bloch states defined over the
momentum-space [15—-17]. Although, Berry curvature and the
quantum metric have the same physical dimension and are
often combined into a complex-valued quantity called the
quantum geometric tensor with Berry curvature (quantum
metric) as its imaginary (real) part, the role of the latter in
determining the electronic properties of crystals is far less
studied. Recently, its importance has been identified in a wide
variety of phenomena including localization of Wannier func-
tions [18-20], superconductivity and other phenomena in flat
band systems [21-28], nonlinear response [23,29-37], frac-
tional Chern insulators and other topological phases [38—42],
current noise [43], magnetic susceptibility [44], quantum
phase transitions [45—48], and excitonic fine structure [13,14],
and it has been experimentally measured in photonic and
atomic systems [49,50].

Much progress has resulted from the identification of Berry
curvature as a momentum-space dual of the magnetic field,
and by exploiting this duality [S1-54]. However, such a fruit-
ful analogy seems to be missing for the quantum metric. For
example, the semiclassical equations of motion for electron
dynamics in a band identify the role of the Berry curvature,
however its cousin, the quantum metric, is conspicuously
missing. One can ask whether its status as a Riemannian
metric leads to any analogies to Einstein’s general relativity
(GR), and if so, could it be investigated as momentum-space
gravity. While such an analogy is worth investigating in its
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own right, it might also provide insights into real-space grav-
ity and offer quantum condensed-matter systems as a testing
ground for predictions of GR, starting from a fully quantum
setting. Moreover, intuition gained from such an analogy can
be exploited to engineer artificial gravity [55-59], in addition
to artificial gauge fields, and affect the dynamics of quasipar-
ticles.

Motivated by this question, in this work we focus on two
fundamental equations of GR, viz. the geodesic equation [60]

fik;, = mT 55", )]
and the Einstein field equations (EFE)
R;w - %ng = T;w’ (2)

and we establish their momentum-space duals. Equation (1)
describes the gravitational (pseudo)force on a particle due to
curved spacetime, as characterized by the real-space metric
g, and its Christoffel symbols I',, = %(avgw + 0hguv —
0,8v1)- On the other hand, Eq. (2) relates the curvature of
spacetime, captured by a Ricci tensor (R,,,,) and a Ricci scalar
(R), to the stress-energy tensor (7},,), which acts as its source.
Equation (1) describes the effect of curved spacetime on mat-
ter, while Eq. (2) explains the effect of matter on the spacetime
itself. To quote Wheeler: spacetime tells matter how to move;
matter tells spacetime how to curve.

In this context, one can ask (a) whether the quantum metric
of Bloch bands affects the motion of charge carriers by obey-
ing the momentum-space dual of Egs. (1), and (b) in relation
to the EFE, is there a quantity dual to the stress-energy tensor,
i.e., which physical quantity tells the momentum-space how
to curve?

Here, we address these questions by deriving the
momentum-space dual of Egs. (1) and (2). Our results can be
summarized as follows:

(i) We find that the well-known semiclassical equation of
motion for charge carriers in a Bloch band is modified in
the presence of the quantum metric by a term that is the
momentum-space dual of the geodesic equation. As shown in
Fig. 1, under the semiclassical approximation, charge carri-
ers respond not only to the Berry curvature but also to the
quantum metric by moving along geodesics determined by the
curvature of the momentum-space Bloch states.

(i) As for the EFE for the quantum metric, we first
note that the quantum metric of pure states satisfies the
vacuum EFE in arbitrary dimensions. Consequently, we con-
sider mixed states over the bands with small von Neumann
entropies. We find that in dimension d = 2, EFE remain
sourceless, while in d > 3, a stress-energy tensor arises from
the momentum-space Laplacian of the von Neumann entropy.
This is analogous to the fact that the stress-energy tensor of
spacetime can be expressed as the real-space Laplacian of a
gravitational potential in the Newtonian limit of GR.

In other words, for small entropy we recover a Newtonian
limit of the EFE in the momentum-space, suggesting that,
in our setting, entropy acts like a gravitational potential. As
the von Neumann entropy is an entropy of entanglement, we
conclude that severing of entanglement is responsible for the
source term in the momentum-space EFE.

(iii) As a consequence of the finite von Neumann entropy
in a mixed-state wave packet, we find that the momentum-

Q (k)

—(kxQ (k)
ulyj ki

FIG. 1. Semiclassical velocity is the momentum-space analog of
the Lorentz force in curved spacetime. The coupling between the
electric field (k) and the Berry curvature, Q(k), generates an anoma-
lous velocity orthogonal to the applied field, while the quantum
metric drives electrons in the direction of k-space geodesics via its
Christoffel symbols, I' (19). The effects of I" are analogous to the
effects of curved spacetime in general relativity, and the quantum
metric can be seen as inducing momentum-space gravity.

space geodesic equation is modified by an additional term that
resembles an entropic force.

Our results seem to imply that the geometry of Bloch
bands results in effective gravity from the quantum metric
in addition to the effective gauge field (Berry curvature) and
that this effective gravity affects the semiclassical dynamics
of an electronic wave packet. The geodesic duality also clar-
ifies why the quantum metric does not appear in traditional
semiclassical wave-packet dynamics in spite of having the
same physical dimension as the Berry curvature. As discussed
below, the geodesic duality should appear in the second-order
response of charge carriers to an applied electric field, mak-
ing its experimental realization feasible. Our predictions for
the geodesic term are particularly relevant for charge car-
riers in quasiflat bands where the group velocity term, of
lowest order in applied electric field, becomes negligible.
Such flat bands exist in moiré heterostructures of van der
Waals materials such as magic-angle twisted bilayer graphene
(MATBG) and transition-metal dichalcogenides, making them
an ideal platform to detect momentum-space geodesic dynam-
ics [25,61,62].

The momentum-space EFE for the quantum metric, which
are derived for a quantum condensed-matter system, reveal
intriguing connections between momentum-space gravity,
quantum information, entanglement, and GR. They appear
similar in spirit to previous results connecting cosmologi-
cal gravity with thermodynamics, especially entropy [63—68].
However, there are notable differences: (a) Our derivation
does not invoke entropy of black holes or the holographic
principle, unlike previous works. (b) Our results are valid
for quantum systems at zero “temperature” as the entropy
involved is the von Neumann or the entanglement entropy
and not necessarily the thermodynamic entropy. (c) While
our results do not concern real gravity and its connection
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to entropy, they are easier to test in material systems and
could offer valuable insights into the nature of the connection
between gravity and quantum information [69,70].

The remainder of this work is organized as follows. We
start our analysis by first defining the quantum geometry aris-
ing from the Bloch bands in Sec. II. This section has no new
results but is included to make the discussion self-contained
and to set the notation for the rest of the paper. In Sec. III,
we derive the second-order correction in electric field to the
semiclassical equations of motion for a wave packet. The
role of the quantum metric is identified by expressing the
second-order corrections in terms of gauge-invariant, geomet-
ric quantities constructed from the Bloch states. We find that
the momentum-space dual of the geodesic equation stems
from the second-order correction to the energy of the wave
packet. We use MATBG as an illustrative example to calculate
the geodesic response and show that it is sizable for reasonable
experimental parameters.

In Sec. IV, we consider the momentum-space dual of the
EFE and find that the quantum metric for pure states satis-
fies the vacuum EFE. By generalizing the quantum metric
of pure states to the Bures metric of mixed states, we find
that, for small von Neumann entropies of the mixed state,
the Bures metric can be thought of as a conformally scaled
pure-state metric. The resulting momentum-space EFE then
yields a source term that is proportional to the Laplacian of
the von Neumann entropy. In Sec. V, we briefly comment
on possible ways to experimentally verify our predictions.
Finally, in Sec. VI, we provide a summary of our work and
identify future directions. Details of the analytical analysis are
relegated to Appendixes.

