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Abstract: Flow regulation through dams increases water and energy security for society but also threatens the natural equilibrium of river
basins, leaving ecosystems and communities more vulnerable. While recovering flow regime dynamics to mitigate environmental impacts is a
necessary goal, its effective implementation depends on the capacity to predict the expected outcomes to multiple competing users. Although
such impacts can be measured between tangible economic uses, identifying the ecological trade-offs remains a challenge. To guide the design
of environmental flows and support improved ecosystem restoration, we propose a methodology framework that builds an ensemble of flow
regime options based on the naturalized flow regime range variability and quantifies the ecosystem response of each option in terms of
migratory fish abundance with an artificial neural network model. The flow regime options with significant responses were called functional
flow regimes because they provide conditions for the recruitment success of migratory fish species, which are vulnerable to flow dynamic
synchronization. Our findings indicate that functional flow regimes may still produce relevant ecological responses even without fully recov-
ering the natural flow regime. Specific levels of magnitude, frequency, duration, and timing of a flow regime can be combined to achieve a
desired level of ecological response, while there is a clear threshold above which performance gains are smaller, indicating the presence of
diminishing marginal performance gains when designing environmental flows. Knowing the trade-offs of different levels of flow regime
recovery gives flexibility to the negotiation process between users and managers, leading to improved reservoir operation to meet multiple
competing water needs. DOI: 10.1061/(ASCE)WR.1943-5452.0001567. This work is made available under the terms of the Creative

Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Flow regulation through dams represents the most prevalent form
of hydrological alteration of rivers with projections to expand in
future decades (Grill et al. 2015; Tharme 2003). While such alter-
ation is desirable to increase water, food, and energy security for
society (Tilmant et al. 2014), the consequent disruption of flow re-
gime patterns and reduction of aquatic and wetland habitats con-
tribute to dramatic population declines of aquatic species (Howard

et al. 2018; Palmer and Ruhi 2019).Moyle et al. (2011) estimate that
more than 80% of California’s native fishes are likely to be lost in the
next 100 years if water management practices are not changed and
the negative effects of climate change are not averted or reversed.

Because maintaining or restoring full natural flow regimes to
mitigate impacts is usually unfeasible or undesirable, the concept
of environmental flows has emerged to strike a balance between
economic uses of water and ecosystem preservation (Poff et al.
2017). This idea explores the wide range of flow regime options
that can be preserved or restored to some condition preferred by
society, both in already altered rivers or where new water infrastruc-
tures are planned (Arthington et al. 2018).

Choosingbetween flow regimeoptions, however, requires a capac-
ity to predict ecological, technical, social, and economic outcomes
(Arthington et al. 2018). Hydropower reservoir reoperation incorpo-
rating environmental needs often reduces generation capacity, lead-
ing to reliability and economic losses to the power sector, while water
supplies may also be reduced, forcing municipalities and irrigation
districts to seek out more expensive sources (Adams et al. 2017;
Crespo et al. 2019). Managing such consequences remains a chal-
lenge in implementing environmental flows in a holistic perspective
(Poff et al. 2017), resulting in a few examples that go beyond a mini-
mum flow requirement (Harwood et al. 2017; Quesne et al. 2010).

Therefore, a better quantitative understanding of ecological re-
sponses to different levels of flow regime recovery is critical to also
calculate the range of economic losses and engage stakeholders in
decision-making. This process starts with characterizing the natural
flow variability through its critical components, such as magnitude,
timing, duration, frequency, and rate of change (Poff et al. 1997;
Olden and Poff 2003), followed by understanding the ecologi-
cal response to the natural variability and degrees of alteration
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(Arthington et al. 2006), to finally calculate the trade-offs with
other uses (Chen and Olden 2017; Li et al. 2020; Suen and Eheart
2006; Wild et al. 2019) and propose adaptation cost distribution
among users (Marques and Tilmant 2018).

Focusing on flow regime components that trigger significant
geomorphological and ecological processes (functional flow regimes)
provides a strategic frame of reference to develop ecological-flow
relationships and more successful recovery plans (Grantham et al.
2020; Yarnell et al. 2015). Fish are part of food web dynamics and
nutrient cycling, serving as an effective indicator of ecosystem
health, with the advantage of being sensitive to flow dynamic
changes (Whitfield and Elliott 2002). Many studies evaluating the
modification of downstream flow regimes by reservoir regulation
highlight a simplification of the ichthyofauna diversity, with a
marked reduction in migratory species (Cooper et al. 2017; Loures
and Pompeu 2018; Pringle et al. 2000). Fisheries also represent a
traditional ecosystem service provision (e.g., food and ecotourism)
(Holmlund and Hammer 1999), contributing to social and eco-
nomic activities.

Statistical approaches have been applied as means to quantify
and interpret meaningful flow regime components that drive eco-
logical processes to sustain fish populations and communities. Re-
searchers like Freeman et al. (2001), Oliveira et al. (2015), Piffady
et al. (2010), Tonkin et al. (2021), and Wang et al. (2019) statisti-
cally analyzed the degree of fish response to flow regime indexes,
showing that the intensity, timing, and duration of flood pulses
when synchronized with life stages during the spawning and re-
cruitment processes are highly correlated with juvenile abundances.
Floods trigger fish migration for spawning and connect longitudi-
nally and laterally different habitats across floodplains, providing
feeding and refuge conditions for initial growth. By retaining high
flows during the rainy season to make it available during the dry
season, reservoir regulation reduces or eliminates flood peaks,
while higher flow periods are artificially created in the dry sea-
son. Fish recruitment is then affected.

