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A B S T R A C T   

Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater 
pollution due to various chemical components is vital for planning, policymaking, and management of 
groundwater resources. In the last two decades, the application of machine learning (ML) techniques for 
groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi- 
supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality param
eter, making this the most extensive modern review on this topic. 

Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, 
giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and 
the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been 
modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made 
with further implementation of deep learning and explainable artificial intelligence or other cutting-edge 
techniques, application of these techniques for sparsely studied variables, the modeling of new or unique 
study areas, and the implementation of ML techniques for groundwater quality management.   

1. Introduction 

Groundwater is a rapidly decaying vital resource. Groundwater 
quality (GWQ) is a rising issue worldwide due to extensive agricultural 
and industrial activities, and proper management is essential as 
groundwater provides almost half of all drinking water globally (Water 
et al., 2016). However, groundwater quality is influenced by a variety of 
environmental and anthropological factors (Alagha et al., 2014; Liu 
et al., 2005). Understanding these factors is an important step in 
developing appropriate management strategies. 

Machine learning (ML) is an effective tool for extracting predictive 
models from data. A subset of artificial intelligence, ML models use 
inductive hypothesis to analyze and “learn the rules” from data without 
relying on a determined system of equations. They show great potential 
in discovering intrinsic patterns from data and making accurate pre
dictions of water quality parameters in freshwater resources, both sur
face and groundwater. ML techniques are capable of learning features 
with high dimensionality and nonlinear relationships. With the help of 
modern computational hardware and architecture (Gupta, 2021; Sze 

et al., 2017; Zhao et al., 2017) optimized for machine learning algo
rithms (MLAs), especially for deep learning (Emmert-Streib et al., 2020; 
LeCun et al., 2015; Shrestha and Mahmood, 2019), data-centric ML 
methods started to emerge in recent years with a remarkable leap for
ward in performance. Key parameters extensively collected from 
groundwater, such as pH, nitrate concentration, etc., can be used to train 
ML models. Groundwater quality can be predicted or analyzed by 
inferring the various stages of the trained model. 

Although ML has been applied to predict groundwater quality in 
many studies, there is no modern comprehensive literature review on 
ML techniques for GWQ modeling. A parallel study exists, a compre
hensive survey of artificial intelligence (AI) techniques for surface water 
quality modeling (Tiyasha et al., 2020b). Some recent reviews for 
groundwater quality only survey techniques for specific parameters 
(Che Nordin et al., 2021; Haghbin et al., 2021), or focus on specific 
models (Kumari et al., 2016; Shen, 2018). Others, while covering a wide 
range of models and parameter prediction, lack the comprehensiveness 
owed to the subject (Haghbin et al., 2021; Malakar et al., 2021; Mosaffa 
et al., 2022). 
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In this work, we provide a comprehensive review of ML in GW 
quality modeling, covering various contaminants for prediction and a 
broad range of algorithms. The first section is a meta-analysis of the 
literature, covering topics such as study focus, model inputs, publica
tions years and study areas, and distribution of models. The second part 
of the paper is a bibliographic review of the literature by ML model 
category type. As shown in Fig. 1, the model categories were organized 
by learning type: supervised, semi-supervised, unsupervised, and 
ensemble. Supervised learning was divided into eight categories: ANN, 
fuzzy, SVM, decision tree and random forest, linear regression, 
comparative, deep learning, and optimization techniques. Optimization 
techniques were further divided into bagging and boosting, genetic al
gorithms, and wavelet transform. Unsupervised learning was divided 
into three categories: self-organizing map (SOM), multiple frameworks 
(MF), and clustering. 

Studies were placed into these categories based on the primary al
gorithm studied. The bibliographic review consists of 1) a theoretical 
overview of the basic model structure, 2) a brief review of the applica
tion of the model in GW quality modeling by topic, and 3) an assessment 
of the model based on factors such as accuracy, applicability, ease, range 
of use. These model assessment sections are intended to compare results 
and summarize the large body of work in each model category. Con
flicting case studies are highlighted intentionally as part of this effort. 
The last section of the paper highlights the results of the general analysis 
and the bibliographic review and outlines future directions and oppor
tunities for researchers. 

1.1. Introduction to the machine learning process and techniques 

The training of machine learning models is a process of finding an 
optimal parameter set of the predictive model through closed-form so
lutions or iterative updating of its parameters through optimization. 
Many techniques have been proposed to improve the performance and 
accuracy of machine learning models. 

The input of the machine learning model should be carefully selected 
for reducing the computational complexity of the machine learning 
model and improving its predictive performance. Dimensionality 
reduction techniques can effectively reduce the input features to miti
gate the sparsity of the high-dimensional data for better similarity 
measurement. Feature learning is also beneficial to extracting effective 

features as the input of the machine learning model for specific tasks. 
Cross-validation, dividing the dataset as a training dataset and a 

validation dataset, helps to improve the generalization of the predictive 
model by avoiding overfitting. Data augmentation can be used to in
crease the amount of training datasets when the size of the collected 
dataset is small. 

Various optimization methods provide ways of finding the optimal 
model parameters by reaching a global minima of the loss function. 
Gradient descent is the most popular optimization method for differ
entiable loss functions. Adaptive learning rate methods help gradient 
descent find the optimal parameters effectively and efficiently. 

2. General analysis of trends 

2.1. Study focus (or model prediction) 

Fig. 2 displays the study focuses for articles on ML in groundwater 
quality from 1994 to 2022 based on our literature review from. 

Nitrate contamination was the most popular study focus, with 87 
articles focusing on this subject. Many of these articles repetitively 
addressed the same problem; that is, if a certain ML model is viable for 
nitrate contaminant prediction (See Section 3.1.1.2). Nitrate is a well- 
monitored compound and has been for decades, especially in the 
countries with a prevailing focus on this topic, leading to a wealth of 
data for testing ML models. 

Water Quality Index (WQI) is the second-most studied focus, where 
the authors aim to improve the classification of water quality in a study 
area. Fuzzy methods are popular for this purpose due to their ability to 
deal with uncertainties (Vadiati et al., 2016). A variety of other hydro
chemical compounds have been studied, such as electrical conductivity 
(EC), total dissolved hardness (TDH), etc. These parameters are more 
common as inputs for ML models in many studies, as discussed below in 
Section 2.2. 

2.2. Input parameters and timescales 

In total, there were over 300 unique input parameter types used 
among all studies. Only 26 of these parameters were used by 16 or more 
studies, as shown in Fig. 3a. The most used parameter was pH, with 70 
studies (35%) including it in their input database. Other chemical water 
properties commonly used were EC and TDS. All DRASTIC parameters 
were also used by more than 15 studies (See Supplementary Material for 
DRASTIC model explanation). 

Fig. 3b presents an analysis of the number of input parameters of all 
studies using ML for groundwater quality and provides a useful insight 
into algorithm optimization. Often, a goal of these studies is to provide 
an estimation of water quality using easily obtained data while still 
providing reasonable accuracy (Shekofteh et al., 2012). Many authors 
have decided 4–6 parameters meets these criteria (26% of all studies 
used input parameters in this range), as often only a few parameters 
significantly contribute to a model’s performance (Wang et al., 2018; 
Wheeler et al., 2015). However, physiochemical parameters, such as 
cations and anions, are easily measured together, resulting in a large 
amount of hydrochemical parameter inputs for certain studies (Keskin 
et al., 2015). 

Fig. 4 contains the data collection routine timescales for all studies. 
Over half of all studies did not report the timescale used when collecting 
data. Often, data was drawn from multiple databases, and so temporal 
resolution was not reported. The most common collection timescale 
reported was seasonally, which is useful in areas with seasonal events 
such as monsoons (Wagh et al., 2017). 

2.3. Machine learning models 

Publications with a focus on supervised models comprise much of all 
literature. Unsupervised and ensemble learning techniques make up just 

Fig. 1. This study’s organization of ML models used for groundwater quality 
modeling. Learning types are divided into Supervised, Unsupervised, Semi- 
Supervised, and Ensemble, with the model categories listed under their 
respective learning type. 

R. Haggerty et al.                                                                                                                                                                                                                               



Water Research 233 (2023) 119745

3

10% and 7% of all published literature, respectively. Only one paper 
used a semi-supervised technique (Vesselinov et al., 2018). 

Within the supervised models, ANN is the most common model for 
GW quality modeling. It should be noted that many of these papers used 
several models, and Fig. 5 only lists the model type focus of the papers. 

2.4. Performance metrics 

Fig. 6a displays the most common performance metrics used for 
model analysis for supervised, semi-supervised, and ensemble learning. 
For unsupervised learning, there are no direct metrics for evaluation and 
must be analyzed case by case. RMSE is the most used metric, followed 
by the coefficient of determination (R2). In total, over 50 different per
formance metrics were used by studies to assess performance. Most 
studies used more than one metric to assess performance, as shown in 
Fig. 6b. 

2.5. Historical trends 

As with many ML topics, the application to groundwater quality 
modeling has increased rapidly in the last two decades (Fig. 2). Fig. 7 
visualizes the rapid growth that occurred after 2008. Papers were 
collected by October of 2022, so the number of papers in that calendar 
year will likely be higher. Uncommon or advanced learning types like 
unsupervised and ensemble learning have not shown the same growth as 
supervised learning. Uncommon or advanced learning types like unsu
pervised and ensemble learning have not shown the same growth as 
supervised learning. 

2.5.1. Geographical trends 
The most studied groundwater systems in the world are in Iran, with 

50 papers studying aquifers or wells in the country. The United States 
contains the second-most studied groundwater systems, with 39 papers. 
Much of Central and South America has not been studied at all, as well as 
several countries in Europe and Asia. The continent of Africa has been 
studied twice (Ouedraogo and Vanclooster, 2016; Ouedraogo et al., 
2019), but the Democratic Republic of Congo is the only individual 
country that has been studied (Kihumba et al., 2015). 