II. QUANTUM GEOMETRY OF BLOCH BANDS

The quantum geometry of Bloch bands is defined in anal-
ogy with differential geometry by quantifying how the Bloch
states |u,(k)) vary smoothly with k. The set of all inequiv-
alent wave vectors k forms a closed manifold due to the
periodicity, k = k + G, where G is any reciprocal-lattice vec-
tor. Therefore, in d-dimensions, such an identification makes
the momentum space T4, a d-dimensional torus over which
the Bloch states are arranged. The most well-studied quan-
tity that follows from this geometry is the Berry curvature
for a band n, which is typically defined from a connection
A (K) = iy (K)| Viey (K)) as 2,(k) = Vi x A, (k). Berry
curvature and its k-space integral, Berry phase, are often in-
terpreted as a momentum-space magnetic field and magnetic
flux, respectively, while the Berry connection, 4, (k), acts as
the corresponding vector potential. Another gauge-invariant
quantity, which is of second order in k-space derivatives,
is the infinitesimal distance between Bloch states ds> =
[{u(K)|1t, (K + dK))|?. This distance can be expressed as
ds* = g;;dk:dk;, which defines g;; as the quantum metric.
The components of the metric can be computed directly
from the Bloch states, g;;(k) = Re[(diu,(K)|0ku,(K))] —
A;(k)A;(k). Remarkably, both Q,(k) and g;;(k) are sec-
ond order in the momentum-space derivatives of |u,(K))
and can be combined into real, symmetric and imaginary,
antisymmetric parts of a larger Hermitian tensor known as
the quantum geometric tensor (Fubini-Study metric), Q;;, =

8ijn +i82j,/2 [16]. In addition to a single-band Berry con-
nection, an interband Berry connection is defined as A4, =
i(u(K)| Vku,(K)), where m and n are band indices with

m # n.

III. MOMENTUM-SPACE GEODESIC EQUATION

To explore how the quantum metric affects the carrier
dynamics in solids, it is instructive to start with the semi-
classical model of wave-packet dynamics, which has been
helpful in elucidating the role of Berry curvature in carrier
dynamics [4]. In the presence of an external electromagnetic
field, the center-of-mass momentum (k) of a charged particle
is given by the Lorentz force equation [71],

. » q
k=3 (1F.). 3)
where Greek indices run from 0, 1, ..., d, F},, is the electro-

magnetic tensor, and x" are the components of the position
four-vector. It has been shown that the momentum-space dual
of the above equation, obtained by making the analogy x <> k
and 1F,, < Q. is

Xy = k'Q. “)

The space (time) component of €2, is responsible for the
anomalous Hall (group) velocity stemming from the Berry
curvature (energy dispersion). We swap upper and lower in-
dices in our analogy, as covariant quantities in spacetime are
contravariant in momentum space. This equation describes the
semiclassical motion of the center-of-mass of a wave packet
created from Bloch states of a given band n [72]. As we are
interested in the nonrelativistic limit, in the following we use
Latin indices to label spatial coordinates. If we consider the
more general setting of a curved space, the Lorentz force on a
charged particle becomes

iy = %E,, + (x x %B)a + %rbmxbxa (5)
where the second term on the right-hand side is the “gravita-
tional force” arising from the curvature of spacetime [60]. The
first term on the right-hand side of Eq. (5) can be expressed as
%BXUE (r). One is thus tempted to take the momentum-space
dual of Eq. (5) to describe the role of a quantum metric in
semiclassical wave-packet dynamics,

f L LoE00 + (o), + TR,
where F}(jz; are the Christoffel symbols corresponding to the
quantum metric, and g is the momentum-space analog of
mass.

To arrive at the expression above, we consider the case of
only an electric field such that k = —ZE. The geodesic-like
term then becomes second-order in the electric field, whereas
the effect of Berry curvature is of first order. This suggests
that one must extend the semiclassical formulation of electron
dynamics to second-order in the external field in order to
capture the role of the quantum metric. As there have been
previous studies on the second-order response to electric and
magnetic fields [32-34,36,73,74], the scope of our study is to
highlight the role of the quantum metric with regard to the
momentum-space geodesic term of Eq. (6).
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A. Dressed Hamiltonian to second order in the velocity gauge

To correct the semiclassical wave-packet dynamics up to
second order in E, we restrict ourselves to a gapped, two-band
model with Hamiltonian H (k) parametrized by the crystal
momentum, K. In the presence of an electromagnetic pertur-
bation given by a potential A(X, t), the dressed Hamiltonian
in the velocity gauge is H = H(k — A), where we have set
le] = 1 and /i = 1. Although the semiclassical equations con-
sider a time-independent electric field, it is instructive to
consider an ac electric field and then take the zero frequency
limit to recover the dc result. Indeed, even for a dc elec-
tric field, a time-dependent treatment is necessary because a
purely Hamiltonian dynamics does not attain a steady-state.
Therefore, we assume that the steady-state is achieved through
phenomenological scattering processes which are ubiquitous
in a real crystal, and we derive this steady-state, dc limit of the
ac result. Furthermore, we assume an electric field that is spa-
tially homogeneous and harmonic in time, E() = Egcos(wt),
such that A(#) = —Eow. Thus, the vector potential (in
this gauge) corresponds to a gauge-invariant, observable
quantity.

The bare Hamiltonian can be written as H =
>y |H |y ) uy) (uy|, where the band index n = 0, 1, and the
dependence on Kk is suppressed. The matrix elements of the
dressed Hamiltonian in the unperturbed basis are

(um|I:1|un> = gO(”mWO)(’ZOWn) + ‘cjl (umml)(ﬁl |un> (7)

This expression is exact, with & ; and |iig,;) being the energies
and eigenstates of H, respectively.

The elements of the dressed Hamiltonian in the unper-
turbed eigenbasis depend on the Bloch overlaps, which can
be expanded to calculate H up to second order in A (see Ap-
pendix B). To express the perturbative corrections in terms of
the gauge-invariant, geometric quantities of the Bloch states,
we make use of the following relations (see Appendix A):

[ualiin)|* ~ 1 — gi;A'A7, 8)

(|0} > ~ gi;A'AT, m # n, ©)
where “~” stands for “equal up to second order.” As shown in
Appendix B, the off-diagonal matrix elements of H contain
interband Berry connections .A,,,, which can be related to
gauge-invariant quantities by the following identity:
i
> Ao = gijo = 5 Rijo, (10)
n#0

where n = 0 labels the band from which the electronic wave
packet is made.

To isolate the effect of the Bloch geometry and focus on the
role played by the quantum metric in the geodesic duality, we
assume negligible dispersion of the bands by setting 9;,&, ~ 0
for n =0, 1. This assumption is also motivated by current
studies on MATBG and other moiré systems featuring flat
bands wherein quantum geometry plays a dominant role [75].
We emphasize that while a two-band Hamiltonian can always
be “flattened” (9;£, = 0) without affecting the Bloch band
geometry, we are not restricting ourselves to such a case.
Indeed, the role of dispersion can be easily considered in our

treatment, but as it is not the main focus of this paper, we
choose not to emphasize it.

B. Second-order corrections to the semiclassical dynamics of an
electronic wave packet

Using the dressed Hamiltonian, we can apply the standard
techniques of time-dependent perturbation theory to correct
the wave function and its associated energy. This in turn gives
us the corrections to Berry connection and Berry curvature
up to second-order in the electric field. Let a’ and a” be the
first and second corrections to the Berry connection 4y (Kk),
respectively. The gauge-invariant quantities that could enter
the semiclassical equation for the wave-packet dynamics are
their derivatives. As " = Vi x a” is the second-order cor-
rection to the Berry curvature, which enters the semiclassical
equation of motion as £ x E, its contribution is third order
in the electric field and hence is dropped in our analysis. To
find €’ and its associated response, we first calculate a’ (see
Appendix B):

W=

Ej (gijS‘”(t) + %A‘”(t)), an
where A is the band gap, and S* (A®) is a symmetric (anti-
symmetric) k-independent factor that is harmonic in w. Thus,
we find that the first-order correction to the Berry connection
is gauge invariant, involving QGT and Berry curvature. The
corrected Berry curvature then becomes 2 = Q + Vj x a'.

