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However, given the different traditions of these fields, this interdisciplinarity can be a challenge when trying to
interpret evidence and claims from motor learning experiments. To address this issue, we offer a set of ten
guidelines for designing motor learning experiments starting from task selection to data analysis, primarily from
the viewpoint of running lab-based experiments. The guidelines are not intended to serve as rigid rules, but
instead to raise awareness about key issues in motor learning. We believe that addressing these issues can
increase the robustness of work in the field and its relevance to the real-world.
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INTRODUCTION

Motor learning is a central focus of several disciplines including psychology,
kinesiology, neurophysiology, neuroscience, rehabilitation, and engineering. While this
diversity of perspectives is a positive feature in terms of the development of new ideas and
theories, it also brings associated challenges in terms of interpreting evidence and claims
about motor learning. In our experience leading journal clubs, it is not uncommon to
discuss a paper with a claim about “motor learning” in the title and end up questioning if
the paper was really even about motor learning! A large part of this challenge is due to the
fact that theoretical, conceptual, and methodological issues related to the design of motor
learning experiments that are ‘common knowledge’ to researchers in one particular
discipline may not always be accessible to researchers from other disciplines.

To address this issue, we provide a set of ten guidelines to raise awareness about
these issues and navigate the design and analysis of motor learning experiments (Table
1). For each of these decision steps, we discuss common pitfalls and suggest
recommendations, citing examples from both classic and recent studies of motor learning.
Although several of these factors have been emphasized in prior work -5, the goal of this
article is to synthesize this tacit knowledge to provide a step-by-step guide through the
entire process from task selection to data analysis and interpretation. The paper is
primarily intended for early-career researchers who are new to the field, but we hope that
the issues raised can also serve as a starting point for discussions during interdisciplinary
collaborations.
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Table 1. Summary of the ten guidelines for motor learning studies. Each step in the process is listed with associated pitfalls

and recommendations.
Pitfals | Recommendations

Task Selection

Instructions and

Feedback

Practice Duration

Groups

Sample Size

Manipulation Checks

Tests of Learning

Dependent Variable

Measure of Learning

Processing Data

Lack of generalizability to real-
world motor learning

Lack of clear instructions and
feedback could affect strategy and
outcomes

Practice duration affects the
process being studied

Practice duration affects reliability
and sensitivity

Two-group studies may not provide
a complete picture of the learning
effects and may resultin
misleading effect sizes

Low sample sizes resultin low
power and unreliable estimation of
effect sizes

Interpretations can be ambiguous
without manipulation checks

Test conditions do not always align
with learning in the task

Learning effects could be masked
when viewing short snapshots of
retention

Choice between multiple
dependent variables increases
researcher degrees of freedom

Some dependent variables do not
have desirable measurement
characteristics

Pre-tests can be problematic in
some circumstances

Gain scores are not easily
interpretable

Learning effects could be
confounded by experimental
artifacts (e.g., fatigue), processing
artifacts, and statistical artifacts

» Explicitly define what the learning

in the task entails.
Balance realism and insight
Provide clear instructions

Provide feedback consistentwith
the instructions and maintain
motivation

Characterize a full learning curve
for the task

Perform extensive initial
characterization with multiple
groups

Add realistic control groups
Provide sample size justification

Provide appropriate manipulation
checks

Ensure that test conditions are
aligned with the definition of what
the learning in the task involves

Increase the number of trials in the
retention tests

Check if the dependent variable
shows conceptual alignment, good
measurement properties and
mechanistic insight.

Minimize baseline imbalances by
appropriate strategies

Exercise caution when baseline
differences are inherent

Pre-register measures of learning

and check for robustness of
results with multiple measures

Add control experiments to reject
experimental artifacts

Provide robustness checks for
statistical artifacts

Provide open data and enhance
transparency in visualization
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STEP 0: DEFINING WHAT MOTOR LEARNING IS

One of the main barriers in motor learning research is that there is no universally
accepted definition of motor learning across all disciplines and contexts 67. Even at the
behavioral level, definitions of learning have focused on several aspects including
improvements in outcome, consistency, stability, persistence, adaptability, and
automaticity 8. Other definitions of motor learning have emphasized adaptation and
reorganization of existing skills 9, changes in coordination dynamics 10, speed-accuracy
tradeoffs 1, information pick up 2 and even decision making 3. While there are certainly
common characteristics across many definitions that fall under the classic view of learning
as a “relatively permanent change in behavior” 4, it is important to note that the specific
definition of motor learning adopted can have a major influence on many of the guidelines
suggested here. For example, the question of how to measure learning can depend on
whether learning is viewed as an improvement in the practiced skill (where learning would
be characterized by a retention test with the same task goal and same practice conditions),
an improvement in the adaptability or flexibility 14 (where learning would be characterized in
terms of achieving the same task goal under different conditions), a general change in the
movement capability (where learning would be characterized by a transfer test to examine
the generality to other task goals that were not practiced), or a change in the underlying
movement repertoire (where learning would be characterized by a ‘scanning’ paradigm
examining the stability of different coordination patterns '5). In this paper, we focus on
general guidelines that we believe apply to many motor learning contexts, but these
guidelines always have to be considered within the context of how motor learning is
defined in that specific context.

