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Abstract— A magnetic levitation system consists of a magnet
facing groundward to attract a magnetic object against gravity
and levitate it at a distance from the face of magnet. Due to the
unstable nature of this system, it must be stabilized by means
of feedback control, which adjusts the magnetic force applied
to the levitating object depending on its measured position and
possibly velocity. Conventionally, electromagnets have been used
for magnetic levitation, as they can be simply controlled via
their terminal voltages. This paper, however, studies a levitation
system relying on a permanent magnet and a linear servomotor
to control the applied magnetic force by changing the distance
between the magnet and the levitating object. For the proposed
system, which is highly nonlinear, a stabilizing feedback control
law is developed using feedback linearization and other control
design tools. Then, the closed-loop stability is examined against
system parameters such as the size of the levitating object, the
viscosity of the medium it moves in, and certain characteristics
of the magnet in use. The emphasis here is on understanding
the impact of intrinsic servomotor limitations, particularly its
fnite slew rate (cap on its maximum velocity), on the ability
of feedback control to stabilize the closed-loop system. This
particular limitation seems to be a major concern in utilizing
permanent magnets for noncontact actuation and control.

I. INTRODUCTION

Magnetic levitation using electromagnets has been studied
extensively in the literature (see [1] and references therein).
In the simplest form, a magnetic levitation system consists
of an electromagnet facing groundward to attract a magnetic
object against gravity and maintain it at a f xed distance from
the face of magnet. This goal cannot be achieved by simply
applying some constant voltage to the electromagnet, since
the equilibrium created by such constant voltage is inherently
unstable. Instead, the voltage must be dynamically controlled
by a stabilizing feedback loop including direct measurement
of the instantaneous position of the magnetic object.

This paper considers a novel magnetic levitation system by
replacing the electromagnet with the apparatus of Fig. 1 that
consists of an axially magnetized permanent magnet bar and
a linear servomotor to move it back and forth inside a guiding
cylinder. In this magnetic levitation system, schematically
shown in Fig. 2, control over the magnetic force is gained
by manipulating the distance between the permanent magnet
and the levitating object. Then, a feedback controller applies
stabilizing reference values to the servomotor in terms of the
measured values of the position, and possibly, the velocity of
this object.
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Fig. 1. Magnetic manipulator with a linear servomotor and an axially
magnetized permanent magnet bar: (a) schematic diagram; (b) a 3D printed
prototype. The dynamical model used for the analysis of this paper has been
constructed based on this prototype, and its parameters have been extracted
from empirical data collected through experiments on the prototype model.
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Fig. 2. Schematic diagram of a magnetic levitation system utilizing the
permanent magnet manipulator in Fig. 1. This manipulator is positioned
at the top of a rigid frame with its magnet faced toward ground. At a
distance d from the face of magnet, the attractive magnetic force applied to
a magnetic object cancels gravity. A feedback loop is established to stabilize
the magnetic object at a point along the vertical axis.

The focus of this paper is on feedback control design and
stability analysis of the magnetic levitation system of Fig. 2.
The design procedure is complicated by the highly nonlinear
dynamics of this system, originated in the nature of magnetic
force and nonlinear limitations of the servomotor in use. To
address these issues, a control design procedure is adopted in
this paper based on two major control design tools, feedback
linearization and linear quadratic regulator (LQR), enhanced
by simulation-based numerical optimization techniques. The
nonlinear control law designed via this procedure stabilizes
the unstable equilibrium of the open-loop system, while
maximizing the size of its region of attraction (ROA).

A major concern in stabilization of the magnetic levitation
system of Fig. 2 is the intrinsic limitations of its servomotor.
These limitations are twofold: fnite bandwidth, which is a
linear phenomenon, and f nite slew rate (cap on the maximum
velocity of the servomotor), which causes nonlinear behavior
with severe consequences on closed-loop stability. The study
of these limitations is a major goal of this paper, specif cally
to understand their impact on the ability of feedback control
to stabilize permanent magnet levitation systems. This study



characterizes the ROA of the stabilized equilibrium point of
these systems and investigates how the size of ROA depends
on the servomotor limitations.

