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is expressed in the compact form

dx (t) =
∑
Sn

(i− j) δ (x (t)− j) dNij (t) .

This SDE is interpreted as follows by rewriting it in the
integral form

x (t) = x (0) +
∑
Sn

(i− j)

∫ t

0

δ (x (τ) − j) dNij (τ) .

Let τm−1 and τm denote two successive transition times of
the Poisson counter {Nij (t)}. Then, the integral taken with
respect to this Poisson counter on the right-hand side of this
equation is def ned in such a manner to remain constant over
the interval t ∈ (τm−1, τm], and to experience a discontinuity
of the magnitude δ (x (τm)− j) at the transition time τm.
The following proposition verif es that the solution {x (t)}

to the SDE (4) has a probability distribution evolving in time
according to the master equation (1).
Proposition 1: The stochastic process {x (t)} generated

as the solution of the SDE (4) is a CTMC in the sense that its
probability distribution p (t) evolves in time according to (1).

Proof: For every t > 0, let s = ω
√−1 and def ne the

characteristic function of the random variable x (t) as

φ (s, t) = E [exp (sx (t))] . (5)

Since the characteristic function carries the same information
as the probability distribution, it is enough to equivalently
describe the temporal evolution of (5). To that end, f x s and
apply the Itô differentiation rule of jump processes [16, p. 31]
to exp (sx (t)) in order to obtain

d exp (sx (t)) =
∑
Sn

(
exp (sx (t) + s (i− j) δ (x (t)− j))

− exp (sx (t))
)
dNij (t)

=
∑
Sn

(
eis − ejs

)
δ (x (t)− j) dNij (t) , (6)

where the second equality is concluded from the identity

exp (sx (t) + s (i− j) δ (x (t)− j))

= exp (sx (t)) +
(
eis − ejs

)
δ (x (t)− j) .

Taking the expected value of both sides of (6) leads to

dφ (s, t) = E

[∑
Sn

(
eis − ejs

)
δ (x (t)− j) dNij (t)

]

=
∑
Sn

E
[(
eis − ejs

)
δ (x (t)− j)

]
E [dNij (t)] , (7)

where the second equality is concluded from the fact that the
stochastic process {Nij (t)} has independent increments. By
replacing E [dNij (t)] with aij (t) dt and dividing both sides
of (7) by dt, it is concluded that

∂φ (s, t)

∂t
=

∑
Sn

(
eis − ejs

)
aij (t) E [δ (x (t)− j)] . (8)

Let pk (t), k = 1, 2, . . . , n denote Pr {x (t) = k}. Then, it
is straightforward to show E [δ (x (t)− j)] = pj (t) and

∂φ (s, t)

∂t
=

n∑
i=1

ṗi (t) e
is.

By substituting these expressions into (8) and then matching
the coeff cients of eis, i = 1, 2, . . . , n in both sides of the
resulting equation, a set of n linear equations is obtained as

ṗi (t) = −
n∑

j=1, j 6=i

aji (t) pi (t) +

n∑
j=1, j 6=i

aij (t) pj (t)

for i = 1, 2, . . . , n. According to (2), the f rst summation on
the right-hand side is equal to aii (t) pi (t), so these equations
in a vector form are the same as the master equation (1).

C. Doubly Stochastic Continuous-Time Markov Chain
The CTMC constructed by the SDE (4) can conveniently

describe the controlled dynamics of interacting agents under
a deterministic control vector u (t). This control vector can
be included in the SDE (4) by simply taking the time-varying
intensities aij (t) of the Poisson counters {Nij (t)} explicit
functions aij (t) = aij (u (t)) of the control vector u (t). An
extension of this procedure to a stochastic control is possible
but not as straightforward as the deterministic case. Yet, such
extension is necessary for a control generated by a feedback
loop involving measurements of the CTMC itself, or even
more crucial to this paper, in the case that the dynamics of a
CTMC is impacted by the state of another CTMC.
For this latter scenario considered in Section III, the notion

of CTMC is extended to the more general notion of doubly
stochastic (conditional) CTMC. Roughly speaking, a doubly
stochastic CTMC is a stochastic process that behaves similar
to a CTMC, when conditioned on its stochastic transition rate
matrix. Within the framework of this paper, construction of
such stochastic process is straightforward by generalizing the
notion of Poisson counter used in the SDE (4) to the notion of
doubly stochastic Poisson counter (or Cox process), which is
well studied in the theory of stochastic processes [17].
Suppose that {a (t)} is a nonnegative stochastic process.

