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Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater
pollution due to various chemical components is vital for planning, policymaking, and management of
groundwater resources. In the last two decades, the application of machine learning (ML) techniques for
groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-
supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality param-
eter, making this the most extensive modern review on this topic.

Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years,
giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and
the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been
modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made
with further implementation of deep learning and explainable artificial intelligence or other cutting-edge
techniques, application of these techniques for sparsely studied variables, the modeling of new or unique

study areas, and the implementation of ML techniques for groundwater quality management.

1. Introduction

Groundwater is a rapidly decaying vital resource. Groundwater
quality (GWQ) is a rising issue worldwide due to extensive agricultural
and industrial activities, and proper management is essential as
groundwater provides almost half of all drinking water globally (Water
etal., 2016). However, groundwater quality is influenced by a variety of
environmental and anthropological factors (Alagha et al., 2014; Liu
et al.,, 2005). Understanding these factors is an important step in
developing appropriate management strategies.

Machine learning (ML) is an effective tool for extracting predictive
models from data. A subset of artificial intelligence, ML models use
inductive hypothesis to analyze and “learn the rules” from data without
relying on a determined system of equations. They show great potential
in discovering intrinsic patterns from data and making accurate pre-
dictions of water quality parameters in freshwater resources, both sur-
face and groundwater. ML techniques are capable of learning features
with high dimensionality and nonlinear relationships. With the help of
modern computational hardware and architecture (Gupta, 2021; Sze
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et al., 2017; Zhao et al., 2017) optimized for machine learning algo-
rithms (MLAs), especially for deep learning (Emmert-Streib et al., 2020;
LeCun et al., 2015; Shrestha and Mahmood, 2019), data-centric ML
methods started to emerge in recent years with a remarkable leap for-
ward in performance. Key parameters extensively collected from
groundwater, such as pH, nitrate concentration, etc., can be used to train
ML models. Groundwater quality can be predicted or analyzed by
inferring the various stages of the trained model.

Although ML has been applied to predict groundwater quality in
many studies, there is no modern comprehensive literature review on
ML techniques for GWQ modeling. A parallel study exists, a compre-
hensive survey of artificial intelligence (AI) techniques for surface water
quality modeling (Tiyasha et al., 2020b). Some recent reviews for
groundwater quality only survey techniques for specific parameters
(Che Nordin et al., 2021; Haghbin et al., 2021), or focus on specific
models (Kumari et al., 2016; Shen, 2018). Others, while covering a wide
range of models and parameter prediction, lack the comprehensiveness
owed to the subject (Haghbin et al., 2021; Malakar et al., 2021; Mosaffa
et al., 2022).
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In this work, we provide a comprehensive review of ML in GW
quality modeling, covering various contaminants for prediction and a
broad range of algorithms. The first section is a meta-analysis of the
literature, covering topics such as study focus, model inputs, publica-
tions years and study areas, and distribution of models. The second part
of the paper is a bibliographic review of the literature by ML model
category type. As shown in Fig. 1, the model categories were organized
by learning type: supervised, semi-supervised, unsupervised, and
ensemble. Supervised learning was divided into eight categories: ANN,
fuzzy, SVM, decision tree and random forest, linear regression,
comparative, deep learning, and optimization techniques. Optimization
techniques were further divided into bagging and boosting, genetic al-
gorithms, and wavelet transform. Unsupervised learning was divided
into three categories: self-organizing map (SOM), multiple frameworks
(MF), and clustering.

Studies were placed into these categories based on the primary al-
gorithm studied. The bibliographic review consists of 1) a theoretical
overview of the basic model structure, 2) a brief review of the applica-
tion of the model in GW quality modeling by topic, and 3) an assessment
of the model based on factors such as accuracy, applicability, ease, range
of use. These model assessment sections are intended to compare results
and summarize the large body of work in each model category. Con-
flicting case studies are highlighted intentionally as part of this effort.
The last section of the paper highlights the results of the general analysis
and the bibliographic review and outlines future directions and oppor-
tunities for researchers.

1.1. Introduction to the machine learning process and techniques

The training of machine learning models is a process of finding an
optimal parameter set of the predictive model through closed-form so-
lutions or iterative updating of its parameters through optimization.
Many techniques have been proposed to improve the performance and
accuracy of machine learning models.

The input of the machine learning model should be carefully selected
for reducing the computational complexity of the machine learning
model and improving its predictive performance. Dimensionality
reduction techniques can effectively reduce the input features to miti-
gate the sparsity of the high-dimensional data for better similarity
measurement. Feature learning is also beneficial to extracting effective
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Fig. 1. This study’s organization of ML models used for groundwater quality
modeling. Learning types are divided into Supervised, Unsupervised, Semi-
Supervised, and Ensemble, with the model categories listed under their
respective learning type.
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features as the input of the machine learning model for specific tasks.

Cross-validation, dividing the dataset as a training dataset and a
validation dataset, helps to improve the generalization of the predictive
model by avoiding overfitting. Data augmentation can be used to in-
crease the amount of training datasets when the size of the collected
dataset is small.

Various optimization methods provide ways of finding the optimal
model parameters by reaching a global minima of the loss function.
Gradient descent is the most popular optimization method for differ-
entiable loss functions. Adaptive learning rate methods help gradient
descent find the optimal parameters effectively and efficiently.

2. General analysis of trends
2.1. Study focus (or model prediction)

Fig. 2 displays the study focuses for articles on ML in groundwater
quality from 1994 to 2022 based on our literature review from.

Nitrate contamination was the most popular study focus, with 87
articles focusing on this subject. Many of these articles repetitively
addressed the same problem; that is, if a certain ML model is viable for
nitrate contaminant prediction (See Section 3.1.1.2). Nitrate is a well-
monitored compound and has been for decades, especially in the
countries with a prevailing focus on this topic, leading to a wealth of
data for testing ML models.

Water Quality Index (WQI) is the second-most studied focus, where
the authors aim to improve the classification of water quality in a study
area. Fuzzy methods are popular for this purpose due to their ability to
deal with uncertainties (Vadiati et al., 2016). A variety of other hydro-
chemical compounds have been studied, such as electrical conductivity
(EQ), total dissolved hardness (TDH), etc. These parameters are more
common as inputs for ML models in many studies, as discussed below in
Section 2.2.

2.2. Input parameters and timescales

In total, there were over 300 unique input parameter types used
among all studies. Only 26 of these parameters were used by 16 or more
studies, as shown in Fig. 3a. The most used parameter was pH, with 70
studies (35%) including it in their input database. Other chemical water
properties commonly used were EC and TDS. All DRASTIC parameters
were also used by more than 15 studies (See Supplementary Material for
DRASTIC model explanation).

Fig. 3b presents an analysis of the number of input parameters of all
studies using ML for groundwater quality and provides a useful insight
into algorithm optimization. Often, a goal of these studies is to provide
an estimation of water quality using easily obtained data while still
providing reasonable accuracy (Shekofteh et al., 2012). Many authors
have decided 4-6 parameters meets these criteria (26% of all studies
used input parameters in this range), as often only a few parameters
significantly contribute to a model’s performance (Wang et al., 2018;
Wheeler et al., 2015). However, physiochemical parameters, such as
cations and anions, are easily measured together, resulting in a large
amount of hydrochemical parameter inputs for certain studies (Keskin
et al., 2015).

Fig. 4 contains the data collection routine timescales for all studies.
Over half of all studies did not report the timescale used when collecting
data. Often, data was drawn from multiple databases, and so temporal
resolution was not reported. The most common collection timescale
reported was seasonally, which is useful in areas with seasonal events
such as monsoons (Wagh et al., 2017).

2.3. Machine learning models

Publications with a focus on supervised models comprise much of all
literature. Unsupervised and ensemble learning techniques make up just
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Fig. 2. The study focuses found in > 3 publications for ML in GWQ modeling. (DON: SAR: TH: TDS: EC: WQI).

10% and 7% of all published literature, respectively. Only one paper
used a semi-supervised technique (Vesselinov et al., 2018).

Within the supervised models, ANN is the most common model for
GW quality modeling. It should be noted that many of these papers used
several models, and Fig. 5 only lists the model type focus of the papers.

2.4. Performance metrics

Fig. 6a displays the most common performance metrics used for
model analysis for supervised, semi-supervised, and ensemble learning.
For unsupervised learning, there are no direct metrics for evaluation and
must be analyzed case by case. RMSE is the most used metric, followed
by the coefficient of determination (Rz). In total, over 50 different per-
formance metrics were used by studies to assess performance. Most
studies used more than one metric to assess performance, as shown in
Fig. 6b.

2.5. Historical trends

As with many ML topics, the application to groundwater quality
modeling has increased rapidly in the last two decades (Fig. 2). Fig. 7
visualizes the rapid growth that occurred after 2008. Papers were
collected by October of 2022, so the number of papers in that calendar
year will likely be higher. Uncommon or advanced learning types like
unsupervised and ensemble learning have not shown the same growth as
supervised learning. Uncommon or advanced learning types like unsu-
pervised and ensemble learning have not shown the same growth as
supervised learning.

