On the Dynamics of Interacting Agents on an Ising Lattice
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Abstract— A system of multiple agents is considered which at
random times change their discrete states on an Ising lattice as a
results of their internal interactions and possibly some external
control. For certain applications such as directed self-assembly
of charged particles, the stochastic dynamics of such interacting
agents is represented by a master equation, or equivalently, by
a continuous-time Markov chain. The dimension of this master
equation is typically large and numerically intractable, since it
grows combinatorially with the lattice size. This paper presents
two alternative models at signif cantly lower complexity growing
polynomially with the size of Ising lattice. These models describe
the interactive dynamics of the agents by two different classes
of coupled stochastic differential equations driven by doubly
stochastic Poisson processes (Cox processes).

I. INTRODUCTION

This paper presents two novel stochastic models describing
the dynamics of systems of discrete-state interacting agents.
To visualize such systems, consider the 2D lattice in Fig. 1(a)
with L lattice sites occupied by K < L unlabeled, identical
particles, and no more than one particle in each site. Suppose
these particles interact with each other, and as a result, they
move from one site to another at random points in continuous
time. This paper aims to develop classes of stochastic models
to describe the dynamics of these interacting particles, i.e., to
characterize the temporal evolution of their placement in the
lattice sites.

In addition to interactions between the particles, external
controls and disturbances can effectively alter their dynamics.
As an illustrative example, consider a directed self-assembly
process [1]-[8] schematically described in Fig. 1(b). In this
process, a number of charged particles (e.g., DNA tiles) move
between the sites of a planar square lattice under the electric
feld generated by other particles and a set of electrodes f xed
at specif ¢ points of the lattice (marked in Fig. 1(b) by small
circles). By changing the electric potentials of the electrodes
properly in time, the dynamics of particles is controlled to
evolve their random initial distribution in Fig. 1(a) toward a
desired geometry in Fig. 1(b). Certainly, design of a suitable
control to achieve this goal requires a reliable model for the
dynamics of the charged particles.

Besides directed self-assembly, many physical phenomena
such as ferromagnetism are studied using Ising models rooted
in statistical mechanics [9]. An Ising model is a mathematical
description of a physical phenomenon that involves multiple
interacting particles living in an Ising lattice of the nature
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Fig. 1. Square Ising lattice in 2D: (a) 24 particles occupying 81 lattice sites
with at most 1 particle at each site; (b) via a directed self-assembly process,
a desired geometry is formed, starting from a random initial distribution of
the particles. The small circles in (b) represent 16 electrodes through which
an electric feld is produced to control the dynamics of the charged particles.

shown in Fig. 1. Of course, an Ising lattice is not necessarily
a 2D space similar to Fig. 1: depending on application, it can
be a 1D, 2D, or 3D space.

This paper, on the other hand, adopts the notion of Ising
lattice only as a means to visualize the state space of a system
of discrete-state interacting agents, without referencing a
specif ¢ physical phenomenon. Hence, the more abstract term
“agent” replaces the physical term “particle,” and L sites of
an Ising lattice are interpreted as the discrete state values of a
single agent out of K unlabeled, identical, interacting agents.
Then, an Ising lattice in the context of this paper can have
any dimension and geometry, as long as it can visualize L
sites to accommodate K < L particles.

To characterize the dynamics of interacting particles on an
Ising lattice, master equation is a common tool, adopted for
instance, in directed self-assembly [10]-[14]. To implement
a master equation, a probability is assigned to each possible
conf guration of K particles occupying L lattice sites, and the
temporal evolution of the assigned probabilities is described
by a set of homogeneous linear differential equations, known
in their vector form as master equation. A master equation
indeed describes the evolution of probability distribution in a
continuous-time Markov chain (CTMC). Therefore, the use
of a master equation is equivalent to representing dynamics
on an Ising lattice with a CTMC.

Although master equation is a physically justif ed model
for many applications, it can be hard to use mathematically,
since its dimension combinatorially increases with the size of
the Ising lattice. For example, in directed self-assembly of 50
particles on a 20 x 20 square lattice, the dimension of master
equation will be in the order of 1.7 x 1054, Some efforts have
been spent on simplifying the solution of large-scale master
equations [15]; however, the proposed methods do not seem