STEP 1: TASK SELECTION

The task has a critical role in motor learning and is perhaps the biggest source of
interdisciplinary differences. Given the criticism of ‘applied research’ for resulting in
“disconnected pockets of data” that are unsuitable for the development of general scientific
principles 6, the goal in lab-based settings has been to use somewhat artificial tasks to
isolate specific aspects of motor learning (e.g., sequence learning, reducing variability).
Therefore, choosing a task in lab settings needs to address two issues: (i) provide the
feasibility to do experiments (e.g., tasks that can be learned in relatively short periods of
time) and (i) provide insight that is generalizable to real-world tasks.

Pitfalls

The use of ‘simple’ motor tasks can threaten generalizability to ‘real-world’” motor
learning 15. While it is not trivial to define apriori objective criteria on what makes a task
simple, they can be roughly characterized as: (i) tasks where learning primarily involves
figuring out the task goal and/or using existing movement capabilities to solve the task
(rather than requiring a true change in the movement capability), and (ii) tasks with a lack
of ‘intrinsic information’, which makes it difficult for a learner to judge their performance on
their own, without feedback from the experimenter 17.18, While it is likely difficult to identify
these characteristics directly, they can be examined in the data, in which learning of such
simple tasks is likely to be reflected as: (i) a sudden and very rapid improvement in
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performance over a few trials of practice > with very little subsequent improvement
(indicating that participants ‘figured out’ what the task goal was with no change required in
movement capability), and (ii) a dramatic drop-off in performance when conditions are
slightly changed (e.g., when performing the task after a delay or when withholding
augmented feedback). For example, early work examining the role of knowledge of results
has been criticized for using such tasks (e.g., draw a line of length 50 cm) where the
learner does not have sufficient intrinsic sources of information, and therefore, has to rely
on augmented feedback to even understand what the task goal is 8.

Recommendations

Explicitly define what the “learning” in the task entails. In view of improving
our understanding of how studies from an experimental paradigm relate to others
(including real-world learning), it is critical to answer two questions: (i) what is the problem
that the learner has to solve to achieve good performance in the task, (i) how much of this
problem is known to the learner prior to learning (versus being discoverable only through
practice)? For example, while most studies provide a ‘score’ that participants have to
maximize or minimize, there may be important differences in how much participants ‘know’
about the task. In some cases, participants may know exactly how they need to improve
this score (e.g., landing the ball closer to the target will result in higher scores). On the
other hand, in typical reinforcement learning paradigms, the learner has no explicit
knowledge of what results in higher scores and has to discover this relation through trial-
and-error exploration. Making these types of distinctions explicit in the task description
may be a critical step in separating out different types of learning studies, which potentially
can lead to a better understanding of how findings from particular experimental paradigms
generalize to other contexts.

Balance ‘realism’ and ‘insight’. Given the inherent tradeoff between ecological
validity and experimental control, it might be useful to consider tasks that resemble real-
world contexts while also providing sufficient richness of measurement beyond just the
task outcome 1. For example, Haar and colleagues 20 devised a real-world pool task that
measured the outcome (e.g., directional error), but also allowed for accurate measurement
of whole-body kinematics and EEG. This is not to imply that ‘more variables are better’, but
that well-justified dependent variables that go beyond the task outcome can provide insight
into learning (also see Step 8). In addition, using tasks that allow for ‘multiple pathways’ to
learn the task also allows insights into “how” learning occurred. For example, Sternad and
colleagues devised a throwing task 2122 where the main goal for participants is to reduce
the variability of the task outcome, but the task was designed in a way that this
improvement in variability could be achieved in multiple ways - decreasing noise, moving
to more error-tolerant workspaces, or covarying movement parameters. The advantage of
such tasks is that one can go beyond typical task outcome measures (where learning is
almost certainly bound to have an effect) and look at the effects of learning at other levels
of analysis (where the results may be more informative because it may not be easy to
predict what the effects of learning may be) and the associated search strategies in the
perceptual-motor workspace 2324,

STEP 2: INSTRUCTIONS AND FEEDBACK

Once the task is defined, the next step is to decide on the instructions to the
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participant and the associated feedback that is given to the participant. As mentioned in
Step 1, one of the important aspects of the instruction is how they define the task goal for
the participants. In addition to instructions, participants also typically receive some
feedback during the task (usually provided using a score). In our view, while there has
been an extensive body of literature on the effects of instructions or feedback — for e.g.,
manipulating attentional focus 25, given the powerful ways that instructions and feedback
can channel learning, they should be considered carefully even in tasks where they are not
the primary experimental manipulation.

