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ABSTRACT: Confined ionic liquids in hydrophilic porous media ~ PAN-b-PMMA  Polymer Fiber ~ Porous Carbon Fiber [ ¢ /=
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have disrupted lattices and can be divided into two layers: An b D ,/’ o
immobile ion layer adheres to the pore surfaces, and an inner layer ¥ ! ’._, < ',\
s s . R r _B
exhibits faster mobility than the bulk. In this work, we report the - = X >
first study of ionic liquids confined in block copolymer-based ‘L\ ~ (EAG

porous carbon fibers (PCFs) synthesized from polyacrylonitrile- 7x faster ion diffusion!
block-polymethyl methacrylate (PAN-b-PMMA). The PCFs

contain a network of unimodal mesopores of 13.6 nm in diameter and contain more hydrophilic surface functional groups than
previously studied porous carbon. Elastic neutron scattering shows no freezing point for 1-butyl-3-methylimidazolium
tetrafluoroborate ([BMIM]BEF,) confined in PCFs down to 20 K. Quasi-elastic neutron scattering (QENS) is used to measure
the diffusion of [BMIM]BF, confined in PCFs, which, surprisingly, is 7-fold faster than in the bulk. The unprecedentedly high ion
diftusion remarks that PCFs hold exceptional potential for use in electrochemical catalysis, energy conversion, and storage.
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1. INTRODUCTION the confinement effect diminishes, and the ion diffusion
behavior approximates to that in the bulk. Therefore, the pore
size must be small enough to disrupt the lattice structure but
large enough to hold as many ions as possible to get the most
benefit from confinement of the ions. Moreover, the pores
should be as uniform and interconnected as possible to
facilitate ion transport.

Block copolymer-based porous carbon fibers (PCFs) are
emerging materials with unique hierarchical structures that
allow easy accessibility to their large internal surface areas
through their interconnected pores.">~'> Similar to nonporous
carbon fibers, the interwoven fibers form a mat with abundant
interfiber spaces as macropores as well as micropores
intrinsically defined by the interlayer distances of graphitic
carbon. The effects of the confinement remain important for
ionic liquid ordering.'® Unique to PCFs, however, is a
unimodal interconnected mesoporous network in each
individual fiber, which acts as a network of channels to deliver
ions to the internal micropores. Ion mobility in micropores is
limited due to the lack of space for ion movement ([BMIM]*
diameter, 3.8—5.8 A),'” but the mesopores provide signifi-
cantly more space and allow for uninhibited ion diffusion.'®

Fast diffusion is crucial for ions, molecules, and other chemical
species to transport through materials such as polymers,"”
metal—organic frameworks, and covalent organic frameworks®
and to participate in fast-kinetics electrochemical processes
(e.g, electrochemical reactions and diffusion-limited charging/
discharging processes).”” Room-temperature ionic liquids
(RTIL) are attractive electrolytes because of their high
stability."® Their strongly attractive intermolecular forces,
however, reduce their diffusion and limit their use in diffusion-
controlled processes.”

Frustrated by mismatched cation and anion sizes, RTIL form
a weak lattice structure, allowin§ the ions to exist as liquids and
diffuse at room temperature.'’ Nevertheless, compared with
aqueous systems, the diffusion of RTIL is orders of magnitude
slower. If the lattice structure is disrupted, the ion diffusion
properties improve.'' Therefore, nanopore-induced confine-
ment is an effective method to increase ion mobility because it
further weakens the lattice structure.'” Toward confining ions,
both pore size and interfacial interactions play a significant
role. Too strong interactions between the ions and micropore
surfaces lead to immobility of the former, forming a fixed
surface ion layer that fills the whole pore. Given slightly larger
pores, which accommodate more ion layers, the ions toward
the center move independently of the fixed surface ion layer,
decoupling them from the typical ionic liquid lattice. In
general, pores of larger sizes can fit more ion layers in the
centers, extending the effect of the disrupted ion lattice to
improve the ion mobility. However, if the pore size is too large,
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The interconnected, hierarchical micro-, meso-, and macro-
pores within PCFs facilitate ion diffusion and show distinct ion
diffusion characteristics compared to other porous carbon
materials."” ™' The extra pore space is especially important for
electrochemical applications, where ions in the fixed surface
layer are mostly immobile, and the space away from the pore
walls }Z)revents clogging of the pores with the immobile ion
layer.”> Moreover, defined by the block copolymer molecular
weight, the tunable mesopores offer sufficient space to hold
non-surface layer ions, but are tight enough to disrupt the ionic
lattice structure. Therefore, we hypothesize that the block
copolymer-defined mesoporous structures will provide an
exceptional porous network for enhanced ion diffusion.

