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A B S T R A C T   

The future communities are becoming more and more electrically connected via increased penetrations of 
behind-the-meter (BTM) resources, specifically, electric vehicles (EVs), smart buildings (SBs), and distributed 
renewables. The electricity infrastructure is thus seeing increased challenges in its reliable, secure, and economic 
operation and control with increased and hard to predict demands (due to EV charging and demand management 
of SBs), fluctuating generation from renewables, as well as their plug-N-play dynamics. Reinforcement learning 
has been extensively used to enable network entities to obtain optimal policies. The recent development of deep 
learning has enabled deep reinforcement learning (DRL) to drive optimal policies for sophisticated and capable 
agents, which can outperform conventional rule-based operation policies in applications such as games, natural 
language processing, and biology. Furthermore, DRL has shown promising results in many resource management 
tasks. Numerous studies have been conducted on the application of single-agent DRL to energy management. In 
this paper, a fully distributed energy management framework based on multi-agent deep reinforcement learning 
(MADRL) is proposed to optimize the BTM resource operations and improve essential service delivery to com-
munity residents.   

1. Introduction 

The future communities are becoming more and more electrically 
connected via increased penetrations of behind-the-meter (BTM) re-
sources, specifically, electric vehicles (EVs), smart buildings (SBs), and 
distributed renewables. Transportation Electrification (TE), fueled by 
carbon-free electric energy, is regarded as one of the major contributors 
in reducing petroleum use, meeting air quality standards, improving 
public health, and achieving greenhouse gas emissions reduction goals 
(Air Quality,). Although promising, once implemented, simultaneously 
charging a group of EVs concentrated in a limited number of charging 
stations could exacerbate an undesirable peak demand, impacting the 
reliable operation of the electricity distribution system (Clement-Nyns 
et al., 2010). According to the Oak Ridge National Laboratory (Harley 
and Tsvetkova, 2008), if not planned and managed properly, most re-
gions would need to invest in additional generation capacities to meet 
the new demand for EV charging. Buildings across university campuses, 
governments, schools, and residential, industrial, and commercial sec-
tors represent key elements in a modern community ecosystem, as well 
as major consumers of the electric energy systems. More and more newly 

built and retrofitted buildings are deployed with smart building energy 
management systems (BEMSs) to strategically manage the operation of 
HVAC, Heating, Cooling, and Lighting facilities for enhanced building 
energy efficiency, while in response to the electric utilities’ demand 
response (DR) requests for economic benefits (Kolokotsa and Kampelis, 
2021). It is also well-recognized that a group of energy efficient SBs with 
flexible end-use equipment and onsite distributed generations can 
collectively work to maximize building and grid efficiency without 
compromising occupant comforts (Grid-interactive efficient buildings,), 
thus playing a critical role in mitigating environmental impacts and 
enhancing community energy efficiency and reliability. Furthermore, in 
pursuing a sustainable energy future, an increasing penetration of 
distributed renewables has been observed to reform the power flow of 
electricity distribution systems, transforming electric distribution line 
flows from unidirectional to multidirectional, along with higher prob-
abilities in line congestions (Hadusha and Meeus, 2018), which is rarely 
observed in the systems of the past. The electricity infrastructure is thus 
seeing increased challenges in its reliable, secure, and economic oper-
ation with increased and hard to predict demands (due to EV charging 
and demand management of SBs), fluctuating generation resources from 
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renewables, as well as their plug-N-play dynamics. In this paper, a 
feasible, efficient, and scalable energy management system (EMS) so-
lution is explored to facilitate the plug-N-play of a massive number of 
heterogeneous BTM resources, providing valuable decision-making 
tools to community facilities. 

Reinforcement learning (RL) (Kohl and Stone, 2004; Tesauro, 2018) 
have been extensively used to enable network entities to obtain optimal 
policies (e.g., operation decisions or scheduling actions). The recent 
advancement of deep learning has enabled deep reinforcement learning 
(DRL) (Bengio et al., 2013; Arulkumaran et al., 2017) to drive optimal 
policies for sophisticated and capable agents, which can outperform 
conventional rule-based operation policies in applications such as games 
(e.g., Go, WarCraft) (Mnih et al., 2015; Bellemare et al., 2013), natural 
language processing (Bahdanau et al., 2017; Ranzato, 2016), and 
biology (e.g., AphaFold). Furthermore, DRL has shown promising results 
in many control and resource management problems, such as task 
scheduling, resource allocation, communication, and control (Frikha, 
2021; Chen, 2021). We thus see great potential in leveraging DRL in 
optimizing the management of massive networked BTM resources to 
enhance the electricity infrastructure operations and guarantee the 
essential services provision. 