Pitfalls

First, in the absence of clear unambiguous instructions, the learning problem may
be “ill-defined” as participants may perceive the task goal differently from the way the
experimenter intends it. For example, an instruction to “move as quickly as possible” could
be interpreted as minimizing reaction time, minimizing movement time or minimizing the
total response time.

Second, instructions or feedback may qualitatively change the strategy adopted to
solve the task, especially when there are multiple, competing demands (e.g., “as fast and
accurate as possible®). For example, in a speed-accuracy tradeoff experiment, even when
other experimental parameters were closely matched, performance strategies under “time
minimization” instructions (i.e., reaching to a target as quickly as possible) were
qualitatively different from performance under temporal accuracy constraints (i.e., reaching
a target as accurately as possible in a specified time) 26. Similarly, feedback can also act to
serve as a task constraint. For example, allowing for greater ‘tolerance’ in temporal
precision changed the nature of the speed-accuracy function 27. Given the recent emphasis
on measuring speed-accuracy tradeoff functions as a measure of skill '*, these examples
highlight the critical role of instructions and feedback in motor learning experiments.

Recommendations

Provide clear instructions. Clear instructions reduce uncertainty about the task
goal and reduce between-subject variation in interpreting the tasks (which in turn reduces
the need to eliminate ‘outliers’). Adding a ‘familiarization’ block at the start of the
experiment can also help provide a quick real-time check as to whether participants indeed
understood the instructions.

Provide feedback consistent with the instructions. The feedback to
participants should closely align with the instructions. This not only ensures that
participants understand their performance but as seen later in point 8, this also allows for
clearly defining dependent variables that can be used to track participants’ compliance to
the instructions. For example, in a steering task 28, the task instructions were to move a
cursor from the start to finish as fast as possible, while staying within the boundaries of a
channel. The feedback, therefore, involved a score that involved two terms - one that
penalized the overall time and one that penalized the time outside the channel. By varying
the weights of individual terms in an integrated score, it is possible to channel participants
toward different strategies 2°.

In addition to its informational role, feedback also has a motivational role 4 - so it
may also be helpful to think of ways to keep participants engaged in the task over long
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periods of time- e.g., using visual or sound effects to indicate good and bad performance 4,
or providing a summary score at the end of a block of trials.

STEP 3: PRACTICE DURATION

Given the focus on ‘simple’ tasks, a large majority of motor learning studies tend to
rely on a single session of practice, with possibly the addition of a 24-h retention test 4.
However, justifications for such practice durations are rarely specified explicitly. It is
perhaps not surprising then that in addition to the type of tasks studied, these extremely
short practice durations are another key barrier in translating findings from motor learning
experiments to real-world learning or rehabilitation.

Pitfalls

First, from a theoretical standpoint, when the duration of practice is not clearly
justified, it becomes unclear what process is being studied. Several theories have
proposed that learning occurs in stages, with more ‘cognitive’ processes being engaged
early on, followed by more automatic performance later in learning 630, Second, from a
measurement standpoint, the duration of practice impacts the reliability and sensitivity of
the dependent variable. When practice durations are short, both within- 3! and between-
subject %2 variability tends to be high, making measurements less reliable (although these
factors depend to a large degree on the task and the stage of learning 33). When practice
durations are long, performance can reach a plateau, making the dependent variable less
sensitive to detecting changes between different groups.

Recommendations

Characterize a full learning curve for the task. Rather than rely on preliminary
pilot data, we suggest that initial experiments with a new paradigm involve learning with a
relatively extended period of time so that the full learning curve can be characterized. The
actual duration of this period will depend on the task, with the goal of trying to estimate
when the performance reaches a relative plateau. For example, Reis et al. 1" examined the
effect of brain stimulation on a speed accuracy task over 5 days, with retention periods up
to 3 months. This type of initial characterization of tasks has three advantages - (i) it allows
subsequent studies to potentially run shorter experiments depending on the research
question, (ii) it can be helpful in determining if ‘non-significant difference’ between groups
are due to performance plateaus, and (iii) it also allows for a more natural interpretation of
effect sizes in terms of ‘practice time saved’. For example, Day et al. 34 determined that
abbreviated exposures to split-belt walking had the same effect as 4 days of practice at the
task. This type of ‘natural effect size’ may be more intuitive in conveying the magnitude of
effects for motor learning studies than relying on default standardized effect sizes like
Cohen’s d 3536,

STEP 4: GROUPS

Most motor learning experiments that attempt to examine the effect of training
paradigms rely on ‘between-group’ manipulations since it is reasonable to assume that
motor learning cannot be ‘washed out'. In this regard, motor learning studies have relied
heavily on ‘two group’ comparisons - e.g., studies on variable practice typically have a
‘constant’ group and a ‘variable group’ 37. However, defining these experimental groups is
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critical in determining the insights that can be gained.

