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The permanent is pivotal to both complexity theory and combinatorics. In
quantum computing, the permanent appears in the expression of output am-
plitudes of linear optical computations, such as in the Boson Sampling model.
Taking advantage of this connection, we give quantum-inspired proofs of many
existing as well as new remarkable permanent identities. Most notably, we give
a quantum-inspired proof of the MacMahon master theorem as well as proofs
for new generalizations of this theorem. Previous proofs of this theorem used
completely different ideas. Beyond their purely combinatorial applications, our
results demonstrate the classical hardness of exact and approximate sampling
of linear optical quantum computations with input cat states.
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1 Introduction
The permanent of an m ×m matrix A = (aij)1≤i,j≤m is a combinatorial function defined
as [1, 2]:

Per(A) =
∑
σ∈Sm

m∏
k=1

akσ(k), (1)

where Sm is the symmetric group over m symbols. While the closely related determinant
can be computed efficiently using many methods such as Gaussian elimination, Valiant
famously proved the #P-hardness of computing the permanent [3].

Interestingly, the permanent appears in the expression of the output amplitudes of
linear optical quantum computations with noninteracting bosons [4, 5], as in the Boson
Sampling model of quantum computation [6]. This connection has lead to several linear
optical proofs of existing and new classical complexity results: computation of the per-
manent is #P-hard [7], (inverse polynomial) multiplicative estimation of the permanent of
positive semidefinite matrices is in BPPNP [8], multiplicative estimation of the permanent
of orthogonal matrices is #P-hard [9], and computation of a class of multidimensional in-
tegrals is #P-hard [10]. It has also lead to the introduction of a quantum-inspired classical
algorithm for additive estimation of the permanent of positive semidefinite matrices [11].
Moreover, an approach inspired by quantum tomography recently showed that (subex-
ponential) multiplicative estimation of the permanent of positive semidefinite matrices is
NP-hard [12].

Beyond its importance for complexity theory, the permanent has numerous applica-
tions for solving combinatorial problems [1, 2] and identities for the permanent have been
instrumental in these applications. For example, the MacMahon master theorem [13],
which relates the permanent to a coefficient of the Taylor series of a determinant, is an
invaluable tool for proving combinatorial identities [14–16]. Similarly, Ryser’s formula [17]
and Glynn’s formula [18–20] are routinely used to compute the permanent more efficiently
than the naive brute-force approach.

While linear optics has been used as a tool to explore the classical complexity of the
permanent, previous work suggests that it can also be a useful way to obtain simple proofs
of theorems about the permanent: for instance, [5] shows that the permanent of a unitary
matrix U lies in the (closed) complex unit disk by expressing |Per(U)|2 as an output
probability of a linear optical sampling computation, while [6] derives simple permanent
identities using various representations of the same linear optical sampling computation.
This begs the following questions:

1. Can we use linear optics to prove existing remarkable permanent identities, such as
the MacMahon master theorem?

2. Can we use linear optics to derive new remarkable permanent identities?

In this work, we show that the answer to both questions is yes.
We give quantum-inspired proofs of several important permanent identities in section 5.

In particular, we show that the MacMahon master theorem can be understood as two
different ways of computing an inner product between two Gaussian quantum states.

We also derive new quantum-inspired identities for the permanent. Our main results
are summarized in section 3 and proven in section 6. These include generalizations of
the MacMahon master theorem (Theorems 1 and 2), new generating functions for the
permanent (Theorem 3) and a formula for the sum of two permanents (Theorem 4).

As a bonus, our findings also have consequences for the classical complexity of exact
and approximate sampling of linear optical sampling computations with input cat states
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(Theorem 5), which we discuss in section 7. We rigorously prove that the corresponding
quantum probability distributions are as hard to sample as the original Boson Sampling
distribution [6], for all cat state amplitudes in the exact case and for small enough ampli-
tudes in the approximate case. Until now, a formal proof was available only in the exact
case [21].

2 Background
2.1 Notations and preliminary material

0 = (0, . . . , 0) p ≤ q ⇔ ∀k ∈ {1, . . . ,m}, pk ≤ qk
1 = (1, . . . , 1) −z = (−z1, . . . ,−zm)

|p| = p1 + · · ·+ pm z∗ = (z∗1 , . . . , z∗m)
p! = p1! . . . pm! ‖z‖2 = |z1|2 + · · ·+ |zm|2

|p〉 = |p1〉 ⊗ · · · ⊗ |pm〉 zp = zp1
1 . . . zpmm

p+ q = (p1 + q1, . . . , pm + qm) ∂pz = ∂p1
z1 . . . ∂

pm
zm

p⊕ q = (p1, . . . , pm, q1, . . . , qm) dmzdmz∗ = dRe{z1}d Im{z1} . . . dRe{zm}d Im{zm}

Table 1: Multi-index notations used in this paper, for m ∈ N∗, p = (p1, . . . , pm) ∈ Nm,
q = (q1, . . . , qm) ∈ Nm and z = (z1, . . . , zm) ∈ Cm.

We use bold math for multi-index expressions (see Table 1 above). We denote by T =
{z ∈ C, |z| = 1} the complex unit circle. For all m ∈ N∗, all z = (z1, . . . , zm) ∈ Cm
and all p = (p1, . . . , pm) ∈ Nm, we use the notation [zp] to denote the coefficient of
zp = zp1

1 . . . zpmm in an analytic expression. For all m ∈ N∗, all p = (p1, . . . , pm) ∈ Nm and
all q = (q1, . . . , qm) ∈ Nm, we denote by Ap,q the matrix obtained from an m×m matrix A
by first repeating its ith row pi times (deleting the row if pi = 0) for all i ∈ {1, . . . ,m} and
then repeating its jth column qj times (deleting the column if qj = 0) for all j ∈ {1, . . . ,m}.
By convention, we set the permanent of non-square matrices to 0 and Per(A0,0) = 1.

Let m ∈ N∗ denote the number of modes. We denote (unnormalized) quantum states
using the Dirac ket notation. These are vectors in an infinite-dimensional Hilbert space
spanned by the orthonormal Fock basis

{|p〉 = |p1〉 ⊗ · · · ⊗ |pm〉}p=(p1,...,pm)∈Nm . (2)

Hereafter, we label Fock states using p, q, p, q, and k, coherent states using α, β, α, and
β, and two-mode squeezed states using λ, µ, λ, and µ. In particular, coherent states are
defined as

|α〉 = e−
1
2 |α|

2 ∑
p≥0

αp√
p!
|p〉 , (3)

for all α ∈ C, and (unnormalized) two-mode squeezed states as

|λ〉 =
∑
p≥0

λp |pp〉 , (4)

for all λ ∈ C with |λ| < 1. Moreover, cat states are defined as

|catα〉 = e
1
2 |α|

2

2
√

sinh(|α|2)
(|α〉 − |−α〉), (5)
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for all α ∈ C.

We make use of the following inner products involving these states: for all p ∈ N,
α, β ∈ C, and λ ∈ C with |λ| < 1,

〈p|α〉 = e−
1
2 |α|

2 αp√
p!

(6)

〈α|β〉 = e−
1
2 |α|

2− 1
2 |β|

2+α∗β , (7)
〈pp|λ〉 = λp, (8)

〈λ| (|α〉 ⊗ |β〉) = e−
1
2 |α|

2− 1
2 |β|

2+λ∗αβ , (9)
which can be readily checked in the Fock basis. Moreover, for all p, q ∈ Nm [5, 6],

〈p| Û |q〉 = Per(Up,q)√
p!q!

, (10)

where Û is a passive linear operation over m modes whose action on the creation operators
of the modes is described by the unitary matrix U = (uij)1≤i,j≤m as

Û â†jÛ
† =

m∑
i=1

uij â
†
i , (11)

for all j ∈ {1, . . . ,m}. As their name indicates, passive linear operations do not change
the total number of photons [22]: for all n ∈ N,

ÛΠn = ΠnÛ , (12)

where Πn :=
∑
|p|=n |p〉〈p| is the m-mode projector onto states with total photon number

equal to n. Passive linear operations map tensor products of coherent states to tensor
products of coherent states [22]: for all α ∈ Cm,

Û |α〉 = |Uα〉 . (13)

Recall that coherent states form an overcomplete basis:∫
α∈Cm

|α〉〈α| d
mαdmα∗

πm
= Î, (14)

where Î is the identity operator over m modes. We will also make use of the following
Gaussian inner product: for all λ,µ ∈ Cm with |λk| < 1 and |µk| < 1 for all k ∈ {1, . . . ,m},
and for all passive linear operation Û over 2m modes,

〈λ∗| Û |µ〉 =
∫
β∈C2m

〈λ∗|β∗〉〈β∗| Û |µ〉 d
2mβd2mβ∗

π2m

=
∫
β∈C2m

〈λ∗|β∗〉
(
〈µ|U †β∗〉

)∗ d2mβd2mβ∗

π2m

=
∫
β∈C2m

e
∑m

k=1 λkβ
∗
kβ
∗
m+ke

∑m

k=1 µk(UTβ)k(UTβ)m+ke
−
∑2m

j=1 β
∗
j βj

d2mβd2mβ∗

π2m

=
∫
β∈C2m

exp

−1
2

(
β
β∗

)T
VU (λ,µ)

(
β
β∗

) d2mβd2mβ∗

π2m

= 1√
Det(VU (λ,µ))

,

(15)
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where we have used the overcompleteness of coherent states (14) over 2m modes in the
first line, the action of passive linear operations on coherent states (13) in the second line,
the overlap between two-mode squeezed states and coherent states (9) in the third line,
and where we have introduced in the fourth line the (4m)× (4m) symmetric matrix

VU (λ,µ) :=
(
−UVµUT I2m
I2m −Vλ

)
, (16)

where for all w ∈ Cn,

Vw :=
(

0m Diag(w)
Diag(w) 0m

)
. (17)

Note that we associate mode 1 with mode m + 1, mode 2 with mode m + 2, and so on,
i.e. |λ〉 =

⊗m
k=1 |λk〉, where |λk〉 is an unormalized two-mode squeezed state over modes k

and m+ k.

Finally, we note that anym×mmatrix B with ‖B‖ ≤ 1, where ‖·‖ is the spectral norm,
may be embedded as the top-left submatrix of a (2m) × (2m) unitary matrix U (see [6,
Lemma 29] for an explicit construction). We will use this fact multiple times throughout
the paper to extend identities proven for unitary matrices to the case of generic matrices.