The remaining of this paper is organized as follows: Section 2 sum-
marizes the major challenges and possible technologies for building a 
feasible, efficient, and scalable EMS for BTM resources; Section 3 pro-
vides a detailed literature survey of RL based solutions for energy 
management; Section 4 proposes a multi-agent deep reinforcement 
learning (MADRL) based EMS, and detailed functional components are 
discussed; Section 5 summarizes this paper and presents some future 
works. 

2. Challenges and potential technologies 

The operation of BTM resources, residing in future community en-
ergy systems, constitute temporally and spatially coupled cyber and 
physical constraints, meaning a current system operation decision may 
affect its future decisions, and behaviors among different entities may 
impact each other (Yu et al., 2021). It becomes difficult to create an 
explicit mathematical model that is accurate and efficient enough to 
perform a real-time energy management towards operation optimiza-
tion, due to the complexities and uncertainties associated with the en-
ergy systems of future communities. For example, SBs with controllable 
loads create complex operation modes, considering different entities 
with different consumptions, generations, and flexibilities profiles, 
while dispersedly deployed PV panels exhibit fluctuations due to many 
uncertainties such as temperature, shading, wind, etc., creating a high 
data dimension. The unpredictable nature of renewables, uncertainties 
of EV charging stations (EVCSs), time-varying loads, together with 
changing energy prices, introduce challenges for a feasible, efficient, 
and scalable EMS solution. A solution that can monitor, predict, 
schedule, learn, and make decisions in real-time is of essence. In addi-
tion, in a multi-device environment, a good operation strategy should 
cooperate multiple entities to maximize the operation efficiency and 
find the balancing point between their individual benefits and the sys-
tem benefit. 

2.1. Mathematical modeling-based methods 

Many studies exist using mathematical modeling-based methods, 
such as dynamic programming (DP), linear programming (LP), and their 
derivatives to perform the operation optimization of an energy man-
agement system. Mathematical models are rigorous and real-time 
management could be realized. However, they rely on explicit formu-
lation of objective functions and system constraints, which are difficult 
to abstract from real-world environments (Zhang et al., 2019). Never-
theless, these approaches fall short due to their infamous curse of 
dimensionality and lack of ability to adapt to the stochasticity of the 

environment, and thus have limited scalability and versatility (Arwa and 
Folly, 2020). 

Rule-based heuristic methods have been proposed for EMS as well, 
constructed by predefined policies, heuristics, or human expertise to 
estimate optimal solutions. Although highly reliable and robust, these 
methods lack the adaptability and flexibility to the frequent dynamics in 
energy systems (Abdullah et al., 2021). 

Global search methods such as genetic algorithm and swarm intel-
ligence have gained popularity and recognition in solving non-convex 
energy management problems with large problem scales. However, 
these methods are less robust, cannot be proofed rigorously, are 
generally slow, and without a learning component. Thus, they cannot 
operate online and instead must solve optimization iterations every time 
new data is introduced, proving computationally expensive (Zhang 
et al., 2019). 

The energy system moving towards more economic and environment 
friendly is asking for more feasible, efficient, and scalable EMS solutions. 
Conventional methods introduced above are seeing bottlenecks when 
solving such complex control problems due to the increased complexity, 
uncertainty, and high dimension data acquisition. 

2.2. Learning-based method 

Machine Learning (ML) algorithms learn from experience, by finding 
trends and patterns in the training dataset with a goal to make accurate 
predictions and decisions. ML algorithms can be categorized into su-
pervised learning, unsupervised learning, and reinforcement learning. In 
supervised learning, labeled data is used to evaluate and improve the 
learned model, thus it cannot learn by itself and extract unknown in-
formation from the training data. Unsupervised learning, with training 
data unlabeled, allows the extraction of hidden patterns from data 
without human involvement. Both learnings, unsupervised and super-
vised, require static datasets to train a model, resulting in a static trained 
model. No matter how complicated the relationship representing the 
dataset, the learned model is predefined for a particular dataset. For 
example, a predictive EVCS model trained on a specific dataset cannot 
be reused on another EVCS. Unlike supervised or unsupervised learning, 
RL is trained on a dynamic dataset upon trial and error and finds a dy-
namic policy proving more robust. In addition, supervised learning as-
sumes events are independent of previous events which is not an 
appropriate assumption in energy management problems that involves 
temporally/spatially dependent events. For instance, the optimal 
charging for an EV now depends on its strategies of previous/future 
times, as well as other EVs. In contrast, RL algorithms use a sequential 
design, and thus are more appropriate for solving complex scheduling 
problems and are constantly learning and adapting to the changing 
environments. 