Similarly, we arrive at the expression for a” which is pre-
sented in the Appendix. Unlike a’, a” involves the interband
Berry connection, Ay, as well. In addition to the correction
to the Berry curvature, the ac results give the first- (second-)
order correction to group velocity as d,a’ (9,a”). As expected,
the first-order corrections result in a response at w whereas the
second-order correction results in a nonlinear response at dc
and 2w. Finally, the energy of the wave packet to second order
is given by

& =& + AB(t)giELE]. (12)

We note that the energy correction to the wave packet is
second order in Eq and is proportional to the quantum metric.
The k-space gradient of the above term gives an additional
correction to the “group velocity” part of the semiclassical
equations.

With the above corrections to the Bloch band geometry, we
are ready to write down the semiclassical equations of motion
to second order in Eg as follows:

k = —E, 13)

F = ViéK) +k x k) — 9 +a”), 14

where we have taken the sign of the charge carrier to be
negative in order to describe electrons.

C. Second-order semiclassical equations in the steady-state
and dc limit

Next, we consider the steady-state limit together with the
dc limit, w — 0. As mentioned earlier, in the absence of
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dissipation from impurity scatterings, there is no steady-state
solution even in the case of a dc electric field. The role of
impurity scattering then is to average the rapidly oscillating
terms at e’2’ to zero. In other words, for timescales larger than
the characteristic scattering time 7, one can drop the harmonic
terms in Az and then take the limit w — 0 to obtain the dc
results. As shown in Appendix B, for the first-order correction
to Berry connection, we obtain

’ 2 j
a;(k) — —XgijEé, 15)

which coincides with the first-order positional shift derived by
Gao et al. using time-independent perturbation theory [32,76].
Furthermore, as shown in Appendix A, 3,8’ — 0 and 9,a” —
0, leaving only the £ and Vi & (k) terms. The time-dependent
factor B(¢) appearing in £(k) reaches a steady-state value of

2
B 5 (16)

Thus, the correction to the group velocity term in the
steady-state, dc limit becomes

~ 2 L
V& = Z(ak/gij)E(l)E()/ (17
= ulijiEVE], (18)

where u =4/A, Tij = 3(dugi + 0ugij — dugji), and we
have used the symmetry of E(’)E({ under i < j.

With this, we finally arrive at the semiclassical equation for
wave-packet dynamics to second order in Eq under the steady-
state, dc limit:

i = (k x Q) + uljk'kd. 19)

This should be compared to the actual Lorentz force equa-
tion for an electron in curved space:

oy = _%(r x B) + mDyj i (20)

Thus, we find that the second-order semiclassical equation be-
comes the k-space dual of the Lorentz force equation in
curved space, with the momentum-space quantum metric
playing the role of the classical spacetime metric. The real-
space mass becomes equivalent to u = 4/A. Thus, it is the
second-order correction to the wave packet energy that be-
comes the geodesic term.

We also note that when w # 0 but w < A, the 9,(a’ + a”)
term will lead to linear and nonlinear responses at dc, w
and 2w.

D. Steady-state analysis in the length gauge

In this section, we independently check our steady-state,
dc limit by analyzing the response to a constant electric
field using the length gauge. We begin with a Hamiltonian
parametrized by crystal momentum and perturb it with a
constant, position-independent electric field that couples to
electrons via a dipole term:

Hk)=HKk)+E-r, (21)

where the position operator, r, can be represented in the Bloch
wave basis as [4,7]

(m (K)[rfuy (k) = Apn(K) if m # n. (22)

Using this representation of the position operator, the per-
turbative correction to our two-band Hamiltonian can be
represented as

o~ <E - (up(K)|r|up(k))
E- Ajk)

E - Ay (k) > (23)
E - (u(K)[r|us (k)
In this gauge, we can use time-dependent perturbation theory
to compute the first-order correction to the wave function and
Berry connection (see Appendix B). For the Berry connection,
we find
;o —2g, JE i
oA
which coincides with Eq. (15). The second-order correction to
the energy of the wave packet becomes (see Appendix B)
N 2g, jE iE J
A

which yields a value of p identical to that obtained in the
previous section. We note that the second-order correction to
the energy obtained above is consistent with the change in
dipole energy from E - r to E - (r — a’) due to the positional
shifta’.

, (24

o , (25)

E. An illustrative model of MATBG for the geodesic equation

We begin by considering a two-band massive Dirac model
of gapped graphene, which we “flatten” to make the energy
dispersion vanish. This toy-model provides qualitative insight
into the behavior of the geodesic response. Subsequently, we
use a more realistic model of MATBG with quasiflat bands to
calculate the geodesic response.

Consider a modified two-band model of gapped graphene
with the following Hamiltonian [13]:

vp(Tky lky)>’ 26)

Hao - A A/2
() = 2E(K) <UD(rkx~|—iky) —A/2

where © = +£1 is the valley index, A is the band gap, vp is
the Dirac velocity, and £(k) = £[v3|k|? + (A/2)?]V2. The
energy of each band is £ A /2, leading to nondispersing bands.
We note that this “flattening” of the energy dispersion does not
affect the quantum geometry of the bands, which remains the
same as that for the gapped graphene model.

The Berry curvature in each band has only a z-component
(pointing out of the plane):

v A
Qk) = F——F 7 27
4[vp k|2 + (A/2)]
and the components of the metric are found to be
v3{[v3lk|Z + (A/2)?]8:; — vikik;
gtk = 2112 PuZviklsl

4[v3 kP2 + (A/2)?]

We can use the metric to directly compute the Christoffel
symbols of the first kind. Assuming the applied field is in the
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FIG. 2. Berry curvature and the quantum metric produce distinct
nonlinear responses. While corrections to the Berry curvature pro-
duce a nonlinear Hall response, the “geodesic response” from the
metric connection can be both parallel and orthogonal to the applied
field. Plots show second-order responses to an electric field in the
x direction as a function of dimensionless momentum. Linewidths
in the stream plots are proportional to the local magnitude of the
response.

x-direction, the response to the field is determined by I'y 4 x, =
%akx gux and Ty pp, = %Bky &xx» Which can be expressed as

—vpke[vpks 4+ (A/2)?]
2[v2 k[ + (A/2)2]
—vpky[vpks — vpk: + (A/2)7]

Tk, = . 29)
bk [ Ik + (A/22T

Dhkok,

Ik .k, determines the parallel component of the second-order
geodesic response, while I'y ;x controls the geodesic re-
sponse orthogonal to the applied field (nonlinear Hall-type
response). Figure 2 shows the second-order contributions to
the velocity.

For v3|k|?> « A2, the strength of the geodesic response
increases linearly with the magnitude of the momentum vector
k. This can be contrasted with the response due to Berry
curvature, which is effectively constant in this regime. The
response due to the dispersion will also depend linearly on
k in this limit, but will be independent of the field strength.
The change in the anomalous velocity with k and E should
thus reveal the role of the QGT connection in the second-order
response of electrons.

Next, we consider MATBG, which has negligible disper-
sion of bands and serves as an ideal system to highlight the
role of quantum geometry. We use the tight-binding model of
Koshino et al., with a small sublattice gap A that serves as the
band gap [77]. The single-particle Hamiltonian for TBG in the
basis of (A1, By, Az, By) for the +K valley reads

w= (™ vt 30
_<U H2>’ G0

where Hy» = —hv[R(£5)](k — K'?) - (01, 0,) + Ao, and
U=Ui+U+Us

@ o)
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FIG. 3. Geodesic response for MATBG. (a) Energy dispersion
obtained from the Hamiltonian in Eq. (30) describing MATBG, with
atwist angle 6 = 1.05° and A = 2 meV, showing two isolated quasi-
flat bands. (b),(c) Momentum-space Christoffel symbols calculated
from the quantum metric and plotted in the moiré Brillouin zone
(dashed lines mark the boundary of the Brillouin zone). (d) Geodesic
response or the second-order velocity calculated near the K-point for
an applied electric field of 1 V/um along the x direction. The range
of momenta is chosen such that the deviation from the two-band
approximation is less than 15%.

with

U = ([; ”;) 3D

/ ,—i2m /3
u ue [y
U=\ ,. e 32
2 u/etZﬂ/S u ’ ( )
u/ei2n/3

U u
3= W e—i2/3 u

The momentum k in the given Hamiltonian is in the
Brillouin zone (BZ) of the original graphene layers, and
K' and K? are the points where the original layers’ Dirac
points are located. Here, G}’ and G}’ are the reciprocal-lattice
vectors of the moiré BZ, which can be expressed in terms
of the monolayer reciprocal-lattice vectors {G;} as Gi»” =
R(-$)G; — R()G..