capable of coping with the dimensions as large as 1.7 x 1054,

The goal of this paper is to break down the combinatorial
dimension of the master equation by replacing its associated
gigantic CTMC with a set of coupled CTMCs of affordable
dimensions. Toward this goal, two different stochastic models
are proposed, both relying on the concept of CTMC. In the
frst model, each interacting agent living on an Ising lattice is
represented by a CTMC with a state space including all sites
of the lattice. The interaction between the agents is expressed
then by rendering the transition rate (inf nitesimal generator)
matrix of each CTMC dependent on the state of other agents.
In the second proposed model, a binary CTMC is assigned to
each lattice site to record the presence or absence of an agent
in that specif ¢ site. Similar to the frst model, the transition
rate matrix of each binary CTMC is made dependent on the
state of other sites. It is shown in the paper that both models
are equivalent to a high dimensional CTMC with some sparse
structure in its transition rate matrix. Physical justif cation of
these models for specif ¢ applications is beyond the scope of
this paper and is left to their potential users.

II. CONTINUOUS-TIME MARKOV CHAIN

A CTMC is a continuous-time stochastic process taking
values in a discrete set isomorphic to {1,2,...,n}. As shown
in Fig. 2, this stochastic process has piecewise constant
sample paths with abrupt jumps at random times from some
value in {1,2,...,n} (called state) to another. This section
explains how CTMCs can be used to describe the dynamics
of interacting agents on an Ising lattice, of course, for a large
value of n combinatorially increasing with the lattice size.
Yet, the main goal of this section is to provide the technical
background necessary for construction of lower complexity
models introduced in Section III.

A. Master Equation and Continuous-Time Markov Chains

Suppose {x (t)} is a CTMC taking values in the discrete
be an n x 1 vector containing the probabilities
pi (t) = Pr{z () = k},

of the CTMC being in the state & (i.e., taking the value k) at
time ¢. Then, the temporal evolution of p (¢) is governed [16]
by the linear dynamics

p(t)=A@)p (1), M

where A (t) is the n x n transition rate matrix of the CTMC.
This matrix consists of nonnegative off-diagonal elements
denoted by a;; (t) > 0, ¢ # j, and the diagonal elements

k=1,2,...,n

aii(t):—Zaji(t), i=1,2,...,n. (2)

J=1, j#i

Here, a;; (t), i # j represents the transition rate from state j
to state ¢ at time t.

Consider a system of K unlabeled, identical agents which
interact on an Ising lattice with L > K sites, accommodating
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time

Fig. 2. Typical sample path of a CTMC with values in {1,2,...,10}.
at most one agent each. These K agents can be distributed
among L sites of the lattice in

L!
T K!'(L-K)!

different ways, each regarded as an instance of the collective
state of the agents. These instances are labeled by numbers 1
through n, and a probability py (¢) is assigned to the event
that the instance £ = 1,2,...,n occurs at time ¢. Then, if
the transition rate from instance j to instance i # j at time ¢
is known to be a;; (t), the temporal evolution of probabilities
is governed by a master equation of the form (1).

As this equation identically governs the temporal evolution
of probability distribution in a CTMC, the dynamics of a set
of interacting agents on an Ising lattice can be represented by
a CTMC. The disadvantage of this approach is the potentially
gigantic size of the state space 2" of the CTMC, depending
combinatorially on the size of Ising lattice according to (3).
Section III of this paper introduces alternative models with
substantially lower complexity. These models rely on some
extension of the notion of CTMC discussed in the remainder
of this section.

n

3

B. Representation by Stochastic Differential Equations

A CTMC can be constructed explicitly as the solution to a
stochastic differential equation (SDE) studied in this section.
This SDE constructs an n-state CTMC in terms of n (n — 1)
statistically independent Poisson counters. Suppose {V;; ()}
is a nonhomogeneous Poisson counter with the intensity (or
rate) a;; (t), and assume {N;; (t)}, 4,7 =1,2,...,n, 9 # j
are statistically independent. Let 6 (-) denote the Kronecker
delta function defned as

1 z2z=0
‘W)_{o 240

Then, the CTMC {z (¢)} can be represented for ¢ > 0 as the
solution to the SDE [16, p. 29]

n

do ()= > (i—4)0(z(t) = j)dNi; (t) (4

i=1

—

with a random initial state = (0) drawn from some probability
distribution defned on 2" = {1,2,...,n}.
For sake of simplicity in the remainder of the paper, the set
Sp=A{04)]i,7=1,2,....,n, i # j}

is defned and the double summation in (4) is replaced by a
single summation on §,, as a shorthand. Then, the SDE (4)

[
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is expressed in the compact form

Do (i=5)6(x(t) = j)dNy (1)

Sn

dz (t) =

This SDE is interpreted as follows by rewriting it in the
integral form

+Zl—]/6

Let 7,,,—1 and 7,,, denote two successive transition times of
the Poisson counter {N;; (¢)}. Then, the integral taken with
respect to this Poisson counter on the right-hand side of this
equation is def ned in such a manner to remain constant over
the interval ¢ € (7,,—1, 7], and to experience a discontinuity
of the magnitude 0 (z (7,,,) — j) at the transition time 7.