RL has proved effective in non-stationary environments that change 
over time (Kim et al., 2018; Chiş et al., 2017; Yoldas et al., 2020; Remani 
et al., 2019). A RL problem is usually formulated as a Markov Decision 
Process (MDP), a sequential decision task (Abdullah et al., 2021). A MDP 
consists of well-defined state-space, possible actions within each specific 
state, a state transition function or probability, and rewards (Arwa and 
Folly, 2020). In RL, the agent learns optimal policy by interacting with 
the environment, where a policy is a mapping from states to the prob-
abilities of selecting every possible action (Yu et al., 2021). A software 
agent can be thought of a decision/action-maker that learns through 
repeated trial and error, defined by a reward scheme with a goal of 
maximizing total reward over an extended time. The reward is used to 
communicate how well the agent is learning. Therefore, reward shaping 
is important to achieve the desired performance. The advantages of RL 
algorithms can be summarized as: i) eliminate the need to iterate during 
online operation, since they can be trained offline where optimal solu-
tions are retrieved for the whole optimization horizon (Arwa and Folly, 
2020). After training and during execution, computational complexity is 
very low. If a high-dimensional state is given, the optimal action can be 
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determined quickly (i.e., 10 ms) (Yu et al., 2021). ii) Unlike mathe-
matical modeling-based methods, RL does not require an accurate model 
of the environment to achieve the optimal solution and can learn 
optimal policies by trial-and-error interacting with the environment. iii) 
RL can complete complicated tasks with lower prior knowledge thanks 
to its ability to learn different levels of abstractions from data, can 
handle high dimensional data, can make real-time and online decisions, 
and is even more robust compared to heuristic methods (Zhang et al., 
2019). iv) The application of a deep neural network (DNN) has the 
capability to make accurate predictions and so there is no need for a 
separate forecasting model like in global search methods (Arwa and 
Folly, 2020). Deep Neural Networks (DNN) are also used to approximate 
a value function, supporting high-dimension feature extraction and 
learning (Schulze et al., 2016). Deep Learning can be further evolved to 
include RL, allowing the estimation from DL and rewarded actions from 
RL. Compared to global search methods, DRL agents do not require 
forecasting or statistical information of the environment, but continu-
ously learn and improve via online learning. 

For all these reasons, RL is suitable for a dynamic environment 
sequential decision-making, especially by integrating with deep learning 
for automatic feature extraction from data and improved scalability. 
Energy management problems usually involve high-dimensional and 
continuous state or action spaces, that cannot be stored in a table or 
function. DNNs are function approximators, which are particularly 
useful in RL when the state space or action space are too large to be 
completely known or stored. It is expected that a DRL based EMS solu-
tion can achieve online optimization and real-time control for the energy 
management of massive number of heterogeneous BTM resources, 
improve efficiency of energy utilization, reduce operating costs, and 
increase overall community benefits. 

There are two types of DRL methods, model-based or model-free 
(Fernandez et al., 2020) shown in Fig. 1. A model-based DRL does not 
necessarily mean a mathematical model must be provided, but instead 
agents learn a model based on observing how states in an environment 
change with certain actions, and then use the learned model. 
Model-based methods are more complex having more assumptions and 
approximations compared to model-free methods and therefore, may be 
limited to specific tasks. Model-based methods outperform model-free 
methods in the sense of sample complexity. However, model-based 
methods often see the challenge of obtaining an accurate model from 

the environment especially in the complex and uncertain energy sys-
tems. Model-free DRL, either value-based or policy-based, do not need to 
develop a model from the environment, but instead directly learn a 
policy or state-action value. Value-based methods learn an approxima-
tion of optimal policy function (indirectly) while policy-based methods 
learn an approximation of optimal policy (directly). Typically, 
value-based methods update value function in an “off-policy” manner, 
which means the previously collected experience transitions in the same 
environment can be used for training, and high data efficiency can be 
achieved. In contrast, “on-policy” makes all the updates using data from 
the trajectory distribution generated by the current policy. Thus, 
“on-policy” methods are more stable but less data-efficient compared 
with “off-policy” methods (Shin et al., 2020). 