To test this hypothesis, we synthesized block copolymer-
based porous carbon fibers from polyacrylonitrile-block-
polymethyl methacrylate (PAN-b-PMMA) and investigated
the diffusion within. To quantify the ultimate capability of
porous carbon fibers for ion diffusion, we chose a RTIL system
of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-
BF,). Self-diffusion of the [BMIM] cation both in the bulk and
confined in porous carbon fibers was measured using quasi-
elastic neutron scattering (QENS). Diffusion coefficients were
compared to the literature for [BMIM] confined in porous
media, and the block copolymer-based porous carbon fibers
showed 7-fold faster ion diffusion than that in the bulk.

2. RESULTS AND DISCUSSION

Porous carbon fibers were synthesized according to an
established method in our previous report (Figure la and
Figure S1)."’ Briefly, PMMA was synthesized via reversible
addition-fragmentation chain-transfer (RAFT) polymerization
using cumyl dithiobenzoate (CDB) as the chain transfer agent.
The purified PMMA (65.7 kDa, D = 1.08) was characterized
by size exclusion chromatography (SEC) with both dynamic
light scattering and refractive index detectors (Figure S2).

PAN-b-PMMA
(@) .
m
— —
microphase
separation

H o) electrospin
N\

Figure 1. (a) Schematic illustration of the synthesis of PCFs from
PAN-b-PMMA. (b) SEM image of a porous carbon fiber mat. (c)
Cross-sectional SEM shows the uniform mesopores within each fiber.
(d) TEM image illustrates internal porosity and interconnectivity of
the porous network inside the fibers.

Then, the block copolymer was synthesized by chain extension
of CDB-terminated PMMA using acrylonitrile. The resulting
PAN-b-PMMA (136.7 kDa, B = 1.12) was purified and
characterized by SEC (Figure S2) and 'H NMR (Figure S3).
Thermogravimetric analysis (TGA) in nitrogen showed a
polymer char yield of 32% at 600 °C, and TGA simulating the
fiber synthesis conditions produced a char yield of 31% (Figure
S4). PAN-b-PMMA was electrospun into polymer fibers, which
were oxidized at 280 °C for 8 h and then pyrolyzed at 800 °C
for 1 h into porous carbon fibers. X-ray photoelectron
spectroscopy (XPS) revealed the composition of the carbon
fibers, which included 10.2% N and 4.1% O (Figure SS).
Scanning electron micrography (SEM) showed the block
copolymer-based porous carbon fiber mat possessed abundant
macropores in between the fibers (Figure 1b). Within each
fiber were interconnected mesopores, as evidenced by the
cross-sectional SEM and TEM micrographs (Figure 1c,d). The
porosity and general interconnectivity of the pores (Figure 1d)
suggested a large easily accessible internal pore volume in
PCFs.