2.5.1. Geographical trends

The most studied groundwater systems in the world are in Iran, with
50 papers studying aquifers or wells in the country. The United States
contains the second-most studied groundwater systems, with 39 papers.
Much of Central and South America has not been studied at all, as well as
several countries in Europe and Asia. The continent of Africa has been
studied twice (Ouedraogo and Vanclooster, 2016; Ouedraogo et al.,
2019), but the Democratic Republic of Congo is the only individual
country that has been studied (Kihumba et al., 2015).

Iran had one of the most explosive increases of scientific publications
in the world since the turn of the century, with a staggering 21% average
annual increase in published scientific articles (WorldBank, n.d.). The
United States is the next world leader in ML GWQ modeling. The United

States Congress started the National Water-Quality Assessment
(NAWQA) Program in 1991 to collect surface and groundwater data in a
high-quality and consistent manner (U.S.G.S., n.d.), making it an ideal
location for groundwater quality modeling.

3. Bibliographic review
3.1. Supervised learning

Supervised learning is one of the modalities of fitting a function from
samples of input and output pairs. This review will focus on the most
popular supervised learning algorithms in the domain of groundwater
quality modeling, including Artificial Neural Network (ANN), Support
Vector Machine (SVM), adaptive neuro-fuzzy inference system (ANFIS),
deep learning, decision tree and random forest, regression models,
comparative studies, and optimization techniques.

3.1.1. Artificial neural network (ANN)

3.1.1.1. Introduction of ANN. ANN (Kleene, 2016; Yegnanarayana,
2009), inspired by biological neural networks, is a unified framework
that automatically learns parameters of the predictive model from data.
This automatic process of updating parameters is generally achieved by
backpropagation. ANNs generally consist of an input layer, a hidden
layer, and an output layer. Different ANN models can be created by
modifying various architectures, input structures, and layers. Brief de-
scriptions of various ANN models introduced in this section can be found
in the Supplementary Materials (52.2.2).

3.1.1.2. Application of ANN in groundwater quality modeling. Fifteen
studies focused on the applicability of neural networks to model
groundwater quality, including predicting nitrate leaching, hydrological
variables, and groundwater quality. They compared input-output se-
lections, address data gaps or practical applications, or generally
contribute to the larger field. These studies reached the conclusion that
ANN, back propagation neural network (BPANN), feed-forward neural
network (FFANN), multi-layer perceptron (MLP), and Bayesian neural
network (BNN) were suitable to model groundwater quality with their
choice of model architecture in the specific study area (Beerala et al.,
2019; Darwishe et al., 2017; Elhatip and Komiir, 2008; Gemitzi et al.,
2009; Heidarzadeh, 2017; Huang et al., 2011; Kheradpisheh et al., 2015;
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Fig. 3. Graphical analysis of input parameters. a) Input parameters used in > 15 publications. b) The number of input parameters used in each publication.

Maiti et al., 2013; Maria et al., 2022; Modrogan et al., 2010; Moham-
madi et al., 2016; Ostad-Ali-Askari et al., 2017; Sirat, 2013; Sunayana
et al., 2020; Wagh et al., 2018; Wagh et al., 2017; Wang et al., 2006).
3.1.1.2.1. Nitrate leaching prediction. BPANN or BPNN, which is a
type of ANN trained by error-correction learning of backpropagation
(Rumelhart et al., 1985, 1986) using stochastic gradient descent, was
used to evaluate nitrate leaching potential in agricultural fields (Kaluli
et al., 1998), nitrate contamination through drip irrigation systems (Li
et al., 2004), and nitrate concentration in a study area with monsoons
(Charulatha et al., 2017). Using different variables, most of the work

showed reasonable prediction of nitrate concentration, with R? values
between 0.8 — 0.9. Four separate ANN models (Chittaranjan and K.,
2000) were used to predict pesticide and nitrate contamination in
different types of rural wells. The models performed very well during
training (above 95% for all four) but not during testing, with an accu-
racy between 80 and 90 percent for drilled and driven wells, but only
50% for predicting nitrate in dug and bored wells.

Another study compared the metamodeling technique multidimen-
sional kriging to radial basis function neural network (RBFNN) for ni-
trate leaching modeling using simulated data. RBFNN is one type of
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FFNN, whose connections between nodes do not form a cycle or loop and
uses radial basis function (RBF) as activation function. The kriging
model performed slightly better than the RBFNN model only in some
conditions (Pineros Garcet et al., 2006). Metamodels made of ANNs
were developed to predict nitrate leaching in the unsaturated zone. All
performed very well in testing except for the simple model (Nolan et al.,
2012).

ANN was used to modify the DRASTIC index. Results were compared
to a composite DRASTIC index and a nitrate vulnerability index and
found that the ANN had the highest accuracy of the three (Baghapour
et al., 2016). Multiple linear regression (MLR), principal component
regression (PCR), ANN, and principal component coupled with ANN
(PC-ANN) were applied for application to nitrate prediction and found
that PC-ANN performed the best for both pre- and post-monsoon
(Charulatha et al., 2017). Previously, PC-ANN was found to have a
lower mean absolute error in predicting arsenic in southeast Asian
countries than MLR or ANN (Cho et al., 2011).

3.1.1.2.2. ANN for modeling hydrogeologic variables and groundwater
quality. A multi-layer FENN was used to estimate unknown groundwater
pollution sources and hydraulic conductivity, porosity, and dispersivity
(Singh and Datta, 2004). Data for the study was simulated by a physical
model, allowing the authors to add varying uncertainty levels. The study
found that the model performance decreased as the dataset uncertainty
increased. Another work used a Gauss Newton ANN to model pedo-
transfer functions. The model was able to work with as little as two
variables and was superior to a least-squares fit model (Fuentes et al.,
2014).

ANN with quick propagation (QPANN) was evaluated as an option
for groundwater salinity mediation (Banerjee et al., 2011). The model
was trained with 2 years of real-time field data and used to develop a
pumping schedule that can stabilize salinity of groundwater below 2.5%
of the seawater for a span of 5 years. A practical study coupled a wireless
water quality network (WWQN) with an ANN model to give real-time
predictions of groundwater quality (Kilicaslan et al., 2014). Innovative
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ANN architecture, for example, RBFNN coupled with a fuzzy cluster
method was found to increase the efficiency for groundwater quality
prediction (Azimi et al., 2019). An extreme learning machine (ELM)
model, a FFNN that utilizes Moore-Penrose generalized inversion to set
its weights without updating them, was found to be most efficient and
had the highest predictive performance in comparison to MLP and SVM
models when used to predict the level of fluoride contamination in the
groundwater (Barzegar et al., 2017). MLP was used as a surrogate model
for Bayesian-based Differential Evolution Adaptive Metropolis with
Discrete Sampling-Markov Chain to reduce the computational cost for a
contaminant source simulation, and was found to reduce simulation
time by over 80 percent while keeping model results fairly accurate (An
et al., 2022).

3.1.1.2.3. Comparison between ANN and statistical learning methods,
and among multiple ANN models. Comparisons between ANN and other

statistical learning methods are commonly found. BPNN was found to
have lower predictive error for estimating nitrate and electrical con-
ductivity when comparing with linear regression (LR) or MLR in mul-
tiple studies (LAAFOU et al., 2016; Ramasamy et al., 2003; Zare et al.,
2011). ANN, however, performed the worst in another study, when
compared with boosted regression tree (BRT), Bayesian network, MLR
and random forest regression (RFR) for nitrate contamination (Nolan
et al.,, 2015). GGAP-RBF network was compared to three sequential
learning algorithms for nitrate prediction in groundwater and was found
to be more successful at prediction (Wang et al., 2005). ANN performed
the best in estimating groundwater electrical conductivity when
compared to several kriging and co-kriging models (Maroufpoor et al.,
2019).

Comparisons among multiple NN models are also commonly re-
ported in groundwater quality modeling. Modular neural network
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(MNN) and classical ANN models were compared for nitrate prediction
and found that the MNN outperformed the best ANN model, but not
better than a traditional model developed by MODFLOW for the steady-
state ground water flow model and MT3D for nitrate fate and transport
(Almasri and Kaluarachchi, 2005b). Twelve different BPNN architec-
tures were compared for predicting nitrate contamination in a shallow
aquifer, and the Levenberg-Marquardt algorithm based BPNN was
selected as the best with a model correlation coefficient of 0.93 (Yesil-
nacar et al., 2008). BPNN outperformed RBFNN, and ANFIS models for
pesticide prediction in domestic wells (Sahoo et al., 2005), and better
than RBFNN for nitrate prediction (Zaqoot et al., 2018). However,
another work compared BRNN and RBFNN, and found no statistically
significant difference in performance (Ehteshami et al., 2016). BPNN
and RBFNN models were compared for both nitrate contamination and
drainage flow in agricultural fields, and the RBFNN model outperformed
the BPNN model for both inputs that included and excluded field tillage
data (Sharma et al., 2003). MLP was found to be the best network with a
correlation of 0.9773 when comparing with two other neural network
models, i.e., RBFNN, and generalized regression neural network (GRNN)
(Al-Mahallawi et al., 2012). MLP was compared to convolutional neural
network (CNN) and long short term memory (LSTM) for predicting WQI
in Malaysia. LSTM performed the best on the dataset for nearly all
performance measures (Sheikh Khozani et al., 2022). LSTM, MLR, and
ANN models were compared for prediction of irrigation groundwater
quality parameters. For this study, ANN performed the best, since the
LSTM model was not very generalizable to the testing data (Kouadri
et al., 2022).