2.2 Boson Sampling
Boson Sampling is a sub-universal model of quantum computation introduced by Aaronson
and Arkhipov (AA) in [6], which takes as input a Fock state |1⊕ 0〉 = |1〉⊗n ⊗ |0〉⊗m−n,
evolves it according to a passive linear operation Û over m modes with unitary matrix U ,
and measures the photon number of each output mode.

With Eq. (10), the probability of detecting p = (p1, . . . , pm) ∈ Nm output photons is
given by:

PBS(p|n) :=|〈p1 . . . pm|Û(|1〉⊗n ⊗ |0〉⊗m−n)|2

= |Per(Up,1⊕0)|2

p! .
(18)

This model of quantum computation, while not believed to be universal, is already capable
of outperforming its classical counterparts: AA showed that the output probability distri-
bution PBS is hard to sample exactly classically for m ≥ 2n, or the polynomial hierarchy
of complexity classes collapses to its third level [6].

Moreover, under additional plausible conjectures, AA showed that this collapse holds
for m = Θ(n5 log2 n) even if only an efficient classical algorithm for approximate sampling
exists (i.e. a classical algorithm which samples efficiently from a probability distribution
that has a small total variation distance with the ideal Boson Sampling output probability
distribution PBS). They further conjectured that this approximate hardness should hold
for m = Θ(n2).

The approximate hardness proof for Boson Sampling is based on a matrix-hiding ar-
gument which requires a specific regime of parameters m and n: given δ > 0, the relation
between m and n should be such that the distribution Hn,m of n×n submatrices of m×m
Haar-random unitary matrices multiplied by

√
m is O(δ)-close in total variation distance

to the distribution Gn×n of n × n matrices of i.i.d. Gaussians (see Theorem 35 in [6]). In
particular, AA showed that, for any δ > 0, ‖Hn,m−Gn×n‖TV = O(δ) when m ≥ n5

δ log2 n
δ .

This result was later refined in [23] with the bound ‖Hn,m−Gn×n‖TV ≤ n3

2(m−n) , which

gives a total variation distance O(δ) for m ≥ n3

δ .
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Finally, in the case of orthogonal matrices rather than unitary matrices, it was shown
in [24] that (see the equation following Eq. (2.31) in [24], with n→ m and p = q → n):

DKL(Hn,m,Gn×n) ≤ n3

4(m− n) −
(m− n)− (n+ 1)

2

[
n3 +O(n2)
2(m− n)2 + n4 +O(n3)

3(m− n)3

]

≤ O
(
n2

m
+ n4

m2 + n5

m3

)
,

(19)

where DKL is the Kullback–Leibler distance and where we obtain the second line un-
der the assumption n = o(m). In particular, for δ > 0, choosing m ≥ n2

δ2 implies
DKL(Hn,m,Gn×n) ≤ O(δ2), and thus ‖Hn,m − Gn×n‖TV ≤ O(δ) by Pinsker’s inequality
(see Eq. (1.3) in [24]). It was also argued in [24] that a similar result should hold for
unitary matrices.

Summarising these results, approximate hardness of Boson Sampling is proven for pas-
sive linear operations described by orthogonal matrices in the regime m = Θ(n2) [24] and
for unitary matrices in the regime m = Θ(n3) [23].

2.3 The MacMahon master theorem
The MacMahon master theorem is an important result in combinatorics which relates the
permanent to the determinant:

Theorem (MacMahon master theorem [13]). Let z = (z1, . . . , zm) be formal variables.
For any m×m matrix A, ∑

p∈Nm

zp

p! Per(Ap,p) = 1
Det(I − ZA) , (20)

where Z = Diag(z).

This theorem is particularly useful to derive short proofs of combinatorial identities: it
expresses the permanent of an m ×m matrix A with rows and columns repeated in the
same way as the coefficient

Per(Ap,p) = p![zp]
( 1

Det(I − ZA)

)
, (21)

where Z = Diag(z) and p ∈ Nm, while the same permanent may also be expressed as the
coefficient

Per(Ap,p) = p![zp](Az)p. (22)
Picking a specific matrix A and a pattern p and computing the above expressions yields
combinatorial identities, a famous example being the short proof of Dixon’s identity [14, 25],∑2n
k=0(−1)k

(2n
k

)3 = (−1)n
( 3n
n,n,n

)
, by taking

A =

 0 1 −1
−1 0 1
1 −1 0

 , (23)

and p = (2n, 2n, 2n) for n ∈ N∗.

Various generalizations of the MacMahon master theorem have been introduced over
the years [26–30]. In physics, this theorem plays an important role in the quantum theory
of angular momentum [31] and is also oftentimes interpreted as an instance of the boson-
fermion correspondence [27].
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3 Main results
In this section, we summarize our main findings, which we prove in section 6. We obtain
the following generalization of the MacMahon master theorem:

Theorem 1. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be formal variables. For all
m×m matrices A and B,

∑
p,q∈Nm

xpyq

p!q! Per(Ap,q)Per(Bq,p) = 1
Det(I −XAY B) , (24)

where X = Diag(x) and Y = Diag(y).

We further show that this generalization extends to N matrices:

Theorem 2. Let N ≥ 2. For all k ∈ {1, . . . , N}, let zk = (zk1, . . . , zkm) be formal
variables. For all m×m matrices A(1), . . . , A(N),

∑
p1,...,pN∈Nm

N∏
k=1

zpkk
pk!

Per(A(1)
p1,p2)Per(A(2)

p2,p3) . . .Per(A(N)
pN ,p1)

= 1
Det(I − Z1A(1) . . . ZNA(N))

,

(25)

where Zk = Diag(zk) for all k ∈ {1, . . . , N}.

As a corollary of Theorem 1, we obtain:

Corollary 1. For any m×m matrix A and all p, q ∈ Nm with |p| = |q| = n ∈ N,

Per(Ap,q) = p!q!
n! [xpyq]

(
xTAy

)n
. (26)

As a consequence of Corollary 1, we obtain the following family of generating functions for
the permanent:

Theorem 3. Let f(z) =
∑+∞
n=0 fnz

n be a series. Let x = (x1, . . . , xm) and y = (y1, . . . , ym)
be formal variables. For any m×m matrix A,

f(xTAy) =
∑

n∈N,p,q∈Nm
|p|=|q|=n

fnn!x
pyq

p!q! Per(Ap,q), (27)

Equivalently,
∂px∂

q
yf(xTAy)

∣∣
x=y=0

= Per(Ap,q) ∂nz f(z)
∣∣
z=0, (28)

for all n ∈ N and all p, q ∈ Nm such that |p| = |q| = n. As a result, when fn 6= 0,

Per(Ap,q) = E
x,y∈Tm

[
p!q!
xpyq

f(xTAy)
∂nz f(z)

∣∣
z=0

]
, (29)

where the average is over random vectors with complex coefficients of modulus 1.

From this theorem we derive various permanent identities, the most notable one being a
formula for the sum of two permanents:
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Theorem 4. For all m ×m matrices A and B, all n ∈ N and all p, q ∈ Nm such that
|p| = |q| = n,

Per(Ap,q) + Per(Bp,q)

=
bn2 c∑
k=0

(−1)k(n−1
k

) ∑
a+b+c=p
a′+b′+c′=q

|a|=|b|=|a′|=|b′|=k

p!q!
a!b!c!a′!b′!c′!Per(Aa,a′)Per(Bb,b′)Per((A+B)c,c′). (30)

In particular, when p = q = 1,

Per(A) + Per(B) =
bn2 c∑
k=0

(−1)k(n−1
k

) ∑
a+b+c=1
a′+b′+c′=1

|a|=|b|=|a′|=|b′|=k

Per(Aa,a′)Per(Bb,b′)Per((A+B)c,c′). (31)

Section 5 is primarily devoted to quantum-inspired proofs of existing permanent identities,
including a new proof of the MacMahon master theorem. Along the way, we obtain the
following inner product formula:

Lemma 1. For all α ∈ C, all p ∈ Nm, all n ≤ m, and any passive linear operation Û
over m modes with unitary matrix U ,

〈p|Û(|catα〉⊗n ⊗ |0〉⊗m−n) = αn√
sinhn(|α|2)

〈p|Û(|1〉⊗n ⊗ |0〉⊗m−n)

= αn√
sinhn(|α|2)

Per(Up,1⊕0)√
p!

.

(32)

Lemma 1 has the following direct implications for the hardness of Boson Sampling with
input cat states [21], which we discuss in section 7:

Theorem 5. Let m = poly n ≥ 2n and α 6= 0. Boson Sampling with input |catα〉⊗n ⊗
|0〉⊗m−n with α ∈ C is hard to sample exactly classically unless the polynomial hierarchy
of complexity classes collapses to its third level.

Moreover, assuming |α| = O(n−1/4 log1/4m) Boson Sampling with input cat states
is as hard to sample approximately as Boson Sampling with input single-photons, i.e.
Boson Sampling with input cat states is hard to sample approximately classically unless
the polynomial hierarchy of complexity classes collapses to its third level, in the same
regime as Boson Sampling, modulo the complexity conjectures introduced by AA in [6].

This result extends the arguments of [21]—which gave formal proof of classical hardness
in the exact sampling case—to the approximate sampling case.

4 Discussion
In the next sections, we introduce quantum-inspired proofs of permanent identities. This
approach allows us to give quantum-operational interpretations of seminal results, such as
the MacMahon master theorem [13]. In particular, we show that this theorem can be seen
as two facets of the same bosonic Gaussian amplitude.

This quantum-inspired approach also yields a breadth of new permanent identities. We
give some examples of combinatorial applications of these identities in section 6 and we
anticipate that they have many more. Beyond these purely combinatorial applications, it
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would be interesting to investigate whether our new identities may be used to obtain more
efficient classical algorithms for computing or estimating the permanent. In particular,
our Theorem 3 provides new estimators for the permanent which could be of interest, by
minimizing the variance of these estimators over the choice of the analytic function f .

We use the formalism of linear optics with noninteracting bosons, but our approach
can be applied more generally to linear optics with other types of particles. For instance,
we expect our proof techniques to lead to determinant identities in the fermionic case [32],
immanant identities in the case of partially distinguishable particles [33, 34], and additional
permanent identities in the case of generalized bosons [35]. Moreover, graphical languages
are currently being developed for linear optical quantum computations [36, 37], which could
lead to graphical proofs of remarkable identities in combination with our approach.