Pitfalls

The main pitfall of ‘two-group’ studies is that most manipulations involve a
continuous variable that has non-monotonic effects on learning - i.e., there is an optimal
parameter value or challenge point 3¢ at which learning effects are maximal, and the
learning effects decrease on either side of this optimal value. Therefore, construction of
two groups based on parameter values (e.g., selecting a low variability and high variability
group) can yield different results depending on where the parameter values of these
groups lie relative to the optimal value 2. Second, even in cases where the groups are
based on a variable that is categorical, two-group studies typically tend to be designed in a
way to ‘exaggerate’ differences between groups 39, which can create misleading effect
sizes and limit generalizability and real-world relevance.

Recommendations

Characterize ‘dose-response curves’ across multiple parameter values. Initial
studies should characterize the dose-response across a reasonable range of parameter
values to detect the presence of any optimal values. For example, an early study on the
effect of distributed practice used five groups with inter-trial intervals ranging from 0 to 60
seconds and found no non-monotonic relation on performance or retention 40, On the other
hand, a study on summary feedback used multiple groups and found a non-monotonic
change - i.e., both too frequent and too infrequent feedback had similar effects on learning
41, While the actual research question is always critical in deciding how many groups are
required, this type of extensive initial characterization with groups can help justify the
choice of the number of groups (and the specific parameter values chosen for these
groups) for subsequent studies using the same tasks.

Add realistic control groups. Even when a variable is clearly categorical,
adding of ‘realistic’ control groups that represent reasonable choices for learning the task
can provide greater clarity on the effect. A recent review characterizes in detail the
different types of control groups that can be used in motor learning research 42. One
particularly important factor that adds a realistic control group in the context of motor
learning is ‘practice specificity’ - i.e., when practice conditions match the test conditions
4344, For example, when examining the effects of variability on learning and consolidation,
Wymbs et al. 45 used a number of control groups (including adding a ‘practice specificity’
group where no variability was added) to fully tease out the effect of adding variability.
These types of data are not only useful for future studies, but also change the focus of
motor learning studies from “whether” a particular type of practice matters to motor
learning (which is almost always a “yes” in our view based on the idea that the ‘nil’
hypothesis of any intervention having zero effect is almost never true 46) to “how much” it
matters (which is much more informative).

STEP 5: SAMPLE SIZE

Sample size is one of the most important factors in experimental design. Most
motor learning experiments tend to be small (typical sample sizes of 10-16/group) 247 likely
indicating that this has become a heuristic determination rather than a justified
determination. A difficulty with performing typical justifications with apriori power analysis is

Ranganathan,
Lee, Krishnan

| 2022 | VOL.16 | N.2 | https://doi.org/10.20338/bjmb.v16i2.283

118 of 133



Brazilian Journal of Motor Behavior

Y BIMB Special issue:

The role of practice in motor learning

that tasks tend to vary between studies 2, making it difficult to extract effect sizes from prior
work.

Pitfalls

The pitfalls of low sample sizes have been extensively covered in other literature
4849 - 50 we just highlight two main points: (i) low sample sizes have low power, which can
lead to missing true effects, and (ii) a literature with low powered studies means that
published effects will tend to have inflated effect sizes 8.

Recommendations

Justify sample size. Sample size justification statements are critical for judging
the informational value of a study. Other than apriori power analysis, these can include
other types of justifications such as accuracy or resource constraints %0. McKay et al. 51
provide an example of sample size justification where the sample size was based on a
prior study, with adjustments to the p-value for sequential analysis. In light of steps 3 and 4
that raise the need for initial characterization of long-term studies with multiple groups, it is
critical that these studies also have sufficient sample sizes for reliable estimation of effect
sizes.

STEP 6: MANIPULATION CHECKS

Manipulation checks refer to tests that examine if the designed intervention had
the desired effect on the participant. While certain types of interventions do not require
such checks since they are directly under the control of the experimenter (e.g., the inter-
trial interval), other variables are designed to elicit specific responses during practice (for
e.g., increasing motor variability using force perturbations). Often, with the emphasis that
practice during training may not be reflective of ‘true’ learning (i.e., the learning-
performance distinction) 2, there is sometimes a tendency in motor learning studies to only
focus on the end-result without interpreting if an intervention had the desired effect ‘during’
practice.

Pitfalls

Without a manipulation check, interpretations of results can be ambiguous. For
example, a study on contextual interference (typically manipulated using a blocked vs.
random schedule) needs a manipulation check that the random schedule indeed created
more interference during practice. This manipulation check is usually done by examining if
there were higher errors during practice for the random group. Without this check, it is
difficult to disambiguate a true ‘null result’ (i.e., contextual interference did not have a
significant influence on learning) from a ‘failed manipulation’ (i.e., the experimenter's
attempt at introducing contextual interference was not successful).