Deep Q-Network (DQN), Deep Deterministic Policy Gradient 
(DDPG), Proximal Policy Optimization (PPO), Advantage Actor Critic 
(A2C), and Asynchronous Advantage Actor Critic (A3C) are typical 
model-free DRL algorithms. DQN is value-based off-policy algorithm 
and only supports discrete action space, while DDPG is policy-based off- 
policy algorithm and only supports continuous action space. Experience 
replay is adopted by DQN and DDPG, which makes them have higher 
data efficiency compared to on-policy algorithms. However, they tend to 
overestimate the value function and generate sub-optimal policies. PPO 
and A2C/A3C, two policy-based on-policy algorithms, can support both 
discrete and continuous actions spaces. PPO can support stable learning 
by controlling the similarity between the current and old policies and is 
robust to hyperparameters and network architectures. A2C/A3C can 
support reliable and parallel learning on a single multi-core CPU, but it 
is sensitive to employed hyperparameters (Yu et al., 2021). 

DRL methods are also categorized according to the number of agents, 
i.e., single-agent and multi-agent. A common and straightforward way 
to implement multi-agent DRL is to extend single-agent approaches. The 
diversity of BTM sources, temporally and spatially coupled constraints 
along with various user priorities, constitutes the allocation of multiple 
agents for decision making in EMS solutions. Spatially coupled con-
straints can be guaranteed with a multi-agent DRL that has a proper 
reward function and observation space, allowing system coordination. 
Temporally coupled constraints can also be satisfied by designing effi-
cient reward function to incite the agent to take reasonable actions. 
Furthermore, assigning multiple agents increases the speed of problem- 
solving, enables self-learning for each agent, and increase the solution 

Fig. 1. DRL Algorithm Breakdown (A.) with Examples (B.).  
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reliability because of redundant agents (Ahrarinouri et al., 2021). 

3. Literature review on RL in energy managing 

In this section an extensive review of scientific literatures of RL based 
EMS solutions are presented and compared. A systematic review is 
conducted based on a methodology originally performed on medical 
research and first outlined for the field of organization studies by 
Tranfield et al. (2003). The aim of the review is to locate relevant 
studies, evaluate their contributions, and compare the conclusions with 
regards to further research specifically multi-agent RL frameworks in 
managing the BTM resources. A total of 62 journal articles were iden-
tified, and of which 21 investigated Multi-agent Reinforcement Learning 
(MARL) solutions. This review mainly focuses on EMS solutions on both 
the micro level (e.g., buildings/communities/sites/etc.) and the macro 
level (e.g., grids/regions/etc.). To combine the evidence of the articles 
reviewed, all the articles are analyzed to identify important concepts 
and themes within literature and categorized into following groups. 

3.1. Q-learning 

Q-learning, a value-based method, is the most widely used off-policy 
RL algorithm due to its simplicity (Arwa and Folly, 2020). Q-learning 
does not require a model of the environment to define relationship be-
tween an environment and problem features and to establish state 
transitional probabilities (Ahrarinouri et al., 2021). Q-learning use a 
Q-table to keep track of the learning process. However, as state-action 
pairs increase, the Q-table also increase, thus, Q-learning suffers from 
the curse of dimensionality just like DP, which prevents the use of 
Q-learning in complex problems with large state-action spaces. In 
addition, Q-function is deterministic and cannot handle stochastic pol-
icies (Arwa and Folly, 2020). Standard Q-learning applies only to 
discrete action spaces, which limits the algorithm from achieving 
optimal actions by forcing the agent to select actions from a pre-defined 
action set. However, discretization of the state and action space can be 
solved by using a function approximation called W-learning (Abdullah 
et al., 2021). Q-learning is effective when state space is 
low-dimensional, but a nonlinear approximator such as a NN can be 
used to represent the action-value function more efficiently to support 
high-dimensional state space (Yu et al., 2021). 