With advances in machine learning techniques, data-driven
models have also been applied to empirically model complex sys-
tems by extracting fish patterns from historical data sets. A set of
environmental variables, including flow regime components, has
been used to predict, for example, spatial fish occurrence (Joy and
Death 2004), fish biodiversity (Hu et al. 2020), and fish recruitment
probability (Fernandes et al. 2010).

Despite recent innovations, water managers still face a knowl-
edge gap in translating the set of components of a flow regime to
restore key ecological functions into objectives (McKay et al. 2012)
and reservoir operating practices, as the latter need to accommodate
other multiobjective demands (e.g., hydropower, irrigation, and ur-
ban supply). Fish are adapted to a certain level of flow variability,
and, given the wide range of flow regime options when dealing with
flow regime recovery, choosing which ones to address with reser-
voir operation can yield different impacts on water system reliabil-
ity and expenses. Although such impacts can be measured between
tangible economic uses, ecosystem response performance remains
largely unknown.

This paper addresses this knowledge gap with a methodology
framework that explicitly quantifies the response of different flow
regime options toward a key ecosystem function to guide the for-
mulation of environmental flows. In our paper, this function is the
recruitment success of migratory fish species. The framework com-
bines three main parts. In the first subroutine, an ensemble of flow
regime options is produced based on the naturalized flow regime
range variability. The second subroutine derives a set of flow met-
rics (indexes) to quantify the five main components (magnitude,
timing, duration, frequency, and rate of change) of each flow

regime option. The third subroutine contains an artificial neural net-
work (ANN) predictive model that calculates the response of
migratory young-of-the-year (YoY) fish abundance of each flow
regime option using the corresponding flow regime indexes as pre-
dictors. The options with positive nonzero responses were termed
functional flow regimes (or functional flows) because they provide
conditions to support the recruitment success of migratory fish spe-
cies. The methodology framework was applied to a study area in
the Upper Paraná River Basin, a highly developed hydropower sys-
tem in Brazil.

Study Area

The Upper Paraná River Basin (Fig. 1) is one of the most im-
pounded of South America, with 65 hydropower plants and a gen-
eration installed capacity of 48,381 MW, which corresponds to
about 40% of total hydropower generation in Brazil (ANA 2020b;
CCEE 2020). The 230 km between Porto Primavera dam and the
Itaipu reservoir is the last remaining dam-free lotic environment of
the original floodplain (Oliveira et al. 2015). The reach is bounded
by the operation of 56 upstream hydropower plants and 8 hydro-
power plants downstream of the Itaipu hydropower plant (ANA
2020b). This area still preserves some natural features for fish
spawning and migration, but it also requires reservoir reoperation
to recover and maintain related ecosystem services, and the trade-
offs remain largely unknown.

Flooding Dynamics and Ichthyofauna Behavior

The daily level of the Paraná River is registered by the Porto São
José gauging station (ID 64575003) (ANA 2020a). Flood events
exclusively controlled by the Paraná River can fully cover the
floodplain, connecting different habitats, such as lagoons and sec-
ondary channels (Comunello et al. 2003). Two other tributaries, the
Baía and Ivinhema tributaries, affect the floodplain inundation
dynamic, although they attain narrower floodplain coverage.
Combined events, when Paraná River flooding occurs concomi-
tantly with tributary flooding, are also observed.

The ichthyofauna of the Upper Paraná River is composed of 211
cataloged species divided into 2 major groups: sedentary/short-
distance migratory and long-distance migratory (Ota et al. 2018).
Long-distance migratory species are characterized by their larger
size and longer lifespans, requiring different habitats during their
life cycle for spawning, early development, and feeding (Agostinho
et al. 2007). Three main movements characterize the relation be-
tween the long-distance migratory fish reproduction cycle and the
flow regime in the study area (Agostinho et al. 2007; Oliveira et al.
2015).

At the beginning of the rainy season, a combined increase in
the photoperiod and temperature triggers gonadal development
and school formation. This is followed by an upstream migration
(from October to November) when fish schools move to upstream
reaches and tributaries, where eggs are laid and can develop in well-
oxygenated waters with lower predation risk. High water levels
(from January to March) promote the connectivity between differ-
ent habitats (e.g., lagoons, channels), which enables the lateral
movement of larvae along the floodplain area for feeding and
refuge. The last movement occurs during decreasing water levels
(from March to May) and allows backward movement toward the
main river channel.

The period of lowwaters occurs during winter (June to September).
During this phase, floodplain habitats are less connected with rivers
and subject to local processes, like wind turbulence, thermal mix-
ing, and inputs from small tributaries, which affect variations in
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physicochemical parameters and vegetation growth (Agostinho
et al. 2000).

Fish Sampling Data

Fish sampling data span quarterly periods fromMarch to December
from 2000 to 2019 at nine sampling sites within the floodplain
(Fig. 1)—three rivers (Paraná River and Ivinhema and Baía tribu-
taries) and two adjacent lagoons for each river—as reported in
Oliveira et al. (2015, 2020). The grouping of each river and its cor-
responding lagoons was termed a subsystem. Data from previous
years were reported in Suzuki et al. (2009) with intermittent periods
from 1987 to 1988 and 1992 to 1994. We chose the years 1992 to
1994, combined with the years 2000 to 2019, to build the full data
set, as both periods contained available data for the same species in
all fish campaigns.