We consider 6 = 1.05° and A =2 meV, which yields
quasiflat energy dispersion as shown in Fig. 3(a). The mod-
ified Dirac velocity, Up ~ vp/2667, quantifies the flatness of
bands in this moiré system. The lowest energy conduction and
valence bands serve as isolated two bands of our analysis.
Next, we calculate I'y,, and I'y,, from the quantum metric,
which are plotted in Figs. 3(b) and 3(c). We verify the validity
of the two-band approximation using Eq. (10) by restricting
the summation to these bands, and we find a deviation <15%
near the K-point. The geodesic response in this range of
momentum is shown in Fig. 3(d) for an applied electric field
of 1 V/um. As expected, the geodesic response of MATBG
has qualitatively similar behavior compared to the toy-model
in Fig. 2. We discuss possible experimental verification of the
geodesic term in Sec. V.

)ei(G”{’—#Gy)-r' (33)
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IV. MOMENTUM-SPACE EINSTEIN FIELD EQUATIONS
A. Pure states and vacuum EFE

When quantum states are parametrized by crystal mo-
mentum, the momentum space inherits the metric of the
underlying Hilbert space. The space of all pure states in
Hilbert space can be seen as a high-dimensional sphere, while
the space of physically distinguishable states is the quotient
space obtained by identifying all states on the sphere that
differ by a phase factor. This space of physically distinct
quantum states is known as the projective Hilbert space of
states, and it has the geometry of a complex projective space.
All such complex projective spaces possess a canonical Rie-
mannian metric, known as the Fubini-Study metric [78]. This
Fubini-Study metric is an Einstein metric, i.e., it has a Ricci
tensor proportional to itself. As a result, the quantum metric,
which is a Fubini-Study metric, is a vacuum solution of the
Einstein field equations in the projective Hilbert space [79]:

Rij — 5Rgij + Agij =0, (34)

where R;; is the Ricci tensor, R is the scalar curvature, and A
is the cosmological constant.

The momentum space can be thought of as being em-
bedded in the Hilbert space: it parametrizes a submanifold
of quantum states |ug(k)). It also inherits the (pullback)
metric of the Hilbert space, defined via the overlaps of k-
dependent Bloch functions: g;;dk'dk/ = 1 — |{uo(k)|uo(k +
dk))|* [80].

B. Mixed states, Bures metric, and the source of the EFE

One can generalize the notion of the quantum metric for
pure states to mixed states where it is called the Bures met-
ric [81,82]. Here we show that the Bures metric for mixed
states can have a nonzero stress-energy tensor even when the
pure state metric is a vacuum solution of the EFE. Since
all two-dimensional metrics have vanishing stress-energy by
construction, we show this for an N > 2 band quantum system
in which the Bloch states have three dimensions of crystal
momentum (see Appendix C).

First, we consider the density matrix of a mixed quantum
state:

N
Pp(1) =Y~ pu(k)ut, (1)) (u ()|, (35)

n=0

where p, (k) is the probability for the system to be in |u,(Kk)).
The difference in the density matrices of the perturbed and
unperturbed system can be expressed in terms of the Bures
metric (see Appendix C).

Next, we assume (a) the probabilities p,(k) change
slowly in k-space [as shown in Appendix C, it suffices if
Vi(In(p,(k)) ~ 0)], and (b) all the probabilities above the
ground state are small, i.e., po(k) > p;(k) for i # 0. Under
these assumptions, we find that the Bures metric g;; takes the
following form (see Appendix C):

gidkidk! = s gy dkidki (36)

We see that the Bures metric differs from the Fubini-Study
metric by a conformal scale factor due to von Neumann

FIG. 4. Entropy and entanglement deform the quantum geometry
of the Brillouin zone. Top: for pure states with zero entropy, the quan-
tum distance between states with different momenta is defined via
Bloch overlaps. Bottom: for mixed states, the quantum metric (36) is
deformed by a conformal scale factor due to nonzero entropy. This
conformal factor preserves angles but alters the distance between
points in momentum space.

entropy of the mixed state. The above equation (36) is com-
pletely general, in that it holds for any number of parameters
and any number of bands. The fact that the entropy of mixed
states deforms the quantum geometry conformally is depicted
as a cartoon in Fig. 4.

The correction to Eq. (34) arising from the conformal scal-
ing of the quantum metric can be written as a source term of
the momentum-space EFE (see Appendix C). The trace of this
momentum-space stress-energy tensor for the Bures metric is
found to be

R 1

T = % Sk) T AxS(k). (37)
As R is a constant for a Fubini-Study metric, S(k) being con-
stant implies that 7 is also a constant and can be absorbed into
the cosmological constant. As a result, a nonconstant entropic
field is responsible for a nontrivial source term. From the
above equation, we can conclude that within the assumptions
of small and slowly varying entropy, the momentum-space
EFE acquires a source term due to the entropic field. The
stress-energy in (C16) is analogous to the weak-field limit of
general relativity in which Newtonian gravity and Poisson’s
equation are recovered [71]. In other words, the von Neu-
mann entropy is analogous to the gravitational potential of
the Newtonian limit. The Bures metric responds to changes
in entropy, just as the spacetime metric responds to changes in
the distribution of matter.
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We note that the von Neumann entropy of the mixed state
appearing above must arise as a result of entanglement of
the electron with a larger system, such as a measurement
apparatus or a thermal reservoir, whose dynamics are not of
interest and are to be traced out. Thus, we can think of the
source term in the momentum-space EFE as arising when such
an entanglement is severed by averaging over environmental
degrees of freedom. The entropy resulting from our lack of
information in the larger system appears as a gravitational
potential in the momentum-space.

C. Ilustrative example: Momentum-space
EFE for a 3D Dirac fermion

Assuming the charge carrier behaves as a three-
dimensional (3D) Dirac fermion, we can use the momentum-
space Dirac equation as its effective Hamiltonian:

Al G-k
H=|_ . (38)
g-k —AI

The resulting Bloch function is then described by a four-
spinor:

5k
K)) = —JE®IFA | Ewl+aXs | 39
luo(K)) RN . (39)

where the state has been normalized to 1, and |E(Kk)]| is the
absolute value of the energy of the band, £(k) = —+/ A2 + k2.
While we deal with the negative energy solution here, it is
straightforward to show that our expression for the metric also
applies to the positive energy band. Note that x; is an arbitrary
two spinor, and the ground state of the Dirac Hamiltonian is
thus degenerate.

As shown by Matsuura and Ryu [83], we find the follow-
ing expression for the quantum metric when k? <« A? (see
Appendix D):
8;;dkidk/

4A2

In this limit, the pure state metric becomes completely
flat and is thus a vacuum solution of the EFE. For a mixed

state with finite entropy, the stress-energy in then described
by (C16) with R = 0:

gidkidik) ~ for k? < A% (40)

1
T ~ ——AgS(k). (41)
kg

We see that the analogy between the weak-field limit of GR
and our momentum-space expressions for small entropy be-
comes even more striking in this regime, with the entropy and
gravitational potential acting as a source of stress-energy in
momentum space and spacetime, respectively.

