
Quasistatic Control of Dynamical Systems

Arash Komaee

Abstract— This paper investigates a control strategy in which
the state of a dynamical system is driven slowly along a
trajectory of stable equilibria. This trajectory is a continuum
set of points in the state space, each one representing a stable
equilibrium of the system under some constant control input.
Along the continuous trajectory of such constant control inputs,
a slowly varying control is then applied to the system, aimed to
create a stable quasistatic equilibrium that slowly moves along
the trajectory of equilibria. As a stable equilibrium attracts the
state of system within its vicinity, by moving the equilibrium
slowly along the trajectory of equilibria, the state of system
travels near this trajectory alongside the equilibrium. Despite
the disadvantage of being slow, this control strategy is attractive
for certain applications, as it can be implemented based only
on partial knowledge of the system dynamics. This feature is in
particular important for the complex systems for which detailed
dynamical models are not available.

I. INTRODUCTION

The identifier quasistatic in this paper is borrowed from

thermodynamics referring to thermal processes which evolve

in time sufficiently slow to allow them staying at equilibrium

during the course of evolution. Then, quasistatic control is

defined in this paper as a control that slowly drives the state

of a dynamical system along a trajectory of stable equilibria.

A closely related concept, adiabatic control, has been studied

in control of quantum systems [1]–[3]. This paper focuses on

general dynamical systems described by state-space models.

Consider a dynamical system that admits stable equilibria

under constant (static) controls in its control space. Further,

consider a continuum set of such constant controls living on a

continuous trajectory in the control space, for which there is

a corresponding continuous trajectory of stable equilibria in

the state space. Suppose the system is driven by a quasistatic

control that varies slowly along the trajectory in the control

space. This control creates a quasistatic stable equilibrium

moving slowly along the trajectory of equilibria in the state

space. Such a stable equilibrium attracts the state of system in

its vicinity, and as a result, if it moves at a slow enough pace,

the state will closely track it along the trajectory of equilibria.

A remarkable feature of the quasistatic control is that it can

be implemented based on partial knowledge of the system

dynamics rather than its detailed mathematical model. The

necessary information to construct this control includes only

the static (steady-state) relationship between the control and

state of the system to characterize the trajectory of equilibria,

and some lower bound on the rate of temporal evolution of
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the system to identify the pace of control. Of course, such

an incomplete information set may result in a conservatively

slow control, yet that slow control can be an attractive choice

for complex systems for which complete dynamical models

are not available.

In [4], we investigated the concept of quasistatic control in

a stochastic framework. The particular goal in that work was

to design proper controls for directed self-assembly, in which

a number of charged nanoparticles form a desired geometry

in space as a result of their mutual interactions and controlled

electric fields generated by a set of electrodes fixed in space.

Each stable equilibrium of this system associates to a certain

geometry, and the system admits a large number of equilibria,

out of which, only one represents the desired geometry. Then,

the purpose of quasistatic control is to transition the system

near a trajectory of equilibria from an initial geometry toward

a desired final geometry. By maintaining the system near the

trajectory of equilibria, this control minimizes the likelihood

of being trapped by undesired equilibria as the system state

is perturbed by intrinsic disturbances modeled stochastically.

This paper further investigates an output tracking scenario

based on quasistatic control. The control goal in this scenario

is to steer a system output along a reference trajectory within

the output space. It is shown in the paper that achieving this

goal based on quasistatic control only needs a fraction of the

system model, which in particular is efficient for the systems

with a large state space but a few input and output variables.

Examples of such systems are found in macroeconomics,

which usually deals with high dimensional dynamics caused

by interactions among a large number of players, while few

control variables such as interest rate are available to control

few output variable like inflation. The relationship between

these variables at equilibrium are often known via the theory

of macroeconomics and econometrics methods, but complete

knowledge of the system dynamics is difficult to acquire due

to its complexity and lack of enough empirical data.

II. QUASISTATIC CONTROL

This section introduces the concept of quasistatic control

of dynamical systems. To facilitate discussion, the concept is

established first for linear systems in Section II-A, and then

is generalized to nonlinear systems in Section II-B.