For a complete stability analysis, the dependence of ROA
in other inf uential system parameters is examined, including
the size of the levitating magnetic object, the viscosity of its
surrounding medium, and the strength of magnet utilized by
the magnetic levitation system. In particular, it is investigated
how each of these parameters can boost or weaken the impact
of a fnite slew rate of servomotor on the close-loop stability
properties, specially, the size of ROA.

The numerical results of this study are generated by means
of computer simulations, as discussed in Section IV. Yet, the
dynamical model used for these simulations is empirically
constructed by applying system identif cation procedures to
the prototyped magnetic manipulator in Fig. 1(b). This model
is presented in Section II and includes three components: an
experimental characterization of magnetic force, a nonlinear
state-space equation describing the servomotor dynamics and
its limitations, and the equations of motion of the levitating
magnetic object. We are currently working on a prototype
model of the magnetic levitation system in Fig. 2 to verify the
results of this paper experimentally.

This paper is an integral part of our broader efforts toward
development of noncontact magnetic manipulators based on
permanent magnets and mechanical actuators [2]-[9]. These
manipulators present a transformative potential to develop
new generations of minimally invasive medical procedures in
which magnetized surgical tools or drug carriers navigate the
natural pathways of the patient’s body by precise control of
external magnetic felds [10]-[20]. These actuating magnetic
felds are generated and effectively controlled using spatial
arrays of magnets arranged outside the patient’s body. Such
arrays of magnets are generically called noncontact magnetic
manipulator, or simply, magnetic manipulator.

Magnetic manipulators have been conventionally designed
as arrays of electromagnets fxed in space, simply controlled
via their terminal voltages [21]-[26]. Yet, permanent magnets
typically produce much stronger magnetic f elds compared to
electromagnets of similar size, weight, and cost [27], offering
a more attractive alternative for medical applications which
often need strong magnetic forces at far distances of several
decimeters away. To exploit this advantage, our research is
dedicated to development of permanent magnet manipulators
that control their magnetic f elds by proper movement of their
magnets using mechanical actuators. For instance, massive
electromagnets of a conventional magnetic manipulator can
be replaced by compact units designed similar to Fig. 1.

Yet, replacement of electromagnets with a combination of
permanent magnets and mechanical actuators raises certain
concerns about the intrinsic limitations of these actuators, in
particular their fnite slew rate and its impact on the stability
of a permanent magnet manipulator. The magnetic levitation
system in Fig. 2 is a simple permanent magnet manipulator
with only a single magnet and a single direction of control,
and therefore, can be conveniently used as a testbed for study
of these concerns. The results of this paper for this simple
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Fig. 3. Magnetic force per unit of mass (magnetic acceleration) versus
distance from the face of magnet. At a distance d = 35.33 mm from the
face of magnet, the magnetic force cancels the gravity with the free-fall
acceleration g = 9.806 m/sec?.

testbed provide insight into more complex designs including
multiple magnets and multi-degree-of-freedom manipulation.

II. DYNAMICS OF MAGNETIC LEVITATION SYSTEM

This section develops a state-space model for the magnetic
levitation system of Fig. 2. The overall model is presented in
Section II-D and consists of an empirical model of magnetic
force (Section II-A), a dynamical model of servomotor
(Section II-B), and the equations of motion of a levitating
magnetic object moving under the infuence of a controlled
magnetic force, gravity, and friction (Section II-C).

A. Empirical Model of Magnetic Force

In the context of this paper, a model of magnetic force is a
scalar function F},, (w) expressing the attractive force that the
permanent magnet in Fig. 1 applies along its axis to a small
magnetic object at a distance w from its face. This function
is extracted from empirical data via the following procedure.
Using a Senis MMS-1A-RS magnetic feld scanner, the axial
component B (w) of the magnetic feld is measured along the
axis of the permanent magnet in a range of 15 mm to 50 mm
from its face. Then, the magnetic force F, (w) is extracted
from the recorded data using a known relationship between
the magnetic feld and magnetic force.