Five long-distance migratory fish species were considered:
Brycon orbignyanus (Valenciennes 1850), Pseudoplatystoma corrus-
cans (Spix and Agassiz 1829), Pterodoras granulosus (Valenciennes
1821), Prochilodus lineatus (Valenciennes 1837), and Salminus

brasiliensis (Cuvier 1816), which are the most abundant among the
long-distance migratory fishes, representing almost 25% of the to-
tal number of migratory species in the Paraná River Basin. The
abundance of YoY fish individuals, which represent the recruitment
success of the last flood season, was determined by counting the
number of individuals of given reference lengths up to 1 year old

(Oliveira et al. 2020) and indexed as catch per unit effort (CPUE)
(individuals/1,000 m2 of gillnets in the course of 24 h).

The annual YoY fish abundance of each subsystem was repre-
sented as the average between the corresponding sampling sites. To
represent the annual YoY fish abundance of the floodplain related
to the Paraná River flow regime (Porto São José gauging station),
the fish abundance average between subsystems was considered
when combined flood events occurred during the rainy season.
To avoid overestimating fish abundance due to tributary flooding,
floodplain fish abundances were set to zero when flood events were
registered only in the tributaries. Finally, for years when flood
events were registered exclusively at the Paraná River, the average
between subsystems considered the tributaries’ abundances as zero.
Fig. 6 presents the total annual YoY fish abundance for the
floodplain.

Methodology

The methodology framework includes three main subroutines
(Fig. 2). In the first subroutine, an ensemble of flow regime options
is produced based on the naturalized flow regime range variability
of the study area. The flow regime options consist of annual hydro-
logic time series of daily levels (covering the dry and rainy seasons
that occur in an annual period). The second subroutine derives a set
of flow metrics (indexes) to quantify the five main components

Fig. 1. Upper Paraná River floodplain, including fish sampling and flow gauging stations. (Map data © 2021 Google.)
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(magnitude, timing, duration, frequency, and rate of change) of
each flow regime option. The third subroutine contains an ANN
predictive model that calculates the response of migratory YoY fish
abundance of each flow regime option using the set of flow regime

indexes as predictors. The flow regime options with positive non-
zero responses were called functional flow regimes.

Flow Regime Options Model

To generate an ensemble of flow regime options, the naturalized
flow regime was first estimated by reverting the flow regulation
effects and evaporation losses of the reservoirs part of the hydro-
power system. The resulting range of the long-term naturalized
flow regime variability appears in Fig. 3, while the procedure de-
tails for its estimation are described in Appendix I.

From the naturalized flow time series, the subroutine adopts a
three-step procedure: (1) the daily time series is converted to a spe-
cific time-step (e.g., biweekly or monthly) average time series and
the long-term variability of the given time step is calculated (Fig. 4,
left); (2) the range between the minimum and maximum values is
divided into discrete states (Fig. 4, middle); and (3) combinations
of sequential states are then computed (Fig. 4, right). The daily val-
ues between the monthly or biweekly time steps are then built by
linear interpolation. As a result, an ensemble of annual hydrologic
time series of daily level is generated representing multiple flow
regime options. For example, considering a monthly time step and
five discrete flow/level states results in the composition of 512

different flow regime options.
Fig. 2. Methodology framework.

Fig. 3. Comparison of observed and naturalized flow regime at Porto São José station.

Fig. 4. Representation of generation of flow regime options.
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Flow Regime Index Model

This subroutine calculates flow regime indexes (metrics) from the
flow regime options generated in Subroutine 1. The model repre-
sents each component of a flow regime (duration, magnitude, tim-
ing, frequency, and rate of change) by indexes that must be chosen
according to the ecological function modeled. For the study area,
nine indexes were selected, at least one index for each component
(Table 1), to represent the dry and rainy seasons and conditions
historically linked to fish migration and initial growth of migratory
species.

Previous studies of Suzuki et al. (2009) and Oliveira et al. (2015,
2020) supported the specification of the indexes’ thresholds. The
indexes representing the flood season duration (FSD) were divided
into three main magnitude ranges in order to represent different
floodplain connections during the flood season: (1) the index
FSD low magnitude considers the level between 450 and 540 cm
the minimum range to allow lateral and longitudinal connectivity in
the floodplain during the rainy season, (2) the index FSD midmag-

nitude considers the level between 540 and 610 cm as the interme-
diary connectivity, and (3) the index FSD high magnitude treats the
610 cm level as the threshold level that allows high connectivity
along the floodplain.

The dry season duration is represented by the index DSD, which
treats the level of 250 cm as the water threshold level governed by
the baseflow (historical Q80 flow duration). The flow regime timing
component is represented by the flood delay index, and the rate
of change (variability) is represented by the uninterrupted flood

duration and the number of flood pulses indexes. The uninterrupted
flood duration index indicates how the flood pulses are spatially
distributed in time (e.g., long uninterrupted flood duration is pro-
duced by time distant pulses). The interannual flood occurrence

index represents the frequency component. The relevance of each
index is analyzed in Appendix IV.

Fish Abundance Model

ANNs are data-driven computational networks able to establish
empirical relationships between independent (input) and dependent
(output) variables (Sadiq et al. 2019) with the advantage of not
being limited by a prespecified functional form (Adamowski
and Karapataki 2010). The ANN model developed to predict the
YoY fish abundance from different flow regime options consists
of three layers: an input layer, a hidden layer, and an output layer
(Fig. 5).

The input layer has nine nodes representing the set of annual
flow regime indexes calculated by the flow regime indexes model
(Subroutine 2). The input layer distributes the input signals via con-
nections to each hidden neuron. Each connection has a weight, w,
adjusted via training, and each neuron has an activation function, f.
Neurons process the sum of impinging signals from previous layers
and independent terms, b, with the activation function, and each
output neuron sends its output signal to the respective output node.
The output note is represented by the annual YoY fish abundance of
the floodplain.