Iran had one of the most explosive increases of scientific publications 
in the world since the turn of the century, with a staggering 21% average 
annual increase in published scientific articles (WorldBank, n.d.). The 
United States is the next world leader in ML GWQ modeling. The United 

States Congress started the National Water-Quality Assessment 
(NAWQA) Program in 1991 to collect surface and groundwater data in a 
high-quality and consistent manner (U.S.G.S., n.d.), making it an ideal 
location for groundwater quality modeling. 

3. Bibliographic review 

3.1. Supervised learning 

Supervised learning is one of the modalities of fitting a function from 
samples of input and output pairs. This review will focus on the most 
popular supervised learning algorithms in the domain of groundwater 
quality modeling, including Artificial Neural Network (ANN), Support 
Vector Machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), 
deep learning, decision tree and random forest, regression models, 
comparative studies, and optimization techniques. 

3.1.1. Artificial neural network (ANN) 

3.1.1.1. Introduction of ANN. ANN (Kleene, 2016; Yegnanarayana, 
2009), inspired by biological neural networks, is a unified framework 
that automatically learns parameters of the predictive model from data. 
This automatic process of updating parameters is generally achieved by 
backpropagation. ANNs generally consist of an input layer, a hidden 
layer, and an output layer. Different ANN models can be created by 
modifying various architectures, input structures, and layers. Brief de
scriptions of various ANN models introduced in this section can be found 
in the Supplementary Materials (S2.2.2). 

3.1.1.2. Application of ANN in groundwater quality modeling. Fifteen 
studies focused on the applicability of neural networks to model 
groundwater quality, including predicting nitrate leaching, hydrological 
variables, and groundwater quality. They compared input-output se
lections, address data gaps or practical applications, or generally 
contribute to the larger field. These studies reached the conclusion that 
ANN, back propagation neural network (BPANN), feed-forward neural 
network (FFANN), multi-layer perceptron (MLP), and Bayesian neural 
network (BNN) were suitable to model groundwater quality with their 
choice of model architecture in the specific study area (Beerala et al., 
2019; Darwishe et al., 2017; Elhatip and Kömür, 2008; Gemitzi et al., 
2009; Heidarzadeh, 2017; Huang et al., 2011; Kheradpisheh et al., 2015; 

Fig. 2. The study focuses found in > 3 publications for ML in GWQ modeling. (DON: SAR: TH: TDS: EC: WQI).  
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Maiti et al., 2013; Maria et al., 2022; Modrogan et al., 2010; Moham
madi et al., 2016; Ostad-Ali-Askari et al., 2017; Sirat, 2013; Sunayana 
et al., 2020; Wagh et al., 2018; Wagh et al., 2017; Wang et al., 2006). 

3.1.1.2.1. Nitrate leaching prediction. BPANN or BPNN, which is a 
type of ANN trained by error-correction learning of backpropagation 
(Rumelhart et al., 1985, 1986) using stochastic gradient descent, was 
used to evaluate nitrate leaching potential in agricultural fields (Kaluli 
et al., 1998), nitrate contamination through drip irrigation systems (Li 
et al., 2004), and nitrate concentration in a study area with monsoons 
(Charulatha et al., 2017). Using different variables, most of the work 

showed reasonable prediction of nitrate concentration, with R2 values 
between 0.8 – 0.9. Four separate ANN models (Chittaranjan and K., 
2000) were used to predict pesticide and nitrate contamination in 
different types of rural wells. The models performed very well during 
training (above 95% for all four) but not during testing, with an accu
racy between 80 and 90 percent for drilled and driven wells, but only 
50% for predicting nitrate in dug and bored wells. 

Another study compared the metamodeling technique multidimen
sional kriging to radial basis function neural network (RBFNN) for ni
trate leaching modeling using simulated data. RBFNN is one type of 

Fig. 3. Graphical analysis of input parameters. a) Input parameters used in ≥ 15 publications. b) The number of input parameters used in each publication.  
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FFNN, whose connections between nodes do not form a cycle or loop and 
uses radial basis function (RBF) as activation function. The kriging 
model performed slightly better than the RBFNN model only in some 
conditions (Piñeros Garcet et al., 2006). Metamodels made of ANNs 
were developed to predict nitrate leaching in the unsaturated zone. All 
performed very well in testing except for the simple model (Nolan et al., 
2012). 

ANN was used to modify the DRASTIC index. Results were compared 
to a composite DRASTIC index and a nitrate vulnerability index and 
found that the ANN had the highest accuracy of the three (Baghapour 
et al., 2016). Multiple linear regression (MLR), principal component 
regression (PCR), ANN, and principal component coupled with ANN 
(PC-ANN) were applied for application to nitrate prediction and found 
that PC-ANN performed the best for both pre- and post-monsoon 
(Charulatha et al., 2017). Previously, PC-ANN was found to have a 
lower mean absolute error in predicting arsenic in southeast Asian 
countries than MLR or ANN (Cho et al., 2011). 

3.1.1.2.2. ANN for modeling hydrogeologic variables and groundwater 
quality. A multi-layer FFNN was used to estimate unknown groundwater 
pollution sources and hydraulic conductivity, porosity, and dispersivity 
(Singh and Datta, 2004). Data for the study was simulated by a physical 
model, allowing the authors to add varying uncertainty levels. The study 
found that the model performance decreased as the dataset uncertainty 
increased. Another work used a Gauss Newton ANN to model pedo
transfer functions. The model was able to work with as little as two 
variables and was superior to a least-squares fit model (Fuentes et al., 
2014). 

ANN with quick propagation (QPANN) was evaluated as an option 
for groundwater salinity mediation (Banerjee et al., 2011). The model 
was trained with 2 years of real-time field data and used to develop a 
pumping schedule that can stabilize salinity of groundwater below 2.5% 
of the seawater for a span of 5 years. A practical study coupled a wireless 
water quality network (WWQN) with an ANN model to give real-time 
predictions of groundwater quality (Kılıçaslan et al., 2014). Innovative 

Fig. 4. Data collection timescales reported in each publication. Most studies did not report their data collection timescale.  

Fig. 5. Study focus of machine learning models used in GWQ modeling. a) The percentage of publications in each learning type. b) The percentage of supervised 
models by model category. c) The percentage of optimization models by model category. 
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ANN architecture, for example, RBFNN coupled with a fuzzy cluster 
method was found to increase the efficiency for groundwater quality 
prediction (Azimi et al., 2019). An extreme learning machine (ELM) 
model, a FFNN that utilizes Moore-Penrose generalized inversion to set 
its weights without updating them, was found to be most efficient and 
had the highest predictive performance in comparison to MLP and SVM 
models when used to predict the level of fluoride contamination in the 
groundwater (Barzegar et al., 2017). MLP was used as a surrogate model 
for Bayesian-based Differential Evolution Adaptive Metropolis with 
Discrete Sampling-Markov Chain to reduce the computational cost for a 
contaminant source simulation, and was found to reduce simulation 
time by over 80 percent while keeping model results fairly accurate (An 
et al., 2022). 

3.1.1.2.3. Comparison between ANN and statistical learning methods, 
and among multiple ANN models. Comparisons between ANN and other 

statistical learning methods are commonly found. BPNN was found to 
have lower predictive error for estimating nitrate and electrical con
ductivity when comparing with linear regression (LR) or MLR in mul
tiple studies (LAAFOU et al., 2016; Ramasamy et al., 2003; Zare et al., 
2011). ANN, however, performed the worst in another study, when 
compared with boosted regression tree (BRT), Bayesian network, MLR 
and random forest regression (RFR) for nitrate contamination (Nolan 
et al., 2015). GGAP-RBF network was compared to three sequential 
learning algorithms for nitrate prediction in groundwater and was found 
to be more successful at prediction (Wang et al., 2005). ANN performed 
the best in estimating groundwater electrical conductivity when 
compared to several kriging and co-kriging models (Maroufpoor et al., 
2019). 

Comparisons among multiple NN models are also commonly re
ported in groundwater quality modeling. Modular neural network 

Fig. 6. Graphical analysis of performance metrics used. a) Performance metrics used in > 5 publications. b) The number of performance metrics used in each 
publication. 
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(MNN) and classical ANN models were compared for nitrate prediction 
and found that the MNN outperformed the best ANN model, but not 
better than a traditional model developed by MODFLOW for the steady- 
state ground water flow model and MT3D for nitrate fate and transport 
(Almasri and Kaluarachchi, 2005b). Twelve different BPNN architec
tures were compared for predicting nitrate contamination in a shallow 
aquifer, and the Levenberg–Marquardt algorithm based BPNN was 
selected as the best with a model correlation coefficient of 0.93 (Yesil
nacar et al., 2008). BPNN outperformed RBFNN, and ANFIS models for 
pesticide prediction in domestic wells (Sahoo et al., 2005), and better 
than RBFNN for nitrate prediction (Zaqoot et al., 2018). However, 
another work compared BRNN and RBFNN, and found no statistically 
significant difference in performance (Ehteshami et al., 2016). BPNN 
and RBFNN models were compared for both nitrate contamination and 
drainage flow in agricultural fields, and the RBFNN model outperformed 
the BPNN model for both inputs that included and excluded field tillage 
data (Sharma et al., 2003). MLP was found to be the best network with a 
correlation of 0.9773 when comparing with two other neural network 
models, i.e., RBFNN, and generalized regression neural network (GRNN) 
(Al-Mahallawi et al., 2012). MLP was compared to convolutional neural 
network (CNN) and long short term memory (LSTM) for predicting WQI 
in Malaysia. LSTM performed the best on the dataset for nearly all 
performance measures (Sheikh Khozani et al., 2022). LSTM, MLR, and 
ANN models were compared for prediction of irrigation groundwater 
quality parameters. For this study, ANN performed the best, since the 
LSTM model was not very generalizable to the testing data (Kouadri 
et al., 2022). 