A. Quasistatic Control of Linear Systems

Consider the stable linear system

ẋ (t) = Ax (t) +Bu (t) (1a)

y (t) = Cx (t) +Du (t) , (1b)



where x (t) ∈ R
n, u (t) ∈ R

k, and y (t) ∈ R
k are the state,

control, and output vectors, respectively. It is assumed that

the matrices A, B, C, and D have suitable dimensions, and

that the static input-output gain

K = −CA−1B +D (2)

is invertible. This section explains the concept of quasistatic

control for this linear system as an open-loop control with

certain construction and properties studied in the paper.

Assume that U (·) : [0, 1] → R
k is a continuous trajectory

in the control space of (1a) and construct X (·) : [0, 1] → R
n

as a continuous trajectory in its state space according to

X (s) = −A−1BU (s) , s ∈ [0, 1]. (3)

Then, for each fixed s ∈ [0, 1], X (s) is an equilibrium point

of the linear system (1a) under the constant control U (s).
Consequently, the hodograph of X (·) can be imagined as a

continuous trajectory of equilibria in the state space of (1a).

Assume that at t = 0, the initial state x (0) of (1a) is at the

equilibrium point X (0). Let tf > 0 be a fixed final time and

consider controlling the linear system (1a) under the control

u (t) =

{

U (t/tf ) 0 6 t 6 tf

U (1) t > tf .
(4)

For a large tf , this control varies slowly in time, and as result,

the state of (1a) can closely track the trajectory X (t/tf ) of

the quasistatic stable equilibria during t ∈ [0, tf ]. Moreover,

shorty after tf , the system state settles at the final equilibrium

point X (1).
Denote the deviation of the state vector x (t) from the

quasistatic equilibrium X (t/tf) by

e (t) = x (t)−X (t/tf ) .

Then, assuming that X (·) is differentiable, e (t) evolves in

time according to

ė (t) = Ae (t)−
1

tf
X ′ (t/tf ) , (5)

where X ′ (·) denotes the derivative of X (·). Suppose that

the state x (t) of (1a) is at the equilibrium X (0) at t = 0,

and as a result, e (0) = 0. Then, it is concluded from (5) that

the deviation e (t) tends to 0 as tf → ∞, which implies

x (t) → X (t/tf) , t > 0

as tf → ∞, i.e., the system state stays near equilibrium

over the course of control. A control with such property is

called quasistatic in this paper, following a similar concept

in thermodynamics.

Consider the control scenario of driving the output y (t) of

the linear system (1) along some desired reference trajectory

Y (·) : [0, 1] → R
k at an arbitrary pace over t ∈ [0, tf ] (i.e.,

the hodographs of y (t), t ∈ [0, tf ] and Y (s), s ∈ [0, 1] must

be identical). As the pace of control can be taken arbitrarily,

the reference output is generated by yr (t) = Y (t/tf) for

some tf > 0. Then, the control (4) is constructed by choosing

U (s) = K−1Y (s) , s ∈ [0, 1],

ε
x (t) X (γ (t))

Fig. 1. The state of a dynamical system travels inside a tube of radius ε

around the trajectory of quasistatic equilibria.

where K is the static gain matrix (2) of the linear system (1)

and Y (·) is a differentiable trajectory in the output space.

Under this control, the deviation of output from the desired

reference is given by

y (t)− Y (t/tf) = Ce (t) , (6)

which again tends to 0 as tf → ∞.

A remarkable feature of this control is that it is constructed

on the basis of partial knowledge of the system, rather than

its complete model. Specifically, only the static input-output

relationship (i.e., K) and the stability of system are assumed

to develop the control. Of course, the price for this advantage

is the requirement for an infinite control horizon, which is not

affordable in practice. Yet, the control horizon can be reduced

to finite by accepting some deviations of the output from its

reference (or the state from equilibrium) and incorporating

additional information of the system into the control design

process. To that end, an extension of (4) is introduced first.