3.1.1.3. ANN model assessment. ANN has proven to be a viable method
for predicting groundwater quality variables, such as nitrate concen-
tration. As shown in Fig. 5b, ANN models are the most popular algorithm
in groundwater quality modeling due to their high accuracy and ease of
implementation. Based on the predictions, they have applications for
management purposes such as well installation (Chittaranjan and K.,
2000) and water remediation (Banerjee et al., 2011; Kilicaslan et al.,
2014).

ANN also has large flexibility in the number of input parameters. It
can provide reasonable estimates of nitrate concentrations with as few
as 4 input parameters (R"2 > 0.93) (Maria et al., 2022; Yesilnacar et al.,
2008) or as many as 41 parameters (MAE (%) < 7) (Nolan et al., 2015).

The applicability of ANN with a small number of parameters is especially
useful, as comprehensive datasets are rare and difficult to use. Using a
few easily measurable parameters makes it feasible for local and
municipal governments to apply ANN models.

Often, the performance of the ANN model is highly dependent on
selection of input parameters and model architecture. Traditional ANN
performs more poorly than BNN and BRT at high numbers of input pa-
rameters due to overfitting (Nolan et al., 2015). SVM and ANFIS models
have been shown to provide higher accuracy predictions of EC, TDS
(Khaki et al., 2015), and arsenic concentrations (Park et al., 2016) than
ANNSs. However, results are not consistent with model performance due
to uncertainties in feature selection and model architecture. ANN has
outperformed ANFIS in two studies (Khashei-Siuki and Sarbazi, 2015;
Sahoo et al., 2005) and has shown no statistical difference with SVM in
two others (Dixon, 2009; Khalil et al., 2005). Many studies found more
advanced ANN models, such as RBFNN and RBFNN, performed better
than traditional ANN models. Several studies reported opposite results
(Ehteshami et al., 2016; Sahoo et al., 2005; Zaqoot et al., 2018). Genetic
algorithms have been proven to boost ANN accuracy (Almasri and
Kaluarachchi, 2005a; MoasheriPOF and AbadiP4F, 2012), as well as
principal component analysis (Charulatha et al., 2017; Cho et al., 2011).
In a similar vein, committee neural networks improve the predictive
accuracy of multiple types of neural networks (Barzegar et al., 2018;
Barzegar and Asghari Moghaddam, 2016). Thus, ANN can be modified
to improve performance instead of being replaced with another model
altogether. Despite a recent decline, it will likely be the dominant ML
algorithm in groundwater and surface water quality for years.

3.1.2. Fuzzy methods

3.1.2.1. Introduction to fuzzy methods. Fuzzy method or analysis is one
of the modalities to solve problems with uncertainty where the fuzzy
logic (Cintula et al., 2021; Zadeh, 1965) is utilized. Neuro-fuzzy system
(NFS) (Berenji and Khedkar, 1992; Buckley and Hayashi, 1994; Buckley
and Yoichi, 1995; Halgamuge and Glesner, 1994) combines artificial
neural networks and fuzzy logic to learn the parameters in fuzzy sets and
fuzzy rules using backpropagation or genetic algorithm or other opti-
mization tools. They are especially useful for classification problems
where a WQI is modified or improved through fuzzy methods.
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3.1.2.2. Applications of fuzzy methods in groundwater quality modeling
3.1.2.2.1. Viability of neuro-fuzzy methods for groundwater quality
modeling and WQI classification. (Dixon et al. 2001) was the reported
that a neuro-fuzzy method with the trapezoidal membership function
can be used to predict groundwater vulnerability. This model was most
sensitive to soil structure properties and land use variables. Another
work varied the number of fuzzy sets, the rule weights, and the mem-
bership functions, and found that the trapezoidal membership function
was the least sensitive to permutations in the model setup (Dixon, 2005).

Adaptive network-based fuzzy inference system (ANFIS) is the most
widely used approach of NFS. ANFIS models have been used to predict
nitrate contamination in agricultural lands (Jebastina and Prince Arul-
raj, 2018) and potato fields (Shekofteh et al., 2012) with satisfactory
performance. An ANFIS model linked to Latin hypercube sampling to
propagate uncertainty of the model parameters was used to estimate
global arsenic concentrations, with the highest model performance at an
R-square of 0.65 (Amini et al., 2008). ANFIS was found to outperform
the traditional TDS-based method for estimating EC (Tutmez et al.,
2006) and could estimate how EC affected the water composition of the
study area. A study found that the number of parameters was the only
significant factor on the performance of ANFIS, and the parameter
combination was non-significant (Mousavi and Amiri, 2012). When
applied to predict nitrate concentration in an agricultural district of
India, the performance of ANFIS increased with the increase of param-
eters and achieved a determination coefficient of close to 90% with only
5 variables (Jebastina and Prince Arulraj, 2018).

Neuro-fuzzy methods have been used to classify agricultural
groundwater pollution (Dahiya et al., 2007; Muhammetoglu and Yard-
imci, 2006). A Mamdani fuzzy inference model was applied to predict
three WQIs and performed well for both wet and dry seasons (Vadiati
et al., 2016). ANFIS was used to train models under average climate and
extreme temperature conditions to modify a drinking water quality
index (RadFard et al., 2019). Another work found weights-of-evidence
(WofE), a statistical categorical predictor, 7 classifications provided
higher quality results than neuro-fuzzy for WQI prediction (Uhan,
2012).

3.1.2.2.2. Other neuro-fuzzy models. Different types of neuro-fuzzy
methods were applied to GWQ modeling. Co-active ANFIS (CANFIS) is
an extension of ANFIS with capabilities of taking any number of input-
output pairs, and typically performs better when mapping nonlinear
function. CANFIS was found to have satisfactory performance for
groundwater quality assessment (Gholami et al., 2017), and also per-
formed better than ANN and self-organizing map (SOM) for WQI pre-
diction (Gholami et al., 2022). Catastrophe fuzzy membership functions
were used to improve both the general DRASTIC and pesticide DRASTIC
methods (Sadeghfam et al., 2016). A fuzzy linear optimization model
was applied to find optimal factor weights for the DRASTIC index (Asadi
et al., 2017). A fuzzy logic control system was used for improving
bioremediation control systems in situ. The system was able to reduce
the contamination from "significantly” to "slightly” contaminated (Hu
et al., 2003).

3.1.2.2.3. Comparative studies of ANFIS to other ML models. A few
works performed comparative studies of ANFIS to other ML models
(Al-Mukhtar and Al-Yaseen, 2019; Khaki et al., 2015; Khashei-Siuki and
Sarbazi, 2015). The ANFIS (with generalized bell membership function)
was found to perform the best for predicting both TDS and EC when
comparing with FFNN and a cascade forward network (Khaki et al.,
2015). An ANFIS model outperformed ANN and MLR models for all
performance metrics for predicting TDS and EC (Al-Mukhtar and
Al-Yaseen, 2019). However, another study compared ANN and geo-
statistical methods for spatial prediction of EC and found that the ANN
model outperformed ANFIS and the geostatistical methods (Kha-
shei-Siuki and Sarbazi, 2015).

3.1.2.3. Neuro-Fuzzy model assessment. Fuzzy models are perhaps the

Water Research 233 (2023) 119745

most user-friendly models with their linguistic outputs and ability to
manage uncertainties. Their usefulness in classification problems makes
them a popular choice for WQI problems. In general, fuzzy models are
capable of successfully classifying groundwater quality and improving
traditional WQIs such as DRASTIC (Asadi et al., 2017; Sadeghfam et al.,
2016).

Fuzzy models are not only used for classification problems. ANFIS
models can outperform ANN models in predicting TDS and EC if proper
types and functions are used (Al-Mukhtar and Al-Yaseen, 2019; Khaki
et al., 2015). ANFIS improves on the benefits of ANN with the advantage
of fuzzy reasoning, leading to problem simplification and noise reduc-
tion and thus, more accurate results (Al-Mukhtar and Al-Yaseen, 2019).
However, in one study (Khashei-Siuki and Sarbazi, 2015), ANN was
found to be a superior model over ANFIS for EC prediction. The study
used only three parameters for the best model, whereas eleven (Khaki
etal., 2015) and six (Al-Mukhtar and Al-Yaseen, 2019) parameters were
used in other studies. Results likely come from the purely nonlinear
approach in parameter optimization and the fuzzy inference system
reflecting ambiguity of observed data (Khashei-Siuki and Sarbazi,
2015). Possibly, it is simply a problem of the number of parameters,
which lets the fuzzy inference system overcompensate for any errors in
the limited data.

Regardless, ANFIS and other fuzzy models are excellent methods for
predicting a variety of groundwater contamination parameters and
predicting water quality for management purposes. It is also a faster
method than ANN (Khaki et al., 2015), giving it a practical advantage in
implementation.

3.1.3. Support vector machine (SVM)

3.1.3.1. Introduction of SVM. SVM is a versatile ML. model which can
solve classification and regression tasks. In its most basic form, SVM is a
maximum margin classifier that maximizes the width of the gap between
distinct categories. Because the naive maximum margin classifier uses
hard margin for separation, it is sensitive to outliers. SVM overcomes
this issue by utilizing a support vector classifier or soft margin classifier
(Cortes and Vapnik, 1995) that finds the optimal soft margin that gives
the best classification score through cross-validation among support
vectors within the range of soft margin. SMV can also perform non-linear
classification by utilizing a “kernel trick” (Boser et al., 1992). Additional
introduction of SVM can be found in the supporting information
(52.2.4).