This relationship determines the magnetic force applied to
a small magnetic object in terms of the spatial gradient of
the magnetic feld at the location of the object [24]. For the
axially symmetric magnet in Fig. 1, the magnetic force along
its axis is given by

Fn (w)

where m is the mass of the magnetic object, p is its density, x
is its magnetic susceptibility, and yip denotes the permeability
of free space. To derive a mathematically tractable expression
for the magnetic force, a polynomial of order 5 was ftted to
the empirical values of 1/B? (w), and F},, (w) was estimated
from (1). For the numerical values p = 7.8 g/cm?, x = 103,
and 19 = 47 x 1077 H/m, the estimated magnetic force per
unit of mass (magnetic acceleration) is illustrated in Fig. 3.

m X d

B? (w), 1))

B. Dynamical Model of Servomotor

The servomotor dynamics in the magnetic manipulator of
Fig. 1 is governed by a second order nonlinear state-space
equation, in which the nonlinear term represents the intrinsic



cap on the highest velocity that the servomotor and its fasten
magnet can attain. In what follows, this equation is developed
in two steps: frst, the structure of equation is fxed, and then,
its parameters are estimated from empirical data collected
from experiments on the magnetic manipulator of Fig. 1(b).
The goodness of f't is verif ed by comparing the step response
of the derived model against its experimental counterpart.
As shown in Fig. 2, let y (¢) denote the position of the rod
end of the servomotor with respect to some reference. Also,
let u (t) be the command input to the servomotor with respect
to the same reference, so that for a constant input « () = @,
y (00) = @ holds in the steady state. Denote the velocity of
the servomotor rod by v, (¢). Then, the servomotor dynamics
is described in this paper by the set of state-space equations

§(t) =y (1)
by (t) = —awy (t) + sat(— (2¢wn — @) vy (1)
—way (t) + wiu (t);aS). (2b)

(2a)

Here, «, (, w,, and S are model parameters taking positive
values, and the saturation function sat (-) is defned as

sat (& L) = min {|¢|, L} sign (&) .

For any input « (¢) of a small enough amplitude, the sat (+)
function in (2b) stays in its linear region, and as a result, the
servomotor dynamics reduces to a second order linear system
with the natural frequency w, and the damping ratio (.
These system parameters were estimated empirically using
system identif cation techniques. To that end, the servomotor
was excited in its linear region by an input signal of small
enough amplitude, and its output was recorded via its built-in
position sensor. Then, the MATLAB system identif cation
toolbox was used to estimate w,, = 39.8 sec™! and ( = 0.7.

Two other parameters .S and « can be estimated from the
response of servomotor to a suff ciently large step input that
maintains it in saturation for a long period of time. Such step
response has been recorded experimentally and is illustrated
in Fig. 4. The constant slop of the step response in this f gure
introduces a nonlinear phenomenon with crucial effect on
the performance of permanent magnet manipulators. A quick
investigation of the state-space equations (2) indicates that
the constant slope of the step response in Fig. 4 represents
the slew rate S in these equations. Thus, S = 81.62 mm/sec
was estimated from the empirical step response. Furthermore,
the value of 1/« is the time scale at which the step response
reaches the constant-slope regime. To attain the closest match
between experiment and model, v = 67.0 sec~! was chosen.

C. Equations of Motion

This section applies Newton’s second law of motion to a
magnetic object to determine its equations of motion under
the magnetic levitation system of Fig. 2. This magnetic object
is assumed to be a sphere of radius  and mass m that moves
inside a fuid of viscosity 77 under an applied magnetic force
and gravity.

Let x (¢) be the distance of this object from the equilibrium
point shown in Fig. 2, and denote the velocity of the object by

B0f = - s o m e
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Fig. 4. Step response of the servomotor of Fig. 1 for a large 30 mm step,
recorded from experiment (marked line), and determined from the developed
model (solid line). The slew rate S of the servomotor has been estimated
as the slope of the experimental step response. The numerical value of «
has been calculated for the best match between experiment and model.

vy (t) = @ (t). The magnetic object moves under three major
forces: the Stokes drag —67rnu,. (t) [24], the gravitational
force mg (g is the free-fall acceleration), and the magnetic
force Fyy, (w (t)) applied at a distance w () = = (t)—y (t)+d
from the face of magnet. Here, d > 0 is a constant solving
the algebraic equation mg = F,, (d), as shown in Fig. 3 and
represented geometrically in Fig. 2.

