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Abstract—A magnetic levitation system consists of a magnet
facing groundward to attract a magnetic object against gravity
and levitate it at a distance from the face of magnet. Due to the
unstable nature of this system, it must be stabilized by means
of feedback control, which adjusts the magnetic force applied
to the levitating object depending on its measured position and
possibly velocity. Conventionally, electromagnets have been used
for magnetic levitation, as they can be simply controlled via
their terminal voltages. This paper, however, studies a levitation
system relying on a permanent magnet and a linear servomotor
to control the applied magnetic force by changing the distance
between the magnet and the levitating object. For the proposed
system, which is highly nonlinear, a stabilizing feedback control
law is developed using feedback linearization and other control
design tools. Then, the closed-loop stability is examined against
system parameters such as the size of the levitating object, the
viscosity of the medium it moves in, and certain characteristics
of the magnet in use. The emphasis here is on understanding
the impact of intrinsic servomotor limitations, particularly its
f nite slew rate (cap on its maximum velocity), on the ability
of feedback control to stabilize the closed-loop system. This
particular limitation seems to be a major concern in utilizing
permanent magnets for noncontact actuation and control.

I. INTRODUCTION

Magnetic levitation using electromagnets has been studied
extensively in the literature (see [1] and references therein).
In the simplest form, a magnetic levitation system consists
of an electromagnet facing groundward to attract a magnetic
object against gravity and maintain it at a f xed distance from
the face of magnet. This goal cannot be achieved by simply
applying some constant voltage to the electromagnet, since
the equilibrium created by such constant voltage is inherently
unstable. Instead, the voltage must be dynamically controlled
by a stabilizing feedback loop including direct measurement
of the instantaneous position of the magnetic object.
This paper considers a novel magnetic levitation system by

replacing the electromagnet with the apparatus of Fig. 1 that
consists of an axially magnetized permanent magnet bar and
a linear servomotor to move it back and forth inside a guiding
cylinder. In this magnetic levitation system, schematically
shown in Fig. 2, control over the magnetic force is gained
by manipulating the distance between the permanent magnet
and the levitating object. Then, a feedback controller applies
stabilizing reference values to the servomotor in terms of the
measured values of the position, and possibly, the velocity of
this object.
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Fig. 1. Magnetic manipulator with a linear servomotor and an axially
magnetized permanent magnet bar: (a) schematic diagram; (b) a 3D printed
prototype. The dynamical model used for the analysis of this paper has been
constructed based on this prototype, and its parameters have been extracted
from empirical data collected through experiments on the prototype model.
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Fig. 2. Schematic diagram of a magnetic levitation system utilizing the
permanent magnet manipulator in Fig. 1. This manipulator is positioned
at the top of a rigid frame with its magnet faced toward ground. At a
distance d from the face of magnet, the attractive magnetic force applied to
a magnetic object cancels gravity. A feedback loop is established to stabilize
the magnetic object at a point along the vertical axis.

The focus of this paper is on feedback control design and
stability analysis of the magnetic levitation system of Fig. 2.
The design procedure is complicated by the highly nonlinear
dynamics of this system, originated in the nature of magnetic
force and nonlinear limitations of the servomotor in use. To
address these issues, a control design procedure is adopted in
this paper based on two major control design tools, feedback
linearization and linear quadratic regulator (LQR), enhanced
by simulation-based numerical optimization techniques. The
nonlinear control law designed via this procedure stabilizes
the unstable equilibrium of the open-loop system, while
maximizing the size of its region of attraction (ROA).
A major concern in stabilization of the magnetic levitation

system of Fig. 2 is the intrinsic limitations of its servomotor.
These limitations are twofold: f nite bandwidth, which is a
linear phenomenon, and f nite slew rate (cap on the maximum
velocity of the servomotor), which causes nonlinear behavior
with severe consequences on closed-loop stability. The study
of these limitations is a major goal of this paper, specif cally
to understand their impact on the ability of feedback control
to stabilize permanent magnet levitation systems. This study
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the impact of a f nite slew rate cannot be fully compensated;
it can be only minimized by a well-designed controller.
To develop such a controller, a three-step design procedure

is adopted in this paper relying on two major control design
tools: the LQR method and feedback linearization. At f rst in
Section III-A, the LQR method is applied to develop a family
of stabilizing linear feedback laws for a linear approximation
of the state-space equations (5). Next in Section III-B, the
nonliterary of magnetic force is compensated using feedback
linearization. In the feedback linearization process, auxiliary
state variables are chosen in such a manner that the exact
feedback linearized system has the same structure of the
approximate linearized model, and consequently, the family
of linear controllers designed for the approximate model can
be equally applied to the exact linearized system. Combining
feedback linearization with a member of the family of linear
controllers yields a nonlinear controller, which is optimized
in Section III-C for the best family member maximizing the
size of ROA associated with the stabilized equilibrium point.