Assume tf > 0 and let γ (·) : [0, tf ] → [0, 1] be a strictly

increasing differentiable function that satisfies γ (0) = 0 and

γ (tf ) = 1. Using γ (·), the control (4) is generalized to

u (t) = U (γ (t)) , t ∈ [0, tf ] (7)

and u (t) = U (1) for t > tf . Clearly, (4) is a special case of

this control for γ (t) = t/tf . Correspondingly, the deviation

of state from the quasistatic equilibrium is redefined as

e (t) = x (t)−X (γ (t)) (8)

and its dynamics is modified into

ė (t) = Ae (t)− γ̇ (t)X ′ (γ (t)) .

The goal here is to determine γ (·) and tf in such a manner

that the deviation e (t) stays within an acceptable bound over

the course of control as the control (7) is applied to the linear

system (1). The specific objective is to maintain ‖e (t)‖ 6 ε
on t ∈ [0, tf ], provided that ‖e (0)‖ 6 ε, where ε > 0 is the

maximum tolerable error and ‖·‖ denotes the Euclidean norm

of vectors. This ensures that the state x (t) of (1a) travels

inside a tube of radius ε around the trajectory of quasistatic

equilibria X (γ (t)), t ∈ [0, tf ], as symbolically shown in

Fig. 1. The following proposition constructs a suitable γ (·)
to achieve this goal.

Proposition 1: Assume that − 1
2

(

A+AT
)

is a positive

definite matrix with eigenvalues lower bounded by λm > 0.

Construct X (·) via (3) in terms of a differentiable U (·) and

assume that ‖X ′ (s)‖ 6= 0 for all s ∈ [0, 1]. Take ε > 0 and

determine the final time tf from

tf =
1

ε

∫ 1

0

‖X ′ (s)‖

λm

ds. (9)



Construct γ (·) by solving the differential equation

γ̇ (t) =
ελm

‖X ′ (γ (t))‖
(10)

on t ∈ [0, tf ] with the initial condition γ (0) = 0 (assuming

the solution exists). Then, under the control (7) and an initial

state that holds ‖x (0)−X (0)‖ 6 ε, the state of the linear

system (1a) satisfies

‖x (t)−X (γ (t))‖ 6 ε, t ∈ [0, tf ]. (11)

Moreover, γ (·) is strictly increasing and satisfies γ (tf ) = 1.

Proof: This is a special case of Proposition 2 proven in

Section II-C.

Remark 1: The control introduced in Proposition 1 holds
∥

∥

d
dt
X (γ (t))

∥

∥ = ελm

which means that under this control, the equilibrium moves at

a constant speed. To maintain such a constant speed, γ (·) is

constructed via (10) to move the equilibrium faster along the

hodograph of X (s), s ∈ [0, 1} wherever it is more straight,

and move slower at points with higher curvature.

Remark 2: Proposition 1 identically holds if γ (·) instead

of (10) is generated by an alternative differential equation

γ̇ (t) =
ελm

‖A−1B‖ · ‖U ′ (γ (t))‖
(12)

defined in terms of the differentiable control trajectory U (·)
and the induced 2-norm

∥

∥A−1B
∥

∥ of A−1B. The advantage

of this equation over (10) is that it generates γ (·) relying only

on an scalar
∥

∥A−1B
∥

∥ rather than the complete knowledge

of matrix A−1B. Of course, the control derived from (12) is

more conservative with a longer control time

tf =
1

ε

∫ 1

0

∥

∥A−1B
∥

∥ · ‖U ′ (s)‖

λm

ds.

The expression (9) in Proposition 1 indicates that the final

time is inversely proportional to ε, and therefore, the control

period can be shortened by accepting a larger deviation from

the trajectory of quasistatic equilibria. Vice versa, the system

state can be maintained closer to this trajectory by accepting

a slower pace of control over a longer control horizon.

Another observation from (9) is that the control period

depends on the arc length of X (s), s ∈ [0, 1] rather than its

detailed geometry. Then, in a control scenario aimed solely

at transitioning a system from an initial equilibrium X0 to a

final equilibrium Xf , the shortest control time is achieved by

the straight line X (s) = (1− s)X0 + sXf connecting X0

to Xf . In this case, γ (·) is simply given by γ (t) = t/tf
with tf = ‖Xf −X0‖ / (ελm).