The following proposition verif es that the solution {x (¢)}
to the SDE (4) has a probability distribution evolving in time
according to the master equation (1).

Proposition 1: The stochastic process {x (t)} generated
as the solution of the SDE (4) is a CTMC in the sense that its
probability distribution p (¢) evolves in time according to (1).

Proof: For every t > 0, let s = wy/—1 and defne the
characteristic function of the random variable x (t) as

¢ (s,t) = Elexp (sz (1))] O]

Since the characteristic function carries the same information
as the probability distribution, it is enough to equivalently
describe the temporal evolution of (5). To that end, fx s and
apply the It6 differentiation rule of jump processes [16, p. 31]
to exp (sx (t)) in order to obtain

dexp (sz (1)) = Z(exp (sz (t) +s(i=35) 6 (x(t) - J))

) —J)dNi; (7).

> — exp (s (1)) ) dV;; (1
Sn

where the second equality is concluded from the identity

exp (s (1) + 3 i — )8 (2 () — 1))
=exp (sz (1)) + (¢ —e?*) 6 (z (t) — j).

Taking the expected value of both sides of (6) leads to
—E Z (eis
S’Vl

Sn

do (s,t) —€7%) 6 (x(t) — j) dNi; (t)

—e*) 8 (x(t) = ) E[dNy (B)], (1)

where the second equality is concluded from the fact that the
stochastic process {IV;; (¢)} has independent increments. By
replacing E [dV;; (¢)] with a;; (¢) dt and dividing both sides
of (7) by dt, it is concluded that

0¢ (s, is
(bét ) =2.(

Sn

—e”*)ai; (EP () —j)]. ®)

Let p (t), k = 1,2,...,n denote Pr {z (¢) = k}. Then, it
is straightforward to show E [0 (x (t) — j)] = p; (t) and

a¢(87t) . . 18
o Z;pi(t)e-

By substituting these expressions into (8) and then matching
the coeffcients of €*°, ¢ = 1,2,...,n in both sides of the
resulting equation, a set of n linear equations is obtained as

n n

=Y i (Wi () + > ai; (H)p; (1)

J=1, j#i J=1, j#i
fori=1,2,...,n. According to (2), the frst summation on
the right-hand side is equal to a;; (t) p; (), so these equations
in a vector form are the same as the master equation (1). B

C. Doubly Stochastic Continuous-Time Markov Chain

The CTMC constructed by the SDE (4) can conveniently
describe the controlled dynamics of interacting agents under
a deterministic control vector w (¢). This control vector can
be included in the SDE (4) by simply taking the time-varying
intensities a;; (¢) of the Poisson counters {N;; (¢)} explicit
functions a;; (t) = a;; (u (t)) of the control vector u (t). An
extension of this procedure to a stochastic control is possible
but not as straightforward as the deterministic case. Yet, such
extension is necessary for a control generated by a feedback
loop involving measurements of the CTMC itself, or even
more crucial to this paper, in the case that the dynamics of a
CTMC is impacted by the state of another CTMC.

For this latter scenario considered in Section III, the notion
of CTMC is extended to the more general notion of doubly
stochastic (conditional) CTMC. Roughly speaking, a doubly
stochastic CTMC is a stochastic process that behaves similar
to a CTMC, when conditioned on its stochastic transition rate
matrix. Within the framework of this paper, construction of
such stochastic process is straightforward by generalizing the
notion of Poisson counter used in the SDE (4) to the notion of
doubly stochastic Poisson counter (or Cox process), which is
well studied in the theory of stochastic processes [17].

Suppose that {a (t)} is a nonnegative stochastic process.
Then, {N (t)} is called a doubly stochastic Poisson counter,
if conditioned on {a (¢)}, it has the same statistical properties
of a nonhomogeneous Poisson counter with the rate a (¢). For
convenience of notation, a doubly stochastic Poisson counter
with the rate {a (¢)} is denoted in this paper by {N (a (t))}.
In addition, it is assumed that {N (a; (¢))}, i = 1,2,...,¢
are independent, conditioned on {a; (t)}, 7 =1,2,...,¢.