Then, {N (t)} is called a doubly stochastic Poisson counter,
if conditioned on {a (t)}, it has the same statistical properties
of a nonhomogeneous Poisson counter with the rate a (t). For
convenience of notation, a doubly stochastic Poisson counter
with the rate {a (t)} is denoted in this paper by {N (a (t))}.
In addition, it is assumed that {N (ai (t))}, i = 1, 2, . . . , ℓ
are independent, conditioned on {ai (t)}, i = 1, 2, . . . , ℓ.
Using the notation of doubly stochastic Poisson counter,

the SDE (4) can be modif ed into

dx (t) =
∑
Sn

(i− j) δ (x (t)− j) dN (aij (t)) (9)

in order to construct a doubly stochastic CTMC {x (t)} with
the stochastic transition rates {aij (t)}, (i, j) ∈ Sn. These
transition rates can be explicit functions of some stochastic
process that represent a control vector or the state of other
doubly stochastic CTMCs. For the stochastic process {x (t)}
generated by the SDE (9), describing the temporal evolution



of probability distribution requires an equation more complex
than (1). The following proposition provides some insight
into this issue.
Proposition 2: Let {x (t)} be the solution to the SDE (9)

with the stochastic transition rates {aij (t)}. Denote by pk (t)
the probability of event x (t) = k for k = 1, 2, . . . , n. Then,
the probabilities pk (t) evolve in time according to the system
of coupled linear differential equations

ṗi (t) = −
n∑

j=1, j 6=i

âji (t) pi (t) +

n∑
j=1, j 6=i

âij (t) pj (t) (10)

for i = 1, 2, . . . , n. Here, âij (t) is a deterministic function
def ned via the conditional expectation

âij (t) = E [aij (t) |x (t) = j] . (11)

Proof: The proof parallels the proof of Proposition 1
with minor modif cations. The characteristic function of x (t)
is def ned similar to (5), and then, it is shown that

dφ (s, t) =
∑
Sn

E
[
E
[(
eis − ejs

)
δ (x (t)− j)

× dN ij (t) |aij (t)
]]

=
∑
Sn

E
[
E
[(
eis − ejs

)
δ (x (t)− j) |aij (t)

]
× E

[
dNij (t) |aij (t)

]]
=

∑
Sn

(
eis − ejs

)
E
[
aij (t) δ (x (t)− j)

]
dt. (12)

Here, the f rst equality represents the smoothing property of
conditional expectation and the second is concluded from the
fact that {Nij (t)} has conditionally independent increments.
The last equality is obtained by replacing E [dNij (t) |aij (t)]
with aij (t) dt in the second equality and noting that the other
conditional expectation is measurable with respect to aij (t).
Dividing both sides of (12) by dt and then substituting

E [aij (t) δ (x (t)− j)] = E [aij (t) |x (t) = j] pj (t)

into the resulting equation yield
∂φ (s, t)

∂t
=

∑
Sn

(
eis − ejs

)
âij (t) pj (t) .

By applying a coeff cient matching procedure to this equation
similar to (7), the differential equations (10) are obtained.
Remark 1: Although the differential equations (10) have

an apparently simple structure resembling a master equation,
they cannot be easily applied for computation of probability
distribution in practice, since the coeff cients âij (t) of these
equations cannot be straightforwardly computed via (11).