3.1.1.3. ANN model assessment. ANN has proven to be a viable method 
for predicting groundwater quality variables, such as nitrate concen
tration. As shown in Fig. 5b, ANN models are the most popular algorithm 
in groundwater quality modeling due to their high accuracy and ease of 
implementation. Based on the predictions, they have applications for 
management purposes such as well installation (Chittaranjan and K., 
2000) and water remediation (Banerjee et al., 2011; Kılıçaslan et al., 
2014). 

ANN also has large flexibility in the number of input parameters. It 
can provide reasonable estimates of nitrate concentrations with as few 
as 4 input parameters (R^2 > 0.93) (Maria et al., 2022; Yesilnacar et al., 
2008) or as many as 41 parameters (MAE (%) < 7) (Nolan et al., 2015). 

The applicability of ANN with a small number of parameters is especially 
useful, as comprehensive datasets are rare and difficult to use. Using a 
few easily measurable parameters makes it feasible for local and 
municipal governments to apply ANN models. 

Often, the performance of the ANN model is highly dependent on 
selection of input parameters and model architecture. Traditional ANN 
performs more poorly than BNN and BRT at high numbers of input pa
rameters due to overfitting (Nolan et al., 2015). SVM and ANFIS models 
have been shown to provide higher accuracy predictions of EC, TDS 
(Khaki et al., 2015), and arsenic concentrations (Park et al., 2016) than 
ANNs. However, results are not consistent with model performance due 
to uncertainties in feature selection and model architecture. ANN has 
outperformed ANFIS in two studies (Khashei-Siuki and Sarbazi, 2015; 
Sahoo et al., 2005) and has shown no statistical difference with SVM in 
two others (Dixon, 2009; Khalil et al., 2005). Many studies found more 
advanced ANN models, such as RBFNN and RBFNN, performed better 
than traditional ANN models. Several studies reported opposite results 
(Ehteshami et al., 2016; Sahoo et al., 2005; Zaqoot et al., 2018). Genetic 
algorithms have been proven to boost ANN accuracy (Almasri and 
Kaluarachchi, 2005a; MoasheriP0F and AbadiP4F, 2012), as well as 
principal component analysis (Charulatha et al., 2017; Cho et al., 2011). 
In a similar vein, committee neural networks improve the predictive 
accuracy of multiple types of neural networks (Barzegar et al., 2018; 
Barzegar and Asghari Moghaddam, 2016). Thus, ANN can be modified 
to improve performance instead of being replaced with another model 
altogether. Despite a recent decline, it will likely be the dominant ML 
algorithm in groundwater and surface water quality for years. 

3.1.2. Fuzzy methods 

3.1.2.1. Introduction to fuzzy methods. Fuzzy method or analysis is one 
of the modalities to solve problems with uncertainty where the fuzzy 
logic (Cintula et al., 2021; Zadeh, 1965) is utilized. Neuro-fuzzy system 
(NFS) (Berenji and Khedkar, 1992; Buckley and Hayashi, 1994; Buckley 
and Yoichi, 1995; Halgamuge and Glesner, 1994) combines artificial 
neural networks and fuzzy logic to learn the parameters in fuzzy sets and 
fuzzy rules using backpropagation or genetic algorithm or other opti
mization tools. They are especially useful for classification problems 
where a WQI is modified or improved through fuzzy methods. 

Fig. 7. Total number of studies of ML in GWQ published each year by learning type.  
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3.1.2.2. Applications of fuzzy methods in groundwater quality modeling 
3.1.2.2.1. Viability of neuro-fuzzy methods for groundwater quality 

modeling and WQI classification. (Dixon et al. 2001) was the reported 
that a neuro-fuzzy method with the trapezoidal membership function 
can be used to predict groundwater vulnerability. This model was most 
sensitive to soil structure properties and land use variables. Another 
work varied the number of fuzzy sets, the rule weights, and the mem
bership functions, and found that the trapezoidal membership function 
was the least sensitive to permutations in the model setup (Dixon, 2005). 

Adaptive network-based fuzzy inference system (ANFIS) is the most 
widely used approach of NFS. ANFIS models have been used to predict 
nitrate contamination in agricultural lands (Jebastina and Prince Arul
raj, 2018) and potato fields (Shekofteh et al., 2012) with satisfactory 
performance. An ANFIS model linked to Latin hypercube sampling to 
propagate uncertainty of the model parameters was used to estimate 
global arsenic concentrations, with the highest model performance at an 
R-square of 0.65 (Amini et al., 2008). ANFIS was found to outperform 
the traditional TDS-based method for estimating EC (Tutmez et al., 
2006) and could estimate how EC affected the water composition of the 
study area. A study found that the number of parameters was the only 
significant factor on the performance of ANFIS, and the parameter 
combination was non-significant (Mousavi and Amiri, 2012). When 
applied to predict nitrate concentration in an agricultural district of 
India, the performance of ANFIS increased with the increase of param
eters and achieved a determination coefficient of close to 90% with only 
5 variables (Jebastina and Prince Arulraj, 2018). 

Neuro-fuzzy methods have been used to classify agricultural 
groundwater pollution (Dahiya et al., 2007; Muhammetoglu and Yard
imci, 2006). A Mamdani fuzzy inference model was applied to predict 
three WQIs and performed well for both wet and dry seasons (Vadiati 
et al., 2016). ANFIS was used to train models under average climate and 
extreme temperature conditions to modify a drinking water quality 
index (RadFard et al., 2019). Another work found weights-of-evidence 
(WofE), a statistical categorical predictor, 7 classifications provided 
higher quality results than neuro-fuzzy for WQI prediction (Uhan, 
2012). 

3.1.2.2.2. Other neuro-fuzzy models. Different types of neuro-fuzzy 
methods were applied to GWQ modeling. Co-active ANFIS (CANFIS) is 
an extension of ANFIS with capabilities of taking any number of input- 
output pairs, and typically performs better when mapping nonlinear 
function. CANFIS was found to have satisfactory performance for 
groundwater quality assessment (Gholami et al., 2017), and also per
formed better than ANN and self-organizing map (SOM) for WQI pre
diction (Gholami et al., 2022). Catastrophe fuzzy membership functions 
were used to improve both the general DRASTIC and pesticide DRASTIC 
methods (Sadeghfam et al., 2016). A fuzzy linear optimization model 
was applied to find optimal factor weights for the DRASTIC index (Asadi 
et al., 2017). A fuzzy logic control system was used for improving 
bioremediation control systems in situ. The system was able to reduce 
the contamination from "significantly" to "slightly” contaminated (Hu 
et al., 2003). 

3.1.2.2.3. Comparative studies of ANFIS to other ML models. A few 
works performed comparative studies of ANFIS to other ML models 
(Al-Mukhtar and Al-Yaseen, 2019; Khaki et al., 2015; Khashei-Siuki and 
Sarbazi, 2015). The ANFIS (with generalized bell membership function) 
was found to perform the best for predicting both TDS and EC when 
comparing with FFNN and a cascade forward network (Khaki et al., 
2015). An ANFIS model outperformed ANN and MLR models for all 
performance metrics for predicting TDS and EC (Al-Mukhtar and 
Al-Yaseen, 2019). However, another study compared ANN and geo
statistical methods for spatial prediction of EC and found that the ANN 
model outperformed ANFIS and the geostatistical methods (Kha
shei-Siuki and Sarbazi, 2015). 

3.1.2.3. Neuro-Fuzzy model assessment. Fuzzy models are perhaps the 

most user-friendly models with their linguistic outputs and ability to 
manage uncertainties. Their usefulness in classification problems makes 
them a popular choice for WQI problems. In general, fuzzy models are 
capable of successfully classifying groundwater quality and improving 
traditional WQIs such as DRASTIC (Asadi et al., 2017; Sadeghfam et al., 
2016). 

Fuzzy models are not only used for classification problems. ANFIS 
models can outperform ANN models in predicting TDS and EC if proper 
types and functions are used (Al-Mukhtar and Al-Yaseen, 2019; Khaki 
et al., 2015). ANFIS improves on the benefits of ANN with the advantage 
of fuzzy reasoning, leading to problem simplification and noise reduc
tion and thus, more accurate results (Al-Mukhtar and Al-Yaseen, 2019). 
However, in one study (Khashei-Siuki and Sarbazi, 2015), ANN was 
found to be a superior model over ANFIS for EC prediction. The study 
used only three parameters for the best model, whereas eleven (Khaki 
et al., 2015) and six (Al-Mukhtar and Al-Yaseen, 2019) parameters were 
used in other studies. Results likely come from the purely nonlinear 
approach in parameter optimization and the fuzzy inference system 
reflecting ambiguity of observed data (Khashei-Siuki and Sarbazi, 
2015). Possibly, it is simply a problem of the number of parameters, 
which lets the fuzzy inference system overcompensate for any errors in 
the limited data. 

Regardless, ANFIS and other fuzzy models are excellent methods for 
predicting a variety of groundwater contamination parameters and 
predicting water quality for management purposes. It is also a faster 
method than ANN (Khaki et al., 2015), giving it a practical advantage in 
implementation. 