Using the notation of doubly stochastic Poisson counter,
the SDE (4) can be modifed into

dr (t) =Y (i—5)0 (@ ()= j)dN (a5 (1) (9
Sn

in order to construct a doubly stochastic CTMC {z (¢)} with
the stochastic transition rates {a;; (t)}, (¢,7) € Sn. These
transition rates can be explicit functions of some stochastic
process that represent a control vector or the state of other
doubly stochastic CTMCs. For the stochastic process {x (t)}
generated by the SDE (9), describing the temporal evolution



of probability distribution requires an equation more complex
than (1). The following proposition provides some insight
into this issue.

Proposition 2: Let {z (t)} be the solution to the SDE (9)
with the stochastic transition rates {a;; (¢)}. Denote by py, (t)
the probability of event x (t) = k for k = 1,2,...,n. Then,
the probabilities py () evolve in time according to the system
of coupled linear differential equations

pi (1) = — Z aji (t) pi (t) + Z aij (t)p; (t) (10)
J=1, j#i J=1, j#i
for i = 1,2,...,n. Here, a;; (t) is a deterministic function
defned via the conditional expectation

aij (t) = Eai; (t) |2 () = j]. (11)

Proof: The proof parallels the proof of Proposition 1
with minor modif cations. The characteristic function of z (¢)
is defned similar to (5), and then, it is shown that

Ao (s.t) = Y_BE[(e" — ) 6 ( (1) - j)
Sn X dN 5 () ]ais (1))
=Y B[E[(¢* — ) 8 (@ (1) = ) |ai; (1)
& X B[dNi; (t) |as; (1)]]
_ ; (e — &%) E[aij (t)8 (x () — j)}dt. (12)

Here, the frst equality represents the smoothing property of
conditional expectation and the second is concluded from the
fact that { N;; (¢)} has conditionally independent increments.
The last equality is obtained by replacing E [dN;; (¢) |a;; (t)]
with a;; (t) dt in the second equality and noting that the other
conditional expectation is measurable with respect to a;; (t).
Dividing both sides of (12) by dt and then substituting

Elai; (t)6 (z (t) — j)] = Elai; (t) |2 (t) = j]p; (£)
into the resulting equation yield

&b;, t) _ Z (e —e?) ay; (t)p; (1)

Sn

By applying a coeff cient matching procedure to this equation
similar to (7), the differential equations (10) are obtained. W
Remark 1: Although the differential equations (10) have
an apparently simple structure resembling a master equation,
they cannot be easily applied for computation of probability
distribution in practice, since the coeff cients a,; (t) of these
equations cannot be straightforwardly computed via (11).

III. COUPLED STOCHASTIC DIFFERENTIAL EQUATIONS

Consider K unlabeled, identical agents living on an Ising
lattice with L > K sites, and dynamically change their states
as a result of mutual interactions and possibly some external
control. In Section II-A, the collective dynamics of the agents
was modeled using a high dimensional master equation, or
equivalently, a large CTMC. In this section, two new models
are constructed with lower complexity based on the SDE (9)
introduced in Section II-C.

A. Coupled SDEs Representing the Agents

In the frst model, the state of each agent is expressed by a
doubly stochastic CTMC which takes values in the discrete
set {1,2,..., L}, including the labels of L sites of an Ising
lattice. Each of the K doubly stochastic CTMC is generated
by an SDE of the form (9) in which the stochastic transition
rates are explicit functions of the state of other K —1 agents.
Then, the collective dynamics of all K agents is represented
by a set of K coupled SDEs described below.

Suppose that agent £k = 1,2, ..., K is represented by the
doubly stochastic CTMC {zy, (¢)}. Then, the collective state
of the agents is represented by the vector

x(t) = (z1(t) x2(t) zx (1))

in {1,2,...,L}. The complement of z, (¢) is defned as a
vector X (t) in {1,2,..., L} " constructed by removing
the element xy, (t) of x (¢). The L x L stochastic transition
rate matrix of {xy, (¢)} is a function of x{, (¢), and possibly, a
stochastic control vector u (¢) and time ¢. In the rest of this
paper, only the dependence on x¢, (¢) is explicitly shown, for
sake of simplicity, i.e., the transition rate matrix k is given by

Ag (t) = F (xj. (1)) -

Here, F' () is a matrix-valued function of K —1 variables,
and is invariant under any permutation of its variables, which
refects the assumption that the agents are unlabeled and
identical. The elements of F (-) are denoted by f;; (-). These
elements hold the property that f;; (z1,22,...,2x-1) = 0,
if any of its arguments z1, 2o, . . ., 2 —1 takes the value of <.
This property disallows the agents reoccupying a lattice site
already occupied by another agent.