Table 1. Flow regime indexes used to represent the Paraná River reach flow regime

Flow regime component Index Thresholds

Duration and magnitude FSD high magnitude Number of days where water level ≥ 610 cm during rainy season from October 1 to April 30
FSD midmagnitude Number of days where 540 cm ≤ water level <610 cm during rainy season from October 1

to April 30
FSD low magnitude Number of days where 450 cm ≤ water level <540 cm during rainy season from October 1

to April 30
DSD Number of days where water level ≤ 250 cm during dry season from June 1 to September 30

Magnitude Maximum magnitude Highest water level (cm) record during rainy season from October 1 to April 30
Timing Flood delay Number of days from October 1 when the first flood (water level ≥ 450 cm) was recorded
Variability (rate of change) Flood pulses Number of complete cycles of high (≥450 cm) and low water level during rainy season

from October 1 to April 30
Uninterrupted flood duration Longer number of sequential days where level ≥ 450 cm during rainy season from

October 1 to April 30
Frequency Interannual flood occurrence Number of previous years without flood (level ≥ 450 cm)

Fig. 5. Representation of ANN model architecture.
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The input and output data are linearly scaled to fit the domain
range [0,1] whose scaling parameters are the respective global
maximum and minimum of each variable in the data set. Table 2
summarizes the main parameters used to configure the ANN
model. We investigated the number of hidden neurons (hn) neces-
sary to present a performance similar to an oversized ANN by test-
ing different numbers of hidden neurons and evaluating the final
overall performance.

To predict the YoY fish abundance from different flow regime
options, the ANN model required to be first trained and validated
based on the historical data. The registers (individual input–output

pairs) from 1991 to 1993 and from 1999 to 2018 composed the data
set (the year number corresponds to the year the flood season be-
gins; see Appendix II).

To prevent overfitting and to overcome the challenge of working
with a small data set, we applied a nested leave-one-out cross-
validation (NLCV) training approach (Wong 2015). This approach
(Appendix III) consisted in using the data set with different con-
figurations of registers divided a between training set (TS) and veri-
fication set (VS) and training each configuration separately to
check the consistency of the model to produce similar results be-
tween configurations, which corroborates its generalizability to
new data. The final data set was arranged in 3 configurations, each
with 6 registers for the verification set and 17 registers for the
training set (Fig. 6). Years with unique features (Appendix II) were
included in the training set to improve the model’s ability to
recognize such behavior.

The trained ANN model integrated the model’s Subroutine 3
with the objective of calculating the corresponding YoY fish
abundance of each flow regime option designed in Subroutine 1.
To reduce the number of combinations assessed in this study, we
discarded flow regime options with very close characteristics in
terms of fish abundance and reservoir operation decisions. The
final options were termed functional flow regimes, arranged in
hydrographs.

Fig. 6. Training and verification registers for each data set configuration.

Table 2. ANN parameters

Parameter Description

Architecture 9 - hn - 1
Input variables Flow regime indexes
Output variable YoY fish abundance
Number of hidden
neurons (hn)

3 (chosen according to complexity analysis)

Activation function Sigmoid unipolar, fðxÞ ¼ 1=ð1þ e−xÞ
Input data scaling Linear (amplitude), [0,1]
Data time step Annual
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Results and Discussion

Performance Analysis of Fish Abundance Model

Figs. 7 and 8 present a comparison of the observed and predicted
results for the training and verification sets of the three data set
configurations. Four years of the data set present unique features,
which required them to be included in the training set during the
ANN model training and validation to improve the model’s ability
to recognize such behavior. Although the model was able to train,
there are no data with similar features in the verification set to check
the prediction performance. This aspect may have influenced the
metrics’ good results, while the model’s capability to generalize to
new data depends on more future information and monitoring data.

However, the ANN model was able to satisfactorily reproduce the
peak abundance behavior of the verification sets, although most train-
ing registers correspond to YoY fish abundances below 4 CPUE,
which indicates the model’s robustness in defining clear objectives for
ecosystem management by focusing on key flow regime components.

The negative verification mean error (ME) of the performance
analysis indicates that the model overall underestimates the fish
abundance (Table 3). The maximum absolute verification error
(Emax = 0.688 CPUE) indicates that the model presents good
performance in predicting high fish abundance values. This error

represents less than 2% of the fish abundance peak of this data
set configuration (41.8 CPUE). The NS and R2 performance coef-
ficients also indicate the model can reproduce low and high fish
abundance variations with good performance.

Functional Flow Regimes Analysis

We chose six functional flow regimes for analysis (Fig. 9), which
allowed us to identify distinct fish abundance performances
(graphs’ rightside bar) comparing the different functional flow re-
gimes (graphs’ continuous line) and analyze the implications from
the perspective of reservoirs’ release decisions. The corresponding
flow regime indexes of each functional flow regime are detailed in
Table 4.

FH1 represents a scenario in which upstream reservoirs’ release
decisions are made to get close to the natural flow regime upper
bound (favoring high flood magnitudes and duration and low
flood variability and delay). The longer the period of high water
levels, the greater the possibility that juveniles will remain in the
floodplain for feeding and be less susceptible to predation, improv-
ing conditions for recruitment success. The result is a high YoY fish
abundance response.