Finally, our Theorem 5 gives solid complexity-theoretic foundations for the hardness of
Boson Sampling with input cat states. Generation of such states has progressed tremen-
dously in the recent years, thanks to circuit QED in particular [38–40]. We hope that these
foundations will motivate an experimental demonstration of quantum speedup based on
Schrödinger’s cat states.

5 Quantum-inspired proofs of permanent identities
In this section, we derive quantum-inspired proofs of existing permanent identities. Along
the way, we obtain a generalization of Glynn’s formula [20] for the permanent of matrices
with repeated rows and columns in Eq. (43), as well as a generalization of the Glynn–Kan
formula [41] for the permanent of matrices with repeated rows and columns in Eq. (54).

5.1 Glynn’s formula
Glynn’s formula for the permanent of an m×m matrix A = (aij)1≤i,j≤m is [20]:

Per(A) = 1
2m−1

∑
x∈{−1,1}m

x1=1

x1 . . . xm

m∏
i=1

 m∑
j=1

aijxj

 . (33)

By symmetry, it is equivalent to the identity

Per(A) = 1
2m

∑
x∈{−1,1}m

x1 . . . xm

m∏
i=1

 m∑
j=1

aijxj

 . (34)

Proof of Glynn’s formula. To prove this identity using quantum-mechanical tools, let us
introduce the unnormalized cat state

∣∣ ˜catα
〉

:= 1
2α(|α〉 − |−α〉), for α ∈ C. Using the

Fock basis expansion of coherent states (6), we have limα→0
∣∣ ˜catα

〉
= |1〉 in trace distance.

Hence, using the Fock basis expansion of Û (10),

Per(U) = lim
α→0
〈1 . . . 1|Û | ˜catα . . . ˜catα〉, (35)

where Û is a passive linear operation over m modes with unitary matrix U = (uij)1≤i,j≤m.
We compute the right hand side of this equation:

〈1 . . . 1|Û | ˜catα . . . ˜catα〉 = 1
(2α)m

∑
x∈{−1,1}m

x1 . . . xm〈1 . . . 1|Û |x1α . . . xmα〉

= 1
(2α)m

∑
x∈{−1,1}m

x1 . . . xm〈1 . . . 1|(αUx)1 . . . (αUx)m〉 (36)
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= 1
(2α)m

∑
x∈{−1,1}m

x1 . . . xme
− 1

2 |α|
2‖Ux‖2

m∏
i=1

(αUx)i

= e−
m
2 |α|

2

2m
∑

x∈{−1,1}m
x1 . . . xm

m∏
i=1

 m∑
j=1

uijxj

 ,
where we used the action of Û on coherent states (13) in the second line, the Fock basis
expansion of coherent states (6) in the third line, and the fact that U is unitary in the last
line. Taking the limit when α→ 0 yields Glynn’s formula for unitary matrices.

With the same calculations, we may obtain a more general version of Eq. (36): for all
α ∈ C and p ∈ Nm,

〈p1 . . . pm|Û | ˜catα . . . ˜catα〉 = 1
(2α)m

∑
x∈{−1,1}m

x1 . . . xme
− 1

2 |α|
2‖Ux‖2

m∏
i=1

[(αUx)i]pi√
pi!

= α|p|−me−
m
2 |α|

2

2m
√
p!

∑
x∈{−1,1}m

x1 . . . xm

m∏
i=1

 m∑
j=1

uijxj

pi. (37)

Note that when |p| < m all products in the sum have at least one xi missing. Hence, by
symmetry, 〈p1 . . . pm|Û | ˜catα . . . ˜catα〉 = 0 when |p| < m. With the Fock basis expansion
of Û (10), taking the limit when α → 0 yields a version of Glynn’s formula for unitary
matrices with repeated rows:

Per(Up,1) =
δ|p|,m
2m

∑
x∈{−1,1}m

x1 . . . xm

m∏
i=1

 m∑
j=1

uijxj

pi, (38)

where δ is the Kronecker symbol.
So far, all identities are derived for unitary matrices U . In order to retrieve the same

identity for a generic matrix A = (aij)1≤i,j≤n of size n, we can embed 1
‖A‖A (or A directly

if A = 0) as a submatrix of a unitary matrix U of size m = 2n [6, Lemma 29] and compute:

Per(Aq,1)√
q!

= ‖A‖|q| lim
α→0

(〈q1 . . . qn| ⊗ 〈0|⊗n)Û(
∣∣ ˜catα

〉⊗n ⊗ |0〉⊗n). (39)

To do so, we compute a slightly more general inner product: for α ∈ C, p ∈ Nm and
n ≤ m,

〈p1 . . . pm|Û(
∣∣ ˜catα

〉⊗n ⊗ |0〉⊗m−n)

= 1
(2α)n

∑
x∈{−1,1}n

x1 . . . xn〈p1 . . . pm|Û |x1α . . . xnα 0 . . . 0〉

= 1
(2α)n

∑
x∈{−1,1}n

x1 . . . xne
− 1

2 |α|
2‖U(x⊕0)‖2

m∏
i=1

[(αU(x⊕ 0))i]pi√
pi!

= α|p|−ne−
n
2 |α|

2

2n
√
p!

∑
x∈{−1,1}n

x1 . . . xn

m∏
i=1

 n∑
j=1

uijxj

pi.
(40)

In particular, setting m = 2n and p = q ⊕ 0 for q ∈ Nn,

(〈q1 . . . qn| ⊗ 〈0|⊗n)Û(
∣∣ ˜catα

〉⊗n ⊗ |0〉⊗n) = α|q|−ne−
n
2 |α|

2

2n
√
q!

∑
x∈{−1,1}n

x1 . . . xn

n∏
i=1

 n∑
j=1

uijxj

qi.
(41)
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Choosing uij = 1
‖A‖aij for 1 ≤ i, j ≤ n and letting α go to 0 proves the claim: the left

hand side converges to 1√
q!Per(Uq⊕0,1⊕0) = 1

‖A‖|q|
√
q!Per(Aq,1), while the right hand side

converges to δ|q|,n
‖A‖|q|2n

√
q!
∑
x∈{−1,1}n x1 . . . xn

∏n
i=1

(∑n
j=1 aijxj

)qi
. Hence,

Per(Aq,1) =
δ|q|,n
2n

∑
x∈{−1,1}n

x1 . . . xn

n∏
i=1

 n∑
j=1

aijxj

qi. (42)

A similar generalization of Glynn’s formula for matrices with repeated rows (or columns)
based on roots of unity has previously appeared in [42].

Moreover, for any m×m matrix A = (ai,j)1≤i,j≤m and all p, q ∈ Nm with |p| = |q| = n,
we have the formula

Per(Ap,q) = q!
nm

∑
x∈{1,e

2iπ
n ,...,e

2i(n−1)π
n }m

x−q(Ax)p, (43)

which is a version of Glynn’s formula for matrices with repeated rows and columns. This
formula, which has previously appeared in [43–45], can be easily proven by expanding the
product (Ax)p =

∏m
i=1

(∑m
j=1 aijxj

)pi
and using properties of roots of unity. We give a

quantum-inspired proof in what follows.
For all n ≥ 1, all q ≤ n, and all α ∈ C, we define the following unnormalised superpo-

sition of coherent states:

|σq,nα 〉 :=
√
q!

nαq

n−1∑
k=0

e−
2ikqπ
n

∣∣∣e 2ikπ
n α

〉
. (44)

Using the definition of coherent states (3), we obtain

|σq,nα 〉 =
√
q!e−

1
2 |α|

2

nαq

∑
p≥0

αp√
p!

(
n−1∑
k=0

e
2ik(p−q)π

n

)
|p〉

=
√
q!e−

1
2 |α|

2 ∑
l≥0

αln√
(ln+ q)!

|ln+ q〉 .
(45)

where we used
∑n−1
k=0 e

2ik(p−q)π
n = n if p = q mod n and 0 otherwise in the second line.

Hence, limα→0 |σq,nα 〉 = |q〉 in trace distance. Using the Fock basis expansion of Û (10), we
thus have, for all p, q ∈ Nm with |p| = |q| = n ≥ 1,

Per(Up,q)√
p!q!

= lim
α→0
〈p1 . . . pm|Û

m⊗
j=1

∣∣∣σqj ,nα

〉
, (46)

where Û is a passive linear operation over m modes with unitary matrix U = (uij)1≤i,j≤m.
We compute the right hand side of this equation:

〈p1 . . . pm|Û
m⊗
j=1

∣∣∣σqj ,nα

〉
=
√
q!

nmαn

n−1∑
k1,...,km=0

m∏
j=1

e−
2ikjqjπ

n 〈p1 . . . pm|Û
m⊗
j=1

∣∣∣∣e 2ikjπ
n α

〉

=
√
q!

nmαn

∑
x∈{1,e

2iπ
n ,...,e

2i(n−1)π
n }m

x−q〈p1 . . . pm|Û |αx1 . . . αxm〉

=
√
q!e−

m
2 |α|

2

√
p!nm

∑
x∈{1,e

2iπ
n ,...,e

2i(n−1)π
n }m

x−q(Ux)p.

(47)
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where we used the definition of |σq,nα 〉 (44) in the first line and where the derivation for the
last line is identical to that of Eqs. (36-37). Letting α go to 0 proves Eq. (43) for unitary
matrices. Finally, the case of a generic nonzero m×m matrix A is obtained as in Eq. (40)
by embedding 1

‖A‖A as a submatrix of a unitary matrix U of size 2m and computing

(
〈p1 . . . pm| ⊗ 〈0|⊗m

)
Û

 m⊗
j=1

∣∣∣σqj ,nα

〉
⊗ |0〉⊗m

. (48)

5.2 The Glynn–Kan formula
A symmetrized version of Glynn’s formula for the permanent of an m ×m matrix A has
been recently derived [41] under the name Glynn–Kan formula:

Per(A) = 1
4mm!

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym(xTAy)m. (49)

While the Glynn–Kan formula gives a slower classical algorithm than the Glynn formula
for computing the permanent, it is motivated by a connection with quantum algorithms
for estimating the permanent [41].

Proof of the Glynn–Kan formula. To prove this identity using quantum-mechanical tools,
we again use the unnormalized cat state

∣∣ ˜catα
〉

:= 1
2α(|α〉−|−α〉), as in the previous section.