It is well known that ionic liquids behave differently in
confined environments, and QENS is incapable of differ-
entiating between the confined and unconfined ion liquids. In
other words, when a porous material is fully immersed in an
ionic liquid, diffusion-controlled processes are measured as a
combination of diffusion outside the material (non-confined)
and inside the internal pores (confined). Therefore, a high
volume of confined ionic liquid is required to maximize the
signal of confined ion diffusion. Porous carbon fibers have high
internal volumes within their mesoporous networks and thus
are ideal for QENS measurement of ion diffusion under
confinement. However, it is crucial to leave macropores void
and fill only the mesopores and micropores with ions, properly
confining the ionic liquid. Because macropores are generally
too large to disrupt the lattice structure of an jonic liquid
significantly, any ions in the macropores behave as if they are
in bulk. To prepare for QENS measurement, we filled only the
meso- and micropores with the ionic liquid using vacuum
infiltration®** by suspending PCFs in a solution of [BMIM]-
BF, in acetonitrile (0.015 mg/mL). The suspension was stirred
for 3 h at room temperature. Afterward, acetonitrile was
removed by heating PCFs in an oven at 80 °C under a vacuum
for 12 h.

Physisorption tests of both N, at 77.4 K and CO, at 2732 K
(Figure 2a,b) were performed before and after loading with
[BMIM]BF, to confirm the occupation of the meso- and
micropores. After loading [BMIM]BE,, the N,-sorbed surface
area decreased from 404 + 1 to 76 + 1 m?/g, as determined
using the Brunauer—Emmett—Teller (BET) method. Based on
non-local density functional theory (DFT), pore size
distributions exhibited predominant micropore sizes of 0.55,
0.86, and 1.23 nm, as well as a mesopore peak at ~13.6 nm
(Figure 2c). Notably, all meso- and micropore sizes remained
unchanged, but the total volumes decreased by ~48.5%. The
loading of the ionic liquid was not uniform throughout the
pores because only about half of the pore volume was filled,
but none of the neutron scattering data rely on uniformity of
the ionic liquid. The neutron beam size is on the order of 10
cm? in area, and the neutron scattering data is only collected
for neutrons that are scattered off of hydrogen atoms, negating
any impact that may arise from non-uniformity. Physisorption
relies on the accessibility of gas molecules to the pore surfaces.
The reduced surface area and pore volume, in combination
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Figure 2. Representative (a) N, and (b) CO, physisorption isotherms (n = 1) before and after loading [BMIM]BF, into the porous carbon fibers.
The reduced adsorbed quantities confirm the loading of the ionic liquid in the fibers. (c) Pore size distributions show that the ionic liquid occupied
the pore volumes but did not change the pore sizes. (d) Physisorption suggests that [BMIM]BF, filled the pores as plugs (left) rather than coatings

on the walls (right).
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Figure 3. (a) Elastic scattering spectra of porous carbon fibers (n = 1) with and without [BMIM]BF,. The enhanced elastic scattering intensity
confirms that [BMIM]BF, was loaded into the pores. The lack of a thermal transition corresponding to the melting of [BMIM]BE, suggests the
confinement of the ionic liquid in the pores. (b) Representative QENS spectra (collected for 3 h) of [BMIM]BF, in the bulk and confined within
the porous carbon fibers at Q = 0.7 A™" with normalized maximum intensity (n = 1). (c) Extraction of HWHM at each Q allows for the
determination of the Q-dependence of HWHM. The Q-dependence of HWHM allows for the calculation of the diffusion coefficient of the
[BMIM] cation. Error bars in (a) represent one standard deviation. When not visible (in (b) and (c)), the error bars are within the symbols. The
total number of neutrons detected per sample (n) varies between 3.5 X 10® and 5.2 X 10°.

with the unchanged pore size, suggest that the ionic liquid
blocked some sorption sites. The ionic liquid likely formed
plugs in the pore rather than coatings on the wall (Figure 2d),
which would lead to a reduction in the pore sizes. If the
adsorbate (i.e, N, and CO,) is soluble in the ionic liquid, the
physisorption will give a falsely large surface area because the
adsorbate is dissolved in the liquid rather than adsorbed on the
pore surfaces. Considering the low solubility of N, in
[BMIM]BF,, similar to that in [BMIM]PF,” the gas

36982

dissolution effect is unlikely to affect the N, results.
Physisorption of CO, showed the same trend, and thus the
effect of CO, solubility was also negligible. Regardless, the
physisorption serves as a qualitative means for confirming the
presence of the ionic liquid in the fibers.