For the purpose of output tracking, the control

u (t) = K−1Y (γ (t)) , t ∈ [0, tf ] (13)

can be determined in such a manner that the output y (t) of

the linear system (1) tracks the reference trajectory Y (γ (t))
within a distance not exceeding ε̃ > 0, that is

‖y (t)− Y (γ (t))‖ 6 ε̃, t ∈ [0, tf ]. (14)

For this purpose, ε in Proposition 1 is chosen as ε = ε̃/ ‖C‖,

where ‖C‖ is the induced 2-norm of C. Then, (14) is implied

by (6) and (11).

The attractive feature of the control (13) is that it can be

implemented using only partial knowledge of the dynamical

system (1), consisting of the parameters K , λm,
∥

∥A−1B
∥

∥,

and ‖C‖. This feature is particularly important for complex

systems with a high dimensional state space, but relatively

few input and output variables. Construction of a complete

model for such systems can be infeasible or at least difficult,

while estimating a few parameters from theory or empirical

data can be affordable.

B. Quasistatic Control of Nonlinear Systems

This section extends the core idea of quasistatic control

to nonlinear systems, albeit cautiously. The reason for such

caution is the potential differences between the equilibria

of linear and nonlinear systems. In opposition to the (stable)

linear systems that always admit a unique equilibrium for any

constant control input, nonlinear systems may not admit any

equilibrium for certain controls, or conversely, may admit

multiple equilibria. Analysis of this issue is postponed to

Section III, while the goal in this section is to generalize

the concept of quasistatic control to nonlinear systems by

minimal involvement of the topology of equilibria.

Let f (·) : Rn × R
k → R

n and g (·) : Rn × R
k → R

k

be differentiable vector functions and consider the nonlinear

state-space model

ẋ (t) = f (x (t) , u (t)) (15a)

y (t) = g (x (t) , u (t)) . (15b)

Here, x (t) ∈ R
n, u (t) ∈ R

k, and y (t) ∈ R
k are the state,

control, and output vectors, respectively. Let U (s), s ∈ [0, 1]
be a continuous trajectory in the control space and assume

that a continuous trajectory X (s), s ∈ [0, 1] in the state

space exists to hold

f (X (s) , U (s)) = 0, s ∈ [0, 1]. (16)

Following a procedure similar to the case of linear systems,

the goal here is to construct a suitable γ (·) such that under

the control (7), the state x (t) of the nonlinear system (15a)

travels at a distance not exceeding ε from the quasistatic

equilibrium X (γ (t)) over the course of control t ∈ [0, tf ],
as mathematically expressed by (11).

Denote the deviation of state from equilibrium by e (t) as

given in (8) and note that its dynamics is governed by

ė (t) = f (X (γ (t)) + e (t) , U (γ (t)))− γ̇ (t)X ′ (γ (t)) ,

provided that X (·) is differentiable. Assuming ‖e (t)‖ 6 ε is

maintained on t ∈ [0, tf ] with a small enough ε, this equation

can be approximated as

ė (t)
.
= Fx (X (γ (t)) , U (γ (t))) e (t)− γ̇ (t)X ′ (γ (t)) ,

(17)

where Fx (·) denotes the Jacobian matrix of f (·) with respect

to its first argument. Proposition 2 below constructs γ (·) in

such a manner that ‖e (0)‖ 6 ε leads to ‖e (t)‖ 6 ε for the



entire t ∈ [0, tf ]. For this γ (·), application of the control (7)

to the nonlinear system (15a) drives its state x (t) inside

the tube (11) at a maximum distance ε from the quasistatic

equilibrium X (γ (t)).
Proposition 2: Suppose that X (·) and U (·) are a pair of

differentiable functions holding (16) and ‖X ′ (s)‖ 6= 0 for

all s ∈ [0, 1], and assume that

−
1

2

(

Fx (X (s) , U (s)) + FT
x (X (s) , U (s))

)