Using the Fock basis expansion of coherent states (6), we have limα→0
∣∣ ˜catα

〉
= |1〉 in trace

distance. Hence, using the Fock basis expansion of Û (10),

Per(U) = lim
α→0
〈 ˜catα . . . ˜catα|Û | ˜catα . . . ˜catα〉, (50)

where Û is a passive linear operation over m modes with unitary matrix U . We compute
the right hand side of this equation:

〈 ˜catα . . . ˜catα|Û | ˜catα . . . ˜catα〉

= 1
4m|α|2m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym〈x1α . . . xmα|Û |y1α . . . ymα〉

= 1
4m|α|2m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym〈x1α . . . xmα|(αUy)1 . . . (αUy)m〉

= 1
4m|α|2m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . yme
− 1

2 |α|
2‖x‖2

e−
1
2 |α|

2‖Uy‖2
m∏
i=1

exiα
∗(αUy)i (51)

= e−m|α|
2

4m|α|2m
∑

x,y∈{−1,1}m
x1 . . . xmy1 . . . yme

|α|2xTUy

= e−m|α|
2

4m
∑

x,y∈{−1,1}m
x1 . . . xmy1 . . . ym

+∞∑
k=0

|α|2k−2m

k! (xTUy)k,

where we used the action of Û on coherent states (13) in the third line, the overlap between
coherent states (7) in the fourth line, and the fact that U is unitary in the fifth line. For
k < m, all products in the expansion of (xTUy)k have at least one xi missing. Hence, by
symmetry, the terms for k < m vanish and we obtain

〈 ˜catα . . . ˜catα|Û | ˜catα . . . ˜catα〉 = e−m|α|
2

4m
∑

x,y∈{−1,1}m
x1 . . . xmy1 . . . ym

∞∑
l=0

|α|2l

(m+ l)! (x
TUy)m+l.

(52)
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Finally, taking the limit when α goes to 0 yields

Per(U) = 1
4mm!

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym(xTUy)m. (53)

This proves the Glynn–Kan formula for a unitary matrix U . Once again, the proof extends
straightforwardly to any matrix A of size n by embedding 1

‖A‖A as a submatrix of a unitary
matrix U of size 2n and computing limα→0(

〈 ˜catα
∣∣⊗n ⊗ 〈0|⊗n)Û(

∣∣ ˜catα
〉⊗n ⊗ |0〉⊗n).

Similar to Eq. (43), we obtain a version of the Glynn–Kan formula for matrices with
repeated rows and columns using roots of unity as

Per(Ap,q) = p!q!
n2mn!

∑
x,y∈{1,e

2iπ
n ,...,e

2i(n−1)π
n }m

x−py−q(xTAy)n, (54)

for any m × m matrix A = (aij)1≤i,j≤m and all p, q ∈ Nm with |p| = |q| = n. This
formula, which appears to be new, can be easily proven using our Corollary 1 by expanding
the product (xTAy)n and using properties of roots of unity. We give a quantum-inspired
proof in what follows.

For all n ≥ 1, all q ≤ n, and all α ∈ C, we again use the unnormalised superposi-
tion of coherent states as in Eq. (44): |σq,nα 〉 :=

√
q!

nαq
∑n−1
k=0 e

− 2ikqπ
n

∣∣∣e 2ikπ
n α

〉
. Recall that

limα→0 |σq,nα 〉 = |q〉 in trace distance. Using the Fock basis expansion of Û (10), we thus
have, for all p, q ∈ Nm with |p| = |q| = n ≥ 1,

Per(Up,q)√
p!q!

= lim
α→0

m⊗
j=1

〈
σ
pj ,n
α

∣∣∣ Û m⊗
j=1

∣∣∣σqj ,nα

〉
, (55)

where Û is a passive linear operation over m modes with unitary matrix U = (uij)1≤i,j≤m.
We compute the right hand side of this equation:

m⊗
j=1

〈
σ
pj ,n
α

∣∣∣ Û m⊗
j=1

∣∣∣σqj ,nα

〉
=
√
p!q!

n2m|α|2n
n−1∑

k1,...,km=0
l1,...lm=0

m∏
j=1

e−
2ikjpjπ

n e−
2iljqjπ

n

m⊗
j=1

〈
e

2ikjπ
n α

∣∣∣∣ Û m⊗
j=1

∣∣∣∣e 2iljπ
n α

〉

=
√
p!q!

n2m|α|2n
∑

x,y∈{1,e
2iπ
n ,...,e

2i(n−1)π
n }m

x−py−q〈x1α . . . xmα|Û |y1α . . . ymα〉

=
√
p!q!e−m|α|2

n2m

∑
x∈{1,e

2iπ
n ,...,e

2i(n−1)π
n }

x−py−q
∞∑
l=0

|α|2l

(n+ l)! (x
TUy)n+l.

(56)
where we used the definition of |σq,nα 〉 (44) in the first line and where the derivation for the
last line is identical to that of Eqs. (51-52). Letting α go to 0 proves Eq. (54) for unitary
matrices. Once again, the proof extends straightforwardly to any nonzero matrix A of size
m by embedding 1

‖A‖A as a submatrix of a unitary matrix U of size 2m and computing m⊗
j=1

〈
σ
pj ,n
α

∣∣∣⊗ 〈0|⊗m
 Û

 m⊗
j=1

∣∣∣σqj ,nα

〉
⊗ |0〉⊗m

. (57)
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5.3 The Cauchy–Binet theorem
The Cauchy–Binet theorem for the permanent expresses the permanent of the product of
two m ×m matrices A and B as a sum of products involving permanents of submatrices
of these two matrices [1, 2]: for all p, q ∈ Nm,

Per((AB)p,q) =
∑
k∈Nm

1
k!Per(Ap,k)Per(Bk,q). (58)

Proof of the Cauchy–Binet theorem. Using the Fock basis expansion of passive linear op-
erations (10) gives a quick quantum-inspired proof of this identity: for U and V two m×m
unitary matrices and for all p, q ∈ Nm,

Per((UV )p,q) =
√
p!q! 〈p| ÛV |q〉

=
√
p!q! 〈p| Û V̂ |q〉

=
√
p!q! 〈p| Û

 ∑
k∈Nm

|k〉〈k|

 V̂ |q〉 (59)

=
∑
k∈Nm

√
p!q! 〈p| Û |k〉〈k| V̂ |q〉

=
∑
k∈Nm

1
k!Per(Up,k)Per(Vk,q),

where we used the fact that Fock states form a basis in the third line and where we used
Eq. (10) once in the first line and twice in the last line.

In order to retrieve the formula for generic matrices A and B, we can embed 1
‖A‖A as

a submatrix of a unitary matrix U and 1
‖B‖B as a submatrix of a unitary matrix V and

compute Per((UV )p⊕0,q⊕0).

5.4 Generating functions
The permanent may be seen as a monomial coefficient in the Taylor expansion of various
functions [1, 2]. For example, the permanent of an m ×m matrix A = (aij)1≤i,j≤m with
rows repeated according to p ∈ Nm and columns repeated according to q ∈ Nm is given by
the coefficient of zq = zq1

1 . . . zqmm in

q!(Az)p =
m∏
i=1

qi!

 m∑
j=1

aijzj

pi. (60)

This may be thought of as the ‘monomial version’ of Glynn’s formula in Eq. (42). Formally:

∑
q∈Nm

zq

q! Per(Ap,q) = (Az)p, (61)

for formal variables z = (z1, . . . , zm).

Proof of ‘Glynn’s monomial formula’. To prove this relation with quantum mechanical
tools, we fix p ∈ Nm, α ∈ Cm, a unitary matrix U of size m, and we compute:

∑
q∈Nm

αq

q! Per(Up,q) =
√
p!e

1
2‖α‖

2 〈p| Û

 ∑
q∈Nm

|q〉〈q|

 |α〉
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=
√
p!e

1
2‖α‖

2 〈p| Û |α〉

=
√
p!e

1
2‖α‖

2 〈p| (Uα)〉 (62)

= e
1
2‖α‖

2− 1
2‖Uα‖

2(Uα)p

= (Uα)p,

where we used the Fock basis expansions of coherent states (6) and of Û (10) in the first
line, the fact that Fock states form a basis in the second line, the action of Û on coherent
states (13) in the third line, Eq. (6) again in the fourth line, and the fact that U is unitary
in the last line. Once again, the relation for a generic nonzero matrix A is obtained by
embedding 1

‖A‖A as a submatrix of a unitary matrix U .

Another generating function for the permanent is due to Jackson [46]: for formal vari-
ables x = (x1, . . . , xm),y = (y1, . . . , ym),

∑
p,q∈Nm

xpyq

p!q! Per(Ap,q) = ex
TAy. (63)

Note that this relation implies Corollary 1, by expanding the Taylor series of the exponen-
tial and considering the xpyq coefficient when |p| = |q| = n ∈ N∗ (an alternative proof of
this result is given in the next section):

Per(Ap,q) = p!q!
n! [xpyq](xTAy)n. (64)

Proof of Jackson’s formula. Jackson’s formula may be derived using quantum mechanical
tools in a similar way: for α,β ∈ Cm and a unitary matrix U ,

∑
p,q∈Nm

αpβq

p!q! Per(Up,q) = e
1
2‖α‖

2+ 1
2‖β‖

2 〈α∗|

 ∑
p∈Nm

|p〉〈p|

 Û
 ∑
q∈Nm

|q〉〈q|

 |β〉
= e

1
2‖α‖

2+ 1
2‖β‖

2 〈α∗| Û |β〉

= e
1
2‖α‖

2+ 1
2‖β‖

2 〈α∗|Uβ〉

= e
1
2‖β‖

2− 1
2‖Uβ‖

2
eα

TUβ

= eα
TUβ,

(65)

where we used the Fock basis expansions of coherent states (6) and of Û (10) in the first
line, the fact that Fock states form a basis in the second line, the action of Û on coherent
states (13) in the third line, the overlap between coherent states (7) in the fourth line, and
the fact that U is unitary in the last line. Once again, the relation for a generic nonzero
matrix A is obtained by embedding 1

‖A‖A as a submatrix of a unitary matrix U .

We conclude this section with arguably one of the most remarkable permanent identi-
ties, the MacMahon master theorem [13], which relates the permanent and the determinant
through a generating function (see section 2.3):

∑
p∈Nm

zp

p! Per(Ap,p) = 1
Det(I − ZA) , (66)

where Z = Diag(z), with z = (z1, . . . , zm) formal variables.
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Proof of the MacMahon master theorem. To prove this relation with quantum mechani-
cal tools, we show that the MacMahon master theorem describes two different ways of
computing an inner product between two Gaussian states.