However, in terms of hydropower operation, high reservoir
outflow releases in the rainy season to sustain fish recruitment

Fig. 7. Annual comparison of predicted and observed fish abundance for each data set configuration.

© ASCE 04022026-7 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(6): 04022026 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 1

9
0
.1

5
2
.2

3
7
.2

5
2
 o

n
 0

2
/2

6
/2

3
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



may delay reservoir refilling, increasing the risk of future storage
deficit and hydropower production. Converting level into stream-
flow by the rating curve and comparing the other functional flows
(FH2 to FH6) to FH1 make it possible to estimate the change in
annual storage upstream and how the energy trade-off can be
mitigated by changing the characteristics of the flow released,
while still producing YoY fish abundance. The lower the water
levels of a given FH compared to FH1, the lower the flow release
and the more storage can be maintained upstream to either meet
demand for other water uses or improve drought protection in the
next year.

In FH5, the reservoir release is reduced mostly in January and
February to produce lower flood level magnitudes compared to
FH1 while maintaining flood duration, variability, and delay. This
shows that high performance (YoY fish abundance) can still be
achieved without outflow releases as significant as FH1. Once a
minimum flood threshold level is reached, the floodplain connec-
tions already provide sufficient access to food and shelter for
juvenile fish development, which leads to good results in fish abun-
dance. From this magnitude on, there are diminishing returns to
further change reservoir operation and recover the magnitude of
the flow regime, considering fish abundance.

Fig. 8. Comparison of predicted and fish abundance for each data set configuration.

Table 3. Model performance analysis

Data set
configuration Set

Nash–Sutcliffe
coefficient (NS) ME (ME)

Root mean square
error (RMSE)

Coefficient of
determination (R2)

Maximum
error (Emax)

1 Training 0.9999 0.0023 0.4328 0.9999 0.487
Verification 0.9948 −1.3781 3.2898 0.9996 0.688

2 Training 0.9997 0.1281 0.8618 0.9997 0.773
Verification 0.9794 −0.0465 0.5626 0.9800 0.277

3 Training 0.9997 0.0123 0.6837 0.9997 0.602
Verification 0.9965 −1.4490 3.0455 0.9999 0.130
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For upstream reservoir operation, this result is very important
because it means significant ecosystem recovery can still be
achieved without necessarily using as much storage from up-
stream reservoirs as in FH1. The annual surplus of 24,782 hm3

can be kept in upstream storage to maintain power generation
later in the year and also help meeting other demands. Part of
the Upper Paraná River Basin of approximately 460,000 ha of
irrigated crops could benefit from higher storage, especially
during drought years.

In FH2, releases are still capable of reaching a high flood level
magnitude that is similar to that of FH1, but with shorter durations,
maintaining similar flood delay and variability. With less time to
develop and access shelter and food in the floodplain, juveniles re-
turn to the main channels more susceptible to predators, affecting
recruitment. The YoY fish abundance response is then reduced by
78%, a significant performance loss. Despite this, the resulting fish
abundance is above 10 CPUE, which is still relevant, considering
that in 23 years of sampling collection just 5 years had YoY fish

Fig. 9. Functional flow regimes and corresponding YoY fish abundance.

Table 4. Flow regime indexes of each functional flow regime

FH

FSD high
magnitude
(days)

FSD
midmagnitude

(days)

FSD low
magnitude
(days)

Maximum
magnitude

(cm)

Flood
pulses
(cycles)

Uninterrupted
flood duration

(days)

Flood
delay
(days)

DSD
(days)

Interannual
flood occurrence

(years)

YoY fish
abundance
(CPUE)

1 32 35 43 610 1 110 71 96 0 46.7
2 1 12 17 610 1 30 76 96 0 10.3
3 0 2 30 550 1 32 75 96 0 6.5
4 0 3 45 550 4 18 81 96 0 2.6
5 0 0 100 480 1 100 58 96 0 46.0
6 0 2 23 550 1 25 140 96 0 1.2
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abundances above 10 CPUE. The 62,533 hm3 in increased annual
water storage upstream may be useful in drought years, when sys-
tem storage is severely limited and the risk of near future energy
and water deficits is high.

In FH3, the releases produce a flood magnitude slightly lower
than FH2, but with a similar total duration above the FSD low
magnitude. Although YoY fish abundance is further reduced from
FH2, it may be another intermediate option, adequate for scenar-
ios whose reservoir storage must be guaranteed to reduce future
hydropower deficit risk (increase of 52,064 hm3 in upstream stor-
age) but still producing relevant YoY fish abundance (above
6 CPUE).

FH4 represents a scenario whose flood magnitude is similar to
that of FH3 but with higher variability and delay than FH3.
Release decisions that produce such behavior in the floodplain
should be avoided since the YoY fish abundance response is very
low and the trade-offs for reservoir operation may be less benefi-
cial than other scenarios. High water level variabilities increase
the risk of predation and induce resorption of gonads, affecting
spawning. The 44,384 hm3 in increased annual water storage
upstream is close to the FH3 result; however, the YoY fish
abundance response is reduced, which indicates that similar water
storage can be obtained by managing timing and variability and
with better YoY fish abundance response than the one shown
in FH4.

Finally, in FH6 release decisions produce a moderate flood du-
ration with a long delay. Delaying the flood by more than 140 days
causes it to miss a critical time window for gonadal maturation and
upstream migration. A flood that comes too late resulted in the
worst performance in fish abundance and should also be avoided.
Instead, anticipating the same flow release in 1 or 2 months would
produce better YoY fish response, as shown in FH2 and FH3.