3.1.3. Support vector machine (SVM) 

3.1.3.1. Introduction of SVM. SVM is a versatile ML model which can 
solve classification and regression tasks. In its most basic form, SVM is a 
maximum margin classifier that maximizes the width of the gap between 
distinct categories. Because the naive maximum margin classifier uses 
hard margin for separation, it is sensitive to outliers. SVM overcomes 
this issue by utilizing a support vector classifier or soft margin classifier 
(Cortes and Vapnik, 1995) that finds the optimal soft margin that gives 
the best classification score through cross-validation among support 
vectors within the range of soft margin. SMV can also perform non-linear 
classification by utilizing a “kernel trick” (Boser et al., 1992). Additional 
introduction of SVM can be found in the supporting information 
(S2.2.4). 

3.1.3.2. Application of SVM in groundwater quality modeling. SVM has 
been applied largely to predict nitrate concentrations in groundwater, 
except for three studies which focused on other contaminants such as 
sodium and arsenic (Isazadeh et al., 2017; Liu et al., 2020; Park et al., 
2016). 

The validity of SVM for nitrate contamination prediction was 
assessed and shown to be satisfactory (Arabgol et al., 2016). A study 
integrated SVM into the parametric agricultural nitrate hazard index 
(IPNOA) model (Rizeei et al., 2018). LR was used for weight
ing/optimization of the SVM before the final prediction was made, 
which led to a higher accuracy than the regular IPNOA (91.32% and 
85.3%, respectively). Liu et al.’s work (J. Liu et al., 2020) marked the 
first successful effort to apply one-class SVM to groundwater anomaly 
detection with real-time data. 

SVM was compared with ANN models in multiple studies (Dixon, 
2009; Isazadeh et al., 2017; Khalil et al., 2005; Park et al., 2016). When 
compared with a locally weighted projection regression (LWPR) and 
relevance vector machine (RVM), a method similar to SVM but that uses 
Bayesian inference to provide probabilistic classification, for nitrate 
prediction (Khalil et al., 2005), RVM performed the best followed by 
SVM and ANN, which was attributed to model architecture choices and 
may not be consistent in all study areas. When compared for nitrate 
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prediction, SVM and NN performed similarly in the validation phase 
(0.55 and 0.59 accuracy, respectively). Feature selection did not 
improve accuracy but did lower the number of necessary variables for 
prediction (Dixon, 2009). When compared for EC, sodium, and sulfate 
concentration prediction, SVM had lower uncertainty than FFNN (Isa
zadeh et al., 2017). ANN and SVM were compared for identifying 
groundwater arsenic concentrations, and SVM was found to be more 
accurate (Park et al., 2016). 

SVM, along with classification and regression tree (CART) and 
random forest (RF), was evaluated as part of a wrapper selection study 
for optimizing feature selection for nitrate prediction models (Rodri
guez-Galiano et al., 2018). The highest performing SVM model was 
sequential forward selection-SVM. However, the best CART and the best 
RF model were superior to SFS-SVM. 

3.1.3.3. SVM model assessment. SVM models have been found to accu
rately predict nitrate concentration (Arabgol et al., 2016; Khalil et al., 
2005) and other hydrochemical compounds (Isazadeh et al., 2017; Park 
et al., 2016). Additionally, they have advantages over ANN models. For 
example, SVM models do not rely critically on network structure se
lection, the biggest weakness of ANN. They are also less prone to over
fitting because there is no need for iterative training. In addition, they 
are faster (Khalil et al., 2005). 

Despite these advantages, results are not conclusive on SVM supe
riority over ANN for groundwater quality modeling. SVM models still 
rely on kernel function selection, which may affect results as they use 
different methods to map data into higher dimensions. Researchers 
should expect results of these comparisons to be dependent on model 
architecture, area-specific, and not generalizable to other research areas 
(e.g., surface water). SVM was shown to be inferior to CART and RF for 
feature selection (Rodriguez-Galiano et al., 2018), but superior to BRT 
and multi-discriminant analysis (MDA) for nitrate contamination pre
diction (Sajedi-Hosseini et al., 2018). As with all models discussed here, 
an ensemble approach was able to improve SVM individual performance 
(Sajedi-Hosseini et al., 2018). Regardless, SVM is a sturdy model capable 
of achieving low uncertainty under reasonable computational demands 
(Isazadeh et al., 2017). Most studies on SVM are recent, and there is 
clearly still work left on this topic. 

3.1.4. Regression models 

3.1.4.1. Introduction to regression models. The regression model predicts 
the dependent variable from one or more independent variables through 
a function that estimates their relationships. Regression analysis is 
generally used for predicting the target value of missing input other than 
the training samples. 

3.1.4.2. Application of regression models in groundwater quality mod
eling. Several of the earliest studies used a ML logistic regression model 
to accurately predict nitrate contaminations (A. Liu et al., 2005; Nolan 
et al., 2002), Selenium thresholds (Nolan and Clark, 1997), and 
groundwater vulnerability (Teso et al., 1996). These models are now 
often used as a benchmark comparison to demonstrate alternate model 
superiority. More advanced regression models such as multivariate 
regression, multiple linear regression (MLR), and regression trees were 
later introduced to study nitrate contamination and source pollution 
(Boy-Roura et al., 2013; Kihumba et al., 2015; Mattern et al., 2009; 
Nolan, 2001). MLR is still a useful modern tool; MLR outperformed ANN 
for predicting water quality index types in Nigeria (Akakuru et al., 
2022). 

3.1.4.3. Regression model assessment. LR and MLR have been shown 
repeatedly to be superior to computationally costly physical models, but 
in the current research meta they are the benchmark for the lowest 
acceptable accuracy. For example, RF models are highly superior to LR 

models (Ouedraogo et al., 2019; Tesoriero et al., 2017; Wheeler et al., 
2015). 

3.1.5. Decision tree and random forest 

3.1.5.1. Introduction to decision tree and random forest. Decision trees 
(DT) are a type of supervised ML where the data is continuously split 
according to a certain parameter, and trees consist of decision nodes and 
leaves. The random forest (RF) is a classification algorithm consisting of 
many DTs. RF randomly selects observations and features to build each 
individual tree to create an uncorrelated forest of trees (Biau and Scor
net, 2016). 

3.1.5.2. Application of decision tree and random forest in groundwater 
quality modeling. One study used only DT to predict water quality clas
sifications, which was found to be more precise and efficient than 
principal component analysis (Saghebian et al., 2014).RF was used to 
predict nitrate and arsenic concentrations and allowed for a general 
assessment of the vulnerability of basin-fill aquifers (Anning et al., 
2012). When used to predict pollution in agricultural groundwater, an 
RF model only needed four explanatory variables when driving forces, 
such as anthropological effects, were added to water quality parameters 
(V. Rodriguez-Galiano et al., 2014). RF was used to locate the sources 
and flow paths of dissolved organic nitrogen (DON) in groundwater 
based on landscape characteristics (B Wang et al., 2018). In conjunction 
with a fuzzy method, RF was able to determine the WQI and ground
water quality index (GQI) (Norouzi and Moghaddam, 2020). RF has 
shown satisfactory performance for fluoride modeling in India (J. E. 
Podgorski et al., 2018) and arsenic modeling in Uruguay (Wu et al., 
2021). RF was supplemented with Global Information System (GIS) for 
spatiotemporal assessment and prediction of groundwater nitrate 
contamination, with a high accuracy (Judeh et al., 2022). 

At a large scale, RF and quantile RF were used with the European 
Water Framework to estimate national redox and nitrate groundwater 
conditions at high resolution (Knoll et al., 2020). A methodology was 
proposed to accommodate the computational demands of large datasets 
using RF, and national-scale predictions of groundwater redox class for 
New Zealand were presented (Wilson et al., 2020). RF with Shapley 
Additive exPlanations (SHAP) was compared to kriging to derive insight 
on nitrate modeling was found to be more accurate than the traditional 
method (W. Li et al., 2022). RF and a generalized boosted regression 
model were combined into a final model for analysis of physiochemical 
parameter relationships by creating spatial maps showing relationships 
between manganeses, iron, and arsenic (Podgorski et al., 2022). Clas
sification and Regression Tree (CART) model was used for prediction of 
GWQI assessment in India, which achieved low error and produced re
sults for the soil types by GWQI (Singha et al., 2022). 

RF performed better for nearly all benchmarks when comparing to 
linear regression for predicting the occurrence of redox-active constit
uents in groundwater (Tesoriero et al., 2017). RF has been found to be 
superior to MLR, regression tree, linear regression, kriging models, 
generalized additive model (GAM), CART, BRT, RF, SVM, Naïve Bayes, 
and C4, a tree-based algorithm for modeling nitrate in private wells in 
rural areas (Wheeler et al., 2015), at the continental scale (Issoufou 
Ouedraogo et al., 2019), in the Arab Emirates (Khan et al., 2021), and 
using exclusively spatial predictors (Knoll et al., 2019). RF has also been 
found to be superior Multiple Discriminant Analysis (MDA) and BRT for 
susceptibility prediction of groundwater hardness (Mosavi et al., 2020) 
and ANN for prediction of WQI in an urban area (Anjum et al., 2021). 
Five tree-based models were used for arsenic risk prediction in a region 
in India, RF, Optimized Forest, cost-sensitive Forest (CS Forest), 
Split-Point and Attribute Reduced Classifier (SPAARC), and Reduced 
Error Pruning (REP) Tree. The most accurate was Optimized Forest, with 
RF close behind, while the least accurate was CS Forest and REP Tree 
(Kumar and Pati, 2022). Random forest was found to have the best 
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classification performance for groundwater arsenic prediction compared 
to DT, MLP, and Naïve Bayes algorithm (Siddharth Kumar and Pati, 
2022). RF and a k-nearest neighbor (kNN) model had the highest ac
curacy for prediction of water quality class in India compared to linear 
discriminant analysis, CART, and SVM models (MOGARAJU, 2022). 