For λ ∈ C and |λ| < 1, we make use of (unnormalized) two-mode squeezed states of the
form |λ〉 =

∑
p≥0 λ

p |pp〉. We write |λ〉 with λ = (λ1, . . . , λm) ∈ Cm a tensor product of m
two-mode squeezed states (note that we are associating mode 1 with mode m+ 1, mode 2
with mode m+ 2, and so on). For U a unitary matrix and λ,µ ∈ Cm, with |λk| < 1 and
|µk| < 1 for all k ∈ {1, . . . ,m}, we compute, using the Fock basis expansion of Û (10):∑

p∈Nm

λpµp

p! Per(Up,p) =
∑
p∈Nm

λpµp 〈p| Û |p〉 . (67)

Using the Fock basis expansion of two-mode squeezed states (8), we have

λp = 〈λ∗|pp〉. (68)

Moreover, a quick computation in Fock basis shows that

µp 〈p| Û |p〉 = 〈pp| Î ⊗ Û |µ〉 . (69)

Hence, Eq. (67) rewrites∑
p∈Nm

λpµp

p! Per(Up,p) =
∑
p∈Nm

〈λ∗|pp〉〈pp| Î ⊗ Û |µ〉

= 〈λ∗|

 ∑
p∈Nm

|pp〉〈pp|

 Î ⊗ Û |µ〉
= 〈λ∗| Î ⊗ Û |µ〉 ,

(70)

where in the last line we used 〈λ∗|
(∑

p∈Nm |pp〉〈pp|
)

= 〈λ∗|, which can be checked in
Fock basis.

We now compute the Gaussian inner product 〈λ∗| Î⊗Û |µ〉. From the action of passive
linear operations on creation operators (11), the unitary matrix associated to the passive
linear operation Î ⊗ Û is I ⊕ U . With the Gaussian overlap derived in Eqs. (15-17), we
thus obtain:

〈λ∗| Î ⊗ Û |µ〉 = 1√
Det(VI⊕U (λ,µ))

, (71)

where
VI⊕U (λ,µ) =

(
−(I ⊕ U)Vµ(I ⊕ U)T I2m

I2m −Vλ

)
, (72)

where for all w ∈ Cm,

Vw =
(

0m Diag(w)
Diag(w) 0m

)
. (73)

We have

Det(VI⊕U (λ,µ)) = Det(I − (I ⊕ U)Vµ(I ⊕ U)TVλ)

= Det
(
I − (I ⊕ U)

(
0m Diag(µ)

Diag(µ) 0m

)
(I ⊕ U)T

(
0m Diag(λ)

Diag(λ) 0m

))

= Det
(
I −Diag(µ)UTDiag(λ) 0m

0m I − UDiag(µ)Diag(λ)

)
(74)

Accepted in Quantum 2023-12-09, click title to verify. Published under CC-BY 4.0. 16



= Det(I −Diag(µ)UTDiag(λ)) Det(I − UDiag(µ)Diag(λ))
= Det(I −Diag(λ)Diag(µ)U)2,

where the last line is obtained by using Sylvester’s determinant theorem Det(I +MN) =
Det(I+NM), together with the transpose for the first determinant and Diag(µ)Diag(λ) =
Diag(λ)Diag(µ) for the second determinant. Combining Eqs. (70), (71) and (74), we
obtain, λ,µ ∈ Cm, with |λk| < 1 and |µk| < 1 for all k ∈ {1, . . . ,m},∑

p∈Nm

λpµp

p! Per(Up,p) = 〈λ∗| Î ⊗ Û |µ〉 = 1
Det(I −Diag(λ)Diag(µ)U) , (75)

where we used the value at λ = µ = 0 and the fact that the left hand side is a continuous
function of λ and µ to determine the sign of the square root. Replacing (λ1µ1, . . . , λmµm)
by the formal variables z = (z1, . . . , zm) concludes the proof. The relation for a generic
nonzero matrix A of size n is obtained by embedding 1

‖A‖A as a submatrix of a unitary
matrix U of size 2n and taking z = (z1, . . . , zn, 0, . . . , 0).

6 New quantum-inspired permanent identities
In this section, we derive new quantum-inspired identities for the permanent and we give
some combinatorial applications of these identities.

6.1 Generalizations of the MacMahon master theorem
In this section, we introduce new generalizations of the MacMahon master theorem (see
section 2.3).

We first derive new quantum-inspired identities involving the permanent of even-sized
matrices: for M a (2m)× (2m) matrix,

Per(M) = [zm]

 1
4m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym√
Det(I − zVxMVyMT )

 , (76)

and, for formal variables x = (x1, . . . , xm),y = (y1, . . . , ym),∑
p,q∈Nm

xpyq

p!q! Per(Mp⊕p,q⊕q) = 1√
Det(I − VxMVyMT )

, (77)

where for all w = (w1, . . . , wm),

Vw =
(

0m Diag(w)
Diag(w) 0m

)
. (78)

As a direct consequence, when M = A⊕B, with A and B two m×m matrices, we obtain
Theorem 1: ∑

p,q∈Nm

xpyq

p!q! Per(Ap,q)Per(Bp,q) = 1
Det(I −XAY BT ) , (79)

where X = Diag(x1, . . . , xm) and Y = Diag(y1, . . . , ym). In particular, Per(A)Per(B) is
given by the x1 . . . xmy1 . . . ym coefficient of 1/Det(I − XAY BT ). As a consequence, we
obtain Corollary 1: for all n ∈ N∗ and all p, q ∈ Nm with |p| = |q| = n,

Per(Ap,q) = p!q!
n! [xpyq]

(
xTAy

)n
. (80)
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We also generalize Eq. (79) to the case of N matrices to obtain Theorem 2: for all n × n
matrices A(1), . . . , A(N),

∑
p1,...,pN∈Nm

N∏
k=1

zpkk
pk!

Per(A(1)
p1,p2)Per(A(2)

p2,p3) . . .Per(A(N)
pN ,p1)

= 1
Det(I − Z1A(1) . . . ZNA(N))

,

(81)

where zk = (zk1, . . . , zkm) are formal variables and Zk = Diag(zk) for all k ∈ {1, . . . , N}.

Proofs of Theorem 1, Corollary 1, and Theorem 2. In section 5.1, we have obtained a lin-
ear optical proof of Glynn’s formula for the permanent using the fact that a cat state |catα〉
of small amplitude α approximates a single-photon Fock state |1〉. Hereafter, we consider
another approximation of Fock states using superpositions of two-mode squeezed states.
Such superpositions were recently studied in [47] in the context of quantum sensing.

To prove the identity in Eq. (76), we introduce |λ−〉 := 1
2λ (|λ〉 − |−λ〉), for |λ| <

1, where |λ〉 =
∑
p≥0 λ

p |pp〉 is an unnormalized two-mode squeezed state. We have
limλ→0 |λ−〉 = |11〉 in trace distance. Hence, for U a (2m) × (2m) unitary matrix we
have with the Fock basis expansion of Û (10):

Per(U) = lim
λ→0

⊗m〈
λ−
∣∣Û ∣∣λ−〉⊗m . (82)

For all λ ∈ R, with |λ| < 1, let us compute

⊗m〈
λ−
∣∣Û ∣∣λ−〉⊗m = 1

4mλ2m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ymgU (λx, λy), (83)

where we have defined for all λ,µ ∈ Cm (note that we associate mode 1 with mode m+ 1,
mode 2 with mode m+ 2, and so on)

gU (λ,µ) := 〈λ∗| Û |µ〉 . (84)

With the Gaussian overlap from Eq. (15), we have

gU (λ,µ) = 1√
Det(VU (λ,µ))

, (85)

where
VU (λ,µ) =

(
−UVµUT I2m
I2m −Vλ

)
, (86)

where for all w ∈ Cm,

Vw =
(

0m Diag(w)
Diag(w) 0m

)
. (87)

Moreover,
Det(VU (λ,µ)) = Det(I − VλUVµUT ), (88)

so with Eq. (85)
gU (λ,µ) = 1√

Det(I − VλUVµUT )
. (89)
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Setting λ = µ = λ1 for λ ∈ R and letting λ go to 0 in Eq. (83), we obtain that Per(U) is
given by

1
4m

∑
x,y∈{−1,1}m

x1 . . . xmy1 . . . ym[λ2m]gU (λx, λy), (90)

where [λ2m]gU (λx, λy) is the λ2m coefficient in the Taylor expansion (in λ) of

gU (λx, λy) = 1√
Det(I − λ2VxUVyUT )

. (91)

This concludes the proof of Eq. (76). Once again, the relation for a generic nonzero matrix
A is obtained by embedding 1

‖A‖A as a submatrix of a unitary matrix U .
Now with Eq. (84), for all λ,µ ∈ Cn,

gU (λ,µ) =
∑

p,q∈Nm
λpµq 〈pp| Û |qq〉

=
∑

p,q∈Nm

λpµq

p!q! Per(Up⊕p,q⊕q),
(92)

where we used the Fock basis expansion of Û(10) in the second line. Combining Eqs. (84),
(89) and (92) we obtain

∑
p,q∈Nm

λpµq

p!q! Per(Up⊕p,q⊕q) = 〈λ∗| Û |µ〉 = 1√
Det(I − VλUVµUT )

, (93)

where for all w ∈ Cn,

Vw =
(

0m Diag(w)
Diag(w) 0m

)
. (94)

This concludes the proof of Eq. (77). Once again, the relation for a generic nonzero matrix
A is obtained by embedding 1

‖A‖A as a submatrix of a unitary matrix U .
When U = A⊕B, with A and B two m×m matrices, we have Up⊕p,q⊕q = Ap,q⊕Bp,q

and the permanent of a block-diagonal matrix is the product of the permanents of the
blocks, so Eq. (93) gives

∑
p,q∈Nm

xpyq

p!q! Per(Ap,q)Per(Bp,q) = 1√
Det(I − Vx(A⊕B)Vy(AT ⊕BT ))

. (95)

Writing X = Diag(x1, . . . , xm) and Y = Diag(y1, . . . , ym), we have

Det(I − Vx(A⊕B)Vy(AT ⊕BT )) = Det
(
I −

(
0m X
X 0m

)(
A 0m
0m B

)(
0m Y
Y 0m

)(
AT 0m
0m BT

))