Recommendations

Provide manipulation checks. Manipulation checks can vary depending on the
type of study. In some cases, manipulation checks can be done using variables that are
already directly recorded during data collection. For example, Cardis et al. 53 showed
perturbations of the null and task space increased variability in these dimensions. In other
cases, there may be the need for separate manipulation checks - e.g., Grand et al. 54 used
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both the intrinsic motivation inventory and electroencephalography to examine if the
manipulation resulted in increased motivation. When manipulation checks ‘fail’, it might be
critical to consider all aspects of experimental design mentioned in Steps 1-5 (the
instructions to the participant, the amount of practice, etc.) as well as the measurement
resolution of the variable being used for the manipulation check. However, one caveat
when introducing these manipulation checks is to also minimize the possibility that the
manipulation checks themselves change the behavior of the participant 9.

STEP 7: TESTS OF LEARNING

Perhaps one of the most important insights in motor learning is the ‘learning-
performance’ distinction - i.e., that changes in performance during practice are not always
indicative of learning 352, This insight has resulted in the use of separate ‘tests’ of learning-
e.g., delayed retention tests or transfer tests as conditions for measuring ‘true’ learning.
This raises a critical question as to what test is most applicable for measuring learning.

Pitfalls

First, there has been an overreliance on the “24h No-KR test’ as the ‘only’
acceptable condition for measuring learning 7. While the 24h No-KR condition can be a
good indicator of learning in some cases, both the “24h” and the “No-KR” portions of the
test can sometimes be problematic. First, the 24h period is intended for dissipating
temporary effects, but whether this makes it a ‘true’ test of learning may depend to a large
degree on the task and the timescale of learning involved. For example, rehabilitation
paradigms that attempt to change movement capacity over several weeks typically involve
follow-up tests in timescales of weeks or months. Second, the No-KR part of the test is
intended to provide a ‘stable’ performance by minimizing possibilities for learning “during”
the test. However, in many cases, because information about performance is available
naturally through sensory information outside of “augmented feedback” provided by the
experimenter, trying to prevent learning during the test has led to artificial measures such
as ‘blindfolding’ the individual and/or using headphones playing white noise. In such cases,
the dramatic change in feedback information may induce the learner to adopt qualitatively
different strategies during the test, which are unrelated to the original learning.

Second, these tests of learning are typically designed to measure only a
‘snapshot’ of the process (usually as short as 10 trials). This means that the snapshot itself
can be unrepresentative of true learning because it can include temporary effects such as
warm-up decrement, especially when administered after a time delay, or when there is a
sudden change in the context 17.

Recommendations

Justify test conditions. We recommend that the test conditions are aligned with
the definition of what the learning in the task involves (mentioned in Step 1) and what
aspects of information are considered ‘part of the task’. For example, Lokesh and
Ranganathan 2 used a haptic feedback study where the test involved removal of haptic
feedback, but retained concurrent visual information of the cursor because this visual
information was considered part of the task. Similarly, the timeline of such a test can be
aligned with respect to the total learning time and other task factors such as fatigue. For
example, a 24 h retention test may be justifiable for tasks with a one-day practice duration,
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but longer timescales of learning may potentially require longer time intervals. For
example, in a balancing task that was practiced over 6 weeks, the retention test was made
3 months after the last practice block 5.

Make tests more than a single ‘snapshot’. Including a retention test with a
relatively large number of trials can provide the ability to separate out temporary and
relatively permanent effects. For example, studies of massed and distributed practice show
that while there are effects in the first few trials of the next day, these differences are
quickly eliminated within the next few trials of practice 7. A further alternative is to consider
a series of retention periods - for example, Reis et al. 1" measured retention at 5 time
points from 3 days until approximately 3 months after the last practice. This type of data
could characterize retention over time, which is critical for studies that examine learning in
the context of a change in the movement capability. In addition to testing over time,
transfer tests 15859, which involve testing in conditions that were not originally practiced,
can also provide a richer description of learning. However, a critical piece in transfer tests
is determining the appropriate transfer conditions so that it is clear how these transfer
conditions relate to the originally practiced task. van Rossum 60 emphasizes the use of task
analysis as a means of designing transfer tests so that the results from transfer tests can
yield useful information about what was learned. For example, in sequential timing tasks,
transfer tests with the same or different relative timing patterns as those during practice
were used as a critical test to distinguish whether the benefits of variable practice were
due to the formation of motor schemata or contextual interference effects 6162,

STEP 8: DEPENDENT VARIABLES

Dependent variables in motor learning studies have to accomplish two main goals
- (i) the variable sufficiently captures the improvement in task performance, and (ii) it
provides ‘insight’ into how improvements are occurring. Part of the challenge in defining
these variables is that motor performance is multidimensional and there is usually no
unambiguous choice of variables. For example, in a golf putting task, the dependent
variables used to measure learning could be (i) the percent of putts made, (ii) the number
of points scored in a scheme defined based on the distance from the hole (e.g., 10 points
for making the putt), (iii) the absolute error in terms of the distance from the target, or (iv)
the variable error in terms of the consistency of the putts. In some cases, the dependent
variable may even be derived ‘post hoc’ at the data analysis stage - for e.g., the number of
putts that were within 1 inch of the hole, or a score that weights the absolute error in the
putting task by the time taken to prepare for the putt.