Relying on the high incoherent scattering cross section of
hydrogen atoms,”* quasi-elastic neutron scattering (QENS) is
the technique of choice to explore the dynamics in systems
that contain hydrogen atoms.”””® Since the cation of
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[BMIM]BF, is rich in hydrogen atoms, the dynamics of the
bulk and PCF-confined BMIM ions could be measured using
QENS. First, temperature-dependent energy-resolved elastic
scans were conducted using high-flux backscattering spec-
trometer”” on the confined [BMIM]BF, (Figure 3a). The
elastic intensity of the confined ionic liquid was significantly
higher at 10 K compared to the bare PCF matrix, suggesting
the presence of the ionic liquid in the pores (in agreement with
the physisorption data). [BMIM]BF, melts at 198 K, and at
this temperature, the elastic intensity would show a step
corresponding to a thermal phase transition.’””" The absence
of a step in all elastic scattering spectra collected for
[BMIM]BF, in the fibers, however, confirmed the confinement
of [BMIM]BF, within the pores and the disruption of the ionic
liquid’s lattice structure.”> Additionally, the absence of water
and acetonitrile in [BMIM]BF, inside the pores was confirmed
by the lack of any significant step at 273 K (water’s freezing
point) or 228 K (acetonitrile’s freezing point). Figure 3 (main
panel) shows the representative quasi-elastic spectra measured
using backscattering silicon spectrometer’’ and the corre-
sponding model fits (See the SI for details) of the bulk and
confined [BMIM]BEF,, together with the instrument resolution.
Even though the spectrum collected from the bulk [BMIM]-
BF, appeared to exhibit more pronounced QENS broadening
than that for the confined [BMIM]BF,, the data analysis (using
eq S1, SI) demonstrates that the mobile ions in the confined
ionic liquid (those that contributed to the QENS signal rather
than the elastic line) gave rise to a relatively broader signal. In
other words, while the overall QENS intensity for the PCFs
with [BMIM]BF, was lower due to immobilized ions that
contributed only to the elastic scattering, those that remained
mobile exhibited higher diffusivity than the ions in the bulk
[BMIM]BF, despite its overall higher QENS intensity. The
half-width at half-maximum (HWHM) of the slow compo-
nents of the bulk and confined [BMIM]BE, (Figure 3b)
showed a nonlinear dependence on Q,” which corresponded to
a long-range translational mobility of the ions.>**> Therefore,
the translational diffusion coefficient (D) of the cation in the
bulk liquid was determined using a jump diffusion model
(diffusion with a relaxation time), giving a value of (0.73 +
0.06) X 107 m* s7!, in agreement with similar systems in a
previous report.”* The diffusion dynamics of the confined
cation were found to be nonhomogeneous, i.. non-
exponential, requiring the introduction of an exponent a(Q)
=05 (a t;rpical value used for other small molecule glass
formers)*®”” to fit the data using a Cole—Cole distribution
function (see the SI for details). This functional form has been
employed successfully in many confined systems.’*” For the
confined [BMIM] cation, the diffusion coefficient value was
determined to be (5.1 + 1.1) X 107" m* s™/, about ~7 times
greater than that of the unconfined bulk ionic liquid.
Although this enhanced diffusion behavior of the confined
fluid has been witnessed in other materials,'* the amount of
enhancement is unprecedented. Compared to all available
materials to date, the porous carbon fibers show the largest
increase in diffusion coefficient for the [BMIM] cation (Table
1), likely owing to a few features of PCFs.*” Our porous
carbon fibers are hydrophilic due to the high content of surface
N and O heteroatoms, similar to our previous reports.””*" The
heteroatom content of the PCFs contrasts with the rest of the
works cited in Table 1. Due to the hydrophilic PCFs, ions
stabilize along the surface of the pores. The stabilized surface-
layer ions decouple from the ions in the diffuse layer and