Based on SDE (9) and using the notation introduced above,
the dynamics of K interacting agents can be represented by a
set of K coupled SDEs

day, (t) =D (i — )6 (zx (t) — §)dN (fij (x5, (1)) (13)

St
for k =1,2,..., K, or explicitly, in the vector form
day (t) =Y (i = §) (21 (t) = 5)dN (fij (x5 (1))
St
das (t) =Y (i = §) (w2 (t) = )N (fij (x5 (1))
St

da (1) = 37 (i — ) 8 e (1) — §)dN (fij (x5 (1))
St

Here, the coupling between the SDEs is established via the
complement vectors x§ (t),x5 (¢),...,x% (t) involved in
the transition rates on the right-hand side. The random initial
state x (0) of the coupled SDEs is drawn from a probability
distribution defned on {1,2,..., L}K, with zero probability
assigned to the events in which more than one agents occupy
a single lattice site.

To implement the set of SDEs (13), a total of KL (L — 1)
doubly stochastic Poisson counters are needed that is roughly



proportional to the square of the number of lattice sites. This
number shows a far lower complexity than n (n — 1) for a
master equation model in which n depends combinatorially
on L according to (3). As an illustrative example, for K = 50
and L = 400, these fgures are 2.9 x 10'2® versus 8 x 109,
respectively for a master equation model and for the coupled
SDEs (13). Of course, such drastic reduction in complexity
comes at a price: the SDE model in (13) is not as fexible as
the master equation model. This issue is discussed next based
on the following proposition which describes the temporal
evolution of probability distribution in the set of SDEs (13).

Proposition 3: Let x (t) € {1,2,...,L}" be the solution
to the set of coupled SDEs (13) and defne its characteristic
function as

¢ (s, t) = Elexp (s - x(1))],
where - denotes the dot product operator and s is given by
s=+v—-1 (w1 Wo oJK) . (14)

Then, the temporal evolution of this function is governed by

3¢ (s,t) Z Z isk eﬂsk [f” (Xz (t))

k=1 S,
x exp (sf, - X§ (1)) 8(w (1) = 5)], (1)

where sy, is the element k of s defned by (14), and s, is a
vector in CX 1 constructed by removing element s;, from s.

Proof: Using the product rule of differentiation f rst and
then applying the It6 differentiation rule similar to (6) lead to

dé (s,t) = E[dexp (s - x (£))
K
=E [ZeXP (sf, - x5, (1)) dexp(spzk (t))]
K . .
= [Z D (S - X ))Z(ew’“—e”’“)
St
x 8(a () — 7)dN (fij (x5 (t)))] :
Then, a procedure parallel to (12) yields (15). [ |

Using an extension of the coeff cient matching technique
in Proposition 1, a set of linear differential equations can be
derived from (15) to characterize the temporal evolution of
probability distribution in the system of coupled SDEs (13).
Specif cally, let i be a vector in the discrete set

H:{(Zl,lg,,’LK)hl}é’LQ##ZKG{LQ,,L}}

containing the instances of the stochastic vector x (t) solving
the coupled SDEs (13). Defne the set of probabilities

pi(t) =Pr{x(t) =i},

For each i € I, the probability p; (t) is corresponding to the
probability py (¢) assigned to some instance k of a CTMC
with a large state space 2= {1,2,...,n} forn given by (3).

By matching the coeff cients of 'S in (15) fori € I, a set
of n linear differential equations is obtained with p; (¢) on
their left-hand sides and a linear combination of pj (t), j € I

iel

on their right-hand sides, where the coeff cients of each linear
combination is determined in terms of the functions f;; (-).
This set of linear differential equations introduces a master
equation of the form (1), which in turn, is corresponding to
a CTMC. Hence, the stochastic process {x (¢)} generated by
the coupled SDEs (13) is equivalent to a CTMC with a large
state space 2" ={1,2,...,n}.

However, the transition rate matrix of this CTMC is not
arbitrarily chosen, instead, it is determined in terms of the
functions f;; () in (13) within certain constrained structure.
In addition, this matrix is sparse by the following argument.
The probability of simultaneous transitions in two or more
conditionally independent Poisson counters is 0, thus in each
transition time only a single element of the vector x (¢) can
change. This simply implies that the transition rates between
two instances i,j € I of x(¢) with ||i —j||, > 1 must be
identically 0. Here, the 0-norm ||-||, counts the number of
nonzero elements of a vector.