D. Entropy maximization

Next, we study how the geodesic equation is modified
for mixed states. We can understand the conformal scaling
in (36) by viewing the resulting change in the momentum-
space geodesic term. As shown in Appendix C,

L _ L 1 L
TijE Eg — TijnEgEy — %[asz(k)]guEéEé, (42)

where T';;; = e 5®/% T, ;. Thus, in addition to the conformal
scaling of the original geodesic equation, additional terms
proportional to the gradient of the entropy appear, which can
be thought of as a momentum-space entropic force. We can
thus understand the paths of least distance for mixed states as
having two components: one attempting to minimize the dis-
tance associated with the underlying pure states, and another
trying to maximize the entropy of the mixed state.

V. EXPERIMENTAL CONSIDERATIONS

A. Geodesic term

Our analysis shows that within the two-band approxima-
tion, the semiclassical equations of motion for Bloch electrons
feature a geodesic term that is of second-order in the electric
field. Calculating the geodesic response for a realistic material
requires the inclusion of scattering processes and is beyond
the scope of this work. In the following, we comment on
the size of the geodesic term and possible materials systems
where our predictions can be tested.

The “nonflattened” part of the toy-model of Sec. III is
applicable to bilayer graphene in an out-of-plane electric field
(which opens up a band gap), or semiconducting transition-
metal dichalcogenides (TMDs). We first estimate the size of
the second-order geodesic term in comparison to the zeroth-
order group velocity term. Assuming an applied electric field
in the x-direction, the group velocity is in the longitudinal
direction, which we compare to the longitudinal part of the
second-order velocity from the geodesic term. The dimension-
less ratio of the two quantities can be expressed as

0 _ 202 (e
HD T (A2 \ R
where cos® = A/2E(k) and tan¢g = k, /k, correspond to an-

gles on the Bloch sphere. For vp|k| < A/2, 8 ~ 0 and the
ratio becomes

2
EX) cos*0(sin*fcos’p — 1), (43)

7O 203 e \2
Do 2% (¢p) 44
e (A/2)4<h ) @4

Taking vp ~ 10 m/s and A ~ 10 meV, which are typical val-
ues for bilayer graphene in an out-of-plane electric field, and
E, ~1 mV/um, the two terms become comparable. Thus,
with a reasonable electric field, the magnitude of the geodesic
term can be made comparable to the group velocity term. As
shown in Fig. 3, the geodesic term makes the velocity point
towards the K-points as opposed to the group velocity term,
which can be probed in experiments. Here, we have neglected
the second-order response from the finite energy dispersion
which might compete with the geodesic term. However, when
vplk| > A/2, the dispersion becomes almost linear and its
second-order response vanishes while the geodesic term re-
mains finite.

The role of quantum geometry has been recently studied in
magic-angle twisted bilayer graphene, where it was predicted
to play an important role in superconductivity, light-matter
coupling, and nonlinear optical response [29,35,37,84,85]. We
thus expect such moiré materials to be an ideal platform to
explore geodesic dynamics. For the case of MATBG. which
has quasiflat bands, the geodesic term should be the dominant
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longitudinal velocity. First, we estimate the minimum (Ey;,)
under which the geodesic response should be observable. We
can define E, to be such that the geodesic response is equal
to the zeroth-order response, i.e., the renormalized Dirac ve-
locity ¥p. For a sublattice gap A = 2 meV, we obtain Eyi, ~
55 mV/pm, which is an experimentally reasonable value. The
maximum electric field En,x must obey the perturbative limit
of our derivation,

ek max
a

7 <A,

where a =2.46 A is the lattice constant of monolayer
graphene. Thus, we take Enj, = 1 V/um, which is a modest
value for experiments. The geodesic for this value of electric
field is shown in Fig. 3(d) and is ~vp /40, which should be
experimentally detectable.

B. EFE equation

The simplest way to create a mixed state that leads to a
momentum-space entropic field is to consider thermal states
over a set of bands. This state corresponds to replacing p, (k)
in Eq. (35) by e #&®/ Z In this way, the entropy varies in
the momentum-space due to the finite dispersion of the bands.
Our results imply that momentum-space wave packets created
from thermal states will experience an additional entropic
(momentum-space) force. The modified Christoffel symbol of
Eq. (42) for the case of a thermal mixed state with kg set to 1
becomes

Liji = gg'ij[ak/ (k) — (FuEE))], (45)

where (- - - ) stands for the thermal average. The term in paren-
theses can be rewritten in terms of group velocity v; = du & as

2
Cur+ 22u (€ — ), (46)

As temperature approaches zero, 8 — oo but the covari-
ance term goes to zero exponentially fast, making sure that
correction to geodesic response vanishes.

A possible platform to experimentally observe such an
entropic force is the microcavity exciton-polariton system,
wherein the quantum metric has been recently measured [49].
The wave-packet dynamics can be directly visualized be-
cause of the optically active nature of exciton-polaritons. In
addition, they offer exquisite control of the band dispersion
through the tuning of light-matter coupling and the resonance
condition between exciton and cavity modes, which can be
used to tune the term in parentheses in Eq. (46). Nonresonant
pumping of exciton-polaritons can be used to generate a qu-
asithermal distribution over momentum states. Moreover, the
tunability of the band gap between upper and lower polariton
branches can be a knob to change the thermal distribution and
vary the size of the entropic force. Due to the finite mass of
photons in the cavity, a substantial part of the polariton dis-
persion lies within the light cone and can be probed optically.

VI. CONCLUSION

In this work, we have highlighted the duality between the
momentum-space equation for the velocity of a Bloch elec-
tron and the position-space equation for the Lorentz force in
curved space. While the role of the metric in the second-order
response of a Bloch electron to static electric and magnetic
fields has been shown previously, the geodesic nature of these
expressions has not previously been explored [32-34,76].

Our results offer an intuitive picture for the role of quan-
tum metric in the semiclassical dynamics of Bloch electrons
in terms of momentum-space dual of the geodesic equa-
tion. Thus, the quantum metric can be thought to realize a
momentum-space gravity. This analogy with the momentum-
space gravity can be exploited to control charge carrier
dynamics in solids, offering another knob in addition to the
Berry curvature. Finally, our results, which are derived for
Bloch electrons, should also be relevant to other physical
systems such as ultracold atoms in optical lattices for realizing
synthetic gravity.

As a future direction, extending our analysis beyond the
two-band approximation might expose other geometric invari-
ants of the interband Berry connection. Another extension of
our work could be aimed at understanding the behavior in the
limit of vanishing band gap, as in the case of graphene or Weyl
semimetals. In addition, the momentum-space analogy can be
applied in the study of nonlinear response to optical fields.

In addition to extending the duality present in the semiclas-
sical formulation of electron dynamics, we have investigated
the momentum-space dual of the EFE, the other fundamen-
tal equation of general relativity. We have shown that the
presence of nonzero entropy of mixed states can lead to the
emergence of a stress-energy tensor in the momentum space.
Under the assumptions of small entropy, we have quantified
the role of entropy in the creation of momentum-space stress-
energy, and we have shown that the stress-energy is in part due
to the Laplacian of the entropy, just as the real-space stress-
energy is due to the Laplacian of the gravitational potential in
the Newtonian limit of general relativity [71]. We can thus
view our expression (C16) for stress-energy in the limit of
low entropy as the analog of the Newtonian limit of general
relativity. The momentum-space analog of the gravitational
potential is the von Neumann entropy of a mixed quantum
state, which is reminiscent of previous speculations on a po-
tentially deep relationship between thermodynamic entropy
and gravity [68]. The von Neumann entropy, which enters our
analysis, makes the connection to momentum-space gravity
more general than the special case of thermodynamic entropy.
As the von Neumann entropy in our case can be thought to
result from the severing of quantum entanglement, our results
appear similar in spirit to the ongoing efforts aimed at showing
quantum entanglement as the source of real spacetime [69,70].