Table 1. Diffusion Coefficient of [BMIM] Cations in Porous
Carbon Fibers in Comparison with those in Other
Materials“

Dgyi pore
(10_1153 mhﬁ(s_l) diameter(nm)  method

systems
carbon-derived carbon®* 0.52 0.8/3.1 QENS
mesoporous carbon’* 2.55 8.8 QENS
vertically aligned CNT*’ 0.31 4 PFG-
NMR
silicon carbide—carbon-derived 2.32 0.8 QENS
carbon™

CNT (20,20)" 2.86 13 MD
CNT (40,40)" 0.43 2.7 MD
CNT (34,0)" 0.41 13 MD
graphene sheets'? 0.01 2.7 MD
porous carbon fibers 5.1 13.6 QENS

“All diffusion coefficients are based on long-range diffusion at 298/
300 K. CNT, carbon nanotubes; PEFG-NMR, pulse field gradient
nuclear magnetic resonance; MD, molecular dynamics modeling.

prevent effective long-range ion packing. Owing to reduced IL
packing, the diffusion layers within the mesopores exhibit
lower viscosity and friction. The balance of the pore volume
and the packed layers becomes imperative for enhanced
diffusion within the carbon matrix."* The mesopore size
allowed a significant amount of confined ionic liquid to exist in
the diffuse layer rather than the adsorbed layer. The lack of a
transition in the elastic scan across the examined temperature
range (Figure 3a) indicated that the disrupted lattice structure
extends across the whole pore, frustrating the ion packing.
Thus, ions in the diffuse layer do not freeze between 10 and
300 K despite the typical freezing point of [BMIM]BF, being
198 K. The disruption of the lattice, in combination with the
reduced friction between the adsorbed ions and the confined
diffuse-layer ions, leads to the exceptionally high diffusion
coeflicient. Our results match the observations of Dyatkin et
al,”®> where the ions inside the 0.8 nm micropores were
immobile and the high diffusion coeflicient was attributed to
the inner ion layers inside mesopores. Ghoufi et al. also found
a large increase in diffusion of the [BMIM] cation in 1.3 nm
diameter pores of (20,20) carbon nanotubes (CNTs), owing
to a small friction.'” Additionally, Ohba et al. found a
reduction in ionic liquid viscosity within CNTs, and the ions
revealed ordered coordination with CNT walls when the
micropore diameters were 0.63, 0.86, 1.28, and 1.73 nm.”
Similarly, the ion diffusion in PCFs also showed a positive
correlation with micropore sizes of 0.55, 0.86, and 1.23 nm
(Figure 2c). Ionic liquid diffusion in mesoporous carbon for
supercapacitors was also studied by Liu et al. who found a
juxtaposition between pore size and electrochemical perform-
ance limited by ion diffusion.”* The fastest ion diffusion in
mesoporous carbon was found when the mesopore sizes were
13.9 nm for cations with a size of 7.6 A, in agreement with the
favorable mesopore size of 13.6 nm in PCFs herein.** In
addition, the surface interactions resulting from heteroatoms
further improved the ion diffusion characteristics, in
consistency with the previous finding that the heteroatomic
species of N-X and O/O-H provide a layered surface for
aligned cations to facilitate rapid ionic diffusion.*>*°

3. CONCLUSIONS

In summary, advanced QENS measurements show that the
block copolymer-based porous carbon fibers have exceptional
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ion diffusion properties. The confined ions exhibit a 7-fold
increase in the diffusion coeflicient. Attachment of the cations
to the pore wall (which are not mobile within the sensitivity of
the instrument) contributes to the elastic incoherent scattering
fraction, which, in turn, can be related to the electrochemical
capacitance of porous materials. The fast diffusivity of the
cations away from the wall could contribute to the high-rate
capability of the porous carbon fibers for use in supercapacitors
as well as fast charging/discharging in batteries. The
exceptional ion diffusion also holds great promise for fast
mass transport in electrochemical catalysis. Last, tunability in
PCF properties based on the initial block copolymer offers
opportunities to control hydrophilicity, pore size, and other
characteristics to further adjust the confinement effect.
Therefore, the block copolymer-based porous carbon fibers
represent an outstanding platform material for electrochemical
applications.