3.1.3.2. Application of SVM in groundwater quality modeling. SVM has
been applied largely to predict nitrate concentrations in groundwater,
except for three studies which focused on other contaminants such as
sodium and arsenic (Isazadeh et al., 2017; Liu et al., 2020; Park et al.,
2016).

The validity of SVM for nitrate contamination prediction was
assessed and shown to be satisfactory (Arabgol et al., 2016). A study
integrated SVM into the parametric agricultural nitrate hazard index
(IPNOA) model (Rizeei et al, 2018). LR was used for weight-
ing/optimization of the SVM before the final prediction was made,
which led to a higher accuracy than the regular IPNOA (91.32% and
85.3%, respectively). Liu et al.’s work (J. Liu et al., 2020) marked the
first successful effort to apply one-class SVM to groundwater anomaly
detection with real-time data.

SVM was compared with ANN models in multiple studies (Dixon,
20009; Isazadeh et al., 2017; Khalil et al., 2005; Park et al., 2016). When
compared with a locally weighted projection regression (LWPR) and
relevance vector machine (RVM), a method similar to SVM but that uses
Bayesian inference to provide probabilistic classification, for nitrate
prediction (Khalil et al., 2005), RVM performed the best followed by
SVM and ANN, which was attributed to model architecture choices and
may not be consistent in all study areas. When compared for nitrate
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prediction, SVM and NN performed similarly in the validation phase
(0.55 and 0.59 accuracy, respectively). Feature selection did not
improve accuracy but did lower the number of necessary variables for
prediction (Dixon, 2009). When compared for EC, sodium, and sulfate
concentration prediction, SVM had lower uncertainty than FFNN (Isa-
zadeh et al.,, 2017). ANN and SVM were compared for identifying
groundwater arsenic concentrations, and SVM was found to be more
accurate (Park et al., 2016).

SVM, along with classification and regression tree (CART) and
random forest (RF), was evaluated as part of a wrapper selection study
for optimizing feature selection for nitrate prediction models (Rodri-
guez-Galiano et al., 2018). The highest performing SVM model was
sequential forward selection-SVM. However, the best CART and the best
RF model were superior to SFS-SVM.

3.1.3.3. SVM model assessment. SVM models have been found to accu-
rately predict nitrate concentration (Arabgol et al., 2016; Khalil et al.,
2005) and other hydrochemical compounds (Isazadeh et al., 2017; Park
et al., 2016). Additionally, they have advantages over ANN models. For
example, SVM models do not rely critically on network structure se-
lection, the biggest weakness of ANN. They are also less prone to over-
fitting because there is no need for iterative training. In addition, they
are faster (Khalil et al., 2005).

Despite these advantages, results are not conclusive on SVM supe-
riority over ANN for groundwater quality modeling. SVM models still
rely on kernel function selection, which may affect results as they use
different methods to map data into higher dimensions. Researchers
should expect results of these comparisons to be dependent on model
architecture, area-specific, and not generalizable to other research areas
(e.g., surface water). SVM was shown to be inferior to CART and RF for
feature selection (Rodriguez-Galiano et al., 2018), but superior to BRT
and multi-discriminant analysis (MDA) for nitrate contamination pre-
diction (Sajedi-Hosseini et al., 2018). As with all models discussed here,
an ensemble approach was able to improve SVM individual performance
(Sajedi-Hosseini et al., 2018). Regardless, SVM is a sturdy model capable
of achieving low uncertainty under reasonable computational demands
(Isazadeh et al., 2017). Most studies on SVM are recent, and there is
clearly still work left on this topic.

3.1.4. Regression models

3.1.4.1. Introduction to regression models. The regression model predicts
the dependent variable from one or more independent variables through
a function that estimates their relationships. Regression analysis is
generally used for predicting the target value of missing input other than
the training samples.

3.1.4.2. Application of regression models in groundwater quality mod-
eling. Several of the earliest studies used a ML logistic regression model
to accurately predict nitrate contaminations (A. Liu et al., 2005; Nolan
et al., 2002), Selenium thresholds (Nolan and Clark, 1997), and
groundwater vulnerability (Teso et al., 1996). These models are now
often used as a benchmark comparison to demonstrate alternate model
superiority. More advanced regression models such as multivariate
regression, multiple linear regression (MLR), and regression trees were
later introduced to study nitrate contamination and source pollution
(Boy-Roura et al., 2013; Kihumba et al., 2015; Mattern et al., 2009;
Nolan, 2001). MLR is still a useful modern tool; MLR outperformed ANN
for predicting water quality index types in Nigeria (Akakuru et al.,
2022).

3.1.4.3. Regression model assessment. LR and MLR have been shown
repeatedly to be superior to computationally costly physical models, but
in the current research meta they are the benchmark for the lowest
acceptable accuracy. For example, RF models are highly superior to LR
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models (Ouedraogo et al., 2019; Tesoriero et al., 2017; Wheeler et al.,
2015).

3.1.5. Decision tree and random forest

3.1.5.1. Introduction to decision tree and random forest. Decision trees
(DT) are a type of supervised ML where the data is continuously split
according to a certain parameter, and trees consist of decision nodes and
leaves. The random forest (RF) is a classification algorithm consisting of
many DTs. RF randomly selects observations and features to build each
individual tree to create an uncorrelated forest of trees (Biau and Scor-
net, 2016).

3.1.5.2. Application of decision tree and random forest in groundwater
quality modeling. One study used only DT to predict water quality clas-
sifications, which was found to be more precise and efficient than
principal component analysis (Saghebian et al., 2014).RF was used to
predict nitrate and arsenic concentrations and allowed for a general
assessment of the vulnerability of basin-fill aquifers (Anning et al.,
2012). When used to predict pollution in agricultural groundwater, an
RF model only needed four explanatory variables when driving forces,
such as anthropological effects, were added to water quality parameters
(V. Rodriguez-Galiano et al., 2014). RF was used to locate the sources
and flow paths of dissolved organic nitrogen (DON) in groundwater
based on landscape characteristics (B Wang et al., 2018). In conjunction
with a fuzzy method, RF was able to determine the WQI and ground-
water quality index (GQI) (Norouzi and Moghaddam, 2020). RF has
shown satisfactory performance for fluoride modeling in India (J. E.
Podgorski et al., 2018) and arsenic modeling in Uruguay (Wu et al.,
2021). RF was supplemented with Global Information System (GIS) for
spatiotemporal assessment and prediction of groundwater nitrate
contamination, with a high accuracy (Judeh et al., 2022).

At a large scale, RF and quantile RF were used with the European
Water Framework to estimate national redox and nitrate groundwater
conditions at high resolution (Knoll et al., 2020). A methodology was
proposed to accommodate the computational demands of large datasets
using RF, and national-scale predictions of groundwater redox class for
New Zealand were presented (Wilson et al., 2020). RF with Shapley
Additive exPlanations (SHAP) was compared to kriging to derive insight
on nitrate modeling was found to be more accurate than the traditional
method (W. Li et al., 2022). RF and a generalized boosted regression
model were combined into a final model for analysis of physiochemical
parameter relationships by creating spatial maps showing relationships
between manganeses, iron, and arsenic (Podgorski et al., 2022). Clas-
sification and Regression Tree (CART) model was used for prediction of
GWQI assessment in India, which achieved low error and produced re-
sults for the soil types by GWQI (Singha et al., 2022).

RF performed better for nearly all benchmarks when comparing to
linear regression for predicting the occurrence of redox-active constit-
uents in groundwater (Tesoriero et al., 2017). RF has been found to be
superior to MLR, regression tree, linear regression, kriging models,
generalized additive model (GAM), CART, BRT, RF, SVM, Naive Bayes,
and C4, a tree-based algorithm for modeling nitrate in private wells in
rural areas (Wheeler et al., 2015), at the continental scale (Issoufou
Ouedraogo et al., 2019), in the Arab Emirates (Khan et al., 2021), and
using exclusively spatial predictors (Knoll et al., 2019). RF has also been
found to be superior Multiple Discriminant Analysis (MDA) and BRT for
susceptibility prediction of groundwater hardness (Mosavi et al., 2020)
and ANN for prediction of WQI in an urban area (Anjum et al., 2021).
Five tree-based models were used for arsenic risk prediction in a region
in India, RF, Optimized Forest, cost-sensitive Forest (CS Forest),
Split-Point and Attribute Reduced Classifier (SPAARC), and Reduced
Error Pruning (REP) Tree. The most accurate was Optimized Forest, with
RF close behind, while the least accurate was CS Forest and REP Tree
(Kumar and Pati, 2022). Random forest was found to have the best
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classification performance for groundwater arsenic prediction compared
to DT, MLP, and Naive Bayes algorithm (Siddharth Kumar and Pati,
2022). RF and a k-nearest neighbor (kNN) model had the highest ac-
curacy for prediction of water quality class in India compared to linear
discriminant analysis, CART, and SVM models (MOGARAJU, 2022).

