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Children are suboptimal in adapting motor exploration to task 
dimensionality during motor learning 
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A B S T R A C T   

Motor learning in novel tasks requires exploration to find the appropriate coordination patterns to perform the 
task. Prior work has shown that compared to adults, children show limited exploration when learning a task that 
required using upper body movements to control a 2D cursor on a screen. Here, by changing the task dimen
sionality to 1D, we examined two competing hypotheses: whether children show limited exploration as a general 
strategy, or whether children are suboptimal in adapting their exploration to task dimensionality. Two groups of 
children (9- and 12-year olds), and one group of adults learned a virtual task that involved learning to control a 
cursor on the screen using movements of the upper body. Participants practiced the task for a single session with 
a total of 232 reaching movements. Results showed that 9-year olds show worse task performance relative to 
adults, as indicated by higher movement times and path lengths. Analysis of the coordination strategies indicated 
that both groups of children showed lower variance along the first principal component, suggesting that they had 
greater exploration than adults which was suboptimal for the 1D task. These results suggest that motor learning 
in children is characterized not by limited exploration per se, but by a limited adaptability in matching motor 
exploration to task dimensionality.   

1. Introduction 

The question of whether children learn motor skills differently from 
adults has both theoretical and practical significance. Although popular 
beliefs suggests that children learn faster than adults, a majority of the 
motor learning studies in a wide variety of tasks actually show that 
young adults show a learning advantage relative to children [1–6]. 
However, in many real-world tasks, this comparison between children 
and adults can be biased in favor of adults due to two reasons– (i) task 
familiarity – i.e. adults have greater familiarity with most tasks, 
including knowledge of how to perform them, and (ii) biomechanical 
factors – adults have bigger bodies, greater speed and strength making it 
easier for them to achieve a higher task performance level. Therefore, it 
is critical to minimize the effects of these confounding factors to address 
the issue of comparing motor learning in children and adults. 

One potential way to minimize these two advantages that adults 
possess is to create novel virtual tasks. Body-machine interfaces [7–9], 
where movements of the body are used to control an interface like a 
computer cursor or a robot arm [10–13], provide an ideal way to address 
this issue. A specific type of body-machine interface that has been used 

to investigate learning is one where movements of the upper body are 
mapped on to the control of a computer cursor [14–16]. This task 
minimizes the task familiarity advantage because the mapping between 
body movements and cursor movements is not known apriori and the 
appropriate coordination patterns to solve the task can only be discov
ered through exploration and practice [17]. Furthermore, the task also 
minimizes the biomechanical advantage because the movements are 
based on segment angles (which are independent of limb length and 
body size), and the mapping can be customized to each individual (e.g., 
changing the gain) to adjust for differences in speed or strength. 
Importantly, the body-machine interface not only allows measuring 
differences in overall task performance (e.g., movement time), but also 
quantification of the underlying coordination strategies used to perform 
the task. 

In a prior study [14], we used the body-machine paradigm to 
compare learning in children and adults when learning to control a 
cursor in 2D. We found that in spite of minimizing such confounds, 
children showed longer movement times in the 2D cursor control task 
after learning. Critically, analysis of the coordination strategies revealed 
that children showed limited exploration of the movement repertoire. 
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Movement repertoire was quantified using principal component analysis 
(PCA), where limited exploration is quantified by a higher relative 
contribution of variance explained by a single principal component (i.e., 
exploring along a single movement dimension would result in a very 
high contribution of variance along PC1 whereas a completely random 
exploration would result in the variance being roughly equally distrib
uted across all components). Given that a limited movement exploration 
is potentially suboptimal when learning a 2D task (which requires the 
participant to explore along two dimensions), the results raise two 
different hypotheses – (i) children tend to use limited movement 
exploration as a general strategy when learning novel tasks (similar to 
‘freezing’ degrees of freedom [18]), or (ii) children tend to use motor 
exploration strategies that are suboptimal for learning the task. 

To distinguish these two hypotheses, we used the same task but 
changed the task dimensionality – i.e. changed the cursor control task 
from a 2D space to a 1D space. Learning a 1D task requires less motor 
exploration than a 2D task since the cursor only needs to be moved along 
one dimension. If children still show lesser exploration in the 1D task 
relative to adults, then the results would support the first hypothesis that 
children tend to use limited movement exploration when learning novel 
tasks. However, if children show greater exploration in the 1D task 
relative to adults, then the results would support the second hypothesis 
that that children tend to use motor exploration strategies that are 
suboptimal for learning the task. 