A natural direction for future studies is to examine the
case of arbitrarily large entropy. The connection with quan-
tum entanglement is particularly interesting to explore. For
example, one can gain further insight by studying the quantum
evolution of a simple bipartite system, which is interrupted by
measurements. The unitary part of the dynamics will create
entanglement, which will then be severed by measurements
to create entropy. A quantitative relation between entropy
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creation and changes in the geometry experienced by sub-
systems can further test the connections between quantum
entanglement, quantum geometry, and gravity.
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APPENDIX A: USEFUL RELATIONS

1. Definitions and identities

Before deriving the equations presented in the main text,
we first note some useful preliminaries.
The Berry connection for a given band (n) is defined as [4]

A (K) = (1, (K)| Vic |y (K)). (AD)

The interband Berry connection between bands m and n takes
a similar form:

Apn(K) = i (K) [ Vic | (K)) (A2)

and for m = n, the interband Berry connection reduces to the
(intraband) Berry connection for a single band.
The Berry curvature of a band is defined as the curl of the

Berry connection:
(k) = Vi x A, (K) = =2 Im[ (94| O )], (A3)

and the quantum metric is defined via the Berry connection
and derivatives of the Bloch function [13]:

8ij(k) = Re[(dyiu,(K)| 9y, (k)] — Ai(K)A;(k).  (A4)

\ o
[i20) (iio| = Tuo} (ueo] + ATT[841t0) {uo] + [ut0} (Oprtao [T+ 51184 0pio) (o | + 1u0) (9 dpstto| + 23yitao) (o | JA'AY,

[d60) (a1 | = o) Gy | 4 AT Qgotar ) (uer | + [g) (Do [T 31104 dgsar ) (uao| + 110} (s Bpetay | + 21 dpstar ) (s [JA'AT

APPENDIX B: DERIVATION OF THE MOMENTUM-SPACE
GEODESIC TERM

1. Determining the perturbed Hamiltonian

Consider a two-band model for which band indices are 0
and 1. The unperturbed Hamiltonian in its eigenbasis can be
expressed as

HK) = (un Hlun) i) ] =Y €nlun) (. (B1)

n

In the presence of an electromagnetic field defined by the
potential A(x, t), the Hamiltonian becomes H = H (k — %A).

2. Useful relations using Bloch bands

For any number of bands, the following relation between
the Bloch function and the quantum metric holds:

1 — Wuylii,) |* ~ gijATAT, (AS)

where the perturbed Bloch function |i,) is defined as |u,(k —
%A)), the unperturbed Bloch function |u,) is |u,(k)), and ~
denotes equality up to second order in the external field, A.
We also note the relation between the interband Berry
connection and the quantum metric and Berry curvature:

i

ZAOnAnO = 8ij0 — EQij.0~ (A6)
n#0
In a two-band model, (A6) reduces to
(ol )|* = gijA'A/. (A7)

To derive Eq. (A6), we note the relation between the interband
Berry connection and the projection operator:

D Ao == D {uoldheltty) (14, |3ps luo)

n#0 n#0
We can reexpress the right-hand side of the above equation as

D AoniAno.j = — (ol g s |140) + (0] 140) {110 |0 110)
n#0
which is equivalent to
Z AOn,iAnO,j
n#0
= Re[(0iug|dkitto)] — Aoo,iAoo,j + i Im[ (g uo|dyiteo)].

3. Perturbative relations

Up to second order in the applied vector potential, A, the
perturbed Bloch function can be written as

i) = lua) + 1A’ + 13 deu)A'AT. (A8)

Using the above expansion, we can write second-order
expressions for the outer products of Bloch functions as

(A9)

(A10)

The perturbed Hamiltonian in its eigenbasis is then

H =" (| H i) @) (0, = Y &l ). (B2)
In the unperturbed basis, the perturbed Hamiltonian has the
following matrix elements:
(| H |tt) = €t tl0) (0| t) + €1 (1t |11 (i1 [} (B3)
For the diagonal element Hy, (B3) yields
Hoo = €| (uolio)|” + € (uoliiy)|*.
Using Egs. (A5) and (A7), Hyo can be rewritten as
Hoo = € + (€1 — &)gijA'A’.
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We find a similar expression for H;:
Hii =& + (& — é)gijA'A’.
For the off-diagonal elements, we have
Hoy = & {uoliio) (i |ur) + € (uolidy ) (i |u)
and
Hyo = € (uy |idy) (i |uo) + € (ur |iho) (il |uto)

To simplify our analysis of the off-diagonal elements, we
will assume that the bands are flat, such that €y = €¢y. On sub-
stituting for the correction in state from Egs. (A9) and (A10),
we find an expression for the off-diagonal elements of the

Hamiltonian in the unperturbed basis:

Hmn = |:l(6~m - ENn) + Z glAll : A:|Amn A

1=0,1
AlAJ
+ 3 (Em Ok Oty | Ut ) + € (U | O Opitty))  for m#m.
(B4)
2. Time-dependent corrections
Let A(x, ) = — 2 sin (wt). Beginning with the ansatz

Y (1) = Colt)e™*" lug) + Ci(1)e uy) and Cy(0) = 1, we
can apply the standard methods of time-dependent perturba-
tion theory to find corrections to the wave function and the
band geometry.

The wave-function coefficients are found via the following
equations:

9C . i + ini |, —i ifj

le(t) = [1(60 — e AoiA" — MAlO.iAOI,jA Aj]e ACi(t) — [(e1 — €0)gijA'ATICo(t) (B5)
and

aC . L (at Y .

=) = [1(61 — o) Ao Al — QAOL,-AIO,_,-A Af]e M Co(t) — [(eo — €1)giAATIC1 (1), (B6)

where the coefficients to known order are used on the right-hand side to compute coefficients of the next-highest order.
The zeroth-order coefficients are simply Cg (t) =1 and C?(t) = 0. The equations for the first-order corrections are found to

be

i0,C)(t) =0 (B7)

and

!

where A = €; — €.
The resulting first-order correction to C; () is

ei(w+A)t -1

ac E .
i () = —iAA—2 sin (w1)e™,
ot w

A
Ci(t)= ZAIOEO[

o+ A

(B8)

efi(wa)t -1
w—A ’

Now turning to second order, the correction to Cy(#) is governed by the following equation:

i

d

which can be reexpressed as

ot

aC! o o
to (t) = [i(eo — €1)Ao1 ;A'le ™M Cl (1) + [(€1 — €0)gijA'ATIC (1),

acy Ey; , 1 - sin(01)\?
iS04y = _[IAAOI,,-& sin (wt)]e_’A'Ci(t) + [A<gij - EQU)EéE({(sm (@ )> ]
w w

Note that the £2;; terms are antisymmetric in  and j while E(’)EO’ is symmetric in i and j. This expression can thus be further

simplified to
l_BC{{ (1) = —iA’g, EIE] (sin (cot)) [e”‘” — i N eior e‘iA’] N AgijEéEg(Sin (wt))z.
ot 202 w+ A w—A 1)
The result for the second-order correction is
Cy(t) = alt)gi;ELE], (B9)

where «(¢) can be defined in terms of its real and imaginary components:
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2
Re[a(?)] = m[l — cos(At) cos(wt)] —

2 ) 3
Im[ot(t)] = m[sln(Al‘)Cos(a)l)] — m

w(wz _ A2)2

2

4o?(w? — A?)