The dynamics of magnetic object is governed by Newton’s
second law of motion according to

miy (t) = —6mrnu, (t) + mg — Fo (z (£) — y (¢) + d).

For simplicity of notation, this equation is rewritten as

Uy () = —ov, (1) + a2 (t) — y (1)) ©)
by defning the scalar function a () and the constant o as
a(z)=g-— —, o= o @)

D. Dynamical Model of the Magnetic Levitation System

By concatenating the trivial relationship & () = v, (t), the
equation of motion (3), and the servomotor dynamics (2), the
overall dynamics of the magnetic levitation system in Fig. 2
is described by the nonlinear state-space equations

i (t) = va (1) (52)
0 (1) = —ovg (t) + a(z () —y (1)) (5b)

§(t) = vy (1) (50)
by () = —awvy (t) + sat(— (2¢wn — @) vy (¢)

— Wiy (t) + wiu(t); aS). (5d)

This nonlinear model is used in the remainder of this paper
for both control design and computer simulations.

III. FEEDBACK STABILIZATION

This section is intended to design a state feedback law that
stabilizes the unstable dynamics (5) around its equilibrium
point (0,0, 0,0) with the largest possible ROA. This control
design problem is complicated by the nonlinear nature of the
state-space equations (5) originating from two sources: the
inherent nonlinear nature of magnetic force, and the fnite
slew rate of the servomotor in use. Among these sources of
nonlinearity, the contribution of magnetic force is completely
compensated by feedback linearization techniques. However,



the impact of a fnite slew rate cannot be fully compensated;
it can be only minimized by a well-designed controller.

To develop such a controller, a three-step design procedure
is adopted in this paper relying on two major control design
tools: the LQR method and feedback linearization. At frst in
Section I11-A, the LQR method is applied to develop a family
of stabilizing linear feedback laws for a linear approximation
of the state-space equations (5). Next in Section III-B, the
nonliterary of magnetic force is compensated using feedback
linearization. In the feedback linearization process, auxiliary
state variables are chosen in such a manner that the exact
feedback linearized system has the same structure of the
approximate linearized model, and consequently, the family
of linear controllers designed for the approximate model can
be equally applied to the exact linearized system. Combining
feedback linearization with a member of the family of linear
controllers yields a nonlinear controller, which is optimized
in Section III-C for the best family member maximizing the
size of ROA associated with the stabilized equilibrium point.

A. Approximate Linearization

The nonlinear dynamics (5) is linearized at the origin by
disregarding saturation in (5d) and approximating a (x — y)
in (5b) with its frst order Taylor expansion. Since a (0) =0
in essence, this Taylor expansion is given by a’ (0) (x — y),
where o (-) denotes the derivative of a (-). Then, the set of
state-space equations (5) is approximated by

i (t) = vs () (6a)
by (1) = —ow, (t) +a' (0) (z () —y (1)) (6b)
§(t) = vy (t) (6¢)
by () = =2Cwnvy (t) —wiy (t) +wpu(t) . (6d)

This approximate linearized model is stabilized next using
a linear state feedback of the form

u(t) = — (k1 (t) + kave (8) + kay (t) + kavy (1) (7)

in which the gain vector (k1, k2, k3, k4) is determined via the
LQR method. In tuning the gain vector, two control goals are
considered: frst, to keep the closed-loop system stable, and
second, to keep it unsaturated as much as possible. These
goals are achieved by simultaneously keeping both x (¢) and
the argument of sat (-) function in (5d) small, mathematically
represented as minimizing the quadratic cost functional

7= [ (# @+ 5(- 2gan - o, 0
— w2y (t) + wiu (t)) 2) dt. (8)

Here, 8 > 0 is a parameter to adjust the relative importance
of two opposing control goals, and is used in Section III-C to
optimize the overall control performance.