III. COUPLED STOCHASTIC DIFFERENTIAL EQUATIONS
Consider K unlabeled, identical agents living on an Ising

lattice with L > K sites, and dynamically change their states
as a result of mutual interactions and possibly some external
control. In Section II-A, the collective dynamics of the agents
was modeled using a high dimensional master equation, or
equivalently, a large CTMC. In this section, two new models
are constructed with lower complexity based on the SDE (9)
introduced in Section II-C.

A. Coupled SDEs Representing the Agents
In the f rst model, the state of each agent is expressed by a

doubly stochastic CTMC which takes values in the discrete
set {1, 2, . . . , L}, including the labels of L sites of an Ising
lattice. Each of the K doubly stochastic CTMC is generated
by an SDE of the form (9) in which the stochastic transition
rates are explicit functions of the state of other K−1 agents.
Then, the collective dynamics of all K agents is represented
by a set of K coupled SDEs described below.
Suppose that agent k = 1, 2, . . . ,K is represented by the

doubly stochastic CTMC {xk (t)}. Then, the collective state
of the agents is represented by the vector

x (t) =
(
x1 (t) x2 (t) · · · xK (t)

)
in {1, 2, . . . , L}K . The complement of xk (t) is def ned as a
vector xc

k (t) in {1, 2, . . . , L}K−1 constructed by removing
the element xk (t) of x (t). The L × L stochastic transition
rate matrix of {xk (t)} is a function of xc

k (t), and possibly, a
stochastic control vector u (t) and time t. In the rest of this
paper, only the dependence on xc

k (t) is explicitly shown, for
sake of simplicity, i.e., the transition rate matrix k is given by

Ak (t) = F (xc
k (t)) .

Here, F (·) is a matrix-valued function of K−1 variables,
and is invariant under any permutation of its variables, which
ref ects the assumption that the agents are unlabeled and
identical. The elements of F (·) are denoted by fij (·). These
elements hold the property that fij (z1, z2, . . . , zK−1) = 0,
if any of its arguments z1, z2, . . . , zK−1 takes the value of i.
This property disallows the agents reoccupying a lattice site
already occupied by another agent.
Based on SDE (9) and using the notation introduced above,

the dynamics ofK interacting agents can be represented by a
set of K coupled SDEs

dxk (t) =
∑
SL

(i− j) δ
(
xk (t)− j

)
dN (

fij (x
c
k (t))

)
(13)

for k = 1, 2, . . . ,K , or explicitly, in the vector form

dx1 (t) =
∑
SL

(i− j) δ
(
x1 (t)− j

)
dN (

fij (x
c
1 (t))

)
dx2 (t) =

∑
SL

(i− j) δ
(
x2 (t)− j

)
dN (

fij (x
c
2 (t))

)
...

dxK (t) =
∑
SL

(i− j) δ
(
xK (t)− j

)
dN (

fij (x
c
K (t))

)
.

Here, the coupling between the SDEs is established via the
complement vectors xc

1 (t) ,x
c
2 (t) , . . . ,x

c
K (t) involved in

the transition rates on the right-hand side. The random initial
state x (0) of the coupled SDEs is drawn from a probability
distribution def ned on {1, 2, . . . , L}K , with zero probability
assigned to the events in which more than one agents occupy
a single lattice site.
To implement the set of SDEs (13), a total of KL (L− 1)

doubly stochastic Poisson counters are needed that is roughly



proportional to the square of the number of lattice sites. This
number shows a far lower complexity than n (n− 1) for a
master equation model in which n depends combinatorially
on L according to (3). As an illustrative example, forK = 50
and L = 400, these f gures are 2.9× 10128 versus 8 × 106,
respectively for a master equation model and for the coupled
SDEs (13). Of course, such drastic reduction in complexity
comes at a price: the SDE model in (13) is not as f exible as
the master equation model. This issue is discussed next based
on the following proposition which describes the temporal
evolution of probability distribution in the set of SDEs (13).
Proposition 3: Let x (t) ∈ {1, 2, . . . , L}K be the solution

to the set of coupled SDEs (13) and def ne its characteristic
function as

φ (s, t) = E [exp (s · x (t))] ,

where · denotes the dot product operator and s is given by

s =
√−1

(
ω1 ω2 · · · ωK

)
. (14)

Then, the temporal evolution of this function is governed by

∂φ (s, t)

∂t
=

K∑
k=1

∑
SL

(
eisk − ejsk

)
E
[
fij (x

c
k (t))

× exp (sck · xc
k (t)) δ

(
xk (t)− j

)]
, (15)

where sk is the element k of s def ned by (14), and sck is a
vector in CK−1 constructed by removing element sk from s.