A study used numerical model outputs as predictors to create a
hybrid boosted regression tree model (i.e. DTs with continuous
outcome) for predicting nitrate concentration (Ransom et al., 2017). A
conditional inference forest (CIF), a DT that utilizes unbiased recursive
partitioning of dependent variables based on the value of correlations,
was paired with a physical model in a groundwater vulnerability anal-
ysis. The metamodel allowed for multiple simulations of the computa-
tionally expensive physical model, with a higher than 60% agreement in
GW sites for predicted classes (Soriano et al., 2021).

3.1.5.3. Decision tree and random forest model assessment. RF models are
less of a “black box” than other ML models; that is, researchers may
glean information about parameters connections (B Wang et al., 2018).
However, RF models can struggle with accuracy and availability of
anthropologic data (Knoll et al., 2020; V. Rodriguez-Galiano et al.,
2014). Additionally, the size of the tree-based algorithm can be a
restriction.

3.1.6. Comparative studies

3.1.6.1. Introduction to comparative studies. Some studies compare
models without intention of selecting a “best model” and optimizing it
for the study area, or without intention of comparing a novel model to a
base model. These studies are collected in this section.

3.1.6.2. Application of comparative studies in groundwater quality mod-
eling. Four algorithms, MLP, ANFIS, SVM, and gene expression pro-
gramming (GEP) were compared for estimating TDS, and GEP was found
to be superior (Jafari et al., 2019). RF demonstrated a slightly lower
error than ANFIS, logistic regression mode (LRM), fuzzy, and adaptive
fuzzy regression (AFR) for groundwater arsenic prediction (Bindal and
Singh, 2019). BPNN, evolutionary polynomial regression (EPR) and the
naive Bayes model (NBM) were compared across seven performance
metrics for predicting nitrogen concentration on a weekly basis. No
single model significantly outperformed any of the others in all analysis
(Markus et al., 2010). Additive regression (AR) surpassed the accuracy
of SVM, M5P tree model (M5P), and random subspace (RSS) for WQI
prediction in India (Elbeltagi et al., 2022).

Thirteen ML algorithms were compared for dissolved organic nitro-
gen prediction in an urban setting. Bagged MARS, RF, and cubist, a rule-
based model that utilizes decision tree and regression (Quinlan and
others, 1992), were the most optimal models with the most generaliz-
ability (Benya Wang et al., 2016). For comparison of seven ML algo-
rithms for arsenic prediction, Cubist performed the best in training;
however, RF and bagged tree were the best models for internal valida-
tion (de Menezes et al., 2020).

SVM was found to have superior performance to RF, flexible
discriminant analysis (FDA), mixture discriminant analysis (MDA), BRT,
and MARS for groundwater salinity mapping (Mosavi et al., 2021).
Hosseini et al. found that instance-based K-nearest neighbors out-
performed KStar, M5P, locally weighted learning, and regression by
discretization for fluoride contamination prediction (Khosravi et al.,
2020).

3.1.6.3. Comparative studies assessment. Comparative studies contain
models that have only appeared once in ML GWQ modeling literature.
These studies serve the purpose of assessing less-common models for
completion of the literature. However, it is important to note that these
studies do not necessarily agree on model superiority and should be
taken on a case-by-case basis. For example, one study concluded that
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SVM was the most accurate of six models, including MARS, for
groundwater salinity mapping (Mosavi et al., 2021). However, another
found that of their thirteen models tested for dissolved organic nitrogen
prediction, MARS was among the top three, whereas two different SVM
models were not (Benya Wang et al., 2016). This example reinforces the
danger of generalizability in comparative studies.

3.1.7. Optimization techniques

Optimization techniques are practices of optimizing the performance
of the predictive model from various aspects. Widely used techniques
include efficient searching for the optimal parameter set of the model,
feature engineering for effective feature learning, and improving the
stability and accuracy of learning algorithms.

3.1.7.1. Introduction to genetic algorithms. Genetic algorithms (GAs)
(Katoch et al., 2021; Lambora et al., 2019; Yang, 2020), inspired by
natural selection, are part of evolutionary algorithms (EAs) which are
generic population-based metaheuristic optimization algorithms. Ge-
netic algorithms utilize biologically inspired operations like mutation,
crossover, and selection to provide solutions for optimization and
search. Genetic algorithms can deal with complex problems across
diverse types of optimizations. To make genetic algorithms converge,
the parameters of the specific genetic algorithm need to be carefully
selected, and a wide range of options exists. A brief description on GAs,
particularly on variations of GAs mentioned in the sections below, can
be found in the Supporting Information (Section 2.2.5).

3.1.7.2. Application of genetic algorithms in groundwater quality modeling
3.1.7.2.1. Improving model performance with GA. BPNN and GA have
been integrated and was found to perform better than other ANN models
for nitrate prediction (Almasri and Kaluarachchi, 2005a; MoasheriPOF
and AbadiP4F, 2012). The bee algorithm (BA), a population-based al-
gorithm that mimics the food foraging behavior of honeybee colonies
with good convergence to the global optimum, was used with BPNN for
prediction of water pollution sources, which showed significantly higher
accuracy than the unmodified BPNN (Keskin et al., 2015). An FNN-SVR
hybrid model was optimized with GA and needed less parameters than
MLR (Hosseini and Mahjouri, 2014). The viability of ELM modified by
crow search algorithm (CSA) for predicting groundwater quality was
evaluated and found to be more accurate than the unmodified ELM (Liu
et al., 2017) and to raise the accuracy of ANFIS for prediction of specific
conductance (Zounemat-Kermani et al., 2022). PSO and GA optimiza-
tion of ANFIS were not found to be statistically different for modeling
EC, pH, and Cl (Jalalkamali, 2015). For WQI prediction, a PSO-naive
Bayes classifier slightly outperformed a PSO-SVM model (Agrawal et al.,
2021). PSO was also used with NN and Empirical Bayesian Kriging for
prediction of physiochemical and metallic parameters in an island area
(De Jesus et al., 2021; Senoro et al., 2022). The firefly algorithm (FFA), a
global optimization algorithm inspired by flashing behavior of firefly
insects, was shown to improve performance in ANN, ANFIS, SVM,
MARS, and RF models for prediction of groundwater parameters, of
which SVM-FFA and ANN-FFA were the most robust. A combination of
PCA, PSO, and SVM was optimized to evaluate water quality category.
The PCA-PSO-SVM model performed better than the PSO-SVM, the SVM,
and a BPNN model and had a 99 percent accuracy (Ni et al., 2022).
3.1.7.2.2. GA comparative studies. Several studies compared the
performance of multiple genetic algorithms against each other (Banad-
kooki et al., 2020; Kisi et al., 2019; Ritzel et al., 1994). Pareto GA was
found to be superior to a vector-evaluated GA for solving a
multi-objective groundwater pollution containment problem (Ritzel
et al., 1994). Continuous genetic algorithm (CGA) was found to be
overall superior to PSO and ant colony optimization for continuous
domains (ACOR)for training and optimization of ANFIS for modeling
EC, total hardness, and sodium adsorption ratio (SAR) in groundwater
(Kisi et al., 2019). Moth flame optimization (MFO) and cat swarm
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optimization (CSO) have also showed better performance in optimiza-
tion of ANFIS for TDS compared to PSO and three other GAs (Banad-
kooki et al., 2020).

Three studies compared GAs against other algorithms (Aryafar et al.,
2019; Najafzadeh et al., 2022; Wu et al., 2017). GA was compared to
generalized linear regression, decision tree, and gradient boosted tree
for nitrate prediction (Wu et al., 2017). While the GA did the least
over/underestimating of the models, it was not very robust. When
comparing genetic programming (GP) to ANN and ANFIS for estimating
TH, TDS, and EC, the GP model was superior (Aryafar et al., 2019).
Evolutionary Polynomial Regression (EPR) and gene-expression pro-
gramming (GEP) were compared against M5 model tree and Multivar-
iate Adaptive Regression Spline (MARS) for WQI prediction, and EPR
had the highest accuracy (Najafzadeh et al., 2022). GEP was also used to
predict salinity and EC in Iran (Khalaj et al., 2019).

3.1.7.3. Genetic algorithm model assessment. GA is a popular method for
improving model results with a wide range of options. They provide
advantages over ANN and ANFIS models by structural independence and
protection from over-fitting and early convergence due to their cross-
over and mutation operators (Aryafar et al., 2019). They are also
remarkably consistent; every study that modified existing algorithms
found that GAs improve model performance. Additionally, they can
work with as few as three parameters (Banadkooki et al., 2020; Jalal-
kamali, 2015) or more than 10 parameters (Hosseini and Mahjouri,
2014; Ransom et al., 2017).

More evolutionary models have been tested in recent years, such as
CSA and PSO. There is not a clear consensus from the literature if these
newer models have an advantage in groundwater quality modeling
(Jalalkamali, 2015; Kisi et al., 2019). However, the new models are just
as viable for predicting groundwater quality (Keskin et al., 2015; Liu
et al., 2017). Because of their consistency, flexibility, and compatibility
with other models, GAs will continue to be a useful tool for researchers.