A study used numerical model outputs as predictors to create a 
hybrid boosted regression tree model (i.e. DTs with continuous 
outcome) for predicting nitrate concentration (Ransom et al., 2017). A 
conditional inference forest (CIF), a DT that utilizes unbiased recursive 
partitioning of dependent variables based on the value of correlations, 
was paired with a physical model in a groundwater vulnerability anal
ysis. The metamodel allowed for multiple simulations of the computa
tionally expensive physical model, with a higher than 60% agreement in 
GW sites for predicted classes (Soriano et al., 2021). 

3.1.5.3. Decision tree and random forest model assessment. RF models are 
less of a “black box” than other ML models; that is, researchers may 
glean information about parameters connections (B Wang et al., 2018). 
However, RF models can struggle with accuracy and availability of 
anthropologic data (Knoll et al., 2020; V. Rodriguez-Galiano et al., 
2014). Additionally, the size of the tree-based algorithm can be a 
restriction. 

3.1.6. Comparative studies 

3.1.6.1. Introduction to comparative studies. Some studies compare 
models without intention of selecting a “best model” and optimizing it 
for the study area, or without intention of comparing a novel model to a 
base model. These studies are collected in this section. 

3.1.6.2. Application of comparative studies in groundwater quality mod
eling. Four algorithms, MLP, ANFIS, SVM, and gene expression pro
gramming (GEP) were compared for estimating TDS, and GEP was found 
to be superior (Jafari et al., 2019). RF demonstrated a slightly lower 
error than ANFIS, logistic regression mode (LRM), fuzzy, and adaptive 
fuzzy regression (AFR) for groundwater arsenic prediction (Bindal and 
Singh, 2019). BPNN, evolutionary polynomial regression (EPR) and the 
naive Bayes model (NBM) were compared across seven performance 
metrics for predicting nitrogen concentration on a weekly basis. No 
single model significantly outperformed any of the others in all analysis 
(Markus et al., 2010). Additive regression (AR) surpassed the accuracy 
of SVM, M5P tree model (M5P), and random subspace (RSS) for WQI 
prediction in India (Elbeltagi et al., 2022). 

Thirteen ML algorithms were compared for dissolved organic nitro
gen prediction in an urban setting. Bagged MARS, RF, and cubist, a rule- 
based model that utilizes decision tree and regression (Quinlan and 
others, 1992), were the most optimal models with the most generaliz
ability (Benya Wang et al., 2016). For comparison of seven ML algo
rithms for arsenic prediction, Cubist performed the best in training; 
however, RF and bagged tree were the best models for internal valida
tion (de Menezes et al., 2020). 

SVM was found to have superior performance to RF, flexible 
discriminant analysis (FDA), mixture discriminant analysis (MDA), BRT, 
and MARS for groundwater salinity mapping (Mosavi et al., 2021). 
Hosseini et al. found that instance-based K-nearest neighbors out
performed KStar, M5P, locally weighted learning, and regression by 
discretization for fluoride contamination prediction (Khosravi et al., 
2020). 

3.1.6.3. Comparative studies assessment. Comparative studies contain 
models that have only appeared once in ML GWQ modeling literature. 
These studies serve the purpose of assessing less-common models for 
completion of the literature. However, it is important to note that these 
studies do not necessarily agree on model superiority and should be 
taken on a case-by-case basis. For example, one study concluded that 

SVM was the most accurate of six models, including MARS, for 
groundwater salinity mapping (Mosavi et al., 2021). However, another 
found that of their thirteen models tested for dissolved organic nitrogen 
prediction, MARS was among the top three, whereas two different SVM 
models were not (Benya Wang et al., 2016). This example reinforces the 
danger of generalizability in comparative studies. 

3.1.7. Optimization techniques 
Optimization techniques are practices of optimizing the performance 

of the predictive model from various aspects. Widely used techniques 
include efficient searching for the optimal parameter set of the model, 
feature engineering for effective feature learning, and improving the 
stability and accuracy of learning algorithms. 

3.1.7.1. Introduction to genetic algorithms. Genetic algorithms (GAs) 
(Katoch et al., 2021; Lambora et al., 2019; Yang, 2020), inspired by 
natural selection, are part of evolutionary algorithms (EAs) which are 
generic population-based metaheuristic optimization algorithms. Ge
netic algorithms utilize biologically inspired operations like mutation, 
crossover, and selection to provide solutions for optimization and 
search. Genetic algorithms can deal with complex problems across 
diverse types of optimizations. To make genetic algorithms converge, 
the parameters of the specific genetic algorithm need to be carefully 
selected, and a wide range of options exists. A brief description on GAs, 
particularly on variations of GAs mentioned in the sections below, can 
be found in the Supporting Information (Section 2.2.5). 

3.1.7.2. Application of genetic algorithms in groundwater quality modeling 
3.1.7.2.1. Improving model performance with GA. BPNN and GA have 

been integrated and was found to perform better than other ANN models 
for nitrate prediction (Almasri and Kaluarachchi, 2005a; MoasheriP0F 
and AbadiP4F, 2012). The bee algorithm (BA), a population-based al
gorithm that mimics the food foraging behavior of honeybee colonies 
with good convergence to the global optimum, was used with BPNN for 
prediction of water pollution sources, which showed significantly higher 
accuracy than the unmodified BPNN (Keskin et al., 2015). An FNN-SVR 
hybrid model was optimized with GA and needed less parameters than 
MLR (Hosseini and Mahjouri, 2014). The viability of ELM modified by 
crow search algorithm (CSA) for predicting groundwater quality was 
evaluated and found to be more accurate than the unmodified ELM (Liu 
et al., 2017) and to raise the accuracy of ANFIS for prediction of specific 
conductance (Zounemat-Kermani et al., 2022). PSO and GA optimiza
tion of ANFIS were not found to be statistically different for modeling 
EC, pH, and Cl (Jalalkamali, 2015). For WQI prediction, a PSO-naïve 
Bayes classifier slightly outperformed a PSO-SVM model (Agrawal et al., 
2021). PSO was also used with NN and Empirical Bayesian Kriging for 
prediction of physiochemical and metallic parameters in an island area 
(De Jesus et al., 2021; Senoro et al., 2022). The firefly algorithm (FFA), a 
global optimization algorithm inspired by flashing behavior of firefly 
insects, was shown to improve performance in ANN, ANFIS, SVM, 
MARS, and RF models for prediction of groundwater parameters, of 
which SVM-FFA and ANN-FFA were the most robust. A combination of 
PCA, PSO, and SVM was optimized to evaluate water quality category. 
The PCA-PSO-SVM model performed better than the PSO-SVM, the SVM, 
and a BPNN model and had a 99 percent accuracy (Ni et al., 2022). 

3.1.7.2.2. GA comparative studies. Several studies compared the 
performance of multiple genetic algorithms against each other (Banad
kooki et al., 2020; Kisi et al., 2019; Ritzel et al., 1994). Pareto GA was 
found to be superior to a vector-evaluated GA for solving a 
multi-objective groundwater pollution containment problem (Ritzel 
et al., 1994). Continuous genetic algorithm (CGA) was found to be 
overall superior to PSO and ant colony optimization for continuous 
domains (ACOR)for training and optimization of ANFIS for modeling 
EC, total hardness, and sodium adsorption ratio (SAR) in groundwater 
(Kisi et al., 2019). Moth flame optimization (MFO) and cat swarm 

R. Haggerty et al.                                                                                                                                                                                                                               



Water Research 233 (2023) 119745

11

optimization (CSO) have also showed better performance in optimiza
tion of ANFIS for TDS compared to PSO and three other GAs (Banad
kooki et al., 2020). 

Three studies compared GAs against other algorithms (Aryafar et al., 
2019; Najafzadeh et al., 2022; Wu et al., 2017). GA was compared to 
generalized linear regression, decision tree, and gradient boosted tree 
for nitrate prediction (Wu et al., 2017). While the GA did the least 
over/underestimating of the models, it was not very robust. When 
comparing genetic programming (GP) to ANN and ANFIS for estimating 
TH, TDS, and EC, the GP model was superior (Aryafar et al., 2019). 
Evolutionary Polynomial Regression (EPR) and gene-expression pro
gramming (GEP) were compared against M5 model tree and Multivar
iate Adaptive Regression Spline (MARS) for WQI prediction, and EPR 
had the highest accuracy (Najafzadeh et al., 2022). GEP was also used to 
predict salinity and EC in Iran (Khalaj et al., 2019). 

3.1.7.3. Genetic algorithm model assessment. GA is a popular method for 
improving model results with a wide range of options. They provide 
advantages over ANN and ANFIS models by structural independence and 
protection from over-fitting and early convergence due to their cross
over and mutation operators (Aryafar et al., 2019). They are also 
remarkably consistent; every study that modified existing algorithms 
found that GAs improve model performance. Additionally, they can 
work with as few as three parameters (Banadkooki et al., 2020; Jalal
kamali, 2015) or more than 10 parameters (Hosseini and Mahjouri, 
2014; Ransom et al., 2017). 

More evolutionary models have been tested in recent years, such as 
CSA and PSO. There is not a clear consensus from the literature if these 
newer models have an advantage in groundwater quality modeling 
(Jalalkamali, 2015; Kisi et al., 2019). However, the new models are just 
as viable for predicting groundwater quality (Keskin et al., 2015; Liu 
et al., 2017). Because of their consistency, flexibility, and compatibility 
with other models, GAs will continue to be a useful tool for researchers. 