A(@? = 202wt — sin(Rwt)]
4(w? — A2’ ’

[sin(At) sin(wt)] + [cos(Rwt) — 1],

[cos(At) sin(wt)] —

We find a similar relation governing the second-order correction to C;(¢):

.BCH €0 € .
ITII(I) = [60./400,1'«410,_;' + e AniAn, + ?(ullakfakiuo) + 31(3/&3/{/”1 |u0)]E6E({

which has the following solution:

[sin (wt)]?
w? ’

Cl (1) =Kij

where K;; = —i[eo.Ago,iAlo,j + €1 A11iA10,j + 5 (11 |9k o) +

3. Corrections to the Berry connection

We represent the corrected Berry connection (up to second
order) as A = A+ d’ + a”. The first-order correction is de-
fined as

d' = i[{uo|Viclur)e " C(t) + (| Vicluo)e'™ CJ (1)1,
which simplifies to
a; = Aol.ieiiAtC{ @)+ Alo,ieimc;*([)-

Using expression (B8) for Cj(z), the above relation becomes

A X eiwt _ e—iAt e—iwt _ e—iAt
a, = — Ao1.i A E!
! ZwAOI'l 10.7%0 w+ A w—A
A X —iwt __ eiAt eiwt _ eiAt
— Ao E!
+ ZwAOI’J 10.7%0 w+ A w—A

We then use (A6) to reexpress ¢’ in terms of the Berry
curvature and quantum metric:

A Q0
a;,= ;E({ [g,»j,oS“’(t) + T"OA (t)], (B11)

EéE({ i(ei(A+2w)t _ 1) i(ei(A—Zw)t _ 1) l‘(eiAt _ 1) (Blo)
w? 4(A 4+ 2w) 4(A —2w) 2A ’
%‘ (Oki kiU |Up)] is a time-independent quantity.
\
where Sw(l‘) — 2cosaz;2AcosAt + 2COSL(;I;:2ACOSAY and Aw(l‘) —
2isin wt+42i sin At + —2isin wt4-2isin At

w+A w—A :
To achieve a steady-state, a relaxation time t due to scat-

tering with impurities, phonons, etc., is required. Using the
zero-frequency limit (w — 0) and the long-time approxima-
tion (¢ > t, such that all oscillatory terms drop out), we find
the following steady-state expression for a':

2 .
a'- = —fgijE({,

/ A (B12)

which agrees with previous results found via time-
independent perturbation theory [32].

We can extend our correction of the Berry connection to
second order using our second-order corrections to the wave
function. As we are interested in the observable response
generated by the connection, we consider the gauge-invariant
portion (“positional shift”) of the second-order correction,
which we denote as a”(¢). a” () can be expressed as

d'(t) = il{uo| Vilu)e "M (C3CY + CFCy + CF*C] + il (ur | Viclug)e™ (CFCYy + CFCh + C*Co),

which simplifies to

d'(t) = i{uo| Viclur)e "M CY (t) + i(ur | Vicluo)e™ C* (t).

Using our expression (B10) for Cy'(¢), the second-order correction to the Berry connection can be written as

(ei(Zw)t _ efiAt )

a(t) = — -»401,11(5,'(

(efi(Za))t _ efiAt) B (1 _ eiAt)) E(SE({

4(A +2w) 4(A —2w) 2A ?
—iQQo)t _ At iQw)t __ iAt 1 — it EiEj
+ Ak (¢ e e me ) (- Bk (B13)
4 4(A + 2w) 4(A —2w) 2A ?
which simplifies considerably in the low-frequency limit:
, i (1 _ efiAt) i (1 _ eiAt)
a/(t) == _A01vll(ijE0EOl<T> + AIO,IK;;EOE({ T . (B14)

To reach the steady-state associated with long times, we
average over the oscillatory terms, leaving only the time-
independent portion of Eq. (B16).

Now that we have derived the corrections @’ and a”’, we
can consider the electron response associated with these quan-
tities. In addition to the first-order correction of the Berry
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curvature, defined as Vi x a’, the temporal derivatives of a'(¢)
and a’(¢) can also contribute to the response. The time deriva-
tive of a(t) is found to be

dal(t) = — E{(wsin (o) — Asin (At)). (B15)

2A
w? — A28
While nonzero for ac fields, this term vanishes in the zero-
frequency limit when we apply the long-time approximation
and average over oscillating terms.

Likewise, the partial derivative in time of a”(¢) yields a
second-order response, which takes a simple form in the zero-
frequency limit:

(l'Ae—iAt)

ata;’(t) = —AolquijE(gE({< A3

) +c.c., (B16)

where c.c. denotes the complex conjugate of the first term.

4. Corrections in energy

The energy of a time-dependent state in the presence of an
external field can be written as

(o | H 11dp)

where both the wave function and the Hamiltonian must be
corrected for the presence of the perturbation.

Expanding the corrected Hamiltonian A as Hy + H' + H”,
we keep terms of necessary order in the wave-function coeffi-
cients and find the following expression for energy:

& = |Co(t)*e0 + |C1(2)*€; + 2 Re[H, Cre "2 + Hy,

where [Co(t)|> = 1 — |C1(¢)|? (up to second order) due to the
constraint of normalization. Writing all quantities in terms
of the quantum metric, we find that the corrected energy (to
second order) can be written as

=~ _ @i
Upon taking the long-time approximation, the oscillatory €= o+ AP EoEy, (B17)
terms vanish (average to zero) and 9,a” —> O. where § is defined as
|
By — A? [cos((w+ A))—1 L cos (@ — A)) —1\? N A? [sin((w+ A))  sin((@ — A))\?
T 402 o+ A w—A 4w? w4+ A w—A
Asin(wt) (sin(wt) + sin(At)  sin(At) — sin(wt) n sinz(a)t). (B18)
w? o+ A w—A w?

The corrected energy (to second order) can then be written
as

&= e+ ABMG,EE]. (B19)

The zero-frequency, steady-state limit of B(z) (after aver-
aging over oscillations) is

2
B(t) — ek (B20)
5. Steady-state analysis in the dipole gauge
We begin with the dipole Hamiltonian
H(&)=Hy(k)+E-r, (B21)

where r is the position operator with elements r,,, = A,,, for
m # n. We set the diagonal elements of the dipole correction
to zero, as these terms only shift energies and do not generate
transitions between bands. These diagonal elements will be
irrelevant for the following analysis.
The correction to the Hamiltonian can be expressed in
matrix form as
H = [ 0 £ (k)]. (B22)
E - A (k) 0
Using H', we can again apply time-dependent perturbation
theory to compute the wave-function corrections for this static
perturbation. The resulting equations for the coefficients are

i0,Co(t) = E - Ay Cy(t)e ™
and

i,C (1) = E - AyyCo(t)e™

with initial conditions Co(f = 0) =1 and C;(t = 0) = 0.
Using zeroth-order coefficients of 1 and 0, the first-order
corrections are given by

3 Co(t) = —iE - AnCY(t)e ™ =0
and
3C(t) = —iE - ApCJ(1)e™ = —iE - Ajpe'™.

The resulting coefficients (to first order) are Cy(r) = 1 and

Ci(t) = I_AﬂE{;AoL ;- We can then use the wave-function cor-
rections to correct the Berry connection to first order:

d' = il (uo| Vic|ur)e ™ Cy () + (u1| Vicluo)e™ C* (1)],

which results in an expression identical to (B12) at long times
(after averaging over oscillations):

/ J

a, = ——giiE.

i A J=0

We can also compute the second-order energy correction
for a semiclassical wave packet:

E=eo+ C1()IA,

(B23)

which can be rewritten as
[0 it it
& =¢y)+ g,v_,-E(l)E({ (T)

Under the long-time approximation (averaging over os-
cillations), the above equation reduces to the following
steady-state expression:

2
&= e+ EE g, (B24)
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APPENDIX C: DERIVATION OF MOMENTUM-SPACE EFE
AND ENTROPIC FORCE

1. Calculating the metric and stress-energy tensor
for mixed states

The quantum metric for pure states is an Einstein metric in
any dimension, and is thus a vacuum solution of the Einstein
field equations [79]. Here we show that the Bures metric for
mixed states need not be a vacuum solution, and can instead
satisfy the Einstein field equations with a nonzero stress-
energy tensor. Given that the two-dimensional case is trivial,
with all metrics satisfying the vacuum equations with zero
cosmological constant, we show this for a three-dimensional
momentum space.