3.1.7.4. Introduction to wavelet transform. Wavelet transform (Chui,
1992; Daubechies, 1992; Debnath and Shah, 2002) was proposed to
solve constant time and frequency resolution caused by the fixed length
of the window used in short-time Fourier transform (STFT). Wavelet
transform uses wavelet as the basis function rather than the window
function to realize multiresolution analysis by controlling the width of
the wavelet and its central frequency. Wavelet transform and its discrete
version, discrete wavelet transform (DWT) (Akansu and Haddad, 1992),
are effective tools of doing feature engineering to select optimal features
from raw data as training data. Wavelet transform can also be directly
used in ML architectures like wavelet neural networks (WNN) (Alex-
andridis and Zapranis, 2013) which combine wavelet analysis with
neural networks to approximate deterministic functions.

3.1.7.5. Application of wavelet transform in groundwater quality mod-
eling. Wavelet transform is a common surface water modeling tech-
nique, but few studies have used wavelet transform techniques for
groundwater quality modeling. A study used electromagnetic sensor
arrays as input for a MLP with wavelet transform for feature selection to
estimate groundwater quality. The model could predict nitrate and
sulfur concentration even in the presence of other contamination (Nor
et al., 2015). Another study optimized a MLP with a wavelet neural
network (WNN) and BPNN for assessing shallow groundwater quality
(Yang et al., 2017). Wavelet transform, along with self-organizing map
(SOM) and mutual information (MI) was used to extract features for
modeling nitrate time series with FFNN. The hybrid coupling improved
the performance of the FFNN by up to 39% and was able to predict ni-
trate load in the study area’s sub-basins and outlet (Nourani et al.,
2017).

3.1.7.6. Wavelet transform model assessment. Wavelet transform can
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decompose non-stationary data (Nourani et al., 2017). This temporal
preprocessing can improve models as it can find trends, discontinuities,
and other data anomalies that other preprocessing techniques might
miss (Yang et al., 2017). Thus far, it has only been applied to improve an
MLP model and ANN models and used in preprocessing for a hybrid
FFNN model. While wavelet transform has some flexibility in selection
of the mother wavelet, this does affect results and can compound on
ANN model architecture selections (Yang et al., 2017). However,
wavelet transform is a useful tool for improving results if the complexity
of application is not an issue.

3.1.7.7. Introduction to bagging and boosting. Boosting is an ensemble
learning method for reducing variance and overfitting in a sequential
way by adjusting the weight of sample as each base model is evaluated
(Hastie et al., 2009). Gradient boosting (GBT), or boosted regression tree
(BRT), (Friedman, 2002; Hastie et al., 2009) is an ensemble learning
model using decision trees as base models.

3.1.7.8. Application of bagging and boosting in groundwater quality mod-
eling. BRT has been used for predicting arsenic (Chakraborty et al.,
2020; M L Erickson et al., 2018; Lombard et al., 2021), manganese
(Melinda L Erickson, Elliott, Brown, Stackelberg, Ransom, Reddy, et al.,
2021), pH (Stackelberg et al., 2021), redox conditions (Melinda L
Erickson et al., 2021) and nitrate concentration (Ransom et al., 2022) in
various glacial aquifer systems in the United States. BRT was found to be
a cheap and reliable method for real-time groundwater level and nitrate
concentration predication (Mettu and Latifi, 2021).

Extreme gradient boosting (XGB), a specific implementation of
gradient boosting with regularization to improve the generalization of
the model, was found to be superior to DNN and MLR for mapping
groundwater salinity (Sahour et al., 2020) and ANN and SVM for nitrate
and pesticide prediction (Bedi et al., 2020). XGB performed the best for
improving a groundwater vulnerability prediction framework, when
compared with AdaBoost, RF, Light Gradient Boosting Machine (LGBM),
and Categorical Boosting (CatBoost) (Barzegar et al., 2021). Adaptive
boosting (Adaboost) was found in two instances to have higher predic-
tive performances than RF, ANN, and SVR for predicting irrigation water
quality, although the SVR and ANN models showed higher generaliza-
tion potential (El Bilali et al., 2021; Trabelsi and Ali, 2022). Random
Forest Regression (RFR), the Extreme Gradient Boosting Regression
(XGBR), the CatBoost Regression (CBR), and the Light Gradient Boosting
Regression (LGBR) were compared for salinity prediction in coastal
aquifers, with the CBR model reaching the best accuracy and stability
(Tran et al., 2021). However, for arsenic prediction, RF was found to
have better capabilities (Chakraborty et al., 2020); for nitrate, XGBoost
showed superior performance (Ransom et al., 2022).

3.1.7.9. Bagging and boosting model assessment. The robustness and
computational restrictions of a model can be addressed with boosting. A
popular method is XGB, although others exist and have been studied for
GW quality modeling. XGB has been shown to have higher accuracy than
ANN, DNN, and MLR models for prediction of nitrate, salinity, and
pesticides in groundwater (Bedi et al., 2020; Sahour et al., 2020). It is
also comparable to SVM (Bedi et al., 2020), although generalized
boosted models (GBM) and BRT are not as accurate (Mosavi et al., 2021;
Benya Wang et al., 2016).

3.1.8. Deep learning

3.1.8.1. Introduction to deep learning. Deep learning is part of ANN-
based machine learning algorithms, whose network architecture is
constructed with multilayer perceptron (MLP) to achieve better pre-
dictive capability while maintaining a moderate complexity of the
network. Deep learning methods are capable of effectively modeling
complex relationships from observations. Its training and inferencing
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performance can be improved by leveraging modern hardware-
accelerated parallelization.

3.1.8.2. Application of deep learning in groundwater quality modeling.
The deep neural network (DNN) emulator was found to be able to model
simple contaminant transport much faster than MLP for contaminant
transport modeling (Yu et al., 2020). Recently, DNNs have been
compared to several models for both ammonium (Perovic et al., 2021)
and WQI (Singha et al., 2021) prediction, and provided remarkably high
predictive performance (R%=10.996) (Singhaetal., 2021). A DNN model
showed significant improvement over ANN and SVR models for
ammonium prediction in alluvial groundwater (Perovic et al., 2021). For
prediction of WQI and Entropy Water Quality Index (EWQI), DNN per-
formed better than GBM and extreme gradient boosting (XGB). Results
for the boosting methods are mixed for the two indices (Raheja et al.,
2022). CNN and DNN outperformed RF and XGB for estimation of
groundwater quality parameters such as TDS, potential salinity, sodium
adsorption ratio, and chloride in a coastal aquifer using only EC and pH
as input parameters (Tasan et al., 2022). However, for nitrate prediction
in an unconfined aquifer, XGB was more accurate than a DNN and MLR
model (Gholami and Booij, 2022).

A DNN was used for point source identification in a simulated
groundwater quality scenario. The authors projected the high dimen-
sional problem into a lower dimension, and so the proposed network
provided a good surrogate of a transport system without losing accuracy,
with the autoregressive strategy reducing the DNN computational time
(Mo et al., 2019).

3.1.8.3. Deep learning model assessment. Deep learning is a promising
field of study in computer science, and especially in groundwater quality
modeling. While the number of case studies is still small, deep neural
networks have consistently performed better than conventional ML
models such as ANN for supervised groundwater quality modeling
(Perovic et al., 2021; Singha et al., 2021; Tasan et al., 2022). Although
deep-learning network is an effective type of predictive model with
capability of modeling complex functions on high-dimension input,
several aspects have to be taken care of while training the network. For
example, a larger amount of training data is needed to train a complex
deep-learning network with good generalizability. Practices like regu-
larization are also necessary to prevent the model from overfitting.

3.2. Semi-Supervised

3.2.1. Introduction to semi-supervised ml models

Semi-supervised learning (Chapelle et al., 2009; Zhu and Goldberg,
2009; Zhu, 2005) is a combination of supervised learning and unsu-
pervised learning and it utilizes a small amount of labeled data and a
large amount of unlabeled data for training. The success of
semi-supervised learning depends on the critical assumptions which are
continuity, cluster, and manifold. Popular semi-supervised learning in-
cludes self-training, mixture models, co-training, multi-view learning,
graph-based methods, low-density separation, and semi-supervised
support vector machines.

3.2.2. Application of semi-supervised ml models in groundwater quality
modeling

A study proposed a new groundwater contaminant source identifi-
cation method, which used a non-negative Matrix Factorization (NMF)
method for Blind Source Separation (BSS), coupled with a custom semi-
supervised clustering algorithm (Vesselinov et al., 2018). The authors
had previously applied this method to identify the sources of pressure
fluctuations in water (Alexandrov and Vesselinov, 2014). The
semi-supervised k-means clustering algorithm could unmix the
geochemical signatures in the observations and identify the contaminant
sources and was found to be capable of identifying both the number of
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groundwater types and the original concentration of the contaminant
sources from mixtures without any mixing ratio or site information.

3.2.3. Semi-Supervised model assessment

Semi-supervised algorithms are rare in water quality modeling. As of
2020, they had not been used for river water quality modeling (Tiyasha
et al., 2020a) and have been only used once for GWQ modeling as of
2022. The method provided promising results and could be an emerging
topic for researchers focused on contaminant source identification.

3.3. Ensemble learning

3.3.1. Introduction of ensemble learning

Ensemble learning (Haykin and Network, 2004; Opitz and Maclin,
1999; Polikar, 2006) is a modality of ML where multiple base learning
models (weak learners) are aggregated to obtain better predictive per-
formance than any of the base learning models alone. The aggregation is
achieved by using meta-algorithms like bagging, boosting, and stacking.
In this review, models are grouped into committee neural networks
(CNN), ensemble fuzzy models, and others.