3.1.7.4. Introduction to wavelet transform. Wavelet transform (Chui, 
1992; Daubechies, 1992; Debnath and Shah, 2002) was proposed to 
solve constant time and frequency resolution caused by the fixed length 
of the window used in short-time Fourier transform (STFT). Wavelet 
transform uses wavelet as the basis function rather than the window 
function to realize multiresolution analysis by controlling the width of 
the wavelet and its central frequency. Wavelet transform and its discrete 
version, discrete wavelet transform (DWT) (Akansu and Haddad, 1992), 
are effective tools of doing feature engineering to select optimal features 
from raw data as training data. Wavelet transform can also be directly 
used in ML architectures like wavelet neural networks (WNN) (Alex
andridis and Zapranis, 2013) which combine wavelet analysis with 
neural networks to approximate deterministic functions. 

3.1.7.5. Application of wavelet transform in groundwater quality mod
eling. Wavelet transform is a common surface water modeling tech
nique, but few studies have used wavelet transform techniques for 
groundwater quality modeling. A study used electromagnetic sensor 
arrays as input for a MLP with wavelet transform for feature selection to 
estimate groundwater quality. The model could predict nitrate and 
sulfur concentration even in the presence of other contamination (Nor 
et al., 2015). Another study optimized a MLP with a wavelet neural 
network (WNN) and BPNN for assessing shallow groundwater quality 
(Yang et al., 2017). Wavelet transform, along with self-organizing map 
(SOM) and mutual information (MI) was used to extract features for 
modeling nitrate time series with FFNN. The hybrid coupling improved 
the performance of the FFNN by up to 39% and was able to predict ni
trate load in the study area’s sub-basins and outlet (Nourani et al., 
2017). 

3.1.7.6. Wavelet transform model assessment. Wavelet transform can 

decompose non-stationary data (Nourani et al., 2017). This temporal 
preprocessing can improve models as it can find trends, discontinuities, 
and other data anomalies that other preprocessing techniques might 
miss (Yang et al., 2017). Thus far, it has only been applied to improve an 
MLP model and ANN models and used in preprocessing for a hybrid 
FFNN model. While wavelet transform has some flexibility in selection 
of the mother wavelet, this does affect results and can compound on 
ANN model architecture selections (Yang et al., 2017). However, 
wavelet transform is a useful tool for improving results if the complexity 
of application is not an issue. 

3.1.7.7. Introduction to bagging and boosting. Boosting is an ensemble 
learning method for reducing variance and overfitting in a sequential 
way by adjusting the weight of sample as each base model is evaluated 
(Hastie et al., 2009). Gradient boosting (GBT), or boosted regression tree 
(BRT), (Friedman, 2002; Hastie et al., 2009) is an ensemble learning 
model using decision trees as base models. 

3.1.7.8. Application of bagging and boosting in groundwater quality mod
eling. BRT has been used for predicting arsenic (Chakraborty et al., 
2020; M L Erickson et al., 2018; Lombard et al., 2021), manganese 
(Melinda L Erickson, Elliott, Brown, Stackelberg, Ransom, Reddy, et al., 
2021), pH (Stackelberg et al., 2021), redox conditions (Melinda L 
Erickson et al., 2021) and nitrate concentration (Ransom et al., 2022) in 
various glacial aquifer systems in the United States. BRT was found to be 
a cheap and reliable method for real-time groundwater level and nitrate 
concentration predication (Mettu and Latifi, 2021). 

Extreme gradient boosting (XGB), a specific implementation of 
gradient boosting with regularization to improve the generalization of 
the model, was found to be superior to DNN and MLR for mapping 
groundwater salinity (Sahour et al., 2020) and ANN and SVM for nitrate 
and pesticide prediction (Bedi et al., 2020). XGB performed the best for 
improving a groundwater vulnerability prediction framework, when 
compared with AdaBoost, RF, Light Gradient Boosting Machine (LGBM), 
and Categorical Boosting (CatBoost) (Barzegar et al., 2021). Adaptive 
boosting (Adaboost) was found in two instances to have higher predic
tive performances than RF, ANN, and SVR for predicting irrigation water 
quality, although the SVR and ANN models showed higher generaliza
tion potential (El Bilali et al., 2021; Trabelsi and Ali, 2022). Random 
Forest Regression (RFR), the Extreme Gradient Boosting Regression 
(XGBR), the CatBoost Regression (CBR), and the Light Gradient Boosting 
Regression (LGBR) were compared for salinity prediction in coastal 
aquifers, with the CBR model reaching the best accuracy and stability 
(Tran et al., 2021). However, for arsenic prediction, RF was found to 
have better capabilities (Chakraborty et al., 2020); for nitrate, XGBoost 
showed superior performance (Ransom et al., 2022). 

3.1.7.9. Bagging and boosting model assessment. The robustness and 
computational restrictions of a model can be addressed with boosting. A 
popular method is XGB, although others exist and have been studied for 
GW quality modeling. XGB has been shown to have higher accuracy than 
ANN, DNN, and MLR models for prediction of nitrate, salinity, and 
pesticides in groundwater (Bedi et al., 2020; Sahour et al., 2020). It is 
also comparable to SVM (Bedi et al., 2020), although generalized 
boosted models (GBM) and BRT are not as accurate (Mosavi et al., 2021; 
Benya Wang et al., 2016). 

3.1.8. Deep learning 

3.1.8.1. Introduction to deep learning. Deep learning is part of ANN- 
based machine learning algorithms, whose network architecture is 
constructed with multilayer perceptron (MLP) to achieve better pre
dictive capability while maintaining a moderate complexity of the 
network. Deep learning methods are capable of effectively modeling 
complex relationships from observations. Its training and inferencing 
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performance can be improved by leveraging modern hardware- 
accelerated parallelization. 

3.1.8.2. Application of deep learning in groundwater quality modeling. 
The deep neural network (DNN) emulator was found to be able to model 
simple contaminant transport much faster than MLP for contaminant 
transport modeling (Yu et al., 2020). Recently, DNNs have been 
compared to several models for both ammonium (Perović et al., 2021) 
and WQI (Singha et al., 2021) prediction, and provided remarkably high 
predictive performance (R2 = 0.996) (Singha et al., 2021). A DNN model 
showed significant improvement over ANN and SVR models for 
ammonium prediction in alluvial groundwater (Perović et al., 2021). For 
prediction of WQI and Entropy Water Quality Index (EWQI), DNN per
formed better than GBM and extreme gradient boosting (XGB). Results 
for the boosting methods are mixed for the two indices (Raheja et al., 
2022). CNN and DNN outperformed RF and XGB for estimation of 
groundwater quality parameters such as TDS, potential salinity, sodium 
adsorption ratio, and chloride in a coastal aquifer using only EC and pH 
as input parameters (Taşan et al., 2022). However, for nitrate prediction 
in an unconfined aquifer, XGB was more accurate than a DNN and MLR 
model (Gholami and Booij, 2022). 

A DNN was used for point source identification in a simulated 
groundwater quality scenario. The authors projected the high dimen
sional problem into a lower dimension, and so the proposed network 
provided a good surrogate of a transport system without losing accuracy, 
with the autoregressive strategy reducing the DNN computational time 
(Mo et al., 2019). 

3.1.8.3. Deep learning model assessment. Deep learning is a promising 
field of study in computer science, and especially in groundwater quality 
modeling. While the number of case studies is still small, deep neural 
networks have consistently performed better than conventional ML 
models such as ANN for supervised groundwater quality modeling 
(Perović et al., 2021; Singha et al., 2021; Taşan et al., 2022). Although 
deep-learning network is an effective type of predictive model with 
capability of modeling complex functions on high-dimension input, 
several aspects have to be taken care of while training the network. For 
example, a larger amount of training data is needed to train a complex 
deep-learning network with good generalizability. Practices like regu
larization are also necessary to prevent the model from overfitting. 

3.2. Semi-Supervised 

3.2.1. Introduction to semi-supervised ml models 
Semi-supervised learning (Chapelle et al., 2009; Zhu and Goldberg, 

2009; Zhu, 2005) is a combination of supervised learning and unsu
pervised learning and it utilizes a small amount of labeled data and a 
large amount of unlabeled data for training. The success of 
semi-supervised learning depends on the critical assumptions which are 
continuity, cluster, and manifold. Popular semi-supervised learning in
cludes self-training, mixture models, co-training, multi-view learning, 
graph-based methods, low-density separation, and semi-supervised 
support vector machines. 

3.2.2. Application of semi-supervised ml models in groundwater quality 
modeling 

A study proposed a new groundwater contaminant source identifi
cation method, which used a non-negative Matrix Factorization (NMF) 
method for Blind Source Separation (BSS), coupled with a custom semi- 
supervised clustering algorithm (Vesselinov et al., 2018). The authors 
had previously applied this method to identify the sources of pressure 
fluctuations in water (Alexandrov and Vesselinov, 2014). The 
semi-supervised k-means clustering algorithm could unmix the 
geochemical signatures in the observations and identify the contaminant 
sources and was found to be capable of identifying both the number of 

groundwater types and the original concentration of the contaminant 
sources from mixtures without any mixing ratio or site information. 

3.2.3. Semi-Supervised model assessment 
Semi-supervised algorithms are rare in water quality modeling. As of 

2020, they had not been used for river water quality modeling (Tiyasha 
et al., 2020a) and have been only used once for GWQ modeling as of 
2022. The method provided promising results and could be an emerging 
topic for researchers focused on contaminant source identification. 

3.3. Ensemble learning 

3.3.1. Introduction of ensemble learning 
Ensemble learning (Haykin and Network, 2004; Opitz and Maclin, 

1999; Polikar, 2006) is a modality of ML where multiple base learning 
models (weak learners) are aggregated to obtain better predictive per
formance than any of the base learning models alone. The aggregation is 
achieved by using meta-algorithms like bagging, boosting, and stacking. 
In this review, models are grouped into committee neural networks 
(CNN), ensemble fuzzy models, and others. 