= Det
(
I −XBY AT 0m

0m I −XAY BT

)
= Det(I −XBY AT ) Det(I −XAY BT )
= Det(I −XAY BT )2,

(96)

where the last line is obtained by using Sylvester’s determinant theorem Det(I +MN) =
Det(I +NM) together with the transpose for the first determinant. Combining Eqs. (95)
and (96) concludes the proof of Theorem 1.
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This theorem reduces to the MacMahon master theorem when A = I or B = I, since
Per(Ip,q) = p!δp,q. Another particular case of interest is when B = Jm, where Jm is the
all-1 matrix of size m ×m, which satisfies Per(Jm) = m!. In this case, we obtain, for all
x,y ∈ Cm, ∑

n∈N,p,q∈Nm
|p|=|q|=n

n!xpyq

p!q! Per(Ap,q) = 1
Det(I −AY JmX)

= 1
Det(I −AyxT )

= 1
1− xTAy ,

(97)

where we used the fact that AyxT is a rank-one matrix to compute the determinant. This
implies Corollary 1: for all n ∈ N∗ and all p, q ∈ Nm with |p| = |q| = n,

Per(Ap,q) = p!q!
n! [xpyq]

( 1
1− xTAy

)
= p!q!

n! [xpyq]
(
xTAy

)n
,

(98)

where we used the Taylor series 1
1−z =

∑+∞
k=0 z

k.
We note that Theorem 1—which is a generalization of the MacMahon master theorem

to two matrices—may also be obtained by combining the MacMahon master theorem in
Eq. (66) with the Cauchy–Binet theorem in Eq. (58), applied to the matrix AY BT . As
it turns out, we may apply the same proof technique inductively in order to generalize
the MacMahon master theorem to N matrices A(1), . . . , A(N), for N ≥ 1 and obtain
Theorem 2: assuming that Eq. (81) holds for some N ≥ 2, we have, for all m×m matrices
B(1), . . . , B(N),

∑
p1,...,pN∈Nm

N∏
k=1

zpkk
pk!

Per(B(1)
p1,p2)Per(B(2)

p2,p3) . . .Per(B(N)
pN ,p1)

= 1
Det(I − Z1B(1) . . . ZNB(N))

,

(99)

where zk = (zk1, . . . , zkm) are formal variables and Zk = Diag(zk) for all k ∈ {1, . . . , N}.
Let A(1), . . . , A(N+1) be m×m matrices, zN+1 = (zN+1,1, . . . , zN+1,m) be formal vari-

ables and ZN+1 = Diag(zN+1). Setting B(N) = A(N)ZN+1A
(N+1) and B(k) = A(k) for all

k ∈ {1, . . . , N}, we obtain with Eq. (99):
1

Det(I − Z1A(1) . . . ZNA(N)ZN+1A(N+1))

=
∑

p1,...,pN∈Nm

N∏
k=1

zpkk
pk!

Per(A(1)
p1,p2) . . .Per(A(N−1)

pN−1,pN )Per((A(N)ZN+1A
(N+1))pN ,p1).

(100)
On the other hand, with the Cauchy–Binet theorem from Eq. (58),

Per((A(N)ZN+1A
(N+1))pN ,p1) =

∑
pN+1∈Nm

1
pN+1!Per(A(N)

pN ,pN+1)Per((ZN+1A
(N+1))pN+1,p1)

=
∑

pN+1∈Nm

z
pN+1
N+1
pN+1!Per(A(N)

pN ,pN+1)Per(A(N+1)
pN+1,p1),

(101)
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where we used the fact that multiplying any single row of M by a variable z changes
Per(M) to zPer(M). Combining Eqs. (100) and (101) completes the induction step and
the proof of Theorem 2.

Applications. Recall that the MacMahon master theorem is a useful tool for deriving
combinatorial identities (see section 2.3): it expresses the permanent of an m×m matrix
A with rows and columns repeated in the same way as the coefficient

Per(Ap,p) = p![zp]
( 1

Det(I − ZA)

)
, (102)

where Z = Diag(z) and p ∈ Nm, while the same permanent may also be expressed as the
coefficient

Per(Ap,p) = p![zp](Az)p. (103)
Our generalizations of the MacMahon master theorem may be used in a similar fashion
to obtain simple proofs of combinatorial identities. Let us illustrate this with an example:
for n ∈ N and a, b ∈ C, setting

Sn(a, b) :=
n∑
k=0

(
n

k

)2

akbn−k, (104)

we aim to prove the relation

Sn(a, b)2 =
n∑
l=0

(
2l
l

)(
n+ l

2l

)
(−1)n−l(a− b)2n−2lSl(a2, b2), (105)

which for a = b = 1 directly implies the well-known
∑n
k=0

(n
k

)2 =
(2n
n

)
.

Proof. By Theorem 1 we have

Per(Ap,q)Per(Bp,q) = p!q![xpyq]
( 1

Det(I −XAY BT )

)
, (106)

where X = Diag(x1, . . . , xm) and Y = Diag(y1, . . . , ym). Setting

A = B =
(

1 a
1 b

)
, (107)

for a, b ∈ C, n ∈ N∗, and p = q = (n, n), we obtain with Eq. (103):

Per(Ap,q) = (n!)2[zn1 zn2 ](z1 + az2)n(z1 + bz2)n

= (n!)2 ∑
k+l=n

(
n

k

)(
n

l

)
akbl

= (n!)2Sn(a, b).

(108)

On the other hand, with Eq. (106) we have

Per(Ap,q)2 = (n!)4[xn1xn2yn1 yn2 ]
( 1

Det(I −Diag(x1, x2)ADiag(y1, y2)AT
)

= (n!)4[xn1xn2yn1 yn2 ]
( 1

1− x1y1 − a2x1y2 − x2y1 − b2x2y2 + (a− b)2x1x2y1y2

)

= (n!)4
2n∑
k=n

[xn1xn2yn1 yn2 ]
(
x1y1 + a2x1y2 + x2y1 + b2x2y2 − (a− b)2x1x2y1y2

)k
(109)
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= (n!)4
2n∑
k=n

k∑
j=0

(
k

j

)
(−1)k−j(a− b)2k−2j ∑

n11+n12+n21+n22=j

j!a2n12b2n22

n11!n12!n21!n22!

× [xn1xn2yn1 yn2 ]
(
(x1x2y1y2)k−jxn11+n12

1 xn21+n22
2 yn11+n21

1 yn12+n22
2

)
,

where we used the Taylor expansion of 1
1−z in the third line and the multinomial theorem

in the last line. The indices in the above expression must satisfy n11 = n22, n12 = n21,
which implies j = 2n11 + 2n12, i.e. j is even. Moreover, n = k − j + n11 + n12 = k − j/2.
Relabeling j = 2l and n11 = p we have k = l + n and we obtain

Per(Ap,q)2 = (n!)4
n∑
l=0

(
n+ l

2l

)
(−1)n−l(a− b)2n−2l

l∑
p=0

(2l)!a2l−2pb2p

p!2(l − p)!2

= (n!)4
n∑
l=0

(
2l
l

)(
n+ l

2l

)
(−1)n−l(a− b)2n−2lSl(a2, b2).

(110)

With Eq. (108) this proves

Sn(a, b)2 =
n∑
l=0

(
2l
l

)(
n+ l

2l

)
(−1)n−l(a− b)2n−2lSl(a2, b2). (111)

6.2 New generating functions
We have encountered several generating functions for the permanent of an m×m matrix
A with differently repeated rows and columns. Jackson’s formula gives [46]:

ex
TAy =

∑
n∈N,p,q∈Nm
|p|=|q|=n

xpyq

p!q! Per(Ap,q), (112)

for formal variables x = (x1, . . . , xm),y = (y1, . . . , ym). Moreover, we have obtained in
Eq. (97), as a corollary of our generalization of the MacMahon master theorem:

1
1− xTAy =

∑
n∈N,p,q∈Nm
|p|=|q|=n

n!x
pyq

p!q! Per(Ap,q). (113)

Furthermore, Corollary 1 gives:

(xTAy)n =
∑

p,q∈Nm
|p|=|q|=n

n!x
pyq

p!q! Per(Ap,q). (114)

In this section we prove Theorem 3, which generalizes all three statements: for any series
f(z) =

∑+∞
n=0 fnz

n,

f(xTAy) =
∑

n∈N,p,q∈Nm
|p|=|q|=n

fnn!x
pyq

p!q! Per(Ap,q). (115)

One may prove this statement by linearity, using Eq. (114). In what follows, we give a
direct quantum-inspired proof which is similar to that of Jackson’s formula from section 5.4.
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Proof of Theorem 3. For α,β ∈ Cm and a unitary matrix U ,

∑
n∈N,p,q∈Nm
|p|=|q|=n

fnn!α
pβq

p!q! Per(Up,q) = e
1
2‖α‖

2+ 1
2‖β‖

2
+∞∑
n=0

fnn!
∑

p,q∈Nm
|p|=|q|=n

〈α∗ |p〉〈p| Û |q〉〈q|β〉

= e
1
2‖α‖

2+ 1
2‖β‖

2
+∞∑
n=0

fnn! 〈α∗|ΠnÛΠn |β〉

= e
1
2‖α‖

2+ 1
2‖β‖

2
+∞∑
n=0

fnn! 〈α∗|ΠnÛ |β〉

= e
1
2‖α‖

2+ 1
2‖β‖

2
+∞∑
n=0

fnn! 〈α∗|Πn |Uβ〉 ,

(116)

where we used the Fock basis expansions of coherent states (6) and of Û (10) in the first
line, the definition of the projector Πn =

∑
|p|=n |p〉〈p| in the second line, the fact that

passive linear operations conserve the total number of photons (12) in the third line, and
the action of Û on coherent states (13) in the fourth line. Now,

e
1
2‖α‖

2+ 1
2‖β‖

2 〈α∗|Πn |Uβ〉 = e
1
2‖α‖

2+ 1
2‖β‖

2 ∑
|p|=n
〈α∗ |p〉〈p|Uβ〉

=
∑
|p|=n

e
1
2‖β‖

2− 1
2‖Uβ‖

2αp(Uβ)p

p!

=
∑
|p|=n

αp(Uβ)p

p!

= 1
n! (α

TUβ)n,

(117)

where we used the Fock basis expansion of coherent states (6) in the second line, the
fact that U is unitary in the third line, and the multinomial theorem in the last line.
Combining Eqs. (116) and (117) completes the proof for unitary matrices. Once again,
the relation for a generic nonzero matrix A is obtained by embedding 1

‖A‖A as a submatrix
of a unitary matrix U .

As a result, when fn 6= 0 we have, for any m×m matrix A, all n ∈ N and all p, q ∈ Nm
such that |p| = |q| = n,

E
x,y∈Tm

[
p!q!
xpyq

f(xTAy)
∂nz f(z)

∣∣
z=0

]
= p!q!
∂nz f(z)

∣∣
z=0

∑
k∈N,s,t∈Nm
|s|=|t|=k

fkk!Per(As,t)
s!t!