In (Foruzan et al., 2018) an adaptive EMS framework is proposed 
considering the variability and stochastic entities in a microgrid by 
applying a distributed multi-agent Q-learning algorithm, offering a 
scalable solution without the need of excessive communication to a 
central controller or other agents. A total of five as self-interested agents 
were modeled that can learn to adapt to each other without prior 
knowledge of a stochastic environment. A random model was included 
to represent the uncertainties associated with each agent, which used 
Q-learning to converge to a Nash equilibrium. The author evaluated and 
proved the cooperation among agents with a “fairness factor” that 
compared the profit of generation agents to the cost of customer agents. 
In (Ahrarinouri et al., 2021) a Q-learning approach is explored to ach-
ieve the optimal solution for a residential EMS. Both deterministic and 
stochastic environments were tested to justify the effectiveness and 
robustness of the method. Similar to (Foruzan et al., 2018), the inter-
operability among agents was measured using “no-regret” learning, 
which calculated the distance between the sum of the rewards earned by 
each agent under an optimal policy and the existing cooperative policy. 
The agents cooperated well when the sum of these differences was 
minimized. In (Diyan et al., 2020) the authors proposed a Q-learning 
algorithm for a smart building scheduling considering a comfort penalty. 
The proposed method was proved to reduce energy consumption and 
user discomfort compared to Least Slack Time-based scheduling. In (Xu 
et al., 2020) the author proposed a fully distributed multi-agent 
Q-learning algorithm with no observation for hour-ahead energy con-
sumption and EV charging decisions. The Q-learning algorithm was 

proved to outperform a GA based solution since the RL agents consider 
both the current and future rewards. A feed forward DNN is added in the 
architecture to predict future trends of electricity price and solar gen-
eration according to real-world data. As MARL is computationally 
expensive, the hardware must be efficient with desired performance. 
The hardware issue is addressed in (Xiongfeng Zhang et al., 2021) where 
the authors explored the feasibility of a practical implementation of a 
multi-agent Q-learning framework in a smart grid to optimize energy 
consumption of various devices. The author provided guidelines on how 
to implement an experimental testbed to validate the MARL algorithm. 
And based on the experimental results, they concluded that the 
MARL-Q-learning was able to achieve optimal load control on a hard-
ware EMS containing several LEDs and motors. In (Chen et al., 2021) the 
author proposed the use of a Preference Based multi-objective RL al-
gorithm that applies Q-tables corresponding to the number of home 
appliances to expediate the learning process in response to possible 
changes of user preference, in conjunction with Q-learning for battery 
system control. Five agents, an ESS and four appliances, achieved fast 
convergence to a steady objective considering price and renewable un-
certainty, by shifting or reducing energy consumption in a SB. The 
author in (Hao et al., 2020) proposed a finite non-cooperative MARL 
algorithm with a discounted Q factor hybrid architecture for SBs to 
control their HVAC system with the objective of minimizing cost con-
strained by a temperature boundary. 

3.2. Deep Q-network 

DQN, the first DRL algorithm, combines RL with DNNs to overcome 
the instability and divergence issues of Q-learning. Several techniques 
were adopted to stabilize the learning process, e.g., experience replay 
and target network. Experience replay stores the experience transitions 
on a replay memory and draws samples of them uniformly at random for 
training, establishing greater data efficiency when compared to the 
standard Q-learning algorithm. In addition, randomizing the samples 
contributes to the reductions of their correlations and the variance of 
updating DNN weights. DQN commonly utilizes two NNs, a prediction 
and a target network. The target network is adopted to improve stability 
of the training process by copying a separate network with a longer 
update period for the computation of the target value (Yu et al., 2021). 
DQN can only deal with discrete action spaces, and thus is not practical 
for regulation tasks in energy systems that require continuous action 
spaces. DQN may also suffer from instability issues as dimensionality 
increases because it assigns a value to every possible action and then 
selects the action with the highest value. Selecting an action with the 
highest value is very difficult if not impossible if the action space is 
continuous or very large. The DQN replay buffer further complicates 
efficiency, since it takes a long time to train and is limited to off-policy 
methods. Overestimation also may occur, as a result from the same NN 
being used for both policy estimation and evaluation. Double-deep 
Q-network (DDQN) solves this issue by using separate NNs for action 
selection and action evaluation. 

In (Xiaohan Fang et al., 2021) the author proposed a multi-agent 
DQN (MADQN) for distributed energy management for a 
double-auction microgrid market. Optimal equilibrium in RL iteration 
guarantees that all agents benefit from fairness, which consequently 
improves algorithm convergence. The MADQN has no dependence on 
accurate model or parameter estimation and unlike centralized sched-
uling methods, and it solves the constraint in distributed manner for 
individual agents. However, scalability is not considered, and aggrega-
tion of resources is implemented instead. Not always is a homogeneous 
DRL method used for MARL. In (Nie et al., 2020) the author proposed a 
double DRL algorithm, both DQN and DDPG, for a load agent and a 
generation agent. The agents interact with the environment indepen-
dently gathering their own rewards, with no communication. However, 
to interact with and influence each other, to one agent, the other agent 
becomes part of the environment. Although the agent realizes a dual 
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control, i.e., energy storage management on the source side and load 
shedding on the load side, the proposed algorithm lacks scalability and 
can improve control performance with a communication layer between 
both agents. Similarly, the author in (Chenyu Guo et al., 2021) proposed 
a bi-level distributed optimal EMS controlled with DRL Dueling-DQN 
and DDPG algorithms, with prioritized experience replay. The 
upper-level does not require detailed private information from the 
lower-level agents and only key information is transmitted using a 
communication channel. After training the agents off-line with historical 
data, the model-free DRL can adapt to different environments effort-
lessly with high efficiency and favorable scalability. 