Conclusion

The proposed methodology framework investigated how functional
flow regimes can be generated, organized according to specific
flow components, and measure their performance in terms of fish
response. Some specific conclusions are possible, as follows:
1. Different combinations of flow regime components bring differ-

ent ecological response performances. While flow magnitude
and duration are key contributors to performance for the eco-
logical function modeled, there is a clear threshold above which
performance gains are smaller.

2. The preceding conclusion indicates the presence of diminishing
marginal performance gains in the design of an environmental
flow, which is important when the trade-offs between options are
incorporated into flow allocation discussions on competing uses.

3. Although not always reaching the best response level, relevant
YoY fish abundance can still be achieved when combining
different flow regime components. This indicates that there is
some flexibility in system operation. This flexibility should
be explored, with the help of the results provided by the methods
proposed here, in the preparation of more robust ecosystem
restoration plans.

4. Some options should clearly be avoided because their perfor-
mance in terms of fish abundance is very low.
All these conclusions highlight the notion that restoring flow

regimes to improve ecosystem services is a water allocation exer-
cise. Once several functional flows are designed, users will know
how much water—and when and under which variation pattern—is
necessary to attain different levels of performance. This is the
starting point to support water managers in exploring alternative

reservoir operating schemes that perform well in releasing water
in connection with YoY fish abundance relative to other system
objectives. The proposed framework is flexible, which allows its
application to other areas and ecological functions by changing
the input hydrological time series and adjusting the flow regime
indexes.

Appendix I. Naturalized Flow Regime Estimation

A three-step procedure was adopted to generate the naturalized
flow regime in the study area. First, the altered time series of
daily flow upstream (Porto Primavera and Rosana power plants)
were correlated with the respective altered time series of daily
level downstream (at Porto São Jose gauging station) with a
multiple linear regression [Eq. (1)]. The resulting coefficient
of determination (R2) of 0.923 indicated that both independent
variables could satisfactorily explain the level at Porto São José
station

LPSJ ¼ 0.03709 · QPM þ 0.03217 · QROS − 6.9733 ð1Þ

where LPSJ = level at Porto São José station (cm); QPM = flow at
Porto Primavera (m3=s); and QROS = flow at Rosana (m3=s).

Second, Eq. (1) was used to estimate the naturalized time series
of daily level downstream (at Porto São Jose gauging station), using
as input the naturalized flow time series upstream (Porto Primavera
and Rosana power plants) obtained from the Brazilian Independent
System Operator (ONS) (ANA 2020b), which reverts the flow
regulation effects and evaporation losses of the reservoirs part of
the hydropower system. Because Eq. (1) includes levels at a main-
tained stage-discharge station, it is transferable across different
naturalized flow input data. Finally, the estimated naturalized time
series of daily level downstream (at Porto São Jose station) was
used to identify the range of the regime variability in an annual
period (outliers were removed).

Appendix II. Flow Regime Index Analysis

Table 5 presents the resulting flow regime indexes for each year of
the observed level time series at the Porto São José station with the
corresponding observed floodplain YoY fish abundance.

Four years with unique features were observed in the data set
(2006, 2015, 2010, 1991). The year 2006 presented the long du-
ration for magnitude levels above 610 cm (FSD high magnitude)
and short duration for low and intermediate flood magnitudes (FSD
low magnitude and FSD midmagnitude). The other years showed
the opposite behavior (higher low and intermediate magnitude
durations).

The year 2015 showed high YoY fish abundance (above 15
CPUE), although not presenting significant flood durations in the
three magnitude ranges (total of 26 days above the 450 cm level).
Two main aspects may have contributed to this particular result:
(1) the number of previous years without flood (highest record);
and (2) the flood duration in the Ivinhema tributary. The flood du-
ration in the Ivinhema was 190 days during the 2015 flood season
(the highest data set record), in which 26 days were combined with
a flood in the Paraná River. Because it is difficult to distinguish
the YoY fish abundance related just to the specific subsystem (fish
tend to disperse through floodplain), the result may have suffered a
predominant influence of the great Ivinhema flood in that year.

On the other hand, the year 2010, although presenting consid-
erable flood duration (43 days above the 450 cm level), resulted in
low YoY fish abundance (2.05 CPUE). The previous year’s great
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flood (highest data set register) may have influenced this result (the
opposite case of 2015) through factors and conditions not studied
here. Finally, the year 1991 presented a high fish abundance,
although with a high flood delay.

Appendix III. Artificial Neural Network Training
Procedure

Fig. 10 depicts the NLCV procedure used for training and verifying
the performance of the fish abundance model. The data set configu-
rations between the TS and VS composed an outer loop, and for
each iteration n, the VSðnÞ set was saved, while TSðnÞ was trained in
an inner loop by applying the leave-one-out (LOO) technique,
which consisted in leaving one nonzero register, j, out for checking
the error (validation set) and using the remaining ones for the train-
ing process. For each iteration j of the inner loop, training was
ceased, and the weights recorded when the validation error stopped
improving to prevent overfitting. Finally, the weights and biases
(w and b) that resulted in the best performance among the inner
loop iterations were applied to the corresponding verification set
VSðnÞ in order to evaluate the performance of each configuration
of the outer loop.

The ANN training procedure was based on feedforward back-
propagating the error (Rumelhart et al. 1986) and subsequently

adjusting the weights based on the delta rule (Widrow and Hoff
1960). The momentum factor and dynamic learning rate were ap-
plied as accelerating methods (Vogl et al. 1988). To minimize the
ANNs’ limitation in extrapolating the domain of the training set,
registers with unique features were assigned to the training set
(see Appendix II for more details).