3.3.2. Application of ensemble learning in groundwater quality modeling 

3.3.2.1. Committee neural networks. Committee machine or committee 
neural network (CNN) (Haykin and Network, 2004) is a type of 
ensemble learning utilizing multiple neural networks as base models and 
combining the predictions of base models into a final prediction with 
higher accuracy. A CNN of three NN models (i.e., MLP, RBFNN, and 
GRNN) were compared for groundwater salinity prediction, and the 
CNN outperformed any individual model in RMSE and R2 (Barzegar and 
Asghari Moghaddam, 2016). A CNN was used with ELM, MARS, M5, and 
SVR for improving DRASTIC predictions. In terms of the correlation 
coefficient (r) and Willmott index (d), CNN was clearly superior to any 
individual method (Barzegar et al., 2018). Ensemble of ANNs was 
compared to ANN with early stopping and ANN with Bayesian regula
rization for prediction of WQI but did not higher correlation coefficient 
in both training and testing data set than the Bayesian regularization 
algorithm (Sakizadeh, 2016). 

3.3.2.2. Ensemble fuzzy models. Ensemble fuzzy models (Yang et al., 
2006) combine various fuzzy logic methods with ensemble learning for 
better performance. Ensemble fuzzy models have been applied exclu
sively to improving DRASTIC method performance. A few studies 
(Barzegar et al., 2016; Fijani et al., 2013; Nadiri et al., 2013) used su
pervised committee machine with artificial intelligence (SCMAI) to 
predict fluoride concentration and improve the DRASTIC method. Each 
study ran Sugeno fuzzy logic (SFL), Mamdani fuzzy logic, ANN, and 
neuro-fuzzy (NF) individually for the problem before testing the SCMAI. 
Some results showed that they each fit the data for fluoride prediction 
similarly (Nadiri et al., 2013). NF was shown to be the best of the in
dividual models in one study area (Fijani et al., 2013), and in another 
both NF and SFL performed very well (Barzegar et al., 2016). All studies 
observed that the SCMAI was able to further improve on any individual 
model’s performance. Another study found that in the validation phase 
for improving DRASTIC performance, supervised committee fuzzy logic 
(SCFL), and committee fuzzy logic (CFL) had higher correlation co
efficients than three individual fuzzy logic models (Nadiri et al., 2017). 

3.3.2.3. Other ensemble models. Three different ML types, BRT, MDA, 
and SVM, and an ensemble of these three models were compared for 
groundwater risk assessment for a region in Iran., and the ensemble 
approach surpassed all individual models (Sajedi-Hosseini et al., 2018). 
Two similar studies reached the same conclusion for an area of Pakistan 
(Awais et al., 2021) and a different Iran region (Rokhshad et al., 2021). 
Radial Basis Neural Networks (RBNN), Support Vector Regression 
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(SVR), and ensemble Random Forest Regression (RFR) were compared 
for nitrate contamination evaluation; the ensemble model performed the 
best (Elzain et al., 2022). RF, gradient boosted machine, SVM, and ANN, 
along with bagging ensemble model were used to model nitrate con
centration in private wells. No model performed well (R2 < 0.33), and 
final RF model outperformed the bagging ensemble models (Messier 
et al., 2019). A 2022 study compared bagging (Bagged Decision Trees, 
Random Forest, and Extra Trees), boosting (AdaBoost and Stochastic 
Gradient Boosting), and ensemble methods (Logistic Regression, kNN, 
Decision Tree, SVM, and Naïve Bayes) for WQI prediction. The highest 
accuracy was achieved by the ensemble model, bagged decision trees, 
and gradient boosting (Shrivastava et al., 2022). 

3.3.3. Ensemble model assessment 
Ensemble models are a powerful tool for GW quality prediction. 

Virtually all ensemble modeling studies have shown that CNNs, 
ensemble fuzzy models, and ensemble models of other ML algorithms 
can improve predictive capabilities. An ensemble approach can elimi
nate weaknesses of each individual model and provide a more robust 
prediction. However, ensemble models are not always perfect ad
vancements. For example, one study found that an RF model had a 
higher R2 value than the bagging ensemble model, which used R2 as the 
only performance metric (Messier et al., 2019). Another study found 
that the CNN had the lowest RMSE but not the highest R2 value, but it 
also outperformed any individual model in terms of correlation coeffi
cient r and Willmott index of agreement (Barzegar et al., 2018). In 
general, ensemble models outperform other models in various perfor
mance metrics (Barzegar and Asghari Moghaddam, 2016; Elzain et al., 
2022), although they may have lower R2 values. 

3.4. Unsupervised learning 

Unsupervised learning (Barlow, 1989; Hinton et al., 1999) is an al
gorithm that can discover hidden patterns and insights from the dataset 
without labels. Common unsupervised learning tasks include clustering, 
association, and principal component analysis (PCA). 

3.4.1. Self-Organizing maps (SOM) 

3.4.1.1. Introduction of som. Self-organizing map (SOM), also known as 
self-organizing feature map (SOFM) or Kohonen self-organizing feature 
maps (KSOFM) (Kohonen, 1982; Kohonen et al., 1996; Kohonen and 
Honkela, 2007), is an unsupervised neural network that clusters 
high-dimensional data and transforms high-dimensional features into 
low-dimensional (two-dimensional) features while preserving symmet
rical relationships between samples. 

3.4.1.2. Application of self-organizing maps in groundwater quality mod
eling. SOMs have been used for point source identification, modification 
of neural networks, prediction of hydrochemical parameters, and in 
conjunction with clustering (Hong and Rosen, 2001; Nakagawa et al., 
2016; Nourani et al., 2015). The first study to use SOM generated 
U-matrix maps which allowed the authors to find site-specific correla
tions between variables by comparing these maps to the real world 
(Hong and Rosen, 2001). SOM was able to provide high quality, 
area-specific interpretable results to classify the groundwater data (Choi 
et al., 2014). When SOM was used with a FFNN to model, the SOM-FFNN 
method improved the accuracy of predictions 84.5% and 17% for 
modeling EC and TDS, respectively, on average with regard to the MLR 
model (Nourani et al., 2015). A modified SOM (MSOM) was found to 
perform better than three supervised MLAs (i.e., LDA, BRT, and RF), in 
predicting oxic, mixed, and anoxic conditions for a groundwater redox 
condition study in an agriculturally dominant region (Friedel et al., 
2020). SVM with PCA and hierarchal clustering analysis (HCA) was used 
for identifying hydrological pathways and ion sources in aquifer systems 

in Japan (Rahman et al., 2022). 
SOM was coupled with clustering algorithms in several studies. A 

study used SOM with k-means and Ward’s algorithms for clustering to 
identify surface and groundwater chemistry classes and determined 
pathways for certain chemicals (Nakagawa et al., 2016). SOM and fuzzy 
c-means (FCM) clustering were able to identify distinct and interpretable 
clustering groups when evaluating urban (Lee et al., 2019) and SOM 
with hierarchal clustering (HCA) achieved this for regional groundwater 
quality (Zhong et al., 2022). 

3.4.1.3. SOM model assessment. SOMs offer insights into parameter 
connections and point source identification, as well as improvements on 
predictions of GWQ parameters. They can capture insight on complex 
variable relationships with no a priori knowledge of physical transport 
mechanisms. The application of SOM in groundwater quality modeling 
is still an emerging field and has little generalizability. Overall, SOMs 
can be useful tools for local or regional groundwater management. 

3.4.2. Clustering 

3.4.2.1. Introduction to clustering. Clustering (Rokach and Maimon, 
2005; Xu and Wunsch, 2008) is an unsupervised ML task that auto
matically separates data into groups according to the similarities of 
samples specified by certain type of distance metric. Clustering has been 
used to identify unknown connections among parameters and improve 
other ML techniques. K-means algorithm (Forgy, 1965; Lloyd, 1982; 
MacQueen and others, 1967) is a centroid model for partitioning data 
into k clusters through iteration where each cluster is represented by a 
single mean vector. 

3.4.2.2. Application of clustering in groundwater quality modeling. Clus
tering, such as factor analysis (FA), cluster analysis (CA), and K-means 
clustering, was used to understand variable relationships. Factor anal
ysis (FA) and cluster analysis (CA) were used along with a hydro
chemical model package (PHREEQC) to model hydrochemical 
properties of a small island aquifer. Inspecting the elements of each 
cluster led to explain the three most significant processes affecting the 
groundwater aquifer (Aris et al., 2011). K-means clustering was used to 
understand spatial variations in groundwater chemistry to identify 
pathways and study the effects of industrial and agricultural activities on 
two aquifers (Fabbrocino et al., 2019). Hybrid BN was used to apply 
probabilistic clustering for assessing groundwater quality and predictive 
uncertainty, which optimized the number of samples needed for an ac
curate estimate by ignoring samples with high error probability (Agui
lera et al., 2013). Hierarchal clustering analysis (HCA) method was used 
in a similar manner to visualize hydrochemical links in Algeria. HCA 
identified three water quality groups and allowed the authors to draw 
links between hydraulic pathways and geology (Selmane et al., 2022). 
Clustering was also used to improve existing ML methods. The effect of 
k-means clustering on two ML techniques, ANN and SVM, was evaluated 
for predicting nitrate concentration. The clustered aggregate SVM per
formed slightly better than the clustered ANN (Alagha et al., 2014). 
Quantile regression (QR) and uncertainty estimation based on local er
rors and clustering (UNEEC) were applied to ML models SVM, RF, and 
k-NN in groundwater nitrate contamination prediction. The UNEEC 
methods had similar predictive performance statistics as RF, but better 
than SVM. 