2. Materials and methods 

2.1. Participants 

A total of 54 participants took part in this study from three different 
age groups: (i) a 9-year old group (8–10 year olds, n = 15, age 9.60 ±
0.75 years, 8 females), (ii) a 12-year old group (11–13 year olds, n = 13, 
age 12.20 ± 0.98 years, 4 females) and (iii) an adult group (n = 26, age 
21.46 ± 1.76 years, 15 females). These age groups were based on our 
prior study in which children from these age groups showed age dif
ferences in their task performance [14]. Children were paid $10 for their 
participation and all adults were college students who received extra 
course credit for their participation. Informed consent (including 
parental consent when needed) was obtained prior to participation and 
all procedures were approved by the Michigan State University Human 
Research Protection Program. 

2.2. Experimental setup 

The experimental design and procedures were similar to our prior 
studies [14,15] and are summarized below. The main difference is the 
change in the dimensionality in the task; the current study only required 
participants to control the cursor in 1D (moving left/right) instead of in 
2D in prior studies. 

Participants sat in a chair in front of a 23′′ (58.4 cm) computer screen 
and were instructed to move their upper body to control a cursor on the 
computer screen. They wore a customized vest that was securely 
strapped using Velcro straps under their arms and around the torso. Four 
wireless inertial measurement units (IMUs) (3-space, YEI Technology, 
Ohio, USA) were attached to the vest using Velcro hooks at the anterior 
and posterior ends of the acromioclavicular joint on both the left and 
right sides of the body (Fig. 1). All four sensors were placed at 45⁰ to the 
long axis of the body and captured scapular movements: retraction, 
protraction, elevation and depression. We only used the signals corre
sponding to the roll and pitch angles from each IMU sensor, resulting in 
an 8-D signal (4 IMU sensors × 2 signals/ sensor). 

2.3. Mapping body motions to cursor position 

We used a linear mapping to transform the 8-dimensional body space 
(h) into the 1-D task space. The mapping was given by p = A h + p0, 
which p was the cursor position, A refers to the map and p0 is an offset 
term [10]. In order to determine map A, we used a calibration procedure 
similar to previous studies [10,12]. During the calibration, participants 
performed free exploratory movements for 60 s, where they were asked 
to explore all different motions using their upper body while main
taining a comfortable range of motion. Thereafter, we performed PCA on 
this calibration data and extracted the first principal components. The 
coefficients of the first principal component were scaled by a gain factor, 
equal to the reciprocal of the square root of the first eigen value, which 
was then used to form the 1 × 8 vector A. The offset p0 was set so that the 
average body posture during calibration (close to the resting posture) 
resulted in the cursor being in the center of the computer screen. 

As mentioned in the introduction, there are two important features of 
this task: (i) the IMU signals captured only angles in the upper body (i.e., 
shoulder and torso), and therefore the developmental differences in the 
length of body segments (such as arm length) did not influence the task, 
(ii) the map was customized to each individual to ensure that the range 
of motion and sensor placement had minimal influence on the partici
pants’ ability to perform the task. 

2.4. Cursor control task 

Participants performed a virtual center out reaching task in 1D, 
where they controlled a cursor on the computer screen using their upper 
body movements. They moved the cursor from the home position (r =
0.8 cm, in the center) to one of a number of ‘targets’ (of the same radius) 
presented in X-direction only, and returned back to the home position. 
Each trial started when the home position showed up for 500 ms fol
lowed by the presentation of a peripheral target. Participants were 
instructed to move the cursor to the target as fast and as close to the 
center of the target as possible. The task was completed when the 
participant was able to hold the cursor within the target for 500 ms; after 

Fig. 1. Schematic of experimental setup. Partici
pants wore 4 IMUs on the upper body and controlled 
a 1D cursor on the screen that could only move along 
the horizontal direction. Targets were placed along 
this horizontal dimension. Three groups of partici
pants (9-year olds, 12-year olds, and adults) learned 
this task over a single practice session. Each practice 
session consisted of 3 test blocks (pre-test, mid-test 
and post-test) and 8 training blocks. The training 
and test blocks differed in the number of unique 
targets used in the block (4 for training and 8 for 
test).   
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which they had to return back to the home position. This was followed 
by the presentation of the next target. 