B. Feedback Linearization

The nonlinear effect of magnetic force on the dynamics of
a magnetic levitation system can be compensated by means
of feedback linearization. Specif cally, by applying a suitable
nonlinear state feedback to the magnetic levitation system, it

demonstrates linear dynamics with respect to some suitably
chosen state variables (if the servomotor is not in saturation).
In this paper, the feedback linearized system is described

by a state vector (z (t) , vz (t), 7 (£) , 0y (¢)) in which the new
state variables § (¢) and 9, (t) are defned as

a(z(t) —y(t))
a’ (0)

a0 (t) =y (1) (va ()
a' (0)

Gt =) - (%)

3, (t) = ve () — —w ()

(9b)

Then, in terms of the control @ (¢) of the feedback linearized
system, the nonlinear state feedback

e

1) @l —0) (0 - 2w )

Y

y) >

) ( - Uy)
is applied to the magnetic levitation system (5). Here, a” (+)
is the second derivative of a (+), and for sake of simplicity,
the dependence of variables on ¢ is not explicitly shown. By
applying the nonlinear state feedback (10) to the magnetic
levitation system described by (5), its feedback linearized
dynamics in the unsaturated region is governed by the exact
linear model

(10)

(x —
1 d(z—y)
a (z—y)

& (t) = va (t)

Vs (t) = —ovg () +a' (0) (z (t) — 7 (1))
y(t) =10y (1)

Uy (t) = —2Cwaby (1) — wi (t) +wha(t),

which is identical to the approximate linearized model (6).

As the feedback linearized dynamics is governed by the
same approximate linear model (6), the linear control law (7)
developed for the approximate model can be identically used
for @ (t), that is

@ (t) = — (kv (t) + kava (t) + k3g () + katy (1)).

Replacing § (t) and ¥, (t) in this control law by (9), and then
substituting the resulting @ (¢) to the right-hand side of (10)
leads to a nonlinear state feedback law of the form

u(t) = p(x(t),vs (1), y(t), vy (1))

for stabilization of the magnetic levitation system.

(11

C. Performance Optimization

The nonlinear control law (11) is constructed in terms of
the gain vector (kq, ko, k3, k4) which depends on the tuning
parameter 8 > 0 in the cost functional (8). This parameter is
chosen next to optimize the performance of feedback control
when the nonlinear dynamics (5) of the magnetic levitation
system is stabilized by the nonlinear state feedback (11). The
particular goal is to maximize the size of ROA that contains
the stabilized equilibrium point at the origin (0, 0, 0, 0).



This ROA is a subset of R* defned as the set of all initial
states of the closed-loop system for which the state trajectory
converges to (0,0,0,0) as ¢ — oo. Certainly, construction of
ROA in a 4D space is computationally expensive, and indeed
not necessary in practice. To study the closed-loop stability, it
is enough to focus on the initial states of the form (z(, 0, 0, 0)
and determine the range of zy for which the state trajectories
converge to the origin. This range is a closed interval denoted
by ROA" = [, 2] and represents the intersection of the
actual ROA with the hyperplanes v, = 0, y = 0, and v, = 0.

The optimization goal is to maximize the payoff function

P=min{xy,zy}

with respect to 3 > 0. To ensure a fast enough closed-loop
dynamics, a constraint is included to the problem, requiring a
closed-loop settling time of at least 75 = 1 sec. The settling
time is defned here as the required time for the state
vector to reach 2% of its initial magnitude. The optimization
problem is solved numerically by repeated simulations of the
dynamical system (5) under the state feedback (11).

IV. NUMERICAL RESULTS AND STABILITY ANALYSIS

The stabilization performance of the control law (11) was
studied by computer simulations of the magnetic levitation
system in Fig. 2 under closed-loop control. For this purpose,
the nonlinear state feedback (11) was applied to the nonlinear
state-space equations (5) and the equations were numerically
solved for different initial states and parameter values using
the ode45 function of MATLAB. The main objective of
this study was to characterize the ROA associated with the
equilibrium point at the origin (0,0, 0, 0).

By constructing ROA’ under different values of the system
parameters, the effect of these parameters on the closed-loop
stability is investigated in Figs. 5 to 7. In Fig. 5, the stability
interval ROA' is illustrated versus the slew rate S (maximum
velocity of servomotor in Fig. 2) for a magnetic ball of 1 mm
diameter levitated in environments of different viscosities. It
is observed that ROA’ expands as either the slew rate or the
viscosity of environment increase. In particular, under the
slew rate S = 81.62 mm/sec of the real-world servomotor
in Fig. 1(b), ROA’ is [—1.3,1.4] in vacuum, [—3.0,4.7] in
soybean oil, and [—6.5,15.2] in corn syrup (in unit of mm).
A more intuitive interpretation of these numbers is that if the
magnetic object is pulled up by 3.0 mm or down by 4.7 mm
from its equilibrium inside soybean oil, the feedback loop is
able to bring it back to the equilibrium.