(18)

is a strictly positive definite matrix for all s ∈ [0, 1]. Assume

further that λ (·) : Rn × R
k → (0,∞) is a positive-valued

smooth function such that λ (X (s) , U (s)) lower bounds the

eigenvalues of this matrix for every s ∈ [0, 1]. Take ε > 0
and determine the final time tf from

tf =
1

ε

∫ 1

0

‖X ′ (s)‖

λ (X (s) , U (s))
ds. (19)

Construct γ (·) by solving the differential equation

γ̇ (t) =
ελ (X (γ (t)) , U (γ (t)))

‖X ′ (γ (t))‖
(20)

on t ∈ [0, tf ] with the initial condition γ (0) = 0 (assuming

the solution exists). Then, starting from an initial state that

holds ‖e (0)‖ 6 ε, the state of (17) satisfies

‖e (t)‖ 6 ε, t ∈ [0, tf ].

Moreover, γ (·) is strictly increasing and satisfies γ (tf ) = 1.

Proof: See Section II-C

Remark 3: The lower bound on the eigenvalues of (18)

can be taken as a constant λm independent of X (·) and U (·),
if the complete knowledge of λ (·) is not available. Since this

constant necessarily holds λm 6 mins∈[0,1] λ (X (s) , U (s)),
its associated control time will be longer than (19).

The output tracking control of Section II-A is extended to

the nonlinear system (15) as follows. Let Y (s), s ∈ [0, 1]
be a differentiable trajectory in the output space of (15) and

assume that X (·) and U (·) jointly solve

f (X (s) , U (s)) = 0 (21a)

g (X (s) , U (s)) = Y (s) (21b)

for every s ∈ [0, 1]. The objective is to develop a control of

the form (7) under which the output y (t) of the nonlinear

system (15) closely tracks the reference trajectory Y (γ (t)).
More precisely, y (t) must satisfy (14) for some given ε̃ > 0,

provided that the initial state x (0) is at a distance from X (0)
not exceeding ε.

To that end, let Gx (·) be the Jacobian matrix of g (·) with

respect to its first argument and define the constant

c = max
s∈[0,1]

‖Gx (X (s) , U (s))‖ .

Then, by taking ε = ε̃/c in Proposition 2, the resulting γ (·)
leads to a state error holding ‖e (t)‖ 6 ε̃/c. It is shown next

that with this state error, the output error satisfies the desired

condition (14).

The deviation of y (t) from Y (γ (t)) is given by

y (t)−Y (γ (t)) = g (X (γ (t)) + e (t) , U (γ (t)))−Y (γ (t))

which can be approximated as

y (t)− Y (γ (t))
.
= Gx (X (γ (t)) , U (γ (t))) e (t)

when ‖e (t)‖ 6 ε̃/c holds with a small enough ε̃/c. It is then

concluded that

‖y (t)− Y (γ (t))‖ 6 ‖Gx (X (γ (t)) , U (γ (t)))‖ · ‖e (t)‖

6 ε̃.

It worth mentioning that the nature of output tracking for

nonlinear systems can be different from linear systems if they

admit multiple equilibrium points. For a linear system or a

nonlinear system with a unique equilibrium, if it is known

that the system is initially at rest at x (0) = X (0), it can be

immediately concluded that under the control (7), the system

output closely tracks its reference. However, this conclusion

cannot be similarly made for nonlinear systems with multiple

equilibria. The difficulty here is the possibility for existence

of a trajectory X̄ (s), s ∈ [0, 1] with the property

f
(

X̄ (s) , U (s)
)

= 0

g
(

X̄ (s) , U (s)
)

6= Y (s) .

In that case, if the system is initially at rest at x (0) = X̄ (0),
its output obviously can not track the desired reference.

C. Proof of Proposition 2

Multiplying both sides of (17) by eT (t) results in

1

2
·
d

dt
‖e (t)‖

2
= eT (t)Fx (X (γ (t)) , U (γ (t))) e (t)

− γ̇ (t) eT (t)X ′ (γ (t)) .

Based on assumption that λ (X (s) , U (s)) lower bounds the

eigenvalues of (18) and using the Cauchy-Schwarz inequality

with γ̇ (t) > 0, this equation yields the differential inequality

1

2
·
d

dt
‖e (t)‖

2
6 −λ (X (γ (t)) , U (γ (t))) ‖e (t)‖

2

+ γ̇ (t) ‖e (t)‖ · ‖X ′ (γ (t))‖ .