3.3.2. Application of ensemble learning in groundwater quality modeling

3.3.2.1. Committee neural networks. Committee machine or committee
neural network (CNN) (Haykin and Network, 2004) is a type of
ensemble learning utilizing multiple neural networks as base models and
combining the predictions of base models into a final prediction with
higher accuracy. A CNN of three NN models (i.e., MLP, RBFNN, and
GRNN) were compared for groundwater salinity prediction, and the
CNN outperformed any individual model in RMSE and R? (Barzegar and
Asghari Moghaddam, 2016). A CNN was used with ELM, MARS, M5, and
SVR for improving DRASTIC predictions. In terms of the correlation
coefficient (r) and Willmott index (d), CNN was clearly superior to any
individual method (Barzegar et al., 2018). Ensemble of ANNs was
compared to ANN with early stopping and ANN with Bayesian regula-
rization for prediction of WQI but did not higher correlation coefficient
in both training and testing data set than the Bayesian regularization
algorithm (Sakizadeh, 2016).

3.3.2.2. Ensemble fuzzy models. Ensemble fuzzy models (Yang et al.,
2006) combine various fuzzy logic methods with ensemble learning for
better performance. Ensemble fuzzy models have been applied exclu-
sively to improving DRASTIC method performance. A few studies
(Barzegar et al., 2016; Fijani et al., 2013; Nadiri et al., 2013) used su-
pervised committee machine with artificial intelligence (SCMAI) to
predict fluoride concentration and improve the DRASTIC method. Each
study ran Sugeno fuzzy logic (SFL), Mamdani fuzzy logic, ANN, and
neuro-fuzzy (NF) individually for the problem before testing the SCMAL
Some results showed that they each fit the data for fluoride prediction
similarly (Nadiri et al., 2013). NF was shown to be the best of the in-
dividual models in one study area (Fijani et al., 2013), and in another
both NF and SFL performed very well (Barzegar et al., 2016). All studies
observed that the SCMAI was able to further improve on any individual
model’s performance. Another study found that in the validation phase
for improving DRASTIC performance, supervised committee fuzzy logic
(SCFL), and committee fuzzy logic (CFL) had higher correlation co-
efficients than three individual fuzzy logic models (Nadiri et al., 2017).

3.3.2.3. Other ensemble models. Three different ML types, BRT, MDA,
and SVM, and an ensemble of these three models were compared for
groundwater risk assessment for a region in Iran., and the ensemble
approach surpassed all individual models (Sajedi-Hosseini et al., 2018).
Two similar studies reached the same conclusion for an area of Pakistan
(Awais et al., 2021) and a different Iran region (Rokhshad et al., 2021).
Radial Basis Neural Networks (RBNN), Support Vector Regression
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(SVR), and ensemble Random Forest Regression (RFR) were compared
for nitrate contamination evaluation; the ensemble model performed the
best (Elzain et al., 2022). RF, gradient boosted machine, SVM, and ANN,
along with bagging ensemble model were used to model nitrate con-
centration in private wells. No model performed well [R? < 0.33), and
final RF model outperformed the bagging ensemble models (Messier
et al., 2019). A 2022 study compared bagging (Bagged Decision Trees,
Random Forest, and Extra Trees), boosting (AdaBoost and Stochastic
Gradient Boosting), and ensemble methods (Logistic Regression, kNN,
Decision Tree, SVM, and Naive Bayes) for WQI prediction. The highest
accuracy was achieved by the ensemble model, bagged decision trees,
and gradient boosting (Shrivastava et al., 2022).

3.3.3. Ensemble model assessment

Ensemble models are a powerful tool for GW quality prediction.
Virtually all ensemble modeling studies have shown that CNNs,
ensemble fuzzy models, and ensemble models of other ML algorithms
can improve predictive capabilities. An ensemble approach can elimi-
nate weaknesses of each individual model and provide a more robust
prediction. However, ensemble models are not always perfect ad-
vancements. For example, one study found that an RF model had a
higher R? value than the bagging ensemble model, which used R? as the
only performance metric (Messier et al., 2019). Another study found
that the CNN had the lowest RMSE but not the highest R? value, but it
also outperformed any individual model in terms of correlation coeffi-
cient r and Willmott index of agreement (Barzegar et al., 2018). In
general, ensemble models outperform other models in various perfor-
mance metrics (Barzegar and Asghari Moghaddam, 2016; Elzain et al.,
2022), although they may have lower R? values.

3.4. Unsupervised learning

Unsupervised learning (Barlow, 1989; Hinton et al., 1999) is an al-
gorithm that can discover hidden patterns and insights from the dataset
without labels. Common unsupervised learning tasks include clustering,
association, and principal component analysis (PCA).

3.4.1. Self-Organizing maps (SOM)

3.4.1.1. Introduction of som. Self-organizing map (SOM), also known as
self-organizing feature map (SOFM) or Kohonen self-organizing feature
maps (KSOFM) (Kohonen, 1982; Kohonen et al., 1996; Kohonen and
Honkela, 2007), is an unsupervised neural network that clusters
high-dimensional data and transforms high-dimensional features into
low-dimensional (two-dimensional) features while preserving symmet-
rical relationships between samples.

3.4.1.2. Application of self-organizing maps in groundwater quality mod-
eling. SOMs have been used for point source identification, modification
of neural networks, prediction of hydrochemical parameters, and in
conjunction with clustering (Hong and Rosen, 2001; Nakagawa et al.,
2016; Nourani et al., 2015). The first study to use SOM generated
U-matrix maps which allowed the authors to find site-specific correla-
tions between variables by comparing these maps to the real world
(Hong and Rosen, 2001). SOM was able to provide high quality,
area-specific interpretable results to classify the groundwater data (Choi
et al., 2014). When SOM was used with a FFNN to model, the SOM-FFNN
method improved the accuracy of predictions 84.5% and 17% for
modeling EC and TDS, respectively, on average with regard to the MLR
model (Nourani et al., 2015). A modified SOM (MSOM) was found to
perform better than three supervised MLAs (i.e., LDA, BRT, and RF), in
predicting oxic, mixed, and anoxic conditions for a groundwater redox
condition study in an agriculturally dominant region (Friedel et al.,
2020). SVM with PCA and hierarchal clustering analysis (HCA) was used
for identifying hydrological pathways and ion sources in aquifer systems
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in Japan (Rahman et al., 2022).

SOM was coupled with clustering algorithms in several studies. A
study used SOM with k-means and Ward’s algorithms for clustering to
identify surface and groundwater chemistry classes and determined
pathways for certain chemicals (Nakagawa et al., 2016). SOM and fuzzy
c-means (FCM) clustering were able to identify distinct and interpretable
clustering groups when evaluating urban (Lee et al., 2019) and SOM
with hierarchal clustering (HCA) achieved this for regional groundwater
quality (Zhong et al., 2022).

3.4.1.3. SOM model assessment. SOMs offer insights into parameter
connections and point source identification, as well as improvements on
predictions of GWQ parameters. They can capture insight on complex
variable relationships with no a priori knowledge of physical transport
mechanisms. The application of SOM in groundwater quality modeling
is still an emerging field and has little generalizability. Overall, SOMs
can be useful tools for local or regional groundwater management.

3.4.2. Clustering

3.4.2.1. Introduction to clustering. Clustering (Rokach and Maimon,
2005; Xu and Wunsch, 2008) is an unsupervised ML task that auto-
matically separates data into groups according to the similarities of
samples specified by certain type of distance metric. Clustering has been
used to identify unknown connections among parameters and improve
other ML techniques. K-means algorithm (Forgy, 1965; Lloyd, 1982;
MacQueen and others, 1967) is a centroid model for partitioning data
into k clusters through iteration where each cluster is represented by a
single mean vector.

3.4.2.2. Application of clustering in groundwater quality modeling. Clus-
tering, such as factor analysis (FA), cluster analysis (CA), and K-means
clustering, was used to understand variable relationships. Factor anal-
ysis (FA) and cluster analysis (CA) were used along with a hydro-
chemical model package (PHREEQC) to model hydrochemical
properties of a small island aquifer. Inspecting the elements of each
cluster led to explain the three most significant processes affecting the
groundwater aquifer (Aris et al., 2011). K-means clustering was used to
understand spatial variations in groundwater chemistry to identify
pathways and study the effects of industrial and agricultural activities on
two aquifers (Fabbrocino et al., 2019). Hybrid BN was used to apply
probabilistic clustering for assessing groundwater quality and predictive
uncertainty, which optimized the number of samples needed for an ac-
curate estimate by ignoring samples with high error probability (Agui-
lera et al., 2013). Hierarchal clustering analysis (HCA) method was used
in a similar manner to visualize hydrochemical links in Algeria. HCA
identified three water quality groups and allowed the authors to draw
links between hydraulic pathways and geology (Selmane et al., 2022).
Clustering was also used to improve existing ML methods. The effect of
k-means clustering on two ML techniques, ANN and SVM, was evaluated
for predicting nitrate concentration. The clustered aggregate SVM per-
formed slightly better than the clustered ANN (Alagha et al., 2014).
Quantile regression (QR) and uncertainty estimation based on local er-
rors and clustering (UNEEC) were applied to ML models SVM, RF, and
k-NN in groundwater nitrate contamination prediction. The UNEEC
methods had similar predictive performance statistics as RF, but better
than SVM.