Appendix IV. Flow Regime Index Relevance

We checked the performance response of the model to each flow
regime index as an indication of its contribution to explain the
observed fish abundance (Lek et al. 1996). The ANN model data
set was retrained leaving one input variable out at each simulation
(Table 6).

The FSD low magnitude, FSD midmagnitude, and flood pulses

indexes had a significant effect on performance, indicating that
flood duration and variability play an important role in migratory
fish recruitment. The interannual flood occurrence index must be
analyzed with caution. Just one data set register, from 2016, is char-
acterized as having three previous years without flood, which may
not be generalized for other events. The high abundance of this year
might have been affected by other conditions not analyzed here that
triggered high rates of fish reproduction despite not having the best
flooding index conditions. The low performance reduction of the

Table 5. Flow regime indexes calculated for the Paraná River target reach

Flood
yeara

FSD high
magnitude
(days)

FSD
midmagnitude

(days)

FSD low
magnitude
(days)

Maximum
magnitude

(cm)

Flood
pulses
(cycles)

Uninterrupted
flood duration

(days)

Flood
delay
(days)

DSD
(days)

Interannual
flood occurrence

(years)

YoY fish
abundance
(CPUE)

1985 0 0 0 365 0 0 365 0 0 N/A
1986 0 0 0 430 0 0 365 19 1 N/A
1987 0 7 37 584 6 15 103 11 2 N/A
1988 0 10 32 602 3 23 105 4 0 N/A
1989 24 6 10 790 2 35 84 0 0 N/A
1990 19 23 16 696 2 37 125 24 0 N/A
1991 3 16 31 613 4 29 117 0 0 20.15
1992 16 6 71 664 6 44 42 0 0 41.82
1993 0 9 20 606 2 24 109 2 0 4.52
1994 14 8 13 652 2 26 104 1 0 N/A
1995 0 0 2 476 1 2 161 6 0 N/A
1996 28 10 8 853 1 46 103 12 0 N/A
1997 2 9 41 618 4 22 151 0 0 N/A
1998 0 7 39 598 12 13 0 0 0 N/A
1999 0 0 4 508 1 4 175 3 0 0.00
2000 0 0 0 414 0 0 365 11 0 0.00
2001 0 0 12 530 3 9 138 92 1 1.00
2002 0 0 11 502 3 7 121 82 0 0.15
2003 0 0 3 481 1 3 199 48 0 0.20
2004 14 6 13 726 2 30 105 42 0 3.62
2005 0 0 20 512 7 8 81 37 0 0.41
2006 46 5 6 679 1 57 103 5 0 40.31
2007 0 0 10 497 2 9 178 20 0 0.91
2008 0 0 5 506 2 4 149 2 0 0.38
2009 40 32 31 741 5 75 16 28 0 46.42
2010 18 8 17 726 5 29 113 10 0 2.05
2011 0 0 4 487 1 4 120 6 0 0.08
2012 0 0 0 428 0 0 365 2 0 0.00
2013 0 0 0 402 0 0 365 23 1 0.00
2014 0 0 0 328 0 0 365 93 2 0.00
2015 2 6 18 637 3 12 91 92 3 18.80
2016 0 0 0 402 0 0 365 31 0 0.00
2017 0 0 4 473 1 4 110 76 1 0.08
2018 0 0 0 348 0 0 365 93 0 0.00
aThe year corresponds to the year the flood season begins.
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DSD index may indicate that low water level season affects fish
recruitment indirectly. One way for this to happen is by allowing
more vegetation growth during the dry season, which would result
in increased food and shelter in the next flood season (Agostinho
et al. 2000). However, the results do not allow a clear relationship to
be defined.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request. Items available: fish sampling data and framework routine
codes. Flow/level data are publicly available on the referencewebsites.

Fig. 10. Nested leave-one-out cross-validation procedure.

Table 6. Average performance reduction analysis for each input variable removed

Input variable removed R2

Performance
reduction (%)

Nash–Sutcliffe
coefficient (NS)

Performance
reduction (%)

None 0.993 — 0.990 —

FSD high magnitude 0.992 −0.1 0.941 −5.0
FSD midmagnitude 0.843 −15.2 0.754 −23.9
FSD low magnitude 0.913 −8.1 0.540 −45.5
Maximum magnitude 0.992 −0.1 0.941 −5.0
Flood pulses 0.712 −28.3 0.690 −30.3
Uninterrupted flood duration 0.992 −0.1 0.980 −1.0
Flood delay 0.993 −0.1 0.906 −8.5
DSD 0.993 0.0 0.944 −4.6
Interannual flood occurrence 0.990 −0.3 −5.096 −614.7
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hamento de reservatórios.” Accessed February 15, 2020. https://www
.ana.gov.br/sar/.

Arthington, A. H., A. Bhaduri, S. E. Bunn, S. E. Jackson, R. E. Tharme, and
D. Tickner. 2018. “The Brisbane declaration and global action agenda on
environmental flows (2018).” Front. Environ. Sci. 6 (Jul): 45. https://doi
.org/10.3389/fenvs.2018.00045.

Arthington, A. H., S. E. Bunn, N. L. Poff, and R. J. Naiman. 2006. “The
challenge of providing environmental flow rules to sustain river eco-
systems.” Ecol. Appl. 16 (4): 1311. https://doi.org/10.1890/1051-0761
(2006)016[1311:TCOPEF]2.0.CO;2.