Dividing both sides of this inequality by ‖e (t)‖ and using the

shorthand ℓ (t) = λ (X (γ (t)) , U (γ (t))), it is expressed as

d

dt
‖e (t)‖ 6 −ℓ (t) ‖e (t)‖+ γ̇ (t) ‖X ′ (γ (t))‖ .

This differential inequality is next solved on t > 0 for

‖e (t)‖ 6 exp
(

−
∫ t

0
ℓ (τ) dτ

)

‖e (0)‖

+

∫ t

0

exp
(

−
∫ t

τ
ℓ (ξ) dξ

)

γ̇ (τ) ‖X ′ (γ (τ))‖ dτ.

Substituting γ̇ (·) from (20) into the right-hand side of this

inequality and applying the assumption ‖e (0)‖ 6 ε lead to

‖e (t)‖ 6 ε exp
(

−
∫ t

0 ℓ (τ) dτ
)

+ ε

∫ t

0

exp
(

−
∫ t

τ
ℓ (ξ) dξ

)

ℓ (τ) dτ

= ε, t ∈ [0, tf ].



Since γ̇ (·) is positive by (20), γ (·) is strictly increasing.

To show that γ (tf ) = 1 holds for tf in (19), the differential

equation (20) is rearranged and integrated on [0, tf ] to obtain

tf =
1

ε

∫ tf

0

‖X ′ (γ (t))‖

λ (X (γ (t)) , U (γ (t)))
γ̇ (t) dt.

By the change of integration variable s = γ (t) and noting

that γ (0) = 0, this expression can be rewritten as

tf =
1

ε

∫ γ(tf )

0

‖X ′ (s)‖

λ (X (s) , U (s))
ds.

Comparing this result with (19) and noting that the integrands

in both expressions are strictly positive imply γ (tf ) = 1.

III. TRAJECTORY OF EQUILIBRIA

This section covers three topics on construction of the

trajectory of equilibria. First in Section III-A, application of

the homotopy continuation techniques [5] in construction

of this trajectory is considered. Section III-B establishes an

optimal control framework for optimization of the trajectory

of equilibria. Finally, Section III-C briefly discusses the case

in which a nonlinear system admits multiple equilibria under

the same constant control.

A. Application of Homotopy Continuation

A challenging step in implementation of quasistatic control

for nonlinear systems is to obtain the trajectory of equilibria

(and control in the case of output tracking) from the algebraic

equations (16) or (21). Computation of this trajectory needs

to repeat solving these nonlinear equations for all values of

the parameter s varying in the continuum set s ∈ [0, 1]. Such

heavy computation can be drastically simplified by means

of homotopy continuation. Using this continuation technique

the trajectory of equilibria can be constructed through solving

certain differential equations with a boundary condition that

solves (16) or (21) either at s = 0 or s = 1. Then, generating

the entire trajectory requires solving (16) or (21) only once.

The homotopy continuation technique relies on a simple

observation: if X (·) and U (·) jointly satisfy

d

ds
f (X (s) , U (s)) = 0, s ∈ [0, 1] (22a)

f (X (0) , U (0)) = 0, (22b)

it can be concluded that

f (X (s) , U (s)) = f (X (0) , U (0)) = 0, s ∈ [0, 1].

Using the chain rule of differentiation, (22a) is written as

Fx (X (s) , U (s))X ′ (s) + Fu (X (s) , U (s))U ′ (s) = 0,

where Fx (·) and Fu (·) denote the Jacobian matrices of f (·)
with respect to its first and second arguments, respectively.

This linear algebraic equation is solved with respect to X ′ (s)
to obtain the differential equation

X ′ (s) = −F−1
x (X (s) , U (s))Fu (X (s) , U (s))U ′ (s) ,

(23)

which can be solved on s ∈ [0, 1] with the initial state (22b)

in order to construct the trajectory of equilibria.