3.4.2.3. Clustering model assessment. Clustering methods for studying
relationships among parameters is a useful tool. They have been shown
to provide information on processes affecting aquifers (Aris et al., 2011;
Fabbrocino et al., 2019), but much like SOM, the results are not
generalizable to other study areas. However, clustering can be an
excellent preprocessing tool for other ML algorithms, such as ANN and
SVM (Alagha et al., 2014) or for assessing uncertainties (Rahmati et al.,
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2019). While it is difficult to compare methods, there are more
user-friendly parameter assessment methods (SOM) and more rigorous
model enhancement methods (ensemble, GA) than clustering. However,
it can be an appropriate tool where uncertainties are an important aspect
of a study.

3.4.3. Artificial intelligence with multiple frameworks (AIFM)

A few studies used multiple ML frameworks in parallel or sequential
to construct a comprehensive unsupervised learning pipeline for better
data analysis and pattern discovery for specific domains to improve the
basic DRASTIC framework (BDF) (See Section 2.2 for a brief explanation
of the DRASTIC framework). One study used BDF parallel to AIMF with
least-squares SVM (LS-SVM) and fuzzy catastrophe framework (FCF) to
map aquifer vulnerability. Both frameworks were weak on their own
when using N as measure of vulnerability. However, the AIMF strategy
with LS-SVM produced a high accuracy in testing. Another study used
four DRASTIC variations with SVM for the AIMF. The AIMF was able to
enhance the correlation of coefficient value to nearly double of the best
DRASTIC variation (Nadiri et al., 2018).

Various combinations of ANN, neuro-fuzzy, fuzzy logic, GEP, SVM,
GA, BDF, and FCF were used in supervised and unsupervised ensemble
techniques for modeling a tropical island aquifer. The best model com-
bined the unsupervised BDF and BDF-FCF with the supervised BDF-GA
and BDF-GEP using LS-SVM, displaying the advantage of both super-
vised and unsupervised learning types (Nadiri et al., 2019).

Unsupervised combinations of GQI and GWQI indexes were applied
twice to predict Iran groundwater quality, and this combination per-
formed better when compared to nitrate-arsenic maps in that regions
(Najib et al., 2022; Sedghi and Nadiri, 2022).

Like supervised ensemble models, multiple frameworks combine
several models at once. However, the models combined are variations of
the BDF, which are unsupervised. The models can also be combined in
some supervised method (Nadiri et al., 2018, 2018). Multiple frame-
works can clearly enhance the performance of the unsupervised
frameworks for prediction of groundwater quality parameters (Nadiri
et al., 2018, 2018). For problems with an unsupervised problem set,
multiple frameworks can be a powerful tool for the enhancements of
weaker frameworks.

Number of Publications
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4. Conclusions and future work

Groundwater quality modeling using ML continues to grow as a field.
This review covered over 200 papers on ML water quality modeling for
prediction and management of groundwater as concise and accessible as
possible without risking oversimplification. The first part of the study
analyzed the literature as a group and uncovered important trends. The
amount of work on this topic increased rapidly in the early 2010's and
continues to grow in recent years (Fig. 2). The world leaders in publi-
cations in this field are Iran and the United States (Fig. 8). Nitrate is by
far the most studied groundwater quality parameter (Fig. 2). A great
many parameters are viable for these types of prediction (Fig. 3a),
although the number of parameters used often hovers between 3 and 8,
to take advantage of readily available data, or 13-20, to take advantage
of common hydrochemical parameters (Fig. 3b).

A wealth of models has been applied to groundwater quality
modeling. For supervised learning models, ANN is the most common,
followed by fuzzy, natural, and SVM (Fig. 5b). Additionally, interest in
unsupervised and alternative supervised models has increased rapidly in
the last 12 years.

The second part of the assessment focused on the results from each
publication by model type. A brief description of the basic model type
gave a basic understanding of the use. Then, an in-depth bibliography
and a model assessment focused on the strengths and weaknesses of each
model. ANN models are the most popular algorithm due to their high
accuracy, ease of implementation, and flexibility in number of input
parameters. The performance of ANN models are highly dependent on
selection of input parameters and model architecture. As such, perfor-
mance of ANN models compared to other model types such as SVM or
ANFIS or other ANN model types such as RBFNN is not consistent. SVM
and fuzzy methods are also heavily dependent on architecture and
hyperparameter selection, increasing the likelihood of conflicting re-
sults. Model optimization techniques such as wavelet transform and
genetic algorithms intend to eliminate some heuristic error in the base
models, but don’t always achieve this.

Methods such as random forest and deep learning show more con-
stant results when compared to other model types. The random forest
model achieves high accuracy from its model structure, and can manage
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Fig. 8. Geographical locations of study areas by country.
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large, missing, and outlier data well. Ensemble learning attains this as
well and is another promising avenue for groundwater quality modeling.
Deep learning can also achieve high accuracy and can manage un-
structured data well. However, these models are all “black box” models.
While potentially highly useful for GW quality management, they do not
offer much insight for researchers.

As groundwater modeling through ML continues to expand, there are
several areas for future researchers that should be addressed, which are
discussed in the following section.

4.1. Future work

4.1.1. Implementation of best practices

Machine learning for hydrology, especially forecasting methods, is
facing a modern evaluation of historical misapplication (Gharib and
Davies, 2021; Zheng et al., 2018). Wavelet transform especially is prone
to error often resulting from data preprocessing and handling (Du et al.,
2017; Quilty and Adamowski, 2018). As the interest in ML for managing
and forecasting GW quality grows, it is important to understand the
missteps and limitations of these models, especially when related to data
selection and handling. Without proper implementation of current
standards and best practices for steps like data splitting, model archi-
tecture, and model evaluation, results from the expanding field will be
muddied with errata.

4.1.2. Cessation of duplicate studies

Many papers on ANN only described how an ANN model may be
applied to a certain study area. They did not provide any innovate data
pre- or postprocessing ideas or amplify or modify the model to a degree
that contributed significantly to the literature. This repetition is a trap
for authors to avoid.

4.1.3. Application of deep learning

Deep learning is a rapidly developing field of machine learning that
shows promise in hydrology (Shen, 2018). So far, it has been applied
minimally to GW quality modeling (Mo et al., 2019; Perovic et al., 2021;
Singha et al., 2021), making this one of the biggest and most exciting
opportunities in groundwater research. With the growth of GW water
data collection, lifelong learning (LL) (Parisi et al., 2019) is a promising
direction to solve the catastrophic forgetting issue when training an
existing network on newly collected data. Meta-learning (Hospedales
et al., 2022) gives a systematic solution to automatically learn a learning
model from datasets with good optimization on the hyperparameters for
higher prediction accuracy with a cheaper training process. This will
generally help researchers discover insight for designing suitable
learning algorithms in GW water research.

4.1.4. Explainable AI

Explainable AI (XAI) is another emerging tool in machine learning.
Unlike many models discussed in this paper, such as ANN, which are
“black box” models, XAl is a theory that aims to provide interpretation
and visualization to users on the processes studied through various
techniques (Samek et al., 2019). A big weakness of current ML studies
right now is the caveat that all results may only hold in the specific study
area, which has led to several discrepancies among model performance
results. For practical studies to make an impact, they must be applicable
outside of the study area, and XAI will be a useful tool for this purpose,
as human-explainable results will allow for larger generalizability.

4.1.5. Exploration of underrepresented models

Many models have only been studied once for GW quality modeling,
and the highest performers, along with models that have never been
applied to the subject, should be explored further. Similarly, model
enhancement techniques, such as genetic algorithms, have not been
applied to all models and implemented in GWQ modeling.
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4.1.6. Accessibility of supplementary materials

To allow for greater standards and stricter benchmarks, it is sug-
gested that more researchers allow materials such as code and data to be
open-source and available to the public. The advantages of more data-
bases are clear, but freely available code would allow for validation
across multiple study areas, and potentially provide insights from one
group to another.

4.1.7. Application to new study areas

Many studies took advantage of the massive and historical datasets
available in areas such as Iran and the United States. There are large
areas of the world that have not had groundwater quality assessment
through ML and could benefit from the analysis. The models will also be
tested for robustness through this method.

4.1.8. Inclusion of infrequently used parameters

Many parameters, such as anthropological effects or long-term
climate conditions, are difficult to obtain or estimate for a dataset.
However, they can be powerful indicators in the present, and their
exclusion in a dataset may invalidate the model after future changes in
the study area. Researchers should consider a wide variety of input
parameters to account for this.

4.1.9. Practical application of machine learning for groundwater quality
management

This review has displayed overwhelming evidence of the power of
machine learning for groundwater quality modeling. Groundwater
quality management is short in this area. Application of machine
learning for this purpose would reduce the cost in both time and re-
sources of testing for groundwater quality. The bulk of literature aims to
evaluate the viability of machine learning for groundwater quality
forecasting to increase the accuracy and accessibility of groundwater
quality prediction, but the literature does not provide clear steps to
bridge the gap between academia and industrial and governmental
management. An increased cooperation between data scientists and
municipal authorities, such as increased open-source machine learning
code and results, adaptation of water quality monitoring systems with
machine learning in mind, and increased local funding for machine
learning projects is necessary so that the proper evaluation and man-
agement of groundwater can be guided by machine learning.
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