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Abstract— This paper investigates a control strategy in which
the state of a dynamical system is driven slowly along a
trajectory of stable equilibria. This trajectory is a continuum
set of points in the state space, each one representing a stable
equilibrium of the system under some constant control input.
Along the continuous trajectory of such constant control inputs,
a slowly varying control is then applied to the system, aimed to
create a stable quasistatic equilibrium that slowly moves along
the trajectory of equilibria. As a stable equilibrium attracts the
state of system within its vicinity, by moving the equilibrium
slowly along the trajectory of equilibria, the state of system
travels near this trajectory alongside the equilibrium. Despite
the disadvantage of being slow, this control strategy is attractive
for certain applications, as it can be implemented based only
on partial knowledge of the system dynamics. This feature is in
particular important for the complex systems for which detailed
dynamical models are not available.

I. INTRODUCTION

The identifier quasistatic in this paper is borrowed from
thermodynamics referring to thermal processes which evolve
in time sufficiently slow to allow them staying at equilibrium
during the course of evolution. Then, quasistatic control is
defined in this paper as a control that slowly drives the state
of a dynamical system along a trajectory of stable equilibria.
A closely related concept, adiabatic control, has been studied
in control of quantum systems [1]-[3]. This paper focuses on
general dynamical systems described by state-space models.

Consider a dynamical system that admits stable equilibria
under constant (static) controls in its control space. Further,
consider a continuum set of such constant controls living on a
continuous trajectory in the control space, for which there is
a corresponding continuous trajectory of stable equilibria in
the state space. Suppose the system is driven by a quasistatic
control that varies slowly along the trajectory in the control
space. This control creates a quasistatic stable equilibrium
moving slowly along the trajectory of equilibria in the state
space. Such a stable equilibrium attracts the state of system in
its vicinity, and as a result, if it moves at a slow enough pace,
the state will closely track it along the trajectory of equilibria.

A remarkable feature of the quasistatic control is that it can
be implemented based on partial knowledge of the system
dynamics rather than its detailed mathematical model. The
necessary information to construct this control includes only
the static (steady-state) relationship between the control and
state of the system to characterize the trajectory of equilibria,
and some lower bound on the rate of temporal evolution of
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the system to identify the pace of control. Of course, such
an incomplete information set may result in a conservatively
slow control, yet that slow control can be an attractive choice
for complex systems for which complete dynamical models
are not available.

In [4], we investigated the concept of quasistatic control in
a stochastic framework. The particular goal in that work was
to design proper controls for directed self-assembly, in which
a number of charged nanoparticles form a desired geometry
in space as a result of their mutual interactions and controlled
electric fields generated by a set of electrodes fixed in space.
Each stable equilibrium of this system associates to a certain
geometry, and the system admits a large number of equilibria,
out of which, only one represents the desired geometry. Then,
the purpose of quasistatic control is to transition the system
near a trajectory of equilibria from an initial geometry toward
a desired final geometry. By maintaining the system near the
trajectory of equilibria, this control minimizes the likelihood
of being trapped by undesired equilibria as the system state
is perturbed by intrinsic disturbances modeled stochastically.

This paper further investigates an output tracking scenario
based on quasistatic control. The control goal in this scenario
is to steer a system output along a reference trajectory within
the output space. It is shown in the paper that achieving this
goal based on quasistatic control only needs a fraction of the
system model, which in particular is efficient for the systems
with a large state space but a few input and output variables.

Examples of such systems are found in macroeconomics,
which usually deals with high dimensional dynamics caused
by interactions among a large number of players, while few
control variables such as interest rate are available to control
few output variable like inflation. The relationship between
these variables at equilibrium are often known via the theory
of macroeconomics and econometrics methods, but complete
knowledge of the system dynamics is difficult to acquire due
to its complexity and lack of enough empirical data.

II. QUASISTATIC CONTROL

This section introduces the concept of quasistatic control
of dynamical systems. To facilitate discussion, the concept is
established first for linear systems in Section II-A, and then
is generalized to nonlinear systems in Section II-B.