A major concern in homotopy continuation is the existence

of solutions for the differential equation (23). A necessary

condition for existence of a solution to this equation is that

the Jacobian matrix Fx (·) must stay nonsingular along the

entire trajectory of (X (s) , U (s)), s ∈ [0, 1]. This necessary

condition always holds under the assumption of Proposition 2

that requires (18) to be positive definite. Then, under a mild

Lipschitz continuity assumption, (23) will admit a unique

solution [6, Thm. 3.2].

For output tracking control, application of the homotopy

continuation technique to the set of algebraic equations (21)

results in a differential equation given in the compact form

Z ′ (s) = H (Z (s))Y ′ (s) , (24)

where Z (s) = (X (s) , U (s)) and H (·) is defined as

H (Z) =

[

Fx (Z) Fu (Z)

Gx (Z) Gu (Z)

]−1 [

0n×k

Ik×k

]

. (25)

Here, Gx (·) and Gu (·) denote the Jacobian matrices of g (·)
with respect to its first and second arguments, respectively.

The solution to (24) for an initial state Z0 solving f (Z0) = 0
and g (Z0) = Y (0) generates both trajectories of equilibria

and control over s ∈ [0, 1]. Certainly, a necessary condition

for existence of this solution is that the inverse matrix in (25)

must exist along the entire trajectory of Z (s), s ∈ [0, 1].
Construction of Z (s), s ∈ [0, 1] via solving (24) is not

a real-time computation. The following proposition explains

how (24) can be combined with (20) in Proposition 2 in order

to generate the control (7) in real time.

Proposition 3: Let Y (s), s ∈ [0, 1] be any differentiable

trajectory in the output space of (15) and assume that X (·)
and U (·) solve (21) on s ∈ [0, 1]. Take U (·) and construct

the control u (t) in (7) based on γ (·) in Proposition 2. Then,

this control can be computed in real time by solving the state-

space equations (assuming the solution exists)

ż (t) = ελ (z (t))
H (z (t))Y ′ (γ (t))

‖E1H (z (t))Y ′ (γ (t))‖
(26a)

γ̇ (t) =
ελ (z (t))

‖E1H (z (t))Y ′ (γ (t))‖
(26b)

u (t) = E2z (t) (26c)

on t ∈ [0, tf ] with the initial state γ (0) = 0 and z (0) solving

the algebraic equations f (z (0)) = 0 and g (z (0)) = Y (0).
Here, E1 and E2 are matrices defined as

E1 =
[

In×n 0n×k

]

, E2 =
[

0k×n Ik×k

]

.

Proof: Define the state vector z (t) = (X (γ (t)) , u (t))
and note that z (t) = Z (γ (t)), where Z (·) is the solution

of (24) with the initial state Z (0) that solves f (Z (0)) = 0
and g (Z (0)) = Y (0). Replacing s = γ (t) in (24) and

multiplying its both sides by γ̇ (t) result in

ż (t) = γ̇ (t)H (z (t))Y ′ (γ (t)) . (27)

Observing from (24) that X ′ (s) = E1H (Z (s)) Y ′ (s), (20)

in Proposition 2 can be expressed as (26b), which is then

substituted into (27) to obtain (26a).



B. Trajectory Optimization

Again consider the control of a nonlinear system aimed to

transition its state from an initial equilibrium (X0, U0) to a

final equilibrium (Xf , Uf). The problem then is to construct

a continuous trajectory (X (s) , U (s)), s ∈ [0, 1] to connect

(X0, U0) to (Xf , Uf ), and simultaneously, minimize the final

time (19) in Proposition 2. The solution to this problem was

given in Section II-A for linear systems as a straight line that

connects (X0, U0) to (Xf , Uf ). For nonlinear systems, the

problem is formulated as the optimal control problem below.

In the differential equation (23), take V (s) = U ′ (s) as a

control input and (X (s) , U (s)) as the state vector to rewrite

it in the form of state-space equations

X ′ (s) = −F−1
x (X (s) , U (s))Fu (X (s) , U (s)) V (s)

U ′ (s) = V (s) .