Pitfalls

First, the choice between several dependent variables (especially when they are
derived post hoc) can inflate researcher degrees of freedom 3. For example, in the golf
putting task described above, the choice between many possible dependent variables can
result in a situation where some variables show statistically significant differences but
others do not. If undisclosed, such flexibility in the choice of dependent variables can lead
to a large increase in the false positive rate 3.

Second, some dependent variables do not have desirable characteristics either
from a measurement standpoint or a mechanistic standpoint. For example, from a
measurement standpoint, measures such as number of putts made can be insensitive to
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changes in the magnitude of errors. In terms of mechanistic insight, some dependent
variables may not provide sufficient information about the performance. For example, in 2D
aiming tasks, using only a scoring system (or radial error) may mask important changes in
terms of changes in bias or variability 6465,

Recommendations

Check if the dependent variable shows conceptual alignment. From a
conceptual standpoint, the dependent variable should closely align with the instructions
and feedback to the participant. As Newell 8 states ‘it seems unreasonable to evaluate
the effect of an independent variable primarily through criteria different from that originally
stressed to the subject” Moreover, alignment with instructions and feedback reduces
researcher degrees of freedom by minimizing the potential for ‘post hoc’ derived
dependent variables. For example, in a gait tracking task which involved the participants to
match a target template with their foot, Krishnan et al. " define the error measure only in
the spatial dimension using an area metric (as opposed to say using RMSE, which would
need to involve assuming something about the temporal component that were not part of
the instructions). In cases where the dependent variable may not be apparent immediately
from the instructions and is a combination of multiple variables (say in a task that
emphasizes both speed and accuracy), it might be ideal to pre-register this analysis so that
there is transparency about flexibility in data analysis 2.

Check if the dependent variable shows good measurement properties. From
a statistical standpoint, dependent variables should be sensitive enough to track changes
with learning. Although measures such as error rates or % success may be used in some
contexts because they have functional significance (i.e., in a real game, “near-misses” do
not count), in general they may be too coarse-grained to detect differences. While it is
desirable to have these dependent variables in real-world units (e.g., error measured in
cm), this may not always be feasible and may require other approaches. For example,
studies on the free-throw use a point-based system (e.g., 5 points for a swish) to improve
the sensitivity of the dependent variable 68. However, it is important to note that any system
developed should also be considered on a conceptual basis - i.e., if participants get scored
higher for a free throw that goes directly in the hoop compared to one that goes in after
bouncing off the rim or the backboard, this information should also be communicated to the
participant through instructions.

Check if the dependent variable provides mechanistic insight. Finally,
consider dependent variables that yield ‘insight’ into the underlying process of motor
learning. In many cases, these may be considered ‘secondary’ variables that help
delineate different processes. For example, the dependent variable in many aiming tasks
is an absolute error (AE), but this measure is a combination of constant error (CE) and
variable error (VE) . Therefore, while the AE can be the ‘primary’ dependent variable
(based on conceptual grounds that it was the instruction to the participant) 8, breaking
down the AE into secondary variables CE and VE can provide additional insight into ‘how’
participants got better. Similarly, Lee et al. 70 use movement time as the primary dependent
variable in a cursor control task, but also measure the path length to examine if increased
movement times are due to changes in movement speed (which would not change path
length) or taking more circuitous paths (which would result in increased path length).
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STEP 9: MEASURE OF LEARNING

The measure of learning used in the analysis is extremely critical, as they form the
basis for inferences drawn from the experiment. Similar to the debate about measuring
learning in many other fields, there are two distinct philosophies for measuring motor
learning - proficiency (i.e., how good is performance after practice) and growth (i.e., how
much has performance changed after practice), and a multitude of measures have been
used to quantify learning based on both approaches 7!. Proficiency-based measures
typically rely on the absolute performance level at the end of practice (e.g., on a retention
test) to measure learning. On the other hand, growth-based measures typically use a pre-
post experimental design, where the change between initial and final performance levels
are compared across groups. This change can be (i) a gain score (i.e., final performance -
initial performance), (i) a gain score that is ‘normalized’ in some way (e.g., final
performance/initial performance *100) or (iii) a post-test score or gain score that uses the
pre-test score as a covariate. In addition, the ‘rate’ of learning is often also computed as a
way to capture if one group learns faster than the other. As in the case with the choice of
dependent variable, the presence of multiple measures to assess learning can create a
challenge, as it increases researcher degrees of freedom.