3.3. Actor critic 

Experience replay has been applied to improve stability in value- 
based DRL methods, but it introduces variance in policy-based 
methods. Separation of the policy and the value function networks 
produces better results. By using hybrid policy gradients with value- 
based methods, Actor-Critic (AC) architecture turns out to be more 
robust in EMS (Arwa and Folly, 2020). The actor-critic method involves 
two DNNs, the policy network (Actor) and the value function estimator 
(Critic). The actor takes an action based on the input environment states, 
while the critic returns the estimated value of an action based on its 
observation of the environment states and the reward from the actor’s 
action. The actor uses a gradient ascent method to maximize objective 
reward while the critic uses gradient descent to minimize error in the 
value function estimation. Instability with Q-learning recursions when 
applied to DNN can be further addressed with an asynchronous advan-
tage actor-critic (A3C) algorithm. A3C trains several agents with 
different copies of the environment asynchronously. A2C is a synchro-
nous advantage actor critic technique that can achieve the same or even 
better results than A3C (Arwa and Folly, 2020). 

In (Dong et al., 2021) the author compared an A3C with DQN, DDPG 
framework for a distribution system’s economic dispatch. The modeled 
distribution network includes an external power grid, a Wind Turbine, a 
PV system, an energy storage system (ESS), natural gas stations, gas 
loads, heat loads, and an electric heating furnace, etc. A3C shortened 
training time by 30% and 37% and reduced daily operating cost by 5.2% 
and 3% compared to DQN and DDPQ, respectively. One challenge of 
MARL is that multi-agent domains are nonstationary from an agent’s 
perspectives since other agents’ interactions with the environment. 
Furthermore, the action space grows exponentially with the increased 
number of agents, and the learning becomes very difficult due to partial 
observability or limited communication. Thus, a centralized Critic and a 
decentralized Actor, or a linear decomposition of the joint value function 
across agents were explored. In (Shin et al., 2020) the author proposed 
an actor and critic DRL model to manage PV/ESS EVCSs in a distributed 
manner. These agents could communicate their embedded state infor-
mation, making convergence stable. To further prove performance, the 
method was evaluated on a large-scale data set, and it was confirmed to 
achieve desired performance. A multi-energy management framework 
with decentralized execution and centralized training, formulated as a 
partially observable MDP was proposed in (Dafeng et al., 2022). Soft 
actor-critic with an attention mechanism was adopted to enhance policy 
stability and encourage agents to focus on important energy related 
information, improving exploration efficiency and robustness. In addi-
tion, a novel reward based on the Lagrange multiplier method to ensure 
capacity constraints of ESSs was implemented. Simulations and results 
based on actual data set verified high scalability and the algorithms 
optimization. 

3.4. Deep deterministic policy gradient 

If the policy is deterministic, the AC method is also called deep 
deterministic policy gradient (DDPG). The methods, AC and DDPG, 
perform well online because of their high efficiency and speed. In DDPG, 

the action-value is used to update the critic network while in other AC 
cases, the state-value is used to update the critic network, otherwise the 
architecture is the same. DDPG performs well for continuous action 
spaces, however, DDPG directly chooses deterministic actions ignoring 
uncertainty and randomness. Random fluctuations and incomplete 
modeling in an EMS burden the application of deterministic methods. It 
is more practical to use a probabilistic control policy for BTM energy 
management (Lee et al., 2020). Another issue with policy gradient-based 
algorithms is that they can only handle one action at a time. The actor 
may only return one action or the probability of taking one action at a 
particular state (Arwa and Folly, 2020). 