There were two types of blocks: training blocks and test blocks. The 
main difference between them was that the training blocks used a set of 
4 targets, whereas the test block used a set of 8 targets (4 that were part 
of the training blocks and 4 new targets) to probe if learning generalized 
beyond training. During each of the 8 training blocks, participants 
reached for 4 targets in the X-direction (2 on either side of home posi
tion) located at a distance of: 8.2 cm and 16.4 cm from the center. 
Targets were presented 5 times each – for a total of 20 trials per each 
training block. During each of the 3 test blocks (pre-, mid- and post- 
test), participants reached for 8 targets in the X-direction (4 on either 
side of home position) located at a distance of: 4.1 cm, 8.2 cm, 12.3 cm 
and 16.4 cm from the center. Targets were presented 3 times each – for a 
total of 24 trials per each test block. The sequence of these blocks is 
shown in Fig. 1. In each block, targets were presented in a pseudo
random order with a constraint that all targets were presented before a 
target could repeat. A total of 232 trials were performed overall and the 
entire study typically lasted for 45 – 90 min. Rest breaks were provided 
in between blocks when participants requested them. 

In our original experimental design, the 1D task was followed by a 2D 
task (to examine if there were age differences in the transfer from 1D to 
2D task) – however, because the children could not complete the two 
tasks in a single session, the 2D task was not analyzed further and is not 
presented here. 

2.5. Data analysis 

Data analyses were similar to our previous study [14] but adapted to 
the 1D task. All analyses were performed only on the outward move
ments – i.e. when the participant moved from the home target toward 
the peripheral targets. We selected only the outward movements 
because the return movement to the home target involved coming back 
to the same initial posture, which was generally easier to do (and 
therefore required less exploration than the outward movements). We 
divided the data analysis metrics into two categories: task performance 
and coordination. 

2.6. Task performance 

We quantified task performance using two measures - the movement 
time, and the normalized path length (which measured the straightness 
of the path taken). The cursor control task was designed so that each trial 
stopped only when the target was reached, at which point the subse
quent target was presented. We used movement time as the primary 
measure of task performance (spatial accuracy was controlled for 
because all reaches eventually reached the target). Also, because the 
task was only 1D, cursor movements were always in straight lines- 
however, the path lengths could change if there were direction reversals. 
Therefore, the normalized path length provided an index of how well 
participants controlled the cursor. 

The two measures were computed as follows. Movement time was 
calculated from the time that the cursor left the home target to the time 
that it reached and stayed inside the target for the subsequent 500 ms. 
Normalized path length between two targets was defined as the actual 
distance traveled by the cursor divided by the straight-line distance 
between the targets (i.e. reaching to a target without any direction re
versals would result in a normalized path length of 1). 

2.7. Coordination 

For assessing the coordination of the upper body, we used principal 
components analysis (PCA) [19]. Because the task is 1D, participants 
only needed to learn a single coordination pattern to perform the task, 
although the redundancy in the task allows them more if they wanted to 
explore different ways of performing the task. We therefore analyzed the 

time series of the 8 signals in each block using PCA and computed the 
percent of variance accounted for (VAF) by the first principal component 
(PC1) to investigate the degree of exploration in their body movements 
when learning the task. We used the covariance matrix to perform the 
PCA, which preserves the amplitude information in the signals. 

In addition, to examine the change in the PCs themselves, we 
computed an angle (using the subspace command in MATLAB) between 
PC1 in each block relative to the task map (i.e., the PC1 in the calibration 
block). This measure allowed us to examine how much change occurred 
in the coordination pattern occurred with practice and if they were 
significantly different between groups. 

2.8. Statistical analysis 

To examine changes with learning, we analyzed only the pre-test, 
mid-test and post-test (i.e. the training blocks were not included for 
statistical analysis). The dependent variables were analyzed using a 3 ×
3 (Block × Group) repeated measures ANOVA. Block (Pre-test, mid-test, 
post-test) was the within-subjects factor, whereas Group (9-yr,12-yr, 
adult) was the between-subjects factor. Violations of sphericity were 
corrected using the Greenhouse-Geisser factor when applicable. Post- 
hoc comparisons for group were examined using Tukey’s correction. 
Significance levels were set at p < .05. 