4. EXPERIMENTAL SECTION

4.1. Fiber Characterization. A Micromeritics-3Flex pore
analyzer was used to determine the surface areas and porosities of
the porous carbon fibers. A sample of ~50 mg fibers was placed into a
physisorption tube and degassed at 300 °C for 10 h to remove oxygen
and any adsorbed volatile species. The mass of the fibers was recorded
by subtracting post-degas mass from the mass of the empty tube.
CO,-sorption tests were carried out using CO, and dipping the
physisorption tube into a Dewar containing ice water (273 K). N,
sorption tests were carried out using N, and dipping the physisorption
tube into a Dewar containing liquid nitrogen (77 K). One sample (n =
1) of PCF with and without ionic liquid was used for both N, and
CO, physisorption tests.

Fiber morphology was characterized using electron microscopy
imaging. Scanning electron microscopy (SEM, LEO Zeiss 1550)
images were taken using an accelerating voltage of 3 kV and a working
distance of 2.9 mm (Figure 1lb,c). To prepare for transmission
electron microscopy (TEM), PCFs were dispersed in deionized water
by ultrasonication. A drop of the suspension was then spread on a
carbon-coated copper TEM grid, followed by drying on a hot plate at
60 °C for 30 min. TEM images were then collected on a probe-
corrected transmission electron microscope (FEI ChemiSTEM 80-
200) operating at 200 kV (Figure 1d).

4.2. Vacuum Infiltration of [BMIM]BF, into Pores. Porous
carbon fibers were suspended in a solution of [BMIM]BF, in
acetonitrile (0.015 mg/mL). The suspension was stirred for 3 h in a
glovebox with an argon atmosphere. Afterward, the suspension was
transferred to a vacuum oven to remove acetonitrile at 80 °C, leaving
behind the [BMIM]BF, inside the pores of porous carbon fibers.

4.3. Neutron Scattering Experiments. Neutron scattering
experiments were performed using two neutron backscattering
spectrometers, with the sample temperature controlled using closed-
cycle refrigerators. Fixed window scans of the elastic scattering
intensity were performed using the High-Flux Backscattering
Spectrometer (HEBS)>® at the NIST Center for Neutron Research
in Gaithersburg, MD. HFBS has an energy resolution of 0.8 peV (full
width at half maximum, FWHM). The instrument covers a
momentum transfer vector (Q) range of 0.25 to 1.74 A™' and an
energy transfer range of +16 peV. Elastic intensity spectra from the
0.25 mm thick samples, which were loaded in flat plate aluminum
sample holders, were collected with a heating rate of 1 K/min. The
data were reduced using DAVE software”” available at NIST-NCNR.

Quasielastic neutron scattering (QENS) measurements of both the
bulk and confined ionic liquid were carried out using the
Backscattering Silicon Spectrometer (BASIS)*® at the Spallation
Neutron Source in the Oak Ridge National Laboratory, Oak Ridge,
TN. The instrument was operated at its standard configuration, which
provides an energy resolution of 3.7 ueV (FWHM), using a
bandwidth of incoming neutrons centered at 6.4 A and covering an
energy range of +100 ueV. This setup of the instrument spans a Q

range of 0.2 to 2.0 A™". QENS spectra were collected at 300 K along
with the sample-specific instrument resolution at 20 K. Mantid
software*® was used for the data reduction. The analysis of the data
was performed using the DAVE package. The errors on the
parameters after QENS peak fitting are obtained from the chi-
squared minimization and represent one standard deviation. The
number of samples was n = 1 for all compositions (one PCF sample
with ionic liquid, one PCF sample without ionic liquid, and one
sample of pure ionic liquid. The total number of neutrons detected
per sample varies between 3.5 X 10° and 5.2 X 10°.
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