B. Coupled SDEs Representing the Lattice Sites

In this section, the state of a system of K agents living in
an Ising lattice with L sites is represented by a vector of L
binary elements such that at any time ¢, exactly K elements
of this vector take the value 1 and the remaining take 0. Each
element of this vector is assigned to a lattice site, signifying
the presence or absence of an agent in that site. This binary
vector is then modeled as a stochastic process generated by
a set of L coupled SDEs representing its L elements.

Denote the vector of binary stochastic processes by

y() = (v (1) w2(t) y (1)) -

The transition rate from the lattice site j to another site ¢ is a
nonnegative stochastic process given by a function \;; (y (¢))
of the state y (¢) of all L sites. More generally, this rate can
be a function of a stochastic control vector « () and time ¢
according to \;; (y (t),u (t),t). For sake of simplicity, the
possible dependence of the transition rates on control and
time is not explicitly shown in this paper.

Using the concept of doubly stochastic Poisson counter,
the temporal evolution of the stochastic vector y (¢) can be
represented by a system of L coupled SDEs

L
dyi (1) = =Y yi(t) (1 —y; (1) dN (Vi (y (1))
J=1, j#i
L
EZO—% )y; (£)dN (A (y (£))  (16)
1, j#i

for e =1,2,..., L. These equations are constructed in such
a manner that a transition of an element yy (¢) from 0/1
to 1/0 is concurrent with the transition from 1/0 to 0/1 of
another element yy (¢), and as a consequence, the number of
elements with the value 1 remains unchanged over time. The
initial state y (0) of the set of equations (16) is drawn from
a probability distribution on {0, 1}L satisfying

Prilly (O)fl, = K} =1,



where ||-||; denotes norm 1 of vectors. Then, it holds that

Prilly ®)ll, = K} =1,

The system of coupled SDEs (16) can be constructed using
only L (L — 1) doubly stochastic Poisson counters, far less
than n (n — 1) Poisson counters needed for a CTMC model,
and less than K L (L — 1) doubly stochastic Poisson counters
required for the coupled SDEs (13). An analysis similar to
Section III-A applied to Proposition 4 below, indicates that
the solution {y (¢)} to the coupled SDEs (16) is equivalent to
a CTMC of large combinatorial dimension n in (3). Yet, this
CTMC has a sparse transition rate matrix constrained within
some predetermined structure, consisted of the transition rate
functions A;; (+) in (16).

Proposition 4: Assume that y (t) € {0,1}" is the solution
to the set of coupled SDEs (16) and def ne its characteristic
function as

t>0.

¢(s,t) =Elexp(s-y ()],
where - denotes the dot product operator and s is given by
s=+v—-1 (wl wa (17)
Then, the temporal evolution of this function is governed by

w =— SZ (1 —efsi) E[exp(s~y(t))

x i (1) (1= 3 (D) A5 (v ()]
+3 (e = D E[exp (s -y ()
w0 A v )], (18)

where s; denotes element ¢ of the vector s in (17).
Proof: Application of the Itd differentiation rule for
jump processes [16, p. 31] to exp (s;y; (t)) results in

wi).

L

dexp(siyi (1)) = Z (eXP(Siyi (t) = siyi (t) (1 —y; (1))
i exp(siy; (t)))dN()‘ﬁ (v ()))

L
mhE exp(siyi (t)))d/\/(/\ia‘ (v (1))
L
== (e =Dy () (1—y; ()N (Nji (y (1))

Jj=1, j#i

L
+D (M = 1) (1 =y (1) y; (1) dN (A (v (1))
=1, j#i

This expression is substituted into
de (s,t) = Eldexp (s -y (t))]
L
=E Z exp (s-y (t) — s;y; (t)) dexp (s;y; (1))
i=1
which is concluded from the product rule of differentiation.

The resulting equation is then converted to (18) by following
a procedure similar to (12). ]

IV. CONCLUSION

Two stochastic models were proposed to characterize the
dynamics of a system of multiple agents living on an Ising
lattice and changing their discrete state at random times due
to their internal interactions and possibly an external control.
The models were constructed as systems of interacting SDEs
driven by independent doubly stochastic Poisson counters,
with a complexity growing polynomially with the lattice size.
These SDEs were developed as low complexity alternatives
to the more conventional models relying on high dimensional
master equations (or equivalently CTMCs) with complexities
growing combinatorially with the lattice size.
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