We consider the density matrix of a mixed state:

N
P = pu(k)|tty (K)) (11, (K)). (ChH

n=0

The difference between mixed state density matrices at
nearby points in momentum space, d p, is found to be

(wi(K)|dplu;(k)) = (dk - Vip)dij + i(pi — pj)Aij - dK,
(C2)
where A;; is the interband Berry connection.
Using (C2) we can calculate the distance between mixed
states as defined by the Bures metric [86]:

N

1 1jldplk)I?

gidk'dk) = = Y (C3)
! 2 ].,,{2::0 pj+pr
which can be reexpressed as
N
i1 (dk - Vip,
gijdk'dk’ = 3 Z Taik
J.k=0 E
2
PP ke )
Pj+ Pk

Assuming the probabilities p, (k) change slowly in k-space
[more precisely, Vk(In(p,(k))) ~ 0], the above expression
reduces to

oL (0 — )
g, dkidk! ~ = L PR\ Ay - dkJP (C5)
gj 2/J(Z:0 Pj+17k jk

First, we consider a thermal mixed state such that the Boltz-
mann weights are p,(k) = e’ﬂg"(k)/Z(k). Later, we will
generalize our results to more general density matrices under
the assumptions stated below. As we wish to focus on a single-
band, say the ground state, we assume that po > p; Vi # 0.
For the thermal mixed state, this is equivalent to assuming a
large energy gap such that all bands above the lowest band
have very small probabilities. Equation (C5) then reduces to

gijdkidk! ~ (e7P% ) 2)g; dkidi/ (C6)

where we have once again reexpressed the outer product of the
interband Berry connections as the pure state quantum metric.
Next, we show that the scale factor in front of the pure state

metric depends on the entropy. Rewriting the scale factor as a
conformal scale factor, e*/® we see that

f=—3[BE k) + InZ(k)] (C7)

~ —LIBE®) + InZ(K)], (C8)

where we have used the large gap assumption such that (£) =~
&o. Using the definition of entropy, we arrive at

[~ =3SK), (C9)
where we have set kg = 1. The Bures metric then becomes

gijdkidk’) ~ e5®g, diidk. (C10)
Note that the above equation is independent of 8 implying
that analysis can be extended to more general mixed states, as
we show below.
To this end, we make use of the fact that any density matrix
can be expressed as a thermal density matrix in the original
eigenbasis but with a thermal Hamiltonian such that

p) = Y (e P 2, W) (), (CL1)

where &, 1, are the eigenenergies of the thermal Hamiltonian
and not the original Hamiltonian. As before, we assume that
Po > pw such that Eq. (C6) becomes

gijdk'dk! ~ (e P ) Zy)gdk K/, (C12)
and correspondingly,
fin = —3[BE.mk) + InZy(K)]. (C13)

Using the expression for von Neumann entropy S =
—tr(p In p), and the fact that py > p, or e’ﬁg‘)v“‘/Zth >
e PEnn ) 20 ¥ m # 0 implies &, 3> Epn 0F (En) & Eo.m, We
obtain fy, ~ —%S (pm). Writing the von Neumann entropy as
S =-3,, Pwln p,, we find that S(pn) = S(p) and we again
obtain f ~ —%S (k). As expected, this result is also indepen-
dent of B. In other words, as long as the above-mentioned
assumptions are valid, the mixed state can be arbitrary and
not just a thermal mixed state.

We see that the mixed state metric differs from the pure
state metric by a conformal scale factor due to the von Neu-
mann entropy. Because of this simple conformal relation, the
scalar curvature of the Bures metric can be expressed in terms
of the scalar curvature of the pure state metric as [79]

R =5k (R +2AS/ks — Y |ak,S/kB|2>, (C14)

4

where Ay is the Laplace-Beltrami operator associated with the
curved momentum space. Note that we are using the physics
convention in which A has a positive sign rather than the math
convention that includes an extra factor of —1.

Using the trace of the Einstein field equations, we can find
the trace of the stress tensor:

—IR— IR 4+3A=T, (C15)

where we have set the typical prefactor of the stress-energy
tensor, 82’—4G, to 1. The trace of the stress-energy tensor for the

013217-14



MOMENTUM-SPACE GRAVITY FROM THE QUANTUM ...

PHYSICAL REVIEW RESEARCH 4, 013217 (2022)

Bures metric is thus

1

1 S/k 2 1
T=—ze R(R +2AkS/kg — Y |0k, S/ksl” | + SR

(C16)
Assuming S and its first derivatives are small, Eq. (C16)
reduces to

T~ —iS(k) — AxS(K)/kp. (C17)
2kp

The full stress-energy tensor can be written as

R 1
Tj = ———SK)gij + 5~ [Vid;S(k) — AS(k)g;;]. (C18)
6kp 2kg

2. Derivation of entropic force

We know that the equation of motion of a perturbed n-
band system has contributions from the correction in the
ground-state energy. For a two-band system, the form of the
contribution is known. The effect on the equation of motion
when the governing metric gets conformally scaled can be
studied by obtaining the Christoffel term using the modified
metric.

The Christoffel term corresponding to the Bures metric can
be expressed in terms of the ones corresponding to the FS
metric as

Fijp = ¥ Tij + 80,1 + 8udi f — 80if),
which can be rearranged to obtain
Fiji = ¥ Tiji + 80,1
|

LE®I+HAINE KDI+A]

Now the equation of motion has an additional term,

—ugi;jo fEéE({ , which can be viewed as an extra force (en-
tropic force) driving the system.

APPENDIX D: CALCULATING THE METRIC AND
CURVATURE FOR A DIRAC FERMION

Assuming the charge carrier behaves as a three-
dimensional Dirac fermion, we can use the momentum-space
Dirac equation as its effective Hamiltonian. The resulting
Bloch function is then described by a four-spinor:

a-k
IE®)|+A [|5<k)\+A x;}

A RHIEK)|+AT Xs

where the state has been normalized to 1, and |E(K)]| is the
absolute value of the energy of the band, £(k) = —+/ A2 + k2.
Note that y; is an arbitrary two spinor, and the ground state
of the Dirac Hamiltonian is thus degenerate. While the non-
Abelian quantum geometric tensor is needed to describe the
complete case of degenerate bands, here we focus on the
momentum space distance between electron states with the
same spin polarization, x,. In this case, the distance in mo-
mentum space can be determined from the standard Abelian
quantum geometric tensor, which itself can be determined
from the overlap of the Bloch states via g;;dk'dk/ =1 —
I (a0 (K)o (K + dK)) |- ) 3

Noting the Pauli matrix identity (¢ - 6)(b-6) = (@ -b)I +
i(ax I;) - & and defining § as the unit vector in the direction of
spin polarization, the overlap integral (uo(k)|uo(k’)) is found
to be

luo(K)) = (1Y)

N kK +i(kxK)-§
ool = et ar) (e tie 0T am) (1 - l‘g"k')””g(k”“) 2
For the squared magnitude of the overlap, we find
M2 — LEMIHAPIE R)I+AT +2[1EK)|+ANE (K)|+AT+ (kK ) +[(kxK) 3]
{utg () g (K ) |* = (AT ER Gt : (D3)
which leads to
_ P2 [kxk 2= [(kxk) 1P +H|E K)|+ATK—[1E &) +AIK|*
1 — o () o (I )) | = B T o) (D4)
The quantity above can then be reexpressed as
’ = ’ n 2 ’ 2
1 _ I(M()(k)|u0(k/)> |2 — | IE(kI§\+A X \E’(I:{’)HA | 7((|£(:E\+A X \E’(I?’)HAB;) +’ \E(kl;HA B \S’(lt(’)HA (DS)
1+H£(k)|+AJZ)( (" (6)+0)%
\
We assume k?* < A? and expand 1 — |(u(K)|uo(k'))]* in  quantum geometric tensor when k> < A:
powers of % and kz. Keeping only terms of lowest order, we
find i g1
oo b dkdkd
- gijdkidk’ ~ J4T for k? « A2, (D7)
1= [uo(K)ug(kKN* ~ |— — —|  fork> < A”.
[ (o (K)o (K)| A A
(D6) We see that the metric is independent of the spin polariza-

To obtain the metric, we can assume that the separation vector
k' — k = dk, i.e., that the separation of states in momentum
space is infinitesimal. We then find an expression for the

tion of the fermion states. Equation (D7) agrees with the
expression found previously by Matsuura and Ryu [83] for
the quantum metric of the Dirac fermion.
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