×
m∏
j=1

(∫
θj ,ϕj∈[0,2π]

eiθj(sj−pj)eiϕj(tj−qj)
dθjdϕj

4π2

)

= 1
∂nz f(z)

∣∣
z=0

fnn!Per(Ap,q)

= Per(Ap,q),

(118)

where we have set x = (eiθ1 , . . . , eiθm) ∈ Tm and y = (eiϕ1 , . . . , eiϕm) ∈ Tm in the first
line, and where we have used

∫ 2π
0 ei(k−l)θ dθ2π = δkl in the third line.
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Applications. These generating functions may be used to derive remarkable identities
for the permanent: for instance, for A and B two m ×m matrices, taking f(z) = ez and
equating the xpyq coefficients of exT (A+B)y and exTAyexTBy yields the sum formula [1, 2]:

Per((A+B)p,q) =
∑
s+t=p
u+v=q

p!q!
s!t!u!v!Per(As,u)Per(Bt,v), (119)

for all p, q ∈ Nm.
Similarly, for A an m × m matrix, taking f(z) = zp for p = k, l, k + l and equating

the xpyq coefficients of (xTAy)k+l and (xTAy)k(xTAy)l yields the Laplace expansion
formula [1, 2]:

Per(Ap,q) = k!l!
(k + l)!

∑
s+t=p
u+v=q
|s|=|u|=k
|t|=|v|=l

p!q!
s!t!u!v!Per(As,u)Per(At,v), (120)

for all k, l ∈ N and all p, q ∈ Nm with |p| = |q| = k + l.
Finally, for A and B two m×m matrices, taking f(z) = − log(1− z) and equating the

xpyq coefficients of − log
(
1− xTAy

)
− log

(
1− xTBy

)
and − log[(1−xTBy)(1−xTAy)]

yields Theorem 4:

Per(Ap,q) + Per(Bp,q)

=
bn2 c∑
k=0

(−1)k(n−1
k

) ∑
a+b+c=p
a′+b′+c′=q

|a|=|b|=|a′|=|b′|=k

p!q!
a!b!c!a′!b′!c′!Per(Aa,a′)Per(Bb,b′)Per((A+B)c,c′), (121)

after a derivation which we detail below.

Proof of Theorem 4. Let us write
− log[(1− xTBy)(1− xTAy)] = − log[1− xT (A+B −ByxTA)y)]. (122)

Applying Theorem 3 for f(z) = − log(1− z) with z = xTBy,xTAy,xT (A+B−ByxTA)y
and considering the xpyq coefficient we obtain for all n ∈ N∗ and all p, q ∈ N with
|p| = |q| = n:

Per(Ap,q) + Per(Bp,q)

= p!q!
(n− 1)! [x

pyq]

 ∑
l∈N∗,s,t∈Nm
|s|=|t|=l

(l − 1)!x
syt

s!t! Per((A+B −ByxTA)s,t)


=

∑
l∈N∗,s,t∈Nm
|s|=|t|=l

(l − 1)!
(n− 1)!

p!q!
s!t! [xpyq]

(
xsytPer((A+B −ByxTA)s,t)

)

=
∑

l∈N∗,s,t∈Nm
|s|=|t|=l
s≤p,t≤q

(l − 1)!
(n− 1)!

p!q!
s!t! [xp−syq−t]

(
Per((A+B −ByxTA)s,t)

)

=
∑

l∈N∗,s,t,u,v∈Nm
|s|=|t|=l
s+u=p
t+v=q

(l − 1)!
(n− 1)!

p!q!
s!t! [xuyv]

(
Per((A+B −ByxTA)s,t)

)
.

(123)
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Applying the sum formula from Eq. (119) to the matrices (A + B) and (−ByxTA) we
obtain, for all l ∈ N∗ and all s, t ∈ N with |s| = |t| = l,

Per((A+B −ByxTA)s,t) =
∑
c+k=s
c′+k′=t

|c|=|c′|,|k|=|k′|

s!t!
c!k!c′!k′!Per((A+B)c,c′)Per((−ByxTA)k,k′)

=
∑
c+k=s
c′+k′=t

|c|=|c′|,|k|=|k′|

(−1)|k|s!t!
c!k!c′!k′! Per((A+B)c,c′)Per((ByxTA)k,k′).

(124)

The permanent of the outer product vwT of two vectors v and w of the same size k is
easily computed as

Per(vwT ) =
∑
σ∈Sk

k∏
j=1

vjwσ(j)

=
∑
σ∈Sk

v1 . . . vkw1 . . . wk

= k! v1 . . . vkw1 . . . wk.

(125)

The matrix (ByxTA)k,k′ is the outer product between the vector (By)k (obtained from
the vector By by repeating ki times its ith entry) and the vector (ATx)k′ (obtained from
the vector ATx by repeating k′i times its ith entry) of size |k|, so its permanent is given
by

Per((ByxTA)k,k′) = (|k|)!(By)k(ATx)k′ . (126)

With Eq. (124) we obtain

Per((A+B −ByxTA)s,t =
∑
c+k=s
c′+k′=t

|c|=|c′|,|k|=|k′|

(−1)|k|(|k|)!s!t!
c!k!c′!k′! Per((A+B)c,c′)(By)k(ATx)k′ . (127)

Plugging this expression into Eq. (123) yields

Per(Ap,q) + Per(Bp,q)

=
∑

l∈N∗,s,t,u,v∈Nm
|s|=|t|=l
s+u=p
t+v=q

(l − 1)!
(n− 1)!

p!q!
s!t!

∑
c,k,c′,k′∈Nm
c+k=s
c′+k′=t

|c|=|c′|,|k|=|k′|

(−1)|k|(|k|)!s!t!
c!k!c′!k′! Per((A+B)c,c′)[xuyv](By)k(ATx)k′

=
∑

l∈N∗,s,t,u,v∈Nm
|s|=|t|=l
s+u=p
t+v=q

(l − 1)!
(n− 1)!p!q!

∑
c,k,c′,k′∈Nm
c+k=s
c′+k′=t

|c|=|c′|,|k|=|k′|

(−1)|k|(|k|)!
c!k!c′!k′! Per((A+B)c,c′)[xu](ATx)k′ [yv](By)k

=
∑

l∈N∗,s,t,u,v∈Nm
|s|=|t|=l
s+u=p
t+v=q

(l − 1)!
(n− 1)!p!q!

∑
c,k,c′,k′∈Nm
c+k=s
c′+k′=t
|c|=|c′|

|k|=|k′|=|u|=|v|

(−1)|k|(|k|)!
c!k!c′!k′! Per((A+B)c,c′)

Per(ATk′,u)
u!

Per(Bk,v)
v!

(128)
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=
∑

l∈N∗,s,t,u,v∈Nm
|s|=|t|=l
s+u=p
t+v=q

(l − 1)!
(n− 1)!

p!q!
u!v!

∑
c,k,c′,k′∈Nm
c+k=s
c′+k′=t
|c|=|c′|

|k|=|k′|=|u|=|v|

(−1)|k|(|k|)!
c!k!c′!k′! Per(Au,k′)Per(Bk,v)Per((A+B)c,c′)

=
bn2 c∑
k=0

(−1)kk!(n− k − 1)!
(n− 1)!

∑
a,b,c,a′,b′,c′∈Nm

a+b+c=p
a′+b′+c′=q

|a|=|a′|=|b|=|b′|=k

p!q!
a!b!c!a′!b′!c′!Per(Aa,a′)Per(Bb,b′)Per((A+B)c,c′),

where we used Eq. (61) in the third line, Per(MT ) = Per(M) in the fourth line, and
where we relabeled u as a, k′ as a′, k as b, v as b′, and |k| = |k′| = |u| = |v| as
k = n − l in the last line. The cutoff of the sum at bn2 c comes from the fact that
n = |p| = |a| + |b| + |c| = 2k + |c| ≥ 2k. Writing (−1)kk!(n−k−1)!

(n−1)! = (−1)k

(n−1
k ) completes the

proof of Theorem 4.

7 Boson Sampling with input cat states
In this section, we discuss the classical complexity of sampling from the output distribution
of linear optical computations with input cat states, which we refer to as Boson Sampling
with input cat states.

Since the introduction of Boson Sampling by Aaronson and Arkhipov [6] for the demon-
stration of quantum computational advantage using noninteracting bosons, several variants
of this model have been analyzed [48–55]. These variants were introduced to address two
different challenges: on the one hand, to reduce the experimental burden associated with
the demonstration of quantum advantage; on the other hand, to understand the resources
for this quantum advantage and which computational models are able to reproduce it.
Boson Sampling with input cat states is another such variant and has been first consid-
ered in [21], where its classical hardness was shown for exact sampling and argued for
approximate sampling. We strengthen these results in the following.

We first give a proof of Lemma 1, which provides a closed form expression for output
amplitudes of Boson Sampling with input cat states.

Proof of Lemma 1. In the quantum-inspired proof of Glynn’s formula in section 5.1 we
have obtained the following identity:

〈p1 . . . pm|Û(
∣∣ ˜catα

〉⊗n ⊗ |0〉⊗m−n) = α|p|−ne−
n
2 |α|

2

2n
√
p!

∑
x∈{−1,1}n

x1 . . . xn

m∏
i=1

 n∑
j=1

uijxj

pi,
(129)

for all α ∈ C, all p = (p1, . . . , pm) ∈ Nm, all n ≤ m and any passive linear operation Û
over m modes with unitary matrix U = (uij)1≤i,j≤m, where

∣∣ ˜catα
〉

= 1
2α(|α〉 − |−α〉) is

an unnormalized cat state. By definition of the cat states (5), these states are related to
normalized cat states |catα〉 by

|catα〉 = αe
1
2 |α|

2√
sinh(|α|2)

∣∣ ˜catα
〉
. (130)
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Setting |p| = n and replacing unnormalized cat states by normalized ones in Eq. (129),
we obtain Lemma 1:

〈p1 . . . pm|Û(|catα〉⊗n ⊗ |0〉⊗m−n) = αn√
sinhn(|α|2)2n

√
p!

∑
x∈{−1,1}n

x1 . . . xn

m∏
i=1

 n∑
j=1

uijxj

pi

= αn√
sinhn(|α|2)

Per(Up,1⊕0)√
p!