Proof: Using the product rule of differentiation f rst and
then applying the Itô differentiation rule similar to (6) lead to

dφ (s, t) = E [d exp (s · x (t))]

= E

[
K∑

k=1

exp (sck · xc
k (t)) d exp

(
skxk (t)

)]

= E

[
K∑

k=1

exp (sck · xc
k (t))

∑
SL

(
eisk − ejsk

)
× δ

(
xk (t)− j

)
dN (

fij (x
c
k (t))

)]
.

Then, a procedure parallel to (12) yields (15).
Using an extension of the coeff cient matching technique

in Proposition 1, a set of linear differential equations can be
derived from (15) to characterize the temporal evolution of
probability distribution in the system of coupled SDEs (13).
Specif cally, let i be a vector in the discrete set

I = {(i1, i2, . . . , iK) |i1 6= i2 6= · · · 6= iK ∈ {1, 2, . . . , L}}
containing the instances of the stochastic vector x (t) solving
the coupled SDEs (13). Def ne the set of probabilities

p i (t) = Pr {x (t) = i} , i ∈ I.

For each i ∈ I, the probability p i (t) is corresponding to the
probability pk (t) assigned to some instance k of a CTMC
with a large state space X = {1, 2, . . . , n} for n given by (3).
By matching the coeff cients of ei·s in (15) for i ∈ I, a set

of n linear differential equations is obtained with ṗ i (t) on
their left-hand sides and a linear combination of p j (t), j ∈ I

on their right-hand sides, where the coeff cients of each linear
combination is determined in terms of the functions fij (·).
This set of linear differential equations introduces a master
equation of the form (1), which in turn, is corresponding to
a CTMC. Hence, the stochastic process {x (t)} generated by
the coupled SDEs (13) is equivalent to a CTMC with a large
state space X = {1, 2, . . . , n}.
However, the transition rate matrix of this CTMC is not

arbitrarily chosen, instead, it is determined in terms of the
functions fij (·) in (13) within certain constrained structure.
In addition, this matrix is sparse by the following argument.
The probability of simultaneous transitions in two or more
conditionally independent Poisson counters is 0, thus in each
transition time only a single element of the vector x (t) can
change. This simply implies that the transition rates between
two instances i, j ∈ I of x (t) with ‖i− j‖

0
> 1 must be

identically 0. Here, the 0-norm ‖·‖
0
counts the number of

nonzero elements of a vector.

B. Coupled SDEs Representing the Lattice Sites
In this section, the state of a system of K agents living in

an Ising lattice with L sites is represented by a vector of L
binary elements such that at any time t, exactly K elements
of this vector take the value 1 and the remaining take 0. Each
element of this vector is assigned to a lattice site, signifying
the presence or absence of an agent in that site. This binary
vector is then modeled as a stochastic process generated by
a set of L coupled SDEs representing its L elements.
Denote the vector of binary stochastic processes by

y (t) =
(
y1 (t) y2 (t) · · · yL (t)

)
.