A. Approximate Linearization
The nonlinear dynamics (5) is linearized at the origin by

disregarding saturation in (5d) and approximating a (x− y)
in (5b) with its f rst order Taylor expansion. Since a (0) = 0
in essence, this Taylor expansion is given by a′ (0) (x− y),
where a′ (·) denotes the derivative of a (·). Then, the set of
state-space equations (5) is approximated by

ẋ (t) = vx (t) (6a)
v̇x (t) = −σvx (t) + a′ (0)

(
x (t)− y (t)

)
(6b)

ẏ (t) = vy (t) (6c)
v̇y (t) = −2ζωnvy (t)− ω2

ny (t) + ω2

nu (t) . (6d)

This approximate linearized model is stabilized next using
a linear state feedback of the form

u (t) = −(
k1x (t) + k2vx (t) + k3y (t) + k4vy (t)

)
(7)

in which the gain vector (k1, k2, k3, k4) is determined via the
LQR method. In tuning the gain vector, two control goals are
considered: f rst, to keep the closed-loop system stable, and
second, to keep it unsaturated as much as possible. These
goals are achieved by simultaneously keeping both x (t) and
the argument of sat (·) function in (5d) small, mathematically
represented as minimizing the quadratic cost functional
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∫
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Here, β > 0 is a parameter to adjust the relative importance
of two opposing control goals, and is used in Section III-C to
optimize the overall control performance.

B. Feedback Linearization
The nonlinear effect of magnetic force on the dynamics of

a magnetic levitation system can be compensated by means
of feedback linearization. Specif cally, by applying a suitable
nonlinear state feedback to the magnetic levitation system, it

demonstrates linear dynamics with respect to some suitably
chosen state variables (if the servomotor is not in saturation).
In this paper, the feedback linearized system is described

by a state vector (x (t) , vx (t) , ỹ (t) , ṽy (t)) in which the new
state variables ỹ (t) and ṽy (t) are def ned as

ỹ (t) = x (t)− a
(
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)
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(9a)
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. (9b)

Then, in terms of the control ũ (t) of the feedback linearized
system, the nonlinear state feedback
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is applied to the magnetic levitation system (5). Here, a′′ (·)
is the second derivative of a (·), and for sake of simplicity,
the dependence of variables on t is not explicitly shown. By
applying the nonlinear state feedback (10) to the magnetic
levitation system described by (5), its feedback linearized
dynamics in the unsaturated region is governed by the exact
linear model

ẋ (t) = vx (t)

v̇x (t) = −σvx (t) + a′ (0)
(
x (t)− ỹ (t)

)
˙̃y (t) = ṽy (t)

˙̃vy (t) = −2ζωnṽy (t)− ω2

nỹ (t) + ω2

nũ (t) ,

which is identical to the approximate linearized model (6).
As the feedback linearized dynamics is governed by the

same approximate linear model (6), the linear control law (7)
developed for the approximate model can be identically used
for ũ (t), that is

ũ (t) = −(
k1x (t) + k2vx (t) + k3ỹ (t) + k4ṽy (t)

)
.

Replacing ỹ (t) and ṽy (t) in this control law by (9), and then
substituting the resulting ũ (t) to the right-hand side of (10)
leads to a nonlinear state feedback law of the form

u (t) = µ
(
x (t) , vx (t) , y (t) , vy (t)

)
(11)

for stabilization of the magnetic levitation system.

C. Performance Optimization
The nonlinear control law (11) is constructed in terms of

the gain vector (k1, k2, k3, k4) which depends on the tuning
parameter β > 0 in the cost functional (8). This parameter is
chosen next to optimize the performance of feedback control
when the nonlinear dynamics (5) of the magnetic levitation
system is stabilized by the nonlinear state feedback (11). The
particular goal is to maximize the size of ROA that contains
the stabilized equilibrium point at the origin (0, 0, 0, 0).
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