= αn√
sinhn(|α|2)

〈p1 . . . pm|Û(|1〉⊗n ⊗ |0〉⊗m−n),

(131)

where we used Eq. (42) in the second line and the Fock basis expansion of Û (10) in the
last line.

Interestingly, Lemma 1 implies that, up to a global factor, n cat states of amplitude
α reproduce exactly the Boson Sampling statistics of n single photons (however, detection
events p with |p| > n can occur for input cat states, contrary to single-photons).

This result has two consequences, summarized by Theorem 5. Firstly, it implies that
Boson Sampling with input cat states is hard to sample exactly for m ≥ 2n and for all
choices of nonzero cat state amplitude unless the polynomial hierarchy collapses to its third
level, since some of its outcome probabilities are #P-hard to estimate multiplicatively [6].
Alternative proofs of this statement based either on universality under post-selection or
on rejection sampling can be found in [21]. Secondly, as we show hereafter, it implies that
Boson Sampling with input cat states of small enough (nonzero) amplitudes is also hard
to sample approximately in the same regime as Boson Sampling.

Proof of Theorem 5. Our proof uses arguments similar to the ones used in [21], extended
to the case of approximate sampling.

At a high level, we show how to convert any classical algorithm for approximate sam-
pling from the output probability distribution of an m-mode Boson Sampling computation
with n input cat states to a classical algorithm for approximate sampling from the output
probability distribution of an m-mode Boson Sampling computation with n input Fock
states (Lemma 2). We do so by performing rejection sampling: we run the first algorithm
and only keep the samples with total photon number equal to n. In particular, we show
that if the fraction of samples with correct photon number n is large enough (namely, at
least inverse polynomial in m), the rejection sampling subroutine is efficient and the final
classical probability distribution is close to the ideal distribution of Boson Sampling with
Fock state input. Then, we determine the regime of input cat state amplitude such that
the fraction of samples with correct photon number n is at least inverse polynomial in m
(Lemma 3).

Let Pcat(p|n, α) := |〈p1 . . . pm|Û(|catα〉⊗n ⊗ |0〉⊗m−n)|2 be the probability of detecting
p = (p1, . . . , pm) output photons in a Boson Sampling experiment with interferometer
Û and input cat states |catα〉⊗n ⊗ |0〉⊗m−n, and let PBS(p|n) := |〈p1 . . . pm|Û(|1〉⊗n ⊗
|0〉⊗m−n)|2 be the probability of detecting p = (p1, . . . , pm) output photons in a Boson
Sampling experiment with interferometer Û and input single photons |1〉⊗n ⊗ |0〉⊗m−n.

We show the following reduction: as long as the fraction of samples with photon
number n is large enough, then any efficient classical algorithm for approximate sampling
from Pcat can be converted to an efficient classical algorithm for approximate sampling
from PBS.
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Lemma 2. Suppose there exists an efficient classical algorithm C for approximate sam-
pling from Pcat, i.e., that takes as input the description of the m-mode boson sampler with
n input cat states with output probability distribution Pcat and an error bound ε, and that
samples from a distribution PC such that ‖PC − Pcat‖TV ≤ ε in poly (m, 1

ε ) time, where
‖ · ‖TV is the total variation distance.

Assume further that the fraction of samples from Pcat with photon number equal to n
is at least inverse polynomial in m, i.e.

∑
|p|=n Pcat(p|n, α) ≥ 1

poly m .
Then, there exists an efficient classical algorithm C̃ for approximate sampling from

PBS, i.e., a classical algorithm that takes as input the description of the m-mode boson
sampler with n input Fock states with output probability distribution PBS and an error
bound ε, and that samples from a distribution P rej

C such that ‖P rej
C − PBS‖TV ≤ ε in

poly (m, 1
ε ) time.

Proof of Lemma 2. Given a sampling algorithm from a probability distribution P over Nm,
we define the following rejection sampling subroutine: sample p from P and compute |p|;
discard the sample if |p| 6= n; otherwise, output p. We denote by P rej the corresponding
output probability distribution. For all p ∈ Nm, we have

P rej(p) =
δ|p|,nP (p)∑
|q|=n P (q) , (132)

where δ is the Kronecker symbol. Applying this subroutine to Pcat gives a new probability
distribution

P rej
cat(p|n, α) =

δ|p|,nPcat(p|n, α)∑
|q|=n Pcat(q|n, α) . (133)

By Lemma 1 (see Eq. (131)) we have, for all p such that |p| = n,

Pcat(p|n, α) = |α|2n

sinhn(|α|2)PBS(p|n). (134)

Hence
∑
|p|=n

Pcat(p|n, α) = |α|2n

sinhn(|α|2)
∑
|p|=n

PBS(p|n)

= |α|2n

sinhn(|α|2) ,
(135)

where we used
∑
|p|=n PBS(p|n) = 1 in the second line since Û conserves the total number

of photons (12). Combining Eqs. (133-135), we thus obtain

PBS(p|n) = P rej
cat(p|n, α). (136)

This reproduces the argument for exact sampling hardness from [21].
To show approximate hardness, we define the classical approximate sampling algorithm

C̃ by running the algorithm C with input error bound ε
2
∑
|p|=n Pcat(p|n, α) and applying

the rejection sampling subroutine. By assumption, running the algorithm C can be done
in time

poly
(
m,

2
ε
∑
|p|=n Pcat(p|n, α)

)
= poly

(
m,

1
ε

)
, (137)
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since
∑
|p|=n Pcat(p|n, α) ≥ 1

poly m , also by assumption. On the other hand, the rejection
sampling subroutine induces a computational overhead scaling with the inverse of the
fraction of kept samples

∑
|q|=n PC(q). We have

∑
|q|=n

Pcat(q|n, α)−
∑
|q|=n

PC(q) ≤

∣∣∣∣∣∣
∑
|q|=n

PC(q)−
∑
|q|=n

Pcat(q|n, α)

∣∣∣∣∣∣
≤
∑
|q|=n

|PC(q)− Pcat(q|n, α)|

≤
∑
q∈Nm

|PC(q)− Pcat(q|n, α)|

= 2‖PC − Pcat‖TV

≤ ε
∑
|p|=n

Pcat(p|n, α),

(138)

where we used the triangle inequality in the second line, the definition of the total variation
distance in the fourth line, and the definition of C in the last line. Hence,∑

|q|=n
PC(q) ≥ (1− ε)

∑
|q|=n

Pcat(q|n, α)

≥ 1− ε
poly m,

(139)

so that the computational overhead induced by the rejection sampling subroutine scales
as poly(m, 1

ε ).
Overall, the classical algorithm C̃ outputs samples from the probability distribution

P rej
C in poly(m, 1

ε ) time (with probability exponentially close to 1). Moreover,

‖P rej
C − PBS‖TV = 1

2
∑
p∈Nm

|P rej
C (p)− PBS(p|n)|

= 1
2
∑
|p|=n

|P rej
C (p)− PBS(p|n)|

= 1
2
∑
|p|=n

∣∣∣P rej
C (p)− P rej

cat(p|n, α)
∣∣∣

= 1
2
∑
|p|=n

∣∣∣∣∣ PC(p)∑
|q|=n PC(q) −

Pcat(p|n, α)∑
|q|=n Pcat(q|n, α)

∣∣∣∣∣
≤ 1

2
∑
|p|=n

[
|PC(p)− Pcat(p|n, α)|∑

|q|=n Pcat(q|n, α) (140)

+ PC(p)
∣∣∣∣∣ 1∑
|q|=n PC(q) −

1∑
|q|=n Pcat(q|n, α)

∣∣∣∣∣
]

≤ 1
2
∑
|q|=n Pcat(q|n, α)

∑
|p|=n

[
|PC(p)− Pcat(p|n, α)|

+ PC(p)∑
|q|=n PC(q)

∣∣∣∣∣∣
∑
|q|=n

Pcat(q|n, α)−
∑
|q|=n

PC(q)

∣∣∣∣∣∣
]
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≤ 1∑
|q|=n Pcat(q|n, α)

[
1
2
∑
p∈Nm

|PC(p)− Pcat(p|n, α)|

+
∑
|p|=n

PC(p)∑
|q|=n PC(q)

1
2
∑
q∈Nm

|Pcat(q|n, α)− PC(q)|
]

= 2‖PC − Pcat‖TV∑
|q|=n Pcat(q|n, α)

≤ ε.

where we used the definition of the total variation distance in the first and eighth lines, the
fact that P rej

C and PBS are supported on samples with total photon number n in the second
line, Eq. (136) in the third line, Eq. (132) in the fourth line and the triangle inequality in
the fifth line.

Hence, C̃ is an efficient classical algorithm for approximate sampling from PBS.

We are left with identifying the regime of input cat state amplitude α ∈ C such that the
assumption in Lemma 2 is satisfied, i.e.

∑
|p|=n Pcat(p|n, α) ≥ 1

poly m .

Lemma 3. For 0 < |α| = O(n−1/4 log1/4m) and m = poly n, the detection events satis-
fying |p| = n represent at least an inverse-polynomial fraction of the outcomes for Boson
Sampling with input cat states of amplitude α, i.e.

∑
|p|=n Pcat(p|n, α) ≥ 1

poly m .

Proof of Lemma 3. Let α ∈ C such that 0 < |α| = O(n−1/4 log1/4m). The fraction of
outcomes p ∈ Nm for m-mode Boson Sampling with n input cat states of amplitude α is
given by ∑

|p|=n
Pcat(p|n, α) = |α|2n

sinhn(|α|2)

= en log(|α|2)−n log(sinh |α|2)

= en log(|α|2)−n log(|α|2+ 1
6 |α|

6+O(|α|10))

= e−n log(1+ 1
6 |α|

4+O(|α|8))

= e−
1
6n|α|

4+O(n|α|8)

= e−O(logm)+O(n−2 log2 m)

≥ 1
poly m,

(141)

where we used Eq. (135) in the first line, the scaling of |α| in the sixth line, and O(n−2 log2m) =
O(1) in the last line.

Combining Lemma 2 and Lemma 3, using any efficient classical algorithm for approximate
sampling from the output probability distribution of a Boson Sampling instance with input
cat states with 0 < |α| = O(n−1/4 log1/4 n), one may also efficiently sample approximately
from the output probability distribution of the corresponding Boson Sampling instance
with input single photons efficiently, by keeping only the samples p satisfying |p| = n.

This proves that Boson Sampling with input cat states with 0 < |α| = O(n−1/4 log1/4 n)
is hard to sample approximately in the same regime as Boson Sampling with input Fock
states, assuming the same conjectures as in [6].
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