A. Quasistatic Control of Linear Systems
Consider the stable linear system

z (t) = Az (t) + Bu (t)
y(t) = Ca (1) + Dut),

(1a)
(1b)



where z (t) € R™, u (t) € R¥, and y (t) € R¥ are the state,
control, and output vectors, respectively. It is assumed that
the matrices A, B, C, and D have suitable dimensions, and
that the static input-output gain

K=-CA'B+D 2)

is invertible. This section explains the concept of quasistatic
control for this linear system as an open-loop control with
certain construction and properties studied in the paper.

Assume that U (+) : [0, 1] — R is a continuous trajectory
in the control space of (1a) and construct X (-) : [0,1] — R"
as a continuous trajectory in its state space according to

X (s)=—-A"'BU(s), sel0,1]. (3)

Then, for each fixed s € [0, 1], X (s) is an equilibrium point
of the linear system (la) under the constant control U (s).
Consequently, the hodograph of X (-) can be imagined as a
continuous trajectory of equilibria in the state space of (1a).

Assume that at t = 0, the initial state x (0) of (1a) is at the
equilibrium point X (0). Let ¢ > 0 be a fixed final time and
consider controlling the linear system (1a) under the control

A U(t/ty)
v

For a large ¢, this control varies slowly in time, and as result,
the state of (1a) can closely track the trajectory X (¢/ty) of
the quasistatic stable equilibria during ¢ € [0, ¢,]. Moreover,
shorty after ¢ ¢, the system state settles at the final equilibrium
point X (1).

Denote the deviation of the state vector z (t) from the
quasistatic equilibrium X (¢/t;) by

e(t) = (t)— X (t/ts).

Then, assuming that X (-) is differentiable, e () evolves in
time according to

0<t<ty

“4)
t>1y.

1
e(t) = Ae(t) = —X"(t/t), )
P
where X’ (-) denotes the derivative of X (-). Suppose that
the state x (t) of (la) is at the equilibrium X (0) at ¢t = 0,
and as a result, e (0) = 0. Then, it is concluded from (5) that
the deviation e (¢) tends to 0 as ¢t; — oo, which implies

z(t) = X (t/ty), t=0

as ty — oo, i.e., the system state stays near equilibrium
over the course of control. A control with such property is
called quasistatic in this paper, following a similar concept
in thermodynamics.

Consider the control scenario of driving the output y (¢) of
the linear system (1) along some desired reference trajectory
Y (-) : [0,1] — R* at an arbitrary pace over ¢ € [0,] (i.e.,
the hodographs of y (t), t € [0,t¢] and Y (s), s € [0, 1] must
be identical). As the pace of control can be taken arbitrarily,
the reference output is generated by y, (t) = Y (¢/ty) for
some ¢ty > 0. Then, the control (4) is constructed by choosing

U(s)=K 'Y (s), s€l0,1],

Fig. 1. The state of a dynamical system travels inside a tube of radius €
around the trajectory of quasistatic equilibria.

where K is the static gain matrix (2) of the linear system (1)
and Y (-) is a differentiable trajectory in the output space.
Under this control, the deviation of output from the desired
reference is given by

y () =Y (t/ty) = Ce(t), (©)
which again tends to 0 as ¢ty — oo.

A remarkable feature of this control is that it is constructed
on the basis of partial knowledge of the system, rather than
its complete model. Specifically, only the static input-output
relationship (i.e., K) and the stability of system are assumed
to develop the control. Of course, the price for this advantage
is the requirement for an infinite control horizon, which is not
affordable in practice. Yet, the control horizon can be reduced
to finite by accepting some deviations of the output from its
reference (or the state from equilibrium) and incorporating
additional information of the system into the control design
process. To that end, an extension of (4) is introduced first.

Assume ¢ty > 0 and let v (+) : [0, 7] — [0,1] be a strictly
increasing differentiable function that satisfies -y (0) = 0 and
v (ty) = 1. Using 7 (-), the control (4) is generalized to

u(t)=U(y (), tel0,ty] ©)

and u (t) = U (1) for t > ¢. Clearly, (4) is a special case of
this control for v (t) = ¢/t;. Correspondingly, the deviation
of state from the quasistatic equilibrium is redefined as

e(t) =z (t) - X (v() ®)

and its dynamics is modified into

e(t) =Ae(t) =7 (1) X" (v(1))

The goal here is to determine y (-) and ¢ in such a manner
that the deviation e (¢) stays within an acceptable bound over
the course of control as the control (7) is applied to the linear
system (1). The specific objective is to maintain |le ()| < e
on t € [0,ty], provided that ||e (0)|| < &, where € > 0 is the
maximum tolerable error and ||-|| denotes the Euclidean norm
of vectors. This ensures that the state x (¢) of (la) travels
inside a tube of radius € around the trajectory of quasistatic
equilibria X (v (¢)), t € [0,¢s], as symbolically shown in
Fig. 1. The following proposition constructs a suitable ~ (-)
to achieve this goal.

Proposition 1: Assume that —3 (A + A”T) is a positive
definite matrix with eigenvalues lower bounded by \,, > 0.
Construct X (-) via (3) in terms of a differentiable U (-) and
assume that || X’ (s)|| # 0 for all s € [0,1]. Take € > 0 and
determine the final time ¢y from
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Construct v () by solving the differential equation

_ EAm
X7 (v ()l

on t € [0,t;] with the initial condition v (0) = 0 (assuming

the solution exists). Then, under the control (7) and an initial

state that holds ||z (0) — X (0)|| < &, the state of the linear
system (la) satisfies

o (t) = X (v () <, (11)

Moreover, «y (-) is strictly increasing and satisfies v (t7) = 1.
Proof: This is a special case of Proposition 2 proven in
Section II-C. [ ]
Remark 1: The control introduced in Proposition 1 holds

1 X (r ()] = e

which means that under this control, the equilibrium moves at
a constant speed. To maintain such a constant speed, v (-) is
constructed via (10) to move the equilibrium faster along the
hodograph of X (s), s € [0,1} wherever it is more straight,
and move slower at points with higher curvature.

Remark 2: Proposition 1 identically holds if + (-) instead
of (10) is generated by an alternative differential equation

7 (t) (10)

te [O,tf].

(1) = o
"= ATE U GOl

defined in terms of the differentiable control trajectory U (-)
and the induced 2-norm ||A~'B|| of A~'B. The advantage
of this equation over (10) is that it generates ~y (-) relying only
on an scalar J|A_IBH rather than the complete knowledge
of matrix A~ B. Of course, the control derived from (12) is
more conservative with a longer control time

1 [H|ATIB - U7 (s)
€ /0 Am

The expression (9) in Proposition 1 indicates that the final
time is inversely proportional to ¢, and therefore, the control
period can be shortened by accepting a larger deviation from
the trajectory of quasistatic equilibria. Vice versa, the system
state can be maintained closer to this trajectory by accepting
a slower pace of control over a longer control horizon.

Another observation from (9) is that the control period
depends on the arc length of X (s), s € [0, 1] rather than its
detailed geometry. Then, in a control scenario aimed solely
at transitioning a system from an initial equilibrium Xj to a
final equilibrium X f, the shortest control time is achieved by
the straight line X (s) = (1 — s) Xo + sX; connecting X
to Xy. In this case, v (-) is simply given by v (t) = t/t;
with t7 = [| X5 — Xo| / (eAm).

For the purpose of output tracking, the control

u(t) =K7Y (v(1),

12)

tf = H ds.

t €0,ty] (13)

can be determined in such a manner that the output y (¢) of
the linear system (1) tracks the reference trajectory Y (v (¢))
within a distance not exceeding € > 0, that is

ly () =Y (y@)Il <& tel0ty]. (14)

For this purpose, € in Proposition 1 is chosen as ¢ = &/ ||C/],
where ||C| is the induced 2-norm of C'. Then, (14) is implied
by (6) and (11).

The attractive feature of the control (13) is that it can be
implemented using only partial knowledge of the dynamical
system (1), consisting of the parameters K, \,,, A-1B],
and ||C||. This feature is particularly important for complex
systems with a high dimensional state space, but relatively
few input and output variables. Construction of a complete
model for such systems can be infeasible or at least difficult,
while estimating a few parameters from theory or empirical
data can be affordable.

B. Quasistatic Control of Nonlinear Systems

This section extends the core idea of quasistatic control
to nonlinear systems, albeit cautiously. The reason for such
caution is the potential differences between the equilibria
of linear and nonlinear systems. In opposition to the (stable)
linear systems that always admit a unique equilibrium for any
constant control input, nonlinear systems may not admit any
equilibrium for certain controls, or conversely, may admit
multiple equilibria. Analysis of this issue is postponed to
Section III, while the goal in this section is to generalize
the concept of quasistatic control to nonlinear systems by
minimal involvement of the topology of equilibria.

Let f(-) : R®" x RF = R"™ and g(-) : R® x R¥ — RF
be differentiable vector functions and consider the nonlinear
state-space model

& (t) = f(z(t),u(t)
y () =g(@@),u(t)).

Here, x (t) € R", u(t) € R¥, and y (t) € R* are the state,
control, and output vectors, respectively. Let U (s), s € [0, 1]
be a continuous trajectory in the control space and assume
that a continuous trajectory X (s), s € [0,1] in the state
space exists to hold

f(X(s),U(s)) =0,

Following a procedure similar to the case of linear systems,
the goal here is to construct a suitable + (-) such that under
the control (7), the state x (¢) of the nonlinear system (15a)
travels at a distance not exceeding ¢ from the quasistatic
equilibrium X (v (¢)) over the course of control ¢ € [0,%/],
as mathematically expressed by (11).

Denote the deviation of state from equilibrium by e () as
given in (8) and note that its dynamics is governed by

) =f(X(y®)+e®), UM ®))—70) X (v(#),

provided that X (-) is differentiable. Assuming ||e (¢)|| < ¢ is
maintained on ¢ € [0, ¢;] with a small enough ¢, this equation
can be approximated as

E)=F (X (v(1),U(v(®)e(t) =7 (1) X" (v(1)),
a7
where F, () denotes the Jacobian matrix of f (-) with respect
to its first argument. Proposition 2 below constructs v (+) in
such a manner that ||e (0)]] < ¢ leads to ||e (t)|| < e for the

(152)
(15b)

s €10, 1]. (16)



entire ¢ € [0, ¢]. For this 7 (-), application of the control (7)
to the nonlinear system (15a) drives its state x (¢) inside
the tube (11) at a maximum distance ¢ from the quasistatic
equilibrium X (v (¢)).

Proposition 2: Suppose that X (-) and U (-) are a pair of
differentiable functions holding (16) and || X’ (s)|| # 0 for
all s € [0, 1], and assume that

1
5 (e (X (), () + BT (X (5).U (5)))
is a strictly positive definite matrix for all s € [0, 1]. Assume
further that A (-) : R® x R¥ — (0,00) is a positive-valued
smooth function such that A (X (s), U (s)) lower bounds the
eigenvalues of this matrix for every s € [0,1]. Take € > 0
and determine the final time ¢; from

(18)

Lt X )l
Lo 1
Construct v (-) by solving the differential equation
S - A O0).UG0) o0)

X (v @)l

on t € [0,t7] with the initial condition v (0) = 0 (assuming
the solution exists). Then, starting from an initial state that
holds |le (0)|| < e, the state of (17) satisfies

lle I <,

Moreover, «y (-) is strictly increasing and satisfies v (t;) = 1.
Proof: See Section 1I-C [ ]
Remark 3: The lower bound on the eigenvalues of (18)
can be taken as a constant A, independent of X (-) and U (-),
if the complete knowledge of A (+) is not available. Since this
constant necessarily holds \,,, < minepo,1] A (X (s),U (s)),
its associated control time will be longer than (19).

The output tracking control of Section II-A is extended to
the nonlinear system (15) as follows. Let Y (s), s € [0, 1]
be a differentiable trajectory in the output space of (15) and
assume that X () and U (-) jointly solve

F(X(s),U(s) =0
9(X(s),U(s)) =Y (s)

for every s € [0, 1]. The objective is to develop a control of
the form (7) under which the output y (¢) of the nonlinear
system (15) closely tracks the reference trajectory Y (v (¢)).
More precisely, y (t) must satisfy (14) for some given £ > 0,
provided that the initial state = (0) is at a distance from X (0)
not exceeding .

To that end, let G, (-) be the Jacobian matrix of g (-) with
respect to its first argument and define the constant

(), U ()Il-

t €0, tf].

(21a)
(21b)

¢= max ||G, (X
s€[0,1]
Then, by taking £ = £/c in Proposition 2, the resulting y (-)
leads to a state error holding ||e (¢)|| < &/c. It is shown next
that with this state error, the output error satisfies the desired
condition (14).

The deviation of y (¢) from Y (v (¢)) is given by
yO)=Y () =g (X () +e®),U( ()Y (v(1)

which can be approximated as

y(t) =Y (v (1) =G (X (v(1),U (v (1)) e (t)

when ||e (¢)|| < &/c holds with a small enough &/c. It is then
concluded that
ly (8) =Y (v () < G (X (v (), U (v ()] - lle ()]
<E.

It worth mentioning that the nature of output tracking for
nonlinear systems can be different from linear systems if they
admit multiple equilibrium points. For a linear system or a
nonlinear system with a unique equilibrium, if it is known
that the system is initially at rest at 2 (0) = X (0), it can be
immediately concluded that under the control (7), the system
output closely tracks its reference. However, this conclusion
cannot be similarly made for nonlinear systems with multiple
equilibria. The difficulty here is the possibility for existence
of a trajectory X (s), s € [0, 1] with the property

F(X(s),U(s)) =0

9(X(5),U(s)) #Y (s).
In that case, if the system is initially at rest at z (0) = X (0),
its output obviously can not track the desired reference.

C. Proof of Proposition 2
Multiplying both sides of (17) by e” (¢) results in
=" () (X (1), U (1) e(t)
=3 (@) e’ () X' (v (1))
Based on assumption that A (X (s),U (s)) lower bounds the

eigenvalues of (18) and using the Cauchy-Schwarz inequality
with 7 ( ) > 0, this equation yields the differential inequality

Lle @I < =A(X (1) .U (v ) lle @)
+3 @) e @I - 1IX" (v @)

Dividing both sides of this inequality by ||e (¢)|| and using the
shorthand £ (t) = A (X (v (¢)),U (v (t))), it is expressed as

% lle (Ol < =£(@) [le @l +5 @) X" (v )]

This differential inequality is next solved on ¢ > 0 for
le @)l < exp (= [y £(r) dr) fle (O)]

+/0teXp( Se© ) () X" (v ()] dr.

Substituting + () from (20) into the right-hand side of this
inequality and applying the assumption ||e (0)]| <  lead to

le @l < zexp (= fy £(r) dr)

+E/Otexp(—f:€(§)d§)€(

g, te [O,tf].

sl

2dt

T)dr



Since 4 (-) is positive by (20), v (+) is strictly increasing.
To show that v (t;) = 1 holds for ¢, in (19), the differential
equation (20) is rearranged and integrated on [0, ¢ ¢] to obtain

1 (Y X' (v (t
ol [N RO,
eJo AX(v®).U(v(®)
By the change of integration variable s = ~y (¢) and noting
that v (0) = 0, this expression can be rewritten as

L el
tf‘/o X (5).U @) "

Comparing this result with (19) and noting that the integrands
in both expressions are strictly positive imply 7 (t7) = 1.

III. TRAJECTORY OF EQUILIBRIA

This section covers three topics on construction of the
trajectory of equilibria. First in Section III-A, application of
the homotopy continuation techniques [5] in construction
of this trajectory is considered. Section III-B establishes an
optimal control framework for optimization of the trajectory
of equilibria. Finally, Section III-C briefly discusses the case
in which a nonlinear system admits multiple equilibria under
the same constant control.

A. Application of Homotopy Continuation

A challenging step in implementation of quasistatic control
for nonlinear systems is to obtain the trajectory of equilibria
(and control in the case of output tracking) from the algebraic
equations (16) or (21). Computation of this trajectory needs
to repeat solving these nonlinear equations for all values of
the parameter s varying in the continuum set s € [0, 1]. Such
heavy computation can be drastically simplified by means
of homotopy continuation. Using this continuation technique
the trajectory of equilibria can be constructed through solving
certain differential equations with a boundary condition that
solves (16) or (21) either at s = 0 or s = 1. Then, generating
the entire trajectory requires solving (16) or (21) only once.