Then, subject to the boundary conditions

(X (0) , U (0)) = (X0, U0) , (X (1) , U (1)) = (Xf , Uf) ,

the goal is to obtain an optimal control V (·) that minimizes

the cost functional

J =

∫ 1

0

∥

∥F−1
x (X (s) , U (s))Fu (X (s) , U (s))V (s)

∥

∥

λ (X (s) , U (s))
ds.

This cost functional clearly represents tf in (19).

C. Systems with Multiple Equilibria

Suppose that the pairs Z0 = (X0, U0) and Zf = (Xf , Uf )
hold f (Z0) = 0 and f (Zf ) = 0 and assume that x = Xf is

the unique solution to the algebraic equation f (x, Uf ) = 0.

Consider the problem of constructing a continuous trajectory

Z (s), s ∈ [0, 1] to connect Z0 to Zf and hold f (Z (s)) = 0
on s ∈ [0, 1]. This problem can be tackled by solving (23)

with the initial state X (0) = X0 and any differentiable U (·)
that holds U (0) = U0 and U (1) = Uf .

On the other hand, if the equation f (x, Uf ) = 0 admits

multiple solutions, say x = X̄f , an arbitrarily taken U (·) can

generate a trajectory of equilibria that connects X0 to X̄f .

To ensure the trajectory indeed hits the desired equilibrium

point Xf , a smart procedure for selection of U (·) is required.

This section presents the core idea of an approach to develop

such procedure, which of course is still at an early stage and

needs more work to become operational.

Let φ (·) : Rn+k× [0, 1] → R be a scalar function holding

φ (Z0, 0) = 0 and φ (Zf , 1) = 0, and also φ
(

X̄f , Uf , 1
)

6= 0
for any X̄f 6= Xf that solves f (x, Uf ) = 0. Then, the set of

equations consisting of f (x, Uf ) = 0 and φ (x, Uf , 1) = 0
admits a unique solution at x = Xf . Note that the algebraic

equation (16) is underdetermined in the sense that it consists

of n scalar equations satisfied by n+k unknowns. Therefore,

by appending a new equation to (16), the system of equations

f (Z (s)) = 0 (28a)

φ (Z (s) , s) = 0 (28b)

still admits solutions, albeit within a smaller solution family.

This extended system of equations can be solved on s ∈ [0, 1]

by means of homotopy continuation to construct a continuous

trajectory connecting Z0 to Zf . Of course, the main question

of how to construct φ (·) is yet under investigation.

The system of equations (28) is typically underdetermined

(when k > 1) with n+k unknowns and only n+1 equations.

Hence, it admits a parametric family of solutions as discussed

next. Differentiating the equations in (28) with respect to s
yields the underdetermined system of linear equations

Fz (Z (s))Z ′ (s) = 0

Φz (Z (s) , s)Z ′ (s) = −Φs (Z (s) , s) ,

where Φz (·) and Φs (·) are respectively the Jacobian matrix

of φ (·) with respect to its first argument, and its partial

derivative with respect to the second argument. This system

of linear equations admits the family of solutions

Z ′ (s) = −

[

Fz (Z (s))

Φz (Z (s) , s)

]† [

0n×1

Φs (Z (s) , s)

]

+ q (s)

parameterized by the (n+ k)× 1 vector q (s) constrained to

satisfy n+ 1 constraints
[

Fz (Z (s))

Φz (Z (s) , s)

]

q (s) = 0(n+1)×1, s ∈ [0, 1].

Here, the superscript † denotes the Moore-Penrose inverse of

non-square matrices.

IV. CONCLUSION

A control strategy was investigated under which dynamical

systems evolve in time near an equilibrium moving slowly

along a trajectory of equilibria. Application of this strategy

was examined for two control scenarios: first, transitioning a

system from an initial state to a targeted final state in shortest

time, and second, output tracking control aimed at steering a

system output along a reference trajectory within the output

space. It was shown how these controls can be implemented

based on partial knowledge of the system dynamics involving

fewer parameters than the complete model of the system. For

nonlinear systems, application of homotopy continuation in

construction and optimization of the trajectory of equilibria

was examined and concerns around the existence of multiple

equilibria in these systems were partially addressed.
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