In (Li and Yu, 2020) the author proposed a centralized train-
ing/decentralized implementation DRL framework for an optimal 
automatic generation control (AGC). A multi-agent distributed multiple 
improved deep deterministic policy gradient (MADMI-TD3) algorithm, 
an extension of DDPG combining several RL techniques, is proposed to 
improve stability and training efficiency. The AGC framework included 
various units including distributed generations and flexible loads to 
solve a coordinated control and dispatch for an electrical system. 
MADMI-TD3 is proved to be effective in global search and optimizing 
speed in a random environment, which employs different parameters of 
multiple actor networks for distributed optimization of control perfor-
mance and economic benefits. 

3.5. PPO 

AC algorithms change their policy according to a gradient descent 
update, which introduces a challenge in selecting the step size for the 
updates. Large step sizes can cause high performance variation between 
iterations, resulting in instability during training. This is detrimental in 
agents that have a high probability of gathering bad data. Policy opti-
mization methods use a probability ratio between old and new policies 
to tackle this challenge (Arwa and Folly, 2020). Trust Region Policy 
Optimization (TRPO)’s updates are limited to a “trust region” to avoid 
misleading observations. PPO is a simpler version of TRPO and has 
shown to perform better than most algorithms with an AC architecture 
in solving multi-dimensional continuous environments. PPO’s lineari-
zation of both the objective function and step size makes it simpler and 
more robust to solve the issue of curse of dimensionality, due to their 
ability to easily optimize objectives more efficiently in highly uncertain, 
continuous, and multi-dimensional environments (Arwa and Folly, 
2020). Most BTM EMSs are multidimensional and have a continuous 
state space, challenging PPO to be the best algorithmic choice. PPO is 
proven to have more stable convergence than DDPG methods in some 
studies (Lee et al., 2020). 

4. Proposed solution 

The increasing complexity and need for a practically feasible, effi-
cient, and scalable BTM EMS of future communities cannot be satisfied 
by the existing centralized methods (Sun and Yang, 2019). Many state of 
the art solutions are either based on a single entity or central aggregate 
control of multiple entities which selects and sends translated decisions 
to individual entities (Abdullah et al., 2021). A BTM EMS may contain 
numerous heterogeneous entities; therefore, is exposed to frequent and 
various system dynamics. The lack of scalability of centralized algo-
rithms makes it expensive, if not unfeasible to obtain a global optimal 
solution with large data acquirement requirements. There are some 
research focused on decentralized strategies or hybrid 
centralized-decentralized management for EMSs (Abdullah et al., 2021). 
Unlike centralized methods, decentralized coordination algorithms can 
handle high uncertainty and flexibility. As we analyzed extensively 
above, DRL is promising in energy management for BTM sources, 
proving in general less computationally heavy compared to conven-
tional methods, as well as faster converge to acceptable near optimal 
solution due to offline training. However, they still need great 
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computational power, that may cost energy management systems to 
place machines at every entity. 

4.1. MARL methods 

MARL could be categorized into three frameworks, fully centralized 
training and execution, fully decentralized training and execution, and 
centralized training with decentralized execution. In a fully centralized 
strategy, the agent collects aggregated information from all entities to 
decide on a joint action set for all entities. In a fully decentralized 
strategy or distributed strategy each entity is an agent and chooses an 
action to optimize their own reward independently, assuming there is no 
central controller (Abdullah et al., 2021). Centralized training and 
decentralized execution (CTDE) improve decentralized RL by using an 
actor-critic structure and learning a centralized critic to reduce variance 
(Lee et al., 2020). 

4.2. Proposed multi-agent actor-critic methods 

The simplest approach to learning multi-agent environments is to 
independently train agents. Q-learning is most commonly used but does 
not perform well (Ryan Lowe et al., 2017). Q-learning is not capable to 
train centrally and execute in a decentralized manner without making 
assumptions about the environment, since Q-learning uses the same 
information for training and execution. In an ideal MARL based EMS for 
various BTM sources, i) each agent should be capable of choosing an 
action based on its local observation; ii) different agents can coordinate 
or compete with each other; iii) agents do not have to have communi-
cation channels among themselves; iv) their reward functions could be 
dependent on the future states and actions; and v) each agent’s state and 
observation spaces are flexible to be continuous, discrete or mixed. 
These requirements and the non-stationary environment mean that the 
value-based algorithms such as Q-learning are no longer capable 

because they depend on the Markov assumption that the state transition 
and reward function are dependent only on the state and action of a 
single agent at the last time-step. This makes the use of past experience 
replay, which is critical for stabilizing DQN, unstable. Furthermore, 
most often, an accurate model of the dynamic environment is not given 
or hard to formulate mathematically, leaving out model-based algo-
rithms as a solution. Policy gradient suffers from a variance that in-
creases with the number of agents grow. Thus, we propose two 
extensions of actor-critic algorithms, multi-agent PPO and multi-agent 
DDPG, as potential solutions to address these challenges, under a 
centralized training and decentralized execution framework as shown in  
Fig. 2. 