3. Results 

Data from one 9-year old participant was excluded from analysis 
because of extremely high movement times in 6 out of the 9 blocks 
(greater than the 1.5* IQR from the upper quartile for the group, where 
IQR is the interquartile range). 

3.1. Task performance 

All groups decreased movement time with practice as indicated by a 
significant main effect of block, F(1.15, 57.39) = 40.27, p < .001 
(Fig. 2A), with movement times decreasing significantly from pre-test to 
mid-test, but not significantly between mid-test and post-test. There was 
also an age-related effect indicated by a significant main effect of group, 
F(2, 50) = 7.60, p = .001. Post hoc analysis of the main effect of group 
showed that adults had shorter movement time than 9-year olds (p <
.001). The difference between 9-year olds and 12-year olds (p = .083), 
and the difference between adults and 12-year olds (p = .65) was not 
significant. The block × group interaction was not significant, F(2.30, 
57.39) = 2.09, p = .127. 

The correlation between the movement time and the normalized 
path length was high throughout practice (r = 0.93 in the pre-test and r 
= 0.74 in the post-test). So, the results from the normalized path length 
(Fig. 2B) showed a similar pattern. All age groups showed smaller path 
lengths (i.e. lesser movement reversals) with practice as indicated by a 
main effect of block, F(1.03, 51.69) = 12.24, p < .001, with path lengths 
decreasing significantly from pre-test to mid-test, but not significantly 
between mid-test and post-test. There was also age-related effect indi
cated by a significant main effect of group, F(2, 50) = 4.52, p = .016. 
Post hoc analysis of this main effect showed that adults showed signif
icantly shorter path lengths than 9-year olds (p = .012). The difference 
between 9-year olds and 12-year olds (p = .152), and the difference 
between adults and 12-year olds (p = .716) was not significant. The 
block × group interaction was not significant, F(2.07, 51.69) = 1.34, p 
= .272. 

3.2. Coordination 

Similar to the movement performance, all groups changed coordi
nation strategy with practice as indicated by a significant main effect of 
block. For the VAF-PC1, there was main effect of block, F(1.58, 79.01) =
13.97, p < .001 (Fig. 3A), with the variance increasing significantly from 
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pre-test to mid-test, but not significantly between mid-test and post-test. 
There was also a significant main effect of group, F(2, 50) = 8.07, p <
0.001. Post hoc analysis of the main effect of group indicated that adults 
had higher VAF- PC1 than the 9-year olds (p = .023) and 12- year olds (p 
= .002). The block × group interaction was not significant, F(3.16, 
79.01) = 0.35, p = .802. 

When comparing the angles that PC1 in each block made with the 
task map, we found that angles decreased with practice, becoming more 
‘aligned’ with the task map. There was a main effect of block, F(1.32, 
65.95) = 9.73, p = .001 (Fig. 3B), with angles decreasing significantly 
from pre-test to mid-test, but not significantly between mid-test and 
post-test. There was no significant main effect of group F(2, 50) = 1.25, 
p = 0.294 or group × block interaction, F(2.64, 65.95) = 1.50, p =

0.227. 

3.3. Calibration analysis 

To rule out the possibility that differences in age groups were due to 
any systematic differences in the ‘free exploration’ movements of the 
calibration phase, we examined if there were any systematic differences 
in the principal components between age groups during calibration. 

In terms of the variance accounted for by PC1, there was no statis
tically significant difference between age groups, F (2, 50) = 0.448, p =
0.642. 

To compare the principal components across groups, we used a 
bootstrap analysis. In each iteration, we picked PC1 from a random adult 
and compared the similarity to (i) another randomly chosen adult, (ii) a 
randomly chosen 12-year old, and (iii) a randomly chosen 9-year old. 
The similarity between the PCs was computed using the subspace 
command in MATLAB (if vectors are more similar, the subspace angle is 
closer to zero). We repeated this analysis for 100 iterations and used a 

one-way ANOVA to examine the angles in the adult-adult comparison 
relative to the adult-12 year old and the adult-9 year old comparisons. 
The assumption was that if there are significant differences between 
groups during the calibration phase, then the angles should be smaller 
(indicative of greater similarity) in the adult-adult group compared to 
those across groups. We found no evidence of a group effect, F (2,297) =
0.509, p = 0.602, again indicating that there were no systematic age 
differences in the free exploration phase. 