The transition rate from the lattice site j to another site i is a
nonnegative stochastic process given by a function λij (y (t))
of the state y (t) of all L sites. More generally, this rate can
be a function of a stochastic control vector u (t) and time t
according to λij (y (t) , u (t) , t). For sake of simplicity, the
possible dependence of the transition rates on control and
time is not explicitly shown in this paper.
Using the concept of doubly stochastic Poisson counter,

the temporal evolution of the stochastic vector y (t) can be
represented by a system of L coupled SDEs

dyi (t) = −
L∑

j=1, j 6=i

yi (t)
(
1− yj (t)

)
dN (

λji (y (t))
)

+

L∑
j=1, j 6=i

(
1− yi (t)

)
yj (t) dN

(
λij (y (t))

)
(16)

for i = 1, 2, . . . , L. These equations are constructed in such
a manner that a transition of an element yk (t) from 0/1
to 1/0 is concurrent with the transition from 1/0 to 0/1 of
another element yk′ (t), and as a consequence, the number of
elements with the value 1 remains unchanged over time. The
initial state y (0) of the set of equations (16) is drawn from
a probability distribution on {0, 1}L satisfying

Pr {‖y (0)‖
1
= K} = 1,



where ‖·‖
1
denotes norm 1 of vectors. Then, it holds that

Pr {‖y (t)‖
1
= K} = 1, t > 0.

The system of coupled SDEs (16) can be constructed using
only L (L− 1) doubly stochastic Poisson counters, far less
than n (n− 1) Poisson counters needed for a CTMC model,
and less thanKL (L− 1) doubly stochastic Poisson counters
required for the coupled SDEs (13). An analysis similar to
Section III-A applied to Proposition 4 below, indicates that
the solution {y (t)} to the coupled SDEs (16) is equivalent to
a CTMC of large combinatorial dimension n in (3). Yet, this
CTMC has a sparse transition rate matrix constrained within
some predetermined structure, consisted of the transition rate
functions λij (·) in (16).
Proposition 4: Assume that y (t) ∈ {0, 1}L is the solution

to the set of coupled SDEs (16) and def ne its characteristic
function as

φ (s, t) = E [exp (s · y (t))] ,

where · denotes the dot product operator and s is given by

s =
√−1

(
ω1 ω2 · · · ωL

)
. (17)

Then, the temporal evolution of this function is governed by
∂φ (s, t)

∂t
=−

∑
SL

(
1− e−si

)
E
[
exp (s · y (t))

× yi (t)
(
1− yj (t)

)
λji (y (t))

]
+
∑
SL

(esi − 1)E
[
exp (s · y (t))

× (
1− yi (t)

)
yj (t)λij (y (t))

]
, (18)

where si denotes element i of the vector s in (17).
Proof: Application of the Itô differentiation rule for

jump processes [16, p. 31] to exp (siyi (t)) results in

d exp
(
siyi (t)

)
=

L∑
j=1, j 6=i

(
exp

(
siyi (t)− siyi (t) (1− yj (t))

)
− exp

(
siyi (t)

))
dN (

λji (y (t))
)

+

L∑
j=1, j 6=i

(
exp

(
siyi (t) + si(1− yi (t)) yj (t)

)
− exp

(
siyi (t)

))
dN (

λij (y (t))
)

= −
L∑

j=1, j 6=i

(esi − 1) yi (t)
(
1− yj (t)

)
dN (

λji (y (t))
)

+

L∑
j=1, j 6=i

(esi − 1)
(
1− yi (t)

)
yj (t) dN

(
λij (y (t))

)
.

This expression is substituted into

dφ (s, t) = E [d exp (s · y (t))]

= E

[
L∑

i=1

exp (s · y (t)− siyi (t)) d exp (siyi (t))

]

which is concluded from the product rule of differentiation.
The resulting equation is then converted to (18) by following
a procedure similar to (12).

IV. CONCLUSION

Two stochastic models were proposed to characterize the
dynamics of a system of multiple agents living on an Ising
lattice and changing their discrete state at random times due
to their internal interactions and possibly an external control.
The models were constructed as systems of interacting SDEs
driven by independent doubly stochastic Poisson counters,
with a complexity growing polynomially with the lattice size.
These SDEs were developed as low complexity alternatives
to the more conventional models relying on high dimensional
master equations (or equivalently CTMCs) with complexities
growing combinatorially with the lattice size.
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