CCEE (Câmara de Comercialização de Energia Elétrica). 2020. “Hydroedit—
Apoio à leitura de arquivos.”Accessed December 10, 2020. https://www
.ccee.org.br/portal/faces/pages_publico/o-que-fazemos/como_ccee
_atua/precos/deck_de_precos.

Chen, W., and J. D. Olden. 2017. “Designing flows to resolve human and
environmental water needs in a dam-regulated river.” Nat. Commun.

8 (1): 2158. https://doi.org/10.1038/s41467-017-02226-4.
Comunello, É., P. C. Rocha, and M. R. Nanni. 2003. “Dinâmica de inun-

dação de áreas sazonalmente alagáveis na planície aluvial do Alto Rio
Paraná: Estudo preliminar.” In Simpósio Brasileiro De Sensoriamento

Remoto. Belo Horizonte, Brasil: INPE.
Cooper, A. R., D. M. Infante, W. M. Daniel, K. E. Wehrly, L. Wang, and

T. O. Brenden. 2017. “Assessment of dam effects on streams and fish
assemblages of the conterminous USA.” Sci. Total Environ. 586 (2):
879–889. https://doi.org/10.1016/j.scitotenv.2017.02.067.

Crespo, D., J. Albiac, T. Kahil, E. Esteban, and S. Baccour. 2019. “Trade-
offs between water uses and environmental flows: A hydroeconomic
analysis in the Ebro Basin.” Water Resour. Manage. 33 (7): 2301–2317.
https://doi.org/10.1007/s11269-019-02254-3.

Fernandes, J. A., X. Irigoien, N. Goikoetxea, J. A. Lozano, I. Inza,
A. Pérez, and A. Bode. 2010. “Fish recruitment prediction, using robust
supervised classification methods.” Ecol. Modell. 221 (2): 338–352.
https://doi.org/10.1016/j.ecolmodel.2009.09.020.

Freeman, M. C., Z. H. Bowen, K. D. Bovee, and E. R. Irwin. 2001. “Flow
and habitat effects on juvenile fish abundance in natural and altered flow
regimes.” Ecol. Appl. 11 (2): 631. https://doi.org/10.1890/1051-0761
(2001)011[0179:FAHEOJ]2.0.CO;2.

Grantham, T. E., J. Mount, E. D. Stein, and S. Yarnell. 2020. Making the

most of water for the environment: A functional flows approach for

California’s Rivers. San Francisco: Public Policy Institute of California.
Grill, G., B. Lehner, A. E. Lumsdon, G. K. MacDonald, C. Zarfl, and

C. Reidy Liermann. 2015. “An index-based framework for assessing
patterns and trends in river fragmentation and flow regulation by global
dams at multiple scales.” Environ. Res. Lett. 10 (1): 015001. https://doi
.org/10.1088/1748-9326/10/1/015001.

Harwood, A., S. Johnson, B. Richter, A. Locke, X. Yu, and D. Tickner.
2017. Listen to the river: Lessons from a global review of environmental

flow success stories. Woking, UK: World Wildlife Fund-UK.
Holmlund, C. M., and M. Hammer. 1999. “Ecosystem services generated

by fish populations.” Ecol. Econ. 29 (2): 253–268. https://doi.org/10
.1016/S0921-8009(99)00015-4.

Howard, J. K., K. A. Fesenmyer, T. E. Grantham, J. H. Viers, P. R. Ode, and
P. B. Moyle. 2018. “A freshwater conservation blueprint for California:
Prioritizing watersheds for freshwater biodiversity.” Freshwater Sci.

37 (2): 417–431. https://doi.org/10.1086/697996.
Hu, J. H., W. P. Tsai, S. T. Cheng, and F. J. Chang. 2020. “Explore the

relationship between fish community and environmental factors by
machine learning techniques.” Environ. Res. 184 (1): 109262. https://doi
.org/10.1016/j.envres.2020.109262.

Joy, M. K., and R. G. Death. 2004. “Predictive modelling and spatial map-
ping of freshwater fish and decapod assemblages using GIS and neural
networks.” Freshwater Biol. 49 (8): 1036–1052. https://doi.org/10.1111
/j.1365-2427.2004.01248.x.

Lek, S., A. Belaud, P. Baran, I. Dimopoulos, and M. Delacoste. 1996. “Role
of some environmental variables in trout abundance models using
neural networks.” Aquat. Living Resour. 9 (1): 23–29. https://doi.org/10
.1051/alr:1996004.

Li, F.-F., J.-H. Wei, J. Qiu, and H. Jiang. 2020. “Determining the most
effective flow rising process to stimulate fish spawning via reservoir
operation.” J. Hydrol. 582 (Mar): 124490. https://doi.org/10.1016/j
.jhydrol.2019.124490.

Loures, R. C., and P. S. Pompeu. 2018. “Long-term study of reservoir
cascade in south-eastern Brazil reveals spatio-temporal gradient in fish
assemblages.” Mar. Freshwater Res. 69 (12): 1983. https://doi.org/10
.1071/MF18109.

Marques, G. F., and A. Tilmant. 2018. “Cost distribution of environmental
flow demands in a large-scale multireservoir system.” J. Water Resour.

Plann. Manage. 144 (6): 04018024. https://doi.org/10.1061/(ASCE)
WR.1943-5452.0000936.

McKay, S. K., I. Linkov, J. C. Fischeinch, S. J. Miller, and L. J. Valverde.
2012. Ecosystem restoration objectives and metrics. Athens, GA: US
Army Engineer Research and Development Center.

Moyle, P. B., J. V. E. Katz, and R. M. Quiñones. 2011. “Rapid decline of
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