Pitfalls

First, the use of ‘pre-tests’ in motor learning has been criticized on two grounds # -
(i) that pre-test scores in motor learning are unreliable because early trials at a task
generally are extremely variable and show very poor correlation with final performance,
and (ii) extending the trials in the pre-test to get a reliable measure of baseline
performance essentially provides practice at the task, thereby minimizing the room for
improvement during the actual intervention.

Second, the use of gain scores has been criticized as a learning measure 72
especially in cases where the pre-test scores are not the same across groups. For
example, since the gain scores are skewed by the initial performance level, individuals with
a lower pre-test scores could appear to have greater ‘gains’ even if their final performance
was lower or similar to an individual with higher pre-test scores 7!. This will especially be
the case in situations where the performance approaches a plateau. While normalizing the
gain score (e.g., expressed as a %) can offset some of these issues, this also has to be
treated with caution since the normalization procedure makes assumptions about the form
of the learning curve.

The problem with a gain score is even more obvious when using a ‘relative
retention’ measure (i.e., a difference score computed between the last block of practice
and the retention test). In this case, the magnitude of relative retention is heavily
dependent on performance during practice—a measure that may be affected by factors
other than learning 7'. Moreover, if groups underwent different types of intervention during
practice, the performance at the end of practice is contaminated by the effects of the
intervention itself, making it an unsuitable measure to compare learning in the two groups.

Finally, some motor learning studies use curve fitting (e.g., fitting an exponential)
as a means to quantify ‘rates’ of learning independent of performance level. While this
argument is true ‘in theory’, this relies on two major assumptions - (i) the form of the
function actually matches the form of the learning curve (i.e., if an exponential fit is made,
that the curve is actually exponential), and (i) the data have very minimal noise, and the
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function fits these data extremely well at the individual level. Without full knowledge of
these assumptions, it is difficult to interpret results from curve fitting.

Recommendations

Minimize baseline imbalances. When initial performances at baseline (i.e., the
pre-test) are similar between groups, the type of the dependent variable used in the
analysis has a minimal effect on the outcome - i.e., the use of a change score or the final
score will lead to similar conclusions. Hence, it is critical to ensure that adequate attempts
are made to minimize baseline imbalances. This can be done using three strategies - (i)
increasing sample sizes: small sample sizes are more likely to create baseline imbalances;
hence, we recommend using adequate sample sizes to ensure that the baseline
performance reflects the true group means 7374, (ii) stratifying groups based on initial
performance including treatment of outliers 75, and (iii) using an analysis of covariance
(ANCOVA) to adjust for any residual differences in baseline for estimating an unbiased
intervention effect 7677, In cases where ‘pre-test’ measurements are either not feasible or
consistent, it might be helpful just to rely on larger sample sizes and use the final test
performance as the measure of learning.

Interpret results with considerable caution when baseline performances are
different. When baseline imbalances are inherent to the research question - e.g., when
comparing age-related differences 7879 or the effects of neurological injury &, the research
question can be ‘ill-defined’ to some degree and the results have to be treated with
considerable caution since statistical techniques like ANCOVAs that account for baseline
differences can yield misleading results 8'. Instead, it might be fruitful to think about
potential experiments where ambiguity can be resolved. For example, if a particular study
shows that rates of learning in children are higher than adults (but is ambiguous because
children still perform lower in an ‘absolute’ sense relative to the adults), then by extending
the practice period, one can test in a follow-up experiment whether there is a point where
the children ‘outperform’ the adults even in terms of absolute levels of performance. This
result would help resolve the ambiguity since both absolute and rate measures would
show that the children outperformed the adults.

Pre-register learning measures and robustness checks. Again, as with the
choice of the dependent variable, an important way in improving transparency is to pre-
register the learning measures of the study and make data openly available to other
researchers. In particular, adding robustness checks (e.g., comparing learning using
multiple learning measures) to check if the outcomes change with the type of learning
measures will help improve the interpretation of the study results.