The homotopy continuation technique relies on a simple
observation: if X (-) and U (-) jointly satisfy

%f (X (s),U(s))=0, se]0,1] (22a)
f(X(0),U(0)) =0, (22b)
it can be concluded that
f(X(s),U(s)) = f(X(0),U(0)=0, sel0,1].

Using the chain rule of differentiation, (22a) is written as
Fy (X (5),U (5)) X' (s) + Fu (X (s),U (s)) U’ (s) = 0,

where F, (-) and F,, (-) denote the Jacobian matrices of f ()
with respect to its first and second arguments, respectively.
This linear algebraic equation is solved with respect to X' (s)
to obtain the differential equation

X'(s) = —F; 1 (X (5),U(5)) Fu (X (5),U () U" (5),
(23)
which can be solved on s € [0, 1] with the initial state (22b)
in order to construct the trajectory of equilibria.

A major concern in homotopy continuation is the existence
of solutions for the differential equation (23). A necessary
condition for existence of a solution to this equation is that
the Jacobian matrix F (-) must stay nonsingular along the
entire trajectory of (X (s),U (s)), s € [0, 1]. This necessary
condition always holds under the assumption of Proposition 2
that requires (18) to be positive definite. Then, under a mild
Lipschitz continuity assumption, (23) will admit a unique
solution [6, Thm. 3.2].

For output tracking control, application of the homotopy
continuation technique to the set of algebraic equations (21)
results in a differential equation given in the compact form

Z'(s)=H(Z(s))Y'(s), (24)
where Z (s) = (X (s),U (s)) and H (-) is defined as

1

lo"x’“] . 25)

Tiexce
Here, G (-) and G,, (+) denote the Jacobian matrices of g ()
with respect to its first and second arguments, respectively.
The solution to (24) for an initial state Z, solving f (Zp) =0
and g (Zp) =Y (0) generates both trajectories of equilibria
and control over s € [0, 1]. Certainly, a necessary condition
for existence of this solution is that the inverse matrix in (25)
must exist along the entire trajectory of Z (s), s € [0, 1].

Construction of Z (s), s € [0,1] via solving (24) is not
a real-time computation. The following proposition explains
how (24) can be combined with (20) in Proposition 2 in order
to generate the control (7) in real time.

Proposition 3: Let Y (s), s € [0,1] be any differentiable
trajectory in the output space of (15) and assume that X (-)
and U (-) solve (21) on s € [0, 1]. Take U (-) and construct
the control u (¢) in (7) based on ~ (-) in Proposition 2. Then,
this control can be computed in real time by solving the state-
space equations (assuming the solution exists)

Hz()Y' (v ()

£ (2)
Gz (2)

F.(2)]

H(2)= G, (2)

O=ACOETC oY oo @
o akw)

Y= TEmCo) Y 6O (26b)
u (t) = Bz (t) (26¢)

ont € [0, ¢s] with the initial state v (0) = 0 and 2 (0) solving
the algebraic equations f (z(0)) =0 and g (z(0)) = Y (0).
Here, F/; and E5 are matrices defined as

El = [Inxn Onxk] ) E2 = [kan Ikxk} .

Proof: Define the state vector z (t) = (X (v (¢)),u (2))
and note that z (t) = Z (v (t)), where Z (-) is the solution
of (24) with the initial state Z (0) that solves f (Z (0)) =0
and ¢g(Z(0)) = Y (0). Replacing s = v (¢) in (24) and
multiplying its both sides by % (¢) result in

()= (t)H(z(t) Y (v (). (27)

Observing from (24) that X' (s) = E1H (Z (s)) Y’ (s), (20)
in Proposition 2 can be expressed as (26b), which is then
substituted into (27) to obtain (26a). |



B. Trajectory Optimization

Again consider the control of a nonlinear system aimed to
transition its state from an initial equilibrium (X, Up) to a
final equilibrium (X7, Uy). The problem then is to construct
a continuous trajectory (X (s),U (s)), s € [0, 1] to connect
(Xo,Up) to (X, Uy), and simultaneously, minimize the final
time (19) in Proposition 2. The solution to this problem was
given in Section II-A for linear systems as a straight line that
connects (Xo,Up) to (X, Uy). For nonlinear systems, the
problem is formulated as the optimal control problem below.