The lack of visibility regarding each agent’s strategy creates a local 
impression of a non-stationary environment. Thus, a centralized critic 
network is proposed to allow the aggregator to provide a certain infor-
mation transparency between agents to guide the learning process. 
During training the critic acts as a central coordinator. The advantage of 
a decentralized energy management control, after the training phase, is 
proposed to allow each agent to act independently in the execution 
phase without communicating with other agents. In addition, by 
assuming a centralized value function, the full global state reduces a 
partially observable MDP to a fully observable MDP, which guarantees a 
quicker and easier value learning. MAPPO addresses the scenarios of 
cooperative learning with shared utility, but also proves to adapt to non- 
cooperative goals. Similar, but not as accurate and quick performance 
can be achieved by learning MAPPO in a fully-distributed manner. This 
would be most useful, since connectivity of smart devices is limited, and 
local computing power is necessary. 

MADDPG has the capability to learn policies using their own ob-
servations only at execution time, without assuming a differentiable 
model of the environment dynamics or a communication structure be-
tween agents, Thus, it is applicable to both cooperative and competitive 
interactions. In addition, it can act in a mixed cooperative-competitive 

Fig. 2. Centralized training and Decentralized execution EMS for BTM resources.  
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environment involving both physical and communicative behavior. 
Similar to MAPPO, MADDPG performs centralized training, the critic 
acquires extra information to eases training, and decentralized execu-
tion, each actor only uses its local information to keep data private. After 
the training, the decentralized actors can be applied to a cooperative or 
competitive setting. Agents are capable of learning approximate models 
of other agents online and use them in their own policy learning pro-
cedure. Some argue that MAPPO is slower than MADDPG, but (Chao Yu 
et al., 2021) proves that it can perform significantly faster than 
off-policy MARL methods for both cooperative and competitive envi-
ronments. The proposed actor-critic methods consider action policies of 
other agents and are expected to successfully learn policies that require 
complex multi-agent coordination (Ryan Lowe et al., 2017; Chao Yu 
et al., 2021). 

5. Discussion and future directions 

Unlike games (Go) that have strict rules and clear rewards, the en-
ergy management problem for the BTM resources is much more 
complicated and uncertain. For example, renewables cannot be pre-
dicted accurately, equipment may fail at any time, and in various lo-
cations there may be different EV charging/discharging behaviors and 
load management strategies (Zhang et al., 2019). State and action spaces 
are not clearly defined and has high complexity, thus requiring 
thoughtful planning, initialization, and critical algorithm parameters 
must be set to carefully balance exploration and exploitation (Zhang 
et al., 2019). Coordination among agents representing BTM resources is 
difficult to implement due to dynamic environment and heterogeneous 
agent models. Compared to a single-agent RL algorithm, MARL allows 
for more complex environments with a high feature dimension, high 
action dimension, and continuous or mixed space for both states and 
actions. Each agent has its own reward function and learns indepen-
dently from other agents, usually with partially or fully observable in-
formation among agents. Multiple agents interacting in the environment 
can overcome the issue of dimensionality and the discretization problem 
a single-agent faces. However, MARL are not widely used in literature 
due to their complexity and non-stationary issue. Complexity is a 
consequence of a high dimensional environment and the need to train 
several agents simultaneously, which is computationally expensive to 
implement. If several agents are learning independently in the same 
environment, it becomes non-stationary, meaning the agents’ version of 
the environment is not fixed due to other agents regularly altering the 
state of the environment. In simpler terms, the state of the environment 
changes based on all actions taken by all agents, not a single agent. 
Another challenge is adjusting to the dynamic behavior of other agents 
or measure the cooperation among agents to see how well stability has 
occurred (Ahrarinouri et al., 2021). Multi-agent DRL energy manage-
ment algorithms with complex reward components should be designed 
to efficiently promote the coordination. Lastly, when the similarity gap 
is large (e.g., the dimensions of state spaces and action spaces in two 
MDPs are different), how to design efficient inter-task mapping function 
and select proper form of the transferred knowledge, especially for 
multi-agent DRL-based problems (Yu et al., 2021) is a big challenge. 
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