STEP 10: PROCESSING DATA

Given the fact that most motor learning data inherently involve change in
performance over time (i.e., there is no ‘stable’ performance), with significant within- and
between-subject variability, even seemingly standard data analysis procedures can
sometimes result in ‘artifacts’ that can be misleading. In addition, the effect of non-learning
related factors on performance (such as fatigue) can also pose challenges during data
analysis. Therefore, it is important to examine the effects of steps in the data analysis
pipeline.
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Pitfalls

We highlight three examples of artifacts arising in motor learning studies at
different levels within the data analysis pipeline:

Experimental artifacts. While the general ‘learning - performance distinction’ is
well recognized in the context of needing retention or transfer tests 3, many questions in
motor learning require direct analysis of performance curves - e.g. the study of ‘online’ and
‘offline’ learning that examine changes in performance ‘during’ and ‘between’ practice
sessions or even at the level of trials 8285, One phenomenon observed in these
experiments is ‘offline consolidation’ (also referred to as ‘reminiscence’ 86), where there is a
seemingly distinct improvement in performance after a rest break. However, there is a
potential for performance artifacts (e.g., effects of inhibition or fatigue) in these types of
analyses %787 and it is worth noting that these consolidation effects are typically observed
in speeded tasks (e.g., produce as many typing sequences in a given time period, or
tracking moving targets continuously).

Processing artifacts. General data processing procedures involve some type of
averaging to reduce the ‘noise’ in the data. However, relying on “averaged” data across
individuals can substantially alter some types of inferences. From a theoretical point, one
of the most well-known artifacts due to averaging is the form of the learning curve which
can differ between power-law and exponentials depending on averaging 8-, As a result,
there is potential for artifacts when estimating individual parameters based on group-
averaged data. A second type of averaging that is usually done across trials within a block
can mask temporary effects like warm-up decrement 1789 and create the illusion of a
‘discontinuity’ in the learning curve even when the learning curve is continuous &'.

Statistical artifacts. In the analysis of individual differences, ‘mathematical
coupling’ occurs when the response variable directly or indirectly contains all or a part of
the predictor variable 9'. For instance, studies evaluating initial performance to predict ‘gain
scores’ are expected to see significant associations simply due to the fact that the gain
score depends on the initial performance. Relatedly, methods that involve creating ‘post
hoc’ groups based on dichotomizing a continuous response (e.g., analyzing the difference
between high and low responders based on a median split) have been criticized from a
statistical viewpoint as creating arbitrary or illusory distinctions 9. It is especially important
to note that standard procedures used in other domains (such as repeated exposures to
examine if the ‘response’ is reliable within an individual) are not generally applicable in
motor learning since it is not possible to wash out prior learning. As a result, results from
these types of analyses must be treated with even more caution.

Recommendations

Control experiments for experimental artifacts. In cases where the analysis is
based on performance curves, the use of control experiments that can disambiguate
temporary effects of performance from learning are critical. For example, to examine if
offline learning is truly distinct from ‘recovery from inhibition/ fatigue’ effects, it might be
useful to manipulate the practice/rest interval or perturb neural activity during rest period .

Robustness checks for processing and statistical artifacts. The impact of
specific procedures can also be examined by showing how results are impacted by
changes in specific parameter choices. For example, when using a parameter based on a
group-averaged curve fit, Reis et al. 1" show sensitivity analyses to changes in this
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parameter. Using simulated data with known properties can also be a critical tool to check
the impact of a particular processing procedure. For example, Smeets and Louw % showed
how the decomposition of variability can be sensitive to the choice of variables used in
defining the task.

Providing transparent visualization and open data. Finally, it may be difficult (if
not impossible) for one paper to identify all possible artifacts and/or perform all possible
robustness checks. Therefore, providing transparent visualizations that go beyond simple
bar graphs (e.g., showing individual performance curves with minimal or no averaging) %
and using open science practices like publicly sharing analysis and data can be extremely
critical in improving the quality of motor learning science %.

CONCLUSION

Overall, the pitfalls and recommendations highlight two broad themes in motor
learning that require attention. The first theme relates to the relevance of motor learning
studies to the real world. As highlighted earlier, while we agree that definitions of motor
learning will vary depending on context and discipline, it is perhaps also important to take a
pragmatic perspective that in some way, the ultimate goal of motor learning experiments is
to be able to apply this knowledge to the real world. In this regard, while broad ‘principles’
of motor learning are often mentioned in the context of fields like rehabilitation 697, it is
difficult to gauge the actual impact of most current motor learning paradigms on these
fields. For example, a recent review of stroke rehabilitation literature found that only 8% of
studies even mention ‘basic science’ studies (motor learning experiments in animals or
humans) in the Introduction %. We hope that by raising awareness of several issues that
hamper real-world relevance (choice of task, length of practice duration, etc.), the
guidelines spur researchers to move outside ‘traditional’ paradigms in their own subfield
with the goal of increasing relevance.

A second theme that emerges from the guidelines is the need for initiatives that
are not just at the level of a single investigator or a lab but at the level of a whole research
community. As highlighted in the context of developing ‘model task paradigms 2, many of
the proposed recommendations (larger sample sizes, more groups, increasing practice
duration, preregistration, sharing open data) require a greater investment of time and effort
compared to current publication practices. As a result, we hope that the guidelines spur
discussion not only about larger-scale collaborative efforts, but also the need for
recognition of such efforts at other levels such as by journal editorial boards, hiring, and
promotion and tenure committees.
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