Fig. 6 shows how the dimension of magnetic object affects
the size of ROA’. In this f gure, the stability interval ROA’ is
illustrated versus the radius r of a spherical magnetic object
moving in olive oil. It is observed that a reduction in the size
of this object improves the closed-loop stability by increasing
the size of ROA’. This is not surprising, since (4) indicates
that decreasing /r has the same impact on the Stokes drag
(the fuid friction) as increasing the viscosity 7. Heuristically
speaking, an increased friction reduces the speed of magnetic
object for the same magnetic force, and as a result, enables
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Fig. 5. Stability interval ROA’ versus the slew rate S for a magnetic ball
with 1 mm diameter moving in vacuum, blood, soybean oil, olive oil, and
corn syrup. The vertical dashed line marks the slew rate S = 81.62 mm/sec
of the practical servomotor in Fig. 1(b).
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Fig. 6. Stability interval ROA’ versus the radius r of a spherical
magnetic object levitated in olive oil (n = 56 mPa.sec) using the magnetic
manipulator of Fig. 1(b) with the slew rate S = 81.62 mm/sec.

the servomotor to more closely track the object, despite the
limitation in its slew rate.

The ability of feedback control to stabilize the magnetic
levitation system of Fig. 2 closely depends on the permanent
magnet utilized in this system. Intuitively, a stronger magnet
causes the magnetic object to move faster, which reduces the
servomotor ability to closely track it. A closer look reveals
that the closed-loop stability indeed depends on the slope of
the magnetic force F,,, (w) at the equilibrium point, which in
fact is proportional to the constant —a’ (0) in the approximate
linearized model (6).

To study this issue, the graph of Fig. 7 was created via the
following procedure. First, a family of magnetic force curves
was constructed by scaling the right-hand side of (1) by a
factor of k ranging between 0.2 and 4. Each member of
this family characterizes the magnetic force generated by a
hypothetical permanent magnet which is &k times stronger or
weaker than the real-world magnet utilized in the magnetic
manipulator of Fig. 1(b). For each hypothetical magnet, the
distance d from the equilibrium point to the magnet face was
obtained, the negative slope of the magnetic acceleration was
computed at the equilibrium point according to

1 d

a (0)=—-—

w=d

and the stability interval ROA’ was constructed. Then, ROA’

was plotted in Fig. 7 versus a’ (0) as k varies in [0.2,4].
According to Fig. 7, the choice of permanent magnet has a

signif cant impact in the closed-loop stability of the magnetic

levitation system of Fig. 2. In selection or possibly design of

a permanent magnet functionalized for levitation systems, the
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Fig. 7.  Stability interval ROA’ versus the negative slope a’ (0) of the
magnetic acceleration for a magnetic ball of 1 mm diameter levitated in

soybean oil (n = 25 mPa.sec) using the magnetic manipulator of Fig. 1(b)
with the slew rate S = 81.62 mm/sec.

guideline concluded from Fig. 7 is that a sound magnet must
produce an axial magnetic force with slow spatial variations
with respect to the distance from its face.

V. CONCLUSION

Feedback stabilization of a novel permanent-magnet-based
levitation system was considered. Instead of the conventional
approach which relies on electromagnets controlled via their
terminal voltages, this system utilizes a permanent magnet
controlled by a linear servomotor that can move it back and
forth along a straight line. The magnet is faced groundward
to attract a magnetic object against gravity and levitate it at
an equilibrium point by feedback control of the servomotor.
For the unstable, highly nonlinear dynamics of the proposed
system, an experimental model was constructed and utilized
then to develop a stabilizing nonlinear feedback law. Under
this feedback law, the adverse impact of a fnite slew rate of
servomotor on the closed-loop stability was investigated. In
addition, the closed-loop stability was examined against the
size of the levitating object, the viscosity of medium it moves
in, and characteristics of the permanent magnet in use.
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