In the differential equation (23), take V (s) = U’ (s) as a
control input and (X (s), U (s)) as the state vector to rewrite
it in the form of state-space equations

X' (s) = —F; 1 (X (5),U () Fu (X (5),U (5)) V (s)
U'(s) =V (s).

Then, subject to the boundary conditions

(X (0),U(0)) = (Xo,00), (X(1),U(1)) = (X, Uys),

the goal is to obtain an optimal control V' (-) that minimizes
the cost functional

J_/l |F (X (5),U () Fu (X (5),U () V (s)]|
0 A(X (5),U(9))

This cost functional clearly represents ¢ in (19).

ds.

C. Systems with Multiple Equilibria

Suppose that the pairs Zy = (Xo,Up) and Z; = (X, Uy)
hold f (Zy) =0 and f (Z;) = 0 and assume that x = X is
the unique solution to the algebraic equation f (z,Uy) = 0.
Consider the problem of constructing a continuous trajectory
Z (s), s € [0,1] to connect Zy to Z; and hold f (Z (s)) =0
on s € [0,1]. This problem can be tackled by solving (23)
with the initial state X (0) = X and any differentiable U (-)
that holds U (0) = Up and U (1) = Uy.

On the other hand, if the equation f (z,Uy) = 0 admits
multiple solutions, say = X, an arbitrarily taken U (-) can
generate a trajectory of equilibria that connects Xg to X .
To ensure the trajectory indeed hits the desired equilibrium
point X ¢, a smart procedure for selection of U (-) is required.
This section presents the core idea of an approach to develop
such procedure, which of course is still at an early stage and
needs more work to become operational.

Let ¢ (-) : R"** x [0,1] — R be a scalar function holding
¢(Zp,0) =0and ¢ (Zs,1) =0, and also ¢ (Xf,Uys,1) # 0
for any X, # X that solves f (z,Uy) = 0. Then, the set of
equations consisting of f(x,Uy) = 0 and ¢ (x,Uf,1) =0
admits a unique solution at z = X ;. Note that the algebraic
equation (16) is underdetermined in the sense that it consists
of n scalar equations satisfied by n+k unknowns. Therefore,
by appending a new equation to (16), the system of equations

f(Z(s))=0
¢(Z(S)7S):O

still admits solutions, albeit within a smaller solution family.
This extended system of equations can be solved on s € [0, 1]

(282)
(28b)

by means of homotopy continuation to construct a continuous
trajectory connecting Z to Zy. Of course, the main question
of how to construct ¢ (+) is yet under investigation.

The system of equations (28) is typically underdetermined
(when k > 1) with n+k% unknowns and only n+1 equations.
Hence, it admits a parametric family of solutions as discussed
next. Differentiating the equations in (28) with respect to s
yields the underdetermined system of linear equations

F.(Z(s)Z'(s) =0
D, (Z(s),s) 2" (s) = —Ps(Z(s),5),
where @, (-) and @ (-) are respectively the Jacobian matrix
of ¢ (-) with respect to its first argument, and its partial

derivative with respect to the second argument. This system
of linear equations admits the family of solutions

Fz@s) ]

®.(Z(s),5)

Onxl

s == 3.(Z(s),5)

+4q(s)

parameterized by the (n + k) x 1 vector ¢ (s) constrained to
satisfy n 4 1 constraints

F.(Z(s))
®.(Z(s),s)

1 Q(S) = O(n+1)><1a s € [07 1]

Here, the superscript 1 denotes the Moore-Penrose inverse of
non-square matrices.

IV. CONCLUSION

A control strategy was investigated under which dynamical
systems evolve in time near an equilibrium moving slowly
along a trajectory of equilibria. Application of this strategy
was examined for two control scenarios: first, transitioning a
system from an initial state to a targeted final state in shortest
time, and second, output tracking control aimed at steering a
system output along a reference trajectory within the output
space. It was shown how these controls can be implemented
based on partial knowledge of the system dynamics involving
fewer parameters than the complete model of the system. For
nonlinear systems, application of homotopy continuation in
construction and optimization of the trajectory of equilibria
was examined and concerns around the existence of multiple
equilibria in these systems were partially addressed.
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