4. Discussion 

The goal of this study was to examine motor learning in children 
using a body-machine interface. Based on prior work that found age- 
related differences in exploration, we used a 1D task to distinguish be
tween two hypotheses - (i) children tend to use limited movement 
exploration as a general strategy when learning novel tasks, or (ii) 
children tend to use motor exploration strategies that are suboptimal for 
learning the task. Overall, our results support the second hypothesis that 
motor exploration strategies in children are suboptimal for learning the 
task. 

From a task performance standpoint, our results showed that despite 
the reduced complexity of the 1D task, movement times were longer in 
9-year olds relative to adults. These differences were generally present 
throughout learning and are consistent with a number of other studies 
on learning in children showing slower performance [14,20,21]. How
ever, it is important to note that in our case, the differences in movement 
times were not simply a consequence of speed differences between 
children and adults because the analysis of path length also indicated 
that the children made more movement reversals. 

The coordination strategies provided further insight into how the 
task was performed. In the 1D task, VAF - PC1 increased with practice, 

Fig. 2. Task performance across all groups. (A) Movement time, and (B) Normalized path length. Both movement times and path lengths decreased with practice, but 
adults showed shorter movement times and smaller path lengths than 9-year olds. Error bars indicate 1 SE. 

Fig. 3. Coordination across all groups. (A) 
VAF accounted by the first principal 
component across all groups. VAF PC1 
increased with practice in groups. Children 
(both 9-year and 12-year olds) showed 
smaller VAF-PC1, indicating that they were 
suboptimal in channeling their exploration to 
match the dimensionality of the 1D task. (B) 
Angle between first principal component and 
the task map. All groups decreased the angle 
with practice indicating greater alignment 
with the task. Error bars indicate 1 SE.   
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indicating that participants learned to restrict the exploration along the 
one dimension required to perform the task. There was also greater 
alignment between PC1 and the task map indicating that all participants 
were learning to explore (on average) along the relevant dimension. 
However, even though the 1D task required simply variation along a 
single dimension (i.e. a single coordination pattern), children (both 9- 
and 12-year olds) show lower VAF-PC1 than adults, indicating that they 
were performing greater exploration. These results are in striking 
contrast to the 2D task, where children tended to have higher VAF-PC1 
(i.e. lower exploration) than adults [14]. 

This suggests that adults were able to adapt their exploration based 
on the task demands – they increased their exploration to perform the 
2D task and decreased their exploration to perform the 1D task. Chil
dren, however, were not able to do this successfully – they showed 
limited exploration in the 2D task, and in the 1D task tested in this study, 
they were not able to sufficiently channel their exploration along a 
single dimension. Although we do not have a measure of whether these 
exploration strategies were ‘intentional’ or not, one potential explana
tion for children having lower VAF-PC1 in the 1D task may be due to the 
fact that children are more typically variable than adults [22]. This 
‘noise’ could have prevented children from reducing the variability 
along other dimensions as much as the adults did. One limitation is that 
our measure of exploration measured VAF PC1 as a % of the total var
iance– so, while this measure is sensitive to ‘overall’ exploration along 
other principal components (increasing variance along other principal 
components would reflect as a decrease in terms of the percentage of 
VAF PC1), it is not sensitive to certain types of ‘compensatory’ explo
ration along these higher dimensions (for e.g., if an increase in explo
ration along PC3 is associated with a decrease in exploration along PC2). 
However, given that our task is 1D and that our results show that VAF- 
PC1 is close to 80%, we believe that this metric captures the major 
changes in exploration. 

Taken together, these results show that children have difficulty 
adapting their movement exploration to that required by the task. These 
results are consistent with the hypothesis from Vaillancourt and Newell 
[23] that the dimensional change in motor learning is influenced by the 
task demands. Although the original hypothesis was based on older 
adults and used a different measure of motor output (i.e. dynamical 
degrees of freedom [24]), their results showed a very similar pattern 
where older adults had difficulty both in increasing dynamical degrees 
of freedom in a constant force production task, and in reducing degrees 
of freedom in the sinusoidal force production task. Our results extend 
these findings to children by showing that children (like older adults) 
have a limited ability to adapt their exploration to the task demands. 

In conclusion, our results add to the evidence that there is a clear 
developmental trend to motor exploration during learning, but that this 
trend needs to be considered in the context of task demands. Using 
practice strategies that directly manipulate exploration may be critical 
next steps to determine if exploration can facilitate motor learning in 
children when learning novel tasks. 
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