3.4.2.3. Clustering model assessment. Clustering methods for studying 
relationships among parameters is a useful tool. They have been shown 
to provide information on processes affecting aquifers (Aris et al., 2011; 
Fabbrocino et al., 2019), but much like SOM, the results are not 
generalizable to other study areas. However, clustering can be an 
excellent preprocessing tool for other ML algorithms, such as ANN and 
SVM (Alagha et al., 2014) or for assessing uncertainties (Rahmati et al., 
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2019). While it is difficult to compare methods, there are more 
user-friendly parameter assessment methods (SOM) and more rigorous 
model enhancement methods (ensemble, GA) than clustering. However, 
it can be an appropriate tool where uncertainties are an important aspect 
of a study. 

3.4.3. Artificial intelligence with multiple frameworks (AIFM) 
A few studies used multiple ML frameworks in parallel or sequential 

to construct a comprehensive unsupervised learning pipeline for better 
data analysis and pattern discovery for specific domains to improve the 
basic DRASTIC framework (BDF) (See Section 2.2 for a brief explanation 
of the DRASTIC framework). One study used BDF parallel to AIMF with 
least-squares SVM (LS-SVM) and fuzzy catastrophe framework (FCF) to 
map aquifer vulnerability. Both frameworks were weak on their own 
when using N as measure of vulnerability. However, the AIMF strategy 
with LS-SVM produced a high accuracy in testing. Another study used 
four DRASTIC variations with SVM for the AIMF. The AIMF was able to 
enhance the correlation of coefficient value to nearly double of the best 
DRASTIC variation (Nadiri et al., 2018). 

Various combinations of ANN, neuro-fuzzy, fuzzy logic, GEP, SVM, 
GA, BDF, and FCF were used in supervised and unsupervised ensemble 
techniques for modeling a tropical island aquifer. The best model com
bined the unsupervised BDF and BDF-FCF with the supervised BDF-GA 
and BDF-GEP using LS-SVM, displaying the advantage of both super
vised and unsupervised learning types (Nadiri et al., 2019). 

Unsupervised combinations of GQI and GWQI indexes were applied 
twice to predict Iran groundwater quality, and this combination per
formed better when compared to nitrate-arsenic maps in that regions 
(Najib et al., 2022; Sedghi and Nadiri, 2022). 

Like supervised ensemble models, multiple frameworks combine 
several models at once. However, the models combined are variations of 
the BDF, which are unsupervised. The models can also be combined in 
some supervised method (Nadiri et al., 2018, 2018). Multiple frame
works can clearly enhance the performance of the unsupervised 
frameworks for prediction of groundwater quality parameters (Nadiri 
et al., 2018, 2018). For problems with an unsupervised problem set, 
multiple frameworks can be a powerful tool for the enhancements of 
weaker frameworks. 

4. Conclusions and future work 

Groundwater quality modeling using ML continues to grow as a field. 
This review covered over 200 papers on ML water quality modeling for 
prediction and management of groundwater as concise and accessible as 
possible without risking oversimplification. The first part of the study 
analyzed the literature as a group and uncovered important trends. The 
amount of work on this topic increased rapidly in the early 2010′s and 
continues to grow in recent years (Fig. 2). The world leaders in publi
cations in this field are Iran and the United States (Fig. 8). Nitrate is by 
far the most studied groundwater quality parameter (Fig. 2). A great 
many parameters are viable for these types of prediction (Fig. 3a), 
although the number of parameters used often hovers between 3 and 8, 
to take advantage of readily available data, or 13–20, to take advantage 
of common hydrochemical parameters (Fig. 3b). 

A wealth of models has been applied to groundwater quality 
modeling. For supervised learning models, ANN is the most common, 
followed by fuzzy, natural, and SVM (Fig. 5b). Additionally, interest in 
unsupervised and alternative supervised models has increased rapidly in 
the last 12 years. 

The second part of the assessment focused on the results from each 
publication by model type. A brief description of the basic model type 
gave a basic understanding of the use. Then, an in-depth bibliography 
and a model assessment focused on the strengths and weaknesses of each 
model. ANN models are the most popular algorithm due to their high 
accuracy, ease of implementation, and flexibility in number of input 
parameters. The performance of ANN models are highly dependent on 
selection of input parameters and model architecture. As such, perfor
mance of ANN models compared to other model types such as SVM or 
ANFIS or other ANN model types such as RBFNN is not consistent. SVM 
and fuzzy methods are also heavily dependent on architecture and 
hyperparameter selection, increasing the likelihood of conflicting re
sults. Model optimization techniques such as wavelet transform and 
genetic algorithms intend to eliminate some heuristic error in the base 
models, but don’t always achieve this. 

Methods such as random forest and deep learning show more con
stant results when compared to other model types. The random forest 
model achieves high accuracy from its model structure, and can manage 

Fig. 8. Geographical locations of study areas by country.  
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large, missing, and outlier data well. Ensemble learning attains this as 
well and is another promising avenue for groundwater quality modeling. 
Deep learning can also achieve high accuracy and can manage un
structured data well. However, these models are all “black box” models. 
While potentially highly useful for GW quality management, they do not 
offer much insight for researchers. 

As groundwater modeling through ML continues to expand, there are 
several areas for future researchers that should be addressed, which are 
discussed in the following section. 

4.1. Future work 

4.1.1. Implementation of best practices 
Machine learning for hydrology, especially forecasting methods, is 

facing a modern evaluation of historical misapplication (Gharib and 
Davies, 2021; Zheng et al., 2018). Wavelet transform especially is prone 
to error often resulting from data preprocessing and handling (Du et al., 
2017; Quilty and Adamowski, 2018). As the interest in ML for managing 
and forecasting GW quality grows, it is important to understand the 
missteps and limitations of these models, especially when related to data 
selection and handling. Without proper implementation of current 
standards and best practices for steps like data splitting, model archi
tecture, and model evaluation, results from the expanding field will be 
muddied with errata. 

4.1.2. Cessation of duplicate studies 
Many papers on ANN only described how an ANN model may be 

applied to a certain study area. They did not provide any innovate data 
pre- or postprocessing ideas or amplify or modify the model to a degree 
that contributed significantly to the literature. This repetition is a trap 
for authors to avoid. 

4.1.3. Application of deep learning 
Deep learning is a rapidly developing field of machine learning that 

shows promise in hydrology (Shen, 2018). So far, it has been applied 
minimally to GW quality modeling (Mo et al., 2019; Perović et al., 2021; 
Singha et al., 2021), making this one of the biggest and most exciting 
opportunities in groundwater research. With the growth of GW water 
data collection, lifelong learning (LL) (Parisi et al., 2019) is a promising 
direction to solve the catastrophic forgetting issue when training an 
existing network on newly collected data. Meta-learning (Hospedales 
et al., 2022) gives a systematic solution to automatically learn a learning 
model from datasets with good optimization on the hyperparameters for 
higher prediction accuracy with a cheaper training process. This will 
generally help researchers discover insight for designing suitable 
learning algorithms in GW water research. 

4.1.4. Explainable AI 
Explainable AI (XAI) is another emerging tool in machine learning. 

Unlike many models discussed in this paper, such as ANN, which are 
“black box” models, XAI is a theory that aims to provide interpretation 
and visualization to users on the processes studied through various 
techniques (Samek et al., 2019). A big weakness of current ML studies 
right now is the caveat that all results may only hold in the specific study 
area, which has led to several discrepancies among model performance 
results. For practical studies to make an impact, they must be applicable 
outside of the study area, and XAI will be a useful tool for this purpose, 
as human-explainable results will allow for larger generalizability. 

4.1.5. Exploration of underrepresented models 
Many models have only been studied once for GW quality modeling, 

and the highest performers, along with models that have never been 
applied to the subject, should be explored further. Similarly, model 
enhancement techniques, such as genetic algorithms, have not been 
applied to all models and implemented in GWQ modeling. 

4.1.6. Accessibility of supplementary materials 
To allow for greater standards and stricter benchmarks, it is sug

gested that more researchers allow materials such as code and data to be 
open-source and available to the public. The advantages of more data
bases are clear, but freely available code would allow for validation 
across multiple study areas, and potentially provide insights from one 
group to another. 

4.1.7. Application to new study areas 
Many studies took advantage of the massive and historical datasets 

available in areas such as Iran and the United States. There are large 
areas of the world that have not had groundwater quality assessment 
through ML and could benefit from the analysis. The models will also be 
tested for robustness through this method. 

4.1.8. Inclusion of infrequently used parameters 
Many parameters, such as anthropological effects or long-term 

climate conditions, are difficult to obtain or estimate for a dataset. 
However, they can be powerful indicators in the present, and their 
exclusion in a dataset may invalidate the model after future changes in 
the study area. Researchers should consider a wide variety of input 
parameters to account for this. 

4.1.9. Practical application of machine learning for groundwater quality 
management 

This review has displayed overwhelming evidence of the power of 
machine learning for groundwater quality modeling. Groundwater 
quality management is short in this area. Application of machine 
learning for this purpose would reduce the cost in both time and re
sources of testing for groundwater quality. The bulk of literature aims to 
evaluate the viability of machine learning for groundwater quality 
forecasting to increase the accuracy and accessibility of groundwater 
quality prediction, but the literature does not provide clear steps to 
bridge the gap between academia and industrial and governmental 
management. An increased cooperation between data scientists and 
municipal authorities, such as increased open-source machine learning 
code and results, adaptation of water quality monitoring systems with 
machine learning in mind, and increased local funding for machine 
learning projects is necessary so that the proper evaluation and man
agement of groundwater can be guided by machine learning. 
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