Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Efficient Algorithms for Parallel Bi-core Decomposition

Yihao Huang */ Claire Wang * Jessica Shi * Julian Shun *

Abstract

We present new shared-memory parallel algorithms for the bi-core decomposition problem, which discovers dense
subgraphs in bipartite graphs and is the bipartite analogue of the classic k-core decomposition problem. We develop
a theoretically-efficient parallel bi-core decomposition algorithm that discovers a hierarchy by peeling vertices from the
graph in parallel. Our algorithm improves the span (parallel running time) over the state-of-the-art parallel bi-core
decomposition algorithm, while matching the state-of-the-art sequential algorithm in work. We additionally prove the
bi-core decomposition problem to be P-complete, meaning that a polylogarithmic span solution is unlikely under standard
assumptions. We also devise a theoretically-efficient parallel bi-core index structure to allow for fast parallel queries of
vertices in given cores.

Finally, we propose a novel practical optimization that prunes unnecessary computations, and we provide optimized
parallel implementations of our bi-core decomposition algorithms that are scalable and fast. Using 30 cores with two-way
hyper-threading, our implementation achieves up to a 4.9x speedup over the state-of-the-art parallel algorithm. Our parallel
index structure can be constructed up to 27.7x faster than the state-of-the-art sequential counterpart. Due to the improved
storage format of our index structure, our parallel queries are up to 116.3x faster than the state-of-the-art sequential queries.

1 Introduction

The problem of discovering densely connected subgraphs in networks is fundamental for large-scale graph analysis. It has
applications in community search [24], clustering word-documents [10], improving advertising [14], detecting fraudsters or
spammers [47], and analyzing protein-gene-disease relations in bioinformatics [31]. Classic algorithms for dense subgraph
discovery include k-core decomposition [27, 29], k-truss [7], and nucleus decomposition [36]. However, these algorithms
are designed towards general graphs, and do not take into account the specific structure of bipartite graphs.

A bipartite graph G consists of two bipartitions of vertices, U and V/, where every edge connects a vertex in U to a
vertex in V. These graphs model the affiliation between two distinct types of entities, such as in authorship networks [20],
group membership networks [37], user-product networks [44], and protein-protein interactions [15]. Directly applying
traditional dense substructure analysis techniques designed for general graphs to bipartite graphs does not allow for the
bipartitions to be distinguished from one another, which can be important especially if they exhibit different structures.
Another approach to discovering dense substructures in bipartite graphs uses graph projection to represent each bipartition
as its own graph, and then applies traditional techniques to analyze each of the two resulting graphs; however, such methods
still fail to capture important connectivity information and can cause an explosion in the number of edges, making them
practically inefficient [34]. Thus, bipartite analogues for classic dense subgraph discovery algorithms are crucial for efficient
and accurate dense substructure analysis on bipartite graphs.

Indeed, developing algorithms to apply specifically to bipartite graphs has become a recent popular direction of research
[45, 1, 50, 34]. The focus of this work is on the bipartite equivalent of a k-core, known as a bi-core, which was introduced by
Ahmed et al. [1]. Formally, an («, §)-core (or a bi-core) is the maximal subgraph where the induced degree of each vertex
in the first partition is at least «, and the induced degree of each vertex in the second partition is at least 3. The bi-core
decomposition has applications in a variety of fields, including spam detection on social networks [4], community search
on bipartite networks [46], movie viewership analysis [1], and group recommendation [13]. For example, Beutel ef al. [4]
leveraged the bi-core decomposition to detect spammers on user-post social networks, where spammers and fake accounts
often form dense subgraphs by interacting with each others’ posts, and Wang et al. [46] used the bi-core decomposition as
a subroutine for optimizing community search on bipartite networks, by reducing the search space for dense communities.
Parallel Bi-core Decomposition. Liu er al. [28] propose the current state-of-the-art sequential bi-core decomposition
algorithm, which computes the (v, §)-core via multiple graph peeling processes. Their sequential algorithm takes O(dm)
time and O(m) space, where m is the number of edges and § denotes the degeneracy of the graph. Liu et al. also introduce

*Phillips Academy, Andover, MA
TThis work represents an equal contribution between these authors.
FMIT CSAIL, Cambridge, MA

Copyright © 2023 by SIAM
17 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

a parallel algorithm; however, their parallel algorithm only parallelizes across different peeling processes and does not
parallelize the peeling process itself. As a result, it has long sequential dependencies, which limits its parallel scalability.
As the sizes of graphs increase, a bi-core decomposition algorithm with high parallelism and scalability becomes crucial.

We develop an efficient shared-memory parallel bi-core decomposition algorithm that parallelizes the peeling process.
In each round of peeling, it removes all vertices with the lowest induced degree from the graph in parallel until the graph is
empty. We use the classic work-span model to analyze the theoretical complexity of our parallel algorithm, where the work
is the total number of operations, and the span (or the depth) is the length of the longest chain of sequential dependencies.
We prove that for a graph with m edges our algorithm achieves O(ém) work, which matches the best sequential time
complexity. Our algorithm achieves O(plogn) span w.h.p.,! where n is the number of vertices, and p denotes the bi-core
peeling complexity, which we define as the maximum number of rounds of peeling required to remove all vertices from the
graph. Our algorithm uses O(m) space.

Note that p is upper bounded by n, so our span is O(plogn) = O(nlogn) w.h.p. Also, the parallel algorithm introduced
by Liu et al. has a span of O(m), so our parallel algorithm improves upon Liu ez al.’s algorithm when the number of edges
m is (plogn). Moreover, on real world graphs, we find that p log n is generally 2-3 orders of magnitude smaller than m.
We also prove the problem of bi-core decomposition to be P-complete by showing a reduction from the k-core problem to
the bi-core decomposition problem. It is as therefore unlikely that there exists a parallel bi-core decomposition algorithm
with polylogarithmic span under standard assumptions.

In addition, we develop a parallel index structure, which is an extension of Liu et al.’s sequential index structure. The
index structure allows for efficient queries of all vertices « € («, §)-core, for a given « and 3, in work linear to the size of
the core. Our parallel index structure is able to achieve this with O(1) span. We also introduce an algorithm to construct
our index structure in parallel given the bi-core numbers of each vertex in O(m) work and O(log n) span w.h.p.

Finally, we introduce a practical heuristic that optimizes bi-core peeling by pruning the peeling space of the algorithm.
We implement our algorithms and present a comprehensive evaluation on real-world graphs with up to hundreds of millions
of edges. We compare our algorithms against Liu et al.’s parallel and sequential algorithms, which we use as our baselines.
Our parallel bi-core decomposition algorithm achieves up to a 51.4x speedup (average 27.9x) over Liu et al.’s sequential
algorithm on a machine with 30 cores and two-way hyperthreading. Furthermore, it achieves up to a 4.9x speedup (average
2.3x) over their parallel algorithm. Our parallel index construction algorithm attains up to a 27.7x speedup (average 18.4x)
over Liu et al.’s sequential index construction algorithm, and our parallel index query achieves up to a 116.3x speedup
(average 43.8x) over Liu et al.’s sequential index query. Overall, we show that our implementations demonstrate good
scalability over different numbers of threads and over graphs of different sizes.

In summary, the contributions of our work are as follows.

1. We introduce the first theoretically-efficient shared-memory parallel bi-core decomposition algorithm with nontrivial
parallelism. We provide an accompanying parallel index construction and query algorithm.

2. We prove that the problem of bi-core decomposition is P-complete.

3. We introduce practical optimizations and provide fast implementations of our parallel algorithms that outper-
form the existing state-of-the-art algorithms. Our code is publicly available at https://github.com/
clairebookworm/gbbs.

The remainder of the paper is organized as follows. In Section 2, we present related work. In Section 3, we introduce
notation and definitions. In Section 4, we introduce our shared-memory parallel bi-core decomposition algorithm and
discuss the corresponding practical optimizations. In Section 5, we prove the P-completeness of the bi-core decomposition
problem, and in Section 6, we introduce our parallel index construction and query algorithm. In Section 7, we present
additional practical optimizations and our experimental results.

2 Related Work

k-core Decomposition. The bi-core decomposition problem is an extension of the well-studied k-core decomposition
problem; for each vertex v, the k-core decomposition problem asks for the largest integer & such that v is contained within a
subgraph where all vertices have induced degree at least k. The first efficient sequential algorithm for k-core decomposition
was given by Matula and Beck [29], and there has been much work on parallelizations in both the distributed-memory and
shared-memory settings [9, 21, 30, 41, 11].

Other Dense Subgraph Decompositions. k-clique decomposition, k-truss, and (r, s)-nucleus decomposition are all
extensions of k-core decomposition that use higher order substructures to discover dense substructures in a graph. k-

"We say O(f(n)) with high probability (w.h.p.) to indicate O(cf(n)) with probability at least 1 — n~¢ for ¢ > 1, where n is the input size.

Copyright © 2023 by SIAM
18 Unauthorized reproduction of this article is prohibited

https://github.com/clairebookworm/gbbs
https://github.com/clairebookworm/gbbs

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Notation Definition

G An undirected, simple, bipartite graph,
U One bipartition of the vertices in G,
1% Another bipartition of the vertices in G,
x AvertexinU UV,
u A vertex in U,
v A vertexin V,
deg(x) Degree of vertex x,
deg;, (x) Induced degree of vertex = considering only unpeeled vertices,

N(x) A list of vertex z’s neighbors,

Nin(x) A list of vertex x’s induced neighbors considering only unpeeled vertices,
dmax,, The maximum vertex degree in V/,

dmax,, The maximum vertex degree in U,

max g(v) The maximum « value for a given v € V and 3 such that v € (v, 3)-core,
Bmax «(u) The maximum § value for a given v € U and « such that u € («, 3)-core,

maxq(8) The maximum « value such that («, §)-core is nonempty for fixed 3,
maxg(a) The maximum S value such that («, 3)-core is nonempty for fixed v, and
0 The maximum ¢ value such that (, §)-core is nonempty, or the degeneracy.

Table 1: Summary of graph notation.

clique decomposition [42, 38] involves computing the k-clique core number of each vertex v, or the largest ¢ such that there
exists an induced subgraph containing v where all vertices are incident upon at least c induced k-cliques. k-truss is a classic
extension [7, 49, 48, 43, 22, 35, 2] that asks for the largest k for each edge e such that there exists an induced subgraph
containing e where all edges are contained within at least k triangles. Notably, the k-core and k-truss decomposition
problems are part of the MIT GraphChallenge [17], demonstrating their practical importance and popularity. The (r, s)-
nucleus decomposition [36, 35, 39] further generalizes the k-clique and k-truss decompositions, by asking for the largest
c for each r-clique such that there exists an induced subgraph containing the r-clique in which all r-cliques are contained
within at least ¢ induced s-cliques. Notably, k-core decomposition is (1, 2)-nucleus decomposition, k-clique decomposition
is (1, k)-nucleus decomposition, and k-truss is (2, 3)-nucleus decomposition.
Generalization of Decomposition Algorithms to Bipartite Graphs. Another direction of work has focused on
generalizing these decomposition algorithms to bipartite graphs by focusing on other higher-order structures in bipartite
graphs. Zou [50] and Sartyiice and Pinar [34] defined k-tip and k-wing decomposition on bipartite graphs. k-tip
decomposition asks for the largest k£ for each vertex v such that there exists an induced subgraph in which every vertex
is incident to at least k& induced (2, 2)-bicliques. Similarly, k-wing decomposition asks for the largest k for each edge e
such that there exists an induced subgraph in which every edge is incident to at least k& induced (2, 2)-bicliques. Multiple
sequential [33, 50, 34, 43, 45] and parallel [40, 26] algorithms have been developed for k-tip and k-wing decomposition.
Ahmed et al. proposed the (a, 3)-core decomposition problem, or the bi-core decomposition problem and gave the
first sequential bi-core algorithm [1]. Ding et al. applied bi-core to recommender systems and provided a sequential bi-core
algorithm based on the classic k-core peeling algorithm [13]. More recently, Liu et al. developed an efficient computation
sharing sequential bi-core peeling algorithm and a memory-efficient indexing structure to store the bi-cores for efficient
membership queries from vertices [28]. Wang ef al. extended the problem to weighted bipartite graphs to find the bi-core
component with the highest minimum edge weight containing a given query vertex [46].

3 Preliminaries

In this section, we provide the definitions and notations that we use throughout this paper.

Graph Definitions. We take every graph to be simple, undirected, and bipartite. A bipartite graph is a graph G consisting
of two mutually exclusive sets of vertices U and V', such that every edge connects a vertex in U with a vertex in V. In other
words, every edge is of the form (u, v) where u € U and v € V. Let N(z) denote the set of neighbors of vertex z, and let
deg(x) denote the degree of vertex x. In the context of the peeling process, we often discuss a subgraph of G consisting of
all unpeeled vertices. In that case, we use Nj,(x) to refer to the induced neighbors of = and deg;, () to refer to the induced
degree of x in the subgraph. We let dmax,, be the maximum degree of all vertices in V', and dmax,, is symmetrically defined

Copyright © 2023 by SIAM
19 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

for U. We define a bi-core as follows:

DEFINITION 1. A bi-core, or an («,)-core, is the maximal induced subgraph G' = (U', V') of G such that for every
u € U, the induced degree deg;,(u) > «, and for every v € V', the induced degree deg;,(v) > .

We define max,, () to be the maximum « value, given a value (3, such that the («, 3)-core is nonempty. Symmetrically,
maxg(c) is defined to be the maximum [value, given a value «, such that the (c, §)-core is nonempty. The degeneracy
of the graph, J, can be equivalently defined as the maximum § such that the (J, §)-core is nonempty. Note that ¢ is upper
bounded by O(y/m) [27].

See Table 1 for a summary of these notations.

We note two additional facts:

1. ifx € (aq, B1)-core, then x € (ag, B2)-core if as < vy and By < (B [28].
2. Every nonempty («, 3)-core must have o < ¢ and/or 8 < § [28].
Problem Statement. Now, we formally define the bi-core decomposition problem.

DEFINITION 2. For a vertex v € V and fixed 3, we define aumax g(v) to be the maximum o such that v € («, 3)-core.
Symmetrically, for a vertex u € U and fixed o, we define Bmax «(u) to be the maximum B such that u € («, 8)-core.

We call the set of all amax 3(v) and Bmax o (u) values the bi-core numbers. The bi-core decomposition problem is to
compute Smax o(u) for every u € U and every « € [1,dmax,], and symmetrically, auax g(v) for every v € V and every
B € [1,dmax,].

Note that with the bi-core numbers, we can easily determine whether any « € U is in the («, 3)-core for any « and .
If Brmax o(u) > B, then u € (o, §)-core. Similarly, for any v € V, if amax g(v) > @, then v € (e, 5)-core.

Model of Computation. We use the shared-memory model of parallel computation, and in particular, we use the classic
work-span model for our analysis, where the work of an algorithm is the total number of operations executed, and the span
is the length of the longest dependency path [8]. Given work T and span T, the algorithm’s running time on P processors
Tp can be bounded by Tp < T;/P + O(T) using a work-stealing scheduler [6]. We assume arbitrary forking, where
forking n processes has a span of O(1). We show that our algorithms are work-efficient, meaning that they have the same
work complexity as the best sequential algorithm for the same problem.

Parallel Primitives. We now define the parallel primitives that we use throughout our algorithms.

PREFIX-SUM(A) takes as input a sequence of length n and returns a sequence B of the same length such that
Bli] = A[0] & - - - & A[i — 1], where & is a binary associative operator. We assume that the operator is addition unless stated
otherwise. The PREFIX-SUM operation also returns the total sum. It takes O(n) work and O(logn) span [8].

SUFFIX-MIN(A) is a special case of prefix sum, performed on the reverse of A and using min as the operator.
Specifically, it returns a sequence B of length n such that B[i| = min(A[i + 1], A[i + 2], --- , A[n — 1]).

FILTER(A, COND) takes as input a sequence of length n and a condition. It retains all elements such that the condition
is true and outputs these elements in a sequence (in the original order). It takes O(n) work and O(log n) span [8].

WRITE-MAX(a, b) takes as input a variable a and a value b. It atomically reads a, and if a’s value is less than b, it then
updates a’s value to b. If the update is performed successfully, the function returns true, and otherwise, it returns false. We
assume that this takes O(1) work and span.

HISTOGRAM(A) takes as input a sequence of n indices. It applies a parallel semisort to the indices, which it then uses
to create a histogram of the frequencies of each index. It takes O(n) expected work and O(log n) span w.h.p. [18].

RADIX-SORT(A) sorts a sequence of n integers. It takes O(n) work and O(logn) span w.h.p. given that the range of
the integers is bounded by O(nlog®™" n) [32].

4 Parallel Bi-core Decomposition

In this section, we introduce our parallel bi-core decomposition algorithm, which is inspired by Liu et al.’s sequential
algorithm [28]. The goal of the algorithm is to compute the amax g(v) values for every 3 and vertex v € V, and to compute
the Bmax o () values for every o and vertex u € U. Note that amax g(v) = aif v € (o, 8)-core but v & (o + 1, 5)-core.
Symmetrically, Bmax o(u) = Bif u € («a, 8)-core but u & («, 5 + 1)-core. Thus, a peeling-based subroutine is often used
to solve this problem, to discover successive cores [1, 13].

4.1 Background Liu ez al.’s [28] algorithm computes amax g(v) and Bmax «(u) values by calling a peeling subroutine
PEEL-FIX-f3 for every 8’ € [1, 4], where ¢ is the maximum k-core number of the graph. They also perform a symmetric
subroutine PEEL-FIX-« for every o/ € [1, §]. Due to the symmetry of these two subroutines, we only discuss PEEL-FIX- (.

Copyright © 2023 by SIAM
20 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PEEL-FIX-[3 takes as input the fixed 3’ value, and increases the « value of the (v, 8')-core from 1 to max, (/) while
iteratively peeling vertices no longer within the current (c«, 8’)-core. In other words, for each « from 1 to max,(3’), the
algorithm iteratively peels vertices not in each successive core. When peeling a vertex v to discover the (o + 1, 3’)-core,
they update cumax g/ (v) <= v, because it is the highest a value for which v € («, 5’)-core. Similarly, if they discover that
u € (o, B) butu & (o, B’ + 1), they record 3’ as the value of Bax o(u). A symmetric peeling subroutine PEEL-FIX-« is
called for every o’ € [1, §]. Liu er al. prove that these peeling subroutines correctly compute all aax 5 values and Sax o
values.

4.2 Parallel Bi-core Decomposition Algorithm The sequential nature of Liu er al.’s [28] algorithm limits its practical
applicability to large graphs. While Liu ez al. [28] also provide a parallel version of their algorithm, their parallel algorithm
only parallelizes across rounds of peeling (calls to subroutines PEEL-FIX-« and PEEL-FIX-/3), and does not parallelize the
peeling process itself. As a result, their parallel algorithm has a high span of O(m). We present in this section a parallel
bi-core decomposition algorithm, and we prove that our algorithm is work-efficient and has span O(plogn) w.h.p., where p
is the peeling complexity, or the maximum number of rounds needed to empty the graph in any of the peeling subroutines,
where in each round, we peel all vertices with the minimum induced degree.

Our parallel algorithm is also based on a peeling paradigm, and in particular, we parallelize the subroutines PEEL-FIX-
« and PEEL-FIX-3, which we call PAR-PEEL-FIX-« and PAR-PEEL-FIX-{ respectively. Our parallel peeling subroutines
compute the exact same aumax g and Bmax o Values as Liu ez al.’s sequential peeling subroutine, so as a result, the correctness
of our algorithm follows from the correctness of Liu ef al.’s algorithm. Because the two subroutines are symmetric, we only
discuss PAR-PEEL-FIX-[3 here. PAR-PEEL-FIX-(3 takes as input a fixed /3’. Then, it increases a variable « from 1 to max,, (3’)
while peeling all vertices u € U where u € («, 8')-core but u & (o + 1, 8’)-core in parallel in each iteration when « is
increased. The order in which these vertices are peeled does not matter. Thus, this parallel peeling step computes the same
result as Liu ef al.’s sequential peeling step, which peels the vertices sequentially. Note that all such vertices v € U have
induced degree satisfying deg;, (u) < « for the current « value. Then, we peel all vertices v € V where v € («, 8’)-core
butv & (a+ 1, 8’)-core. Every peeled v € V must have induced degree satisfying deg;, (v) < 3, so for each v € V that is
peeled, we update the ayax g (v) value to be the current « value. We then update the « value to be the minimum value o’
such that o/ > « and the (¢, 3’)-core is nonempty.

Two challenges are involved in this process:

1. Finding the minimum «’ such that there exists vertices u € U with induced degree deg;,(u) < o/, and returning this
set of vertices in parallel.
2. Peeling a set of vertices from one partition and updating their neighbors’ degrees in parallel.

To search for the minimum o’ such that there exists u with deg;,(u) < o and to query for this set of vertices in
parallel, we store all vertices U in a parallel bucketing structure Julienne by Dhulipala et al. [11]. Julienne organizes each
u € U into buckets based on its induced degree, where vertices with deg;, (u) > « are stored in the bucket indexed
by deg;,(u), and vertices with deg;,(u) < « are stored in a single bucket indexed by «. Finding the minimum o’
and its corresponding vertices is then equivalent to finding the lowest-indexed nonempty bucket. Julienne supports this
operation NEXT-BUCKET(«t) — (o, U,/), where « is the bucket index to begin the search from, o is the next lowest index
corresponding to a nonempty bucket, and U, is the set of vertices inside the bucket with index o/. The operation has
O(logn) span per query and O(n) work over all queries in a subroutine of PAR-PEEL-FIX-3 [11]. Julienne also supports
updating the degrees of k vertices in O(k) work and O(logn) span w.h.p. [11].

We now discuss how we resolve the second challenge in more detail. The pseudocode of our parallel bi-core
decomposition algorithm is given in Algorithm 1.

First, we discuss the subroutine PAR-DEL-UPDATE, which updates the degrees of vertices after peeling a given set of
vertices. PAR-DEL-UPDATE takes as input an array of vertices Xge and then peels all of these vertices in parallel. On Lines
7-12, we construct an array Yypdae that stores all neighbors y of Xge. Note that if y is incident to multiple vertices in X1,
it appears the same number of times in Y,pgaee. This array can be constructed in parallel using a parallel PREFIX-SUM on
the degrees of the vertices in X4ei. On Line 12, HISTOGRAM aggregates Yypdae and returns a sequence of pairs (y, count).
For every y, count is the number of its occurrences in Ypgae. On Lines 13—14, we iterate through each such y and decrease
its degree by its corresponding count. Note that our pseudocode removes x from G on Line 9 for simplicity, but for our
theoretical bounds, it is sufficient to mark removed vertices in a separate array and ignore them when traversing the graph
in later iterations.

Now, we discuss the main subroutine, PAR-PEEL-FIX-[3. Note that PAR-PEEL-FIX-« is symmetric. We refer to Figure
1 for an example of the computations in PAR-PEEL-FIX-(3, with 3’ = 2 and starting with the graph in Step O.

Copyright © 2023 by SIAM
21 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 1 Parallel Bi-core Decomposition

1: procedure PAR-BI-CORE(G)
2 parfor o/ = 1to § do
3 PAR-PEEL-FIX-a(G, ')
4 parfor 3’ = 1to 6 do
5: PAR-PEEL-FIX-3(G,)
6: procedure PAR-DEL-UPDATE(G, Xgel)
7 Yipdae <] > Create an empty array
8 parfor all = in X4 do
remove x from G

10: parfor all y in Ni,(x) do

11: add y to Yipdate > Record y in parallel for degree update
12: Yhist <~ HISTOGRAM(Yipdate) > Count number of occurrence of each vertex
13: parfor all (y, count) in Yyiq do

14: deg;,(y) + deg, (y) — count

15: return Yipqae

16: procedure PAR-PEEL-FIx-8(G, 3')

17: PAR-DEL-UPDATE(G, {v| deg;,(v) < '} > Remove all vertices in V with degree < 3’
18: Store vertices in U into buckets > Construct bucketing structure from vertices in U based on their degrees
19: while buckets is not empty do

20: (at, Uger) ¢ buckets NEXT-BUCKET(cx) > Extract the next set of vertices with minimum degree
21: parfor all v in Ug. do

22: parfor i = 1 to o do

23: WRITE-MAX(Bmax i(u), 5) > Update Bmax i(u)
24: Vipdate $— PAR-DEL-UPDATE(G, Uder) > Peel vertices v € U with induced degree < «
25: Viger = FILTER (Vypdate, deg;, (v) < B') > Determine vertices v € V no longer in (a, 3')-core
26: parfor all v in Vg do

27: WRITE-MAX (Qax g (V), @) > Update aupax g7 (v)
28: Ulpdate $— PAR-DEL-UPDATE(G, Vgel) > Remove vertices v € V no longer in (a, 3')-core
29: buckets UPDATE-VERTICES(Uypdate) > Update vertices u € U with changed degrees in the bucketing structure
30: procedure PAR-PEEL-FIX-a(G, o)

31: symmetric to PAR-PEEL-FIX-f3

On Line 17 in PAR-PEEL-FIX-(3, we peel all v € V' with degree less than 3’ using the subroutine PAR-DEL-UPDATE.
In Figure 1, this removes vertices 0 and 5, resulting in the graph at Step 1. At this point, all remaining vertices are in the
(0, 8")-core. On Line 18, we initialize the parallel bucketing structure Julienne over the vertices in U, which we call buckets.
We call NEXT-BUCKET on buckets on Line 20 to obtain the next nonempty bucket of vertices, which we store into Uge. We
also update the « value. In our example graph in Figure 1, Ugy = {6, 8,9} and the new « value is 2. Importantly, Uge
records all u with induced degree deg;, (1) < a. Note that for all u € Uge, u € (v, 8)-core. Thus, on Lines 21-23, we can
update the SBax (1) values to 5’ for all u € Uge, which is done in parallel using a WRITE-MAX.

On Line 24, we peel all vertices in the current bucket, Uge. In Figure 1, this results in the graph in Step 2, where
Vipdae = {1,2,3,4}. On Line 25, we store in Vge all v € Vipdae, Where deg; (v) < (’. These vertices are no longer in
(a, B')-core and must be removed. In the example, Vg = {1,2,3,4}. Because these vertices v € Ve satisfy v € («, §)-
core but v ¢ (o + 1, 8')-core, we update the cumax g/ (v) values to « for each vertex v € Vg on Lines 26-27. Then, Line
28 calls PAR-DEL-UPDATE to peel all vertices in Vg . Finally, on Line 29, we use the bucketing structure to update the
degrees of vertices in Uypdare, Which consists of all u € U whose degree is affected by peeling Viei; UPDATE-VERTEX moves
u € Uypdare t0 new buckets corresponding to their new degrees. For vertices in Uypgae With an updated degree < «, we
set their degrees to «, so they are peeled in the next round of peeling. In our example, Uypaae = {7}, and the degree of
vertex 7 is updated to 2. In the second iteration of the while loop, the remaining vertex 7 in the U partition is removed as
deg;,(7) = 0 < 2 = q, thus completing the peeling procedure.

Analysis. We now show that PAR-PEEL-FIX-{ takes O(m) work. First, across all iterations of the while loop, NEXT-
BUCKET takes O(m) work [11]. UPDATE-VERTICES takes O(1) work to update a single vertex, and since each vertex x is
updated at most deg;, () times, the overall work of all updates is bounded by O(__ .y deg;, () = O(m).

Copyright © 2023 by SIAM
22 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Example graph

U 6 7 8 9 Uu 6 7 8 9 U /i\
vV o 1 2 3 4 5 V1 2 3 4 V1 2 3 4
(a) Step 0 (b) Step 1 (c) Step 2

Figure 1: An example peeling process of PAR-PEEL-FIX-/3 where the input 3’ is 2. From Step O to Step 1, all vertices in V' with induced
degree < 2 are removed. From Step 1 to Step 2, all vertices in U with degree < 2 are removed.

B

A

5 +
71234
41
6805 012345678
3 C—
9 1234789
271 67823
1

05 914 67823

» O

1 2 3 4

Figure 2: This shows the peeling space of the example graph in Figure 1, and is discussed in more detail in Section 4.3.

Across all calls of PAR-DEL-UPDATE, each vertex is peeled exactly once. Since we traverse the neighbor of each vertex
in PAR-DEL-UPDATE once, the total work of PAR-DEL-UPDATE in one call of PAR-PEEL-FIX-(is O(m).

The work of updating the amyax g values totals O(n), since each vertex can only appear in Vg exactly once. The
work of updating the Snax o values is bounded by O(m) because for each vertex u, the maximal « value for which
Bmax o(u) > 0 is bounded by deg;, (u). Thus, for each u, Line 23 is only executed O(deg;,(u)) times, which totals to
O3, cu degi,(u)) = O(m). FILTER, over all calls, also takes O(m) work. Thus, PAR-PEEL-FIX-3 has work O(m), and
overall, PAR-BI-CORE takes O(6m) = O(m?>/?) work.

Now, we analyze the span complexity. First, note that PAR-DEL-UPDATE has span O(logn) w.h.p.; this is because
PREFIX-SUM and HISTOGRAM both have O(logn) span w.h.p. Each iteration of the while loop on Line 19 has span
O(log n) w.h.p. because FILTER, PAR-DEL-UPDATE, UPDATE-VERTICES, and NEXT-BUCKET all take O(logn) span w.h.p.
The number of iterations of the while loop is p by definition. The span of PAR-PEEL-FIX-§ is therefore O(plogn) w.h.p.,
and overall, PAR-BI-CORE has span O(plogn) w.h.p.

4.3 Peeling Space Pruning Optimization In this section, we introduce a peeling space pruning optimization to our
algorithm, which is also applicable to the sequential bi-core decomposition algorithm by Liu er al. [28]. Liu et al.’s
algorithm performs the peeling subroutine for every «, from o« = 1 to @ = max,(8’), foreach 1 < ' < 4. Then, it
also performs the same subroutine for every 3, from 8 = 1to § = maxg(a’), foreach 1 < o/ < §. We observe that, in the
process of peeling, all («, 3)-cores with 1 < aw < § and 1 < 8 < § are peeled twice, once when we perform peeling along
increasing « values for different 5’, and again when we perform peeling along increasing 3 values for different o’

To avoid this repetition, we modify Algorithm 1. We will discuss the modification considering increasing « values, but
the same can be applied to increasing /3 values. Instead of peeling from the (1, 8')-core, we modify PAR-PEEL-FIX-3(G, 3)
to peel from the (f’, 5’)-core. In other words, the algorithm starts iteratively, increasing the « value from 8’ to max,, (')
and removing vertices no longer in the current («, 5’)-core at the same time. Notably, we confine o to 8 < o < max, (')
as opposed to 1 < 8 < max,(0’) as used in Liu et al.’s algorithm and in Algorithm 1.

We illustrate this optimization with an example in Figure 2, using the graph from Figure 1. Each grid intersection in
Figure 2 represents an («, /3)-core. Edges represent a single-step peeling operation from the («, 3)-core to the (o, 8 4 1)-

Copyright © 2023 by SIAM
23 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A
5 N 5
71234 71234 :
4 47T
6805 012345678 6805 012345678
31 7 37 S |
9 1234789 9 1234789
05 05
21 7557 67823 27 73347 67823
‘(»78()‘[167891
1 17
05 914 67823 05 914 67823
\ \ — ; : —— O
1 2 3 4 1 2 3 4
(a) Algorithm 1’s Peeling Path (b) Optimized Peeling Path

Figure 3: This figure compares the unoptimized and optimized peeling paths of the example graph in Figure 1. The top figure shows the
unoptimized peeling paths, while the bottom figure shows the optimized peeling paths.

core (upward), or to the (« + 1, 8)-core (rightward). The labeled numbers on an edge represent the indices of vertices that
would be deleted by that specific peeling operation. The circled nodes represent («, 3)-cores that are nonempty, and the
boxed node represents the (d, d)-core. Every core corresponding to a grid position that is not drawn is empty. The circled
nodes form the boundary of the peeling space.

The peeling operations performed by Algorithm 1 can be visualized by the blue highlighted paths in Figure 3a. For
B = 1, we perform a-side peeling from a@ = 1 to & = 4. For 8’ = 2, we again increase « from 1 to 3 while iteratively
removing vertices not within the current bi-core. With the proposed optimization, for 8’ = 2, we only perform peeling from
a = 2to a = 3, starting from the (5’, 8’)-core, or the (2, 2)-core in this case. This is represented by the blue highlighted
peeling paths in Figure 3b.

To show the correctness of the optimized algorithm, we divide the peeling space into three parts: part A where all of
the (v, B)-cores satisfy o > 3, part B where all of the («, §)-cores satisfy 8 > «, and part C with the diagonal (x, =)-cores.
Note that part A of the peeling space corresponds to the section of the peeling space below the diagonal (x, z:)-cores, and
part B corresponds to the section above the diagonal (x, z)-cores. Thus, for the optimized algorithm, when peeling along
increasing « values, it operates in part A of the peeling space; when peeling along increasing [values it operates in part B.

First, we note that the correct ayax g(v) values are computed for all vertices v with (amax g(v), 3)-cores in parts A
and C of the peeling space. For a fixed 3, if v € («, 8)-core but v & (a + 1, 3)-core where av > (3, then amax g(v) is
recorded correctly to be « as we perform the peeling process along « values from o« = § to « = max, (). This update is
performed on Line 27 of Algorithm 1.

Now, we show that the optimized algorithm computes the correct cumax g(v) values for all vertices v with
(cumax g(v), B)-cores in part B of the peeling space. When peeling along increasing § values with a fixed o’ such that
o' = amax 3(v), the algorithm removes v at the (a/, 8')-core, where 8’ > o’ and ' > (. Consider the update given by
Line 23 in subroutine PAR-PEEL-FIX- of Algorithm 1. Using the symmetric update in the subroutine PAR-PEEL-FIX-q,
we update tuyax 5(v) < max(amax g(v), o) forall 8 € [1, 8]. Thus, aumax 5(v) is set to its correct value, o'.

Because parts A, B, and C form the entire peeling space, we have shown that for all S and v, amax g(v) is correctly
computed. Symmetric arguments apply for all Syax o (1), to show that the overall optimized algorithm is correct.

5 P-completeness of Bi-core Decomposition

The span of our Algorithm 1 from Section 4.2 is not polylogarithmic. However, we show here that the bi-core decomposition
problem in general is P-complete, which means that the problem is inherently sequential and cannot be solved with
polylogarithmic span if we accept the standard assumption that P # NC [19]. Note that NC contains problems that can
be solved in polylogarithmic span, or more specifically, problems that can be solved in polylogarithmic time on a parallel
machine with a polynomial number of processors [23]. We show that for small enough « and g, the bi-core decomposition

Copyright © 2023 by SIAM
24 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

problem is in NC. More formally, we prove these results for the decision version of the problem, which is, given « and 3,
and a bipartite graph, decide if the («, 8)-core in the graph is nonempty. This is a generalization of the k-core decision
problem on a bipartite graph: given k, decide if the (k, k)-core is nonempty. We show the P-completeness of bi-core
decision problem using a reduction from the k-core decision problem. Note that the k-core decision problem is P-complete
for £ > 2 and in NC for & = 2 [3].

THEOREM 5.1. The («, 3)-core decomposition problem is P-complete if and only if « > 3and 8 > 2, or 8 > 3 and o > 2.
Otherwise, it is in NC.

When o« = 2 and 8 = 2. For a = 2 and 8 = 2, the (2, 2)-core decomposition problem is equivalent to the k-core
decomposition problem on the bipartite graph with & = 2, which is in NC [3].

When o = 1 or 8 = 1. If @ = 1, then the (1, 8)-core decomposition problem is equivalent to finding all v € V' such that
deg(v) > . These vertices and their neighbors in U form the (1, 3)-core, and can be found in O(1) span. Similarly, we
can find the (a, 1)-core for any « in O(1) span.

When o > 3 and 5 > 3. We perform the reduction from the k-core decision problem in a graph G (that is not necessarily
bipartite) by constructing a bipartite graph G’ such that the k-core decision problem on G is equivalent to the (k, k)-core
decision problem on G’. Let G’ consist of two partitions U and V/, where each partition is a copy of all vertices of G. In
other words, each = € G is copied to 2, € U and z,, € V in G’. We form an edge (z,, y,) in G’ if (x,y) is an edge in G.

Now, we show that for any k, the k-core is nonempty in G if and only if the (k, k)-core is nonempty in G'. If the k-core
of G is nonempty and comprises a vertex subset W, then for w € W, there exists at least k edges of the form (w, p), where
p € W. Let Wy be the set of all vertices x,, € U that represent copies of vertices x € W, and symmetrically, let Wy, be
the set of all x,, € V that represent copies of z € W. Consider W’ = Wy |J Wy in G. Since Wy and Wy, are copies of
W, and each w € W has at least k edges of the form (w, p), we know each wy; € Wy is incident to at least k edges of the
form (wy, py) where pyy € Wy, by construction. A similar argument applies for each wy € Wy . Therefore, W’ forms a
(k, k)-core on the bipartite graph, and the (k, k)-core is nonempty in G'.

Reversely, if the (k, k)-core in G’ is nonempty, we show that the k-core in G is nonempty. Due to the symmetry
of the U and V partitions, if wy € (k, k)-core, then wy € (k, k)-core. Therefore, if the (k, k)-core of G’ is W, then
W' = Wy |UWy, and Wy and Wy, are mirror images of each other. Let TV be the vertex subset in G that corresponds to
Wy and Wy, We show that it is a k-core in G. For each vertex wy € Wy incident to edges of the form (wy, py) where
py € Wy, its corresponding vertex w in W is incident to the corresponding edges of the form (w, p), and p € W because
py € Wy . Since the induced degree deg(wy) > k for each wy € Wy on the subset Wiy U Wy, we must have that the
induced degree deg(w) > k for each w € W on the subset W. Therefore, W forms a k-core of graph G, and since W is
nonempty, the k-core of graph G is nonempty.

Thus, we have shown an NC reduction from the k-core problem to the bi-core problem, since constructing G’ takes

work O(m) and span O(1). Since the k-core decomposition is P-complete for £ > 3 [3], we have shown that the bi-core
decomposition is P-complete for o > 3 and 8 > 3.
When one of o, 3 = 2. We now consider the case where &« = 2 and 3 > 3; the reverse where § = 2 and o > 3 is
symmetric. We show that deciding whether the (2, 8)-core is nonempty has a reduction from the k-core equivalent with
k = B. Consider a graph G that is not necessarily bipartite, and the k-core problem on this graph. We construct a bipartite
graph G’ by replacing every edge in G with a path of length 2. In other words, for each edge (z,y), we add a middle vertex
z and replace the edge with edges (z,z) and (z,y). We let U be the set of middle vertices, and V' be the set of original
vertices in G, and we note that U and V' form the bipartitions of G’. Also, note that we can construct G’ in O(1) span. Now,
deciding if the (2, §)-core nonempty in G’ is equivalent to deciding if the k-core of G is nonempty where k = 3, because
every vertex in V has the same degree as in the original graph, and every vertex in U has degree exactly 2, so they will
always be included in a 3-core for 8 > 3. Given this reduction, the problem of bi-core decomposition is P-complete for
«a = 2and 8 > 3, and symmetrically for 5 = 2 and o > 3.

Thus, we have shown that the bi-core decomposition problem is in NC if and only if a = lor § = 1, ora = § = 2.
Otherwise, it is P-complete.

6 Parallel Bi-core Index Structure

The algorithm in Section 4 computes the amax g(v) values for every § and vertex v € V, and the Bpmax (1) values for
every « and vertex u € U. To enable fast queries for the set of vertices inside a particular («, 3)-core, we parallelize the
sequential index structure by Liu ez al. [28]. Their index structure is constructed sequentially using the computed amax 5(v)
and Bmax «(u) values, and allows for queries of («, 3)-cores in time proportional to the number of vertices in the core. Our

Copyright © 2023 by SIAM
25 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

B|1]2]3

o [1]efale]r]o]0]

060000 000006 0000006

Figure 4: This figure shows the index structure PIV for the example graph in Figure 1. The first level is indexed by § values, and the
second level is indexed by « values, which then point to the corresponding set of vertices in the core. The lines between levels represent
pointers in the structure.

parallel index construction algorithm takes O(m) work and O(logn) span w.h.p., and our parallel query algorithm takes
linear work in the size of the core and O(1) span.

We define PIV and PIY to be the parallel index structures for U/ and V respectively. Note that PI" is our parallel
version of IV from Liu er al.’s work [28], and symmetrically, PIV is the parallel version of IV, where IV and IV are Liu
et al.’s sequential index structures. Because they are symmetric, we only discuss PIV here. Liu et al. define]IX’ 5 to be the
set containing all vertices v € V such that v € («, 3)-core but v ¢ (« + 1, 3)-core; notably, each]Igy 5 points to a location
in memory in their index structure IV. In our parallelization, we define IP]IX, 3 in the same way, and each PHZ} 3 points to a

location in memory in our index structure P1V.
A key difference is that in Liu ef al.’s work, each set Hg 5 1s stored separately. In our parallelization, we store all sets

IP’]IZ, 3 contiguously in memory, ordered first by 3 and then by . We call this array P. In order to access each set IP’]IZ, 8

efficiently, we define a 2D array M, where each M[f3][«] corresponds to a set]P’]I}; 5 and contains the starting index of that
set in P. Note that unlike our other data structures, we define M to be 1-indexed, for the sake of clarity in querying for
the («, B)-core. By definition, IP’]I}; 5 consists of all vertices in P in the range [M[3][a], M[B][a + 1] — 1]. Thus, the range

[M[B][a], M[B + 1][0] — 1] gives precisely the vertices that correspond to | J;= «(8)]P’HX 5, which is the set of all vertices
in the («, 8)-core. Figure 4 shows an example of the PI" index structure for the example graph from Figure 1.

To efficiently query the («, 3)-core, we return all vertices in P in the range [M[(][a], M[5 + 1][0] — 1]. This takes
O(|(«, B)-core|) work and O(1) span.

6.1 Parallel Index Construction In this section, we detail our index construction algorithm for index structure PI. Note
that the algorithm for constructing PIY is symmetric. The inputs to the construction algorithm are the amax g(v) values for
every 3 and every vertex v € V. The objective is to construct PIV, which consists of M and P.

First, we construct P. For every v € V and a [value such that a,ax g(v) > 0, we store in an array a tuple
(B, @max g(v),v). We then perform paralle]l RADIX-SORT on these tuples to obtain P. To construct M, we apply a parallel
filter to find the indices of P at which the 8 or amax g(v) values change. We store these indices in an array, TPT (total
pointer table). We also find indices where only the /3 values change, which we store in FPT (first pointer table). These two
tables contain the required information to form M.

The pseudocode for our parallel index construction algorithm is in Algorithm 2. We now discuss our algorithm in more
detail. First, on Line 2, we store a list of tuples (8, amax 5(v),v) in P. This is the list of all possible combinations of
B and v € V, with the corresponding ayax g(v) value, where auax g(v) > 0. We perform parallel RADIX-SORT on P
based on the ordering of first the 5 values and then the « values, on Line 3; note that the third value v in the tuple need
not be sorted. For our example graph in Figure 1, the sorted P = [(1, 3,0),(1,3,5),(1,4,1),(1,4,2),(1,4,3),(1,4,4),
(2,2,0),(2,2,1),(2,2,2),(2,2,3),(2,2,4),(2,2,5),(3,1,0),(3,1,1),(3,1,2),(3,1,3),(3,1,4),(3,1,5)], as illustrated
by the example index structure in Figure 4. Then, we initialize an empty 7PT on Line 4 with the same size as P. The
parallel for-loop on Lines 5-8 finds all indices at which either the 3 value or the « value in P changes. This is accomplished
by marking the indices where consecutive values differ on Line 7 and filtering out all of the unmarked index positions on
Line 8. Constructing TPT essentially breaks up the array P into blocks where each block has the same /3 and « values, and
corresponds to set }P’HX’ - TPT[i] records the starting index location of the i™ block. Lines 9-13 repeat the entire process,
but for FPT, to filter out index positions where only the 3 value of P changes. Note that the indices stored in FPT are not
indices of positions in P. Instead, they are indices of positions in TPT; this is to form the second level of the 2D array M.
[FPT[3 — 1], FPT[3] — 1] gives the range of blocks defined by TPT with this particular 3 value, and it corresponds to set

174
8) Pla,g-

0<a<maxq

Copyright © 2023 by SIAM
26 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 2 Parallel Index Construction

1: procedure BUILD-V-INDEX((max g(v) values)

2 P <+ array of (3, amax g(v),v) foreveryv € V

3 RADIX-SORT(P) > Sorts P by first £, and then «
4 Initialize TPT > Creates an empty TPT of length |P)|
5: parfor i = 0 to P.size — 1 do

6: ifi = 0or P[i — 1.8 # P[i].8 or P[i — 1].a # P[i].c then

7
8
9

TPT[i]+ ¢ > Records index where 3 or o changes value
FILTER(TPT, element is not empty) > Filter out empty indices
: Initialize FPT > Creates an empty FPT of length | P|
10: parfor i = 0 to TPT .size — 1 do
11: if i = 0 or P[TPT[i — 1]1.8 # P[TPT[i]].(then
12: FPT[i]+ 1 > Records index of TPT array where /3 changes
13: FILTER(FPT, element is not empty) > Filter out empty indices
14: Initialize M > Creates empty M array with 1% dimension = FPT .size and 2™ dimension = max,,(3)
15: parfor 5 = 1 to FPT.size do
16: parfor j = FPT[S — 1] to FPT[3]—1 do
17: start <— TPT[j] > Obtains starting index of 5™ block
18: M [B][P|start].cr] < start > Stores starting index; P[start].cv gives j™ block’s corresponding o value
19: M{[B] < SUFFIX-MIN(M[B])

20: return M
21: procedure BUILD-U-INDEX(Bmax o (u) values)
22: symmetric to BUILD-V-INDEX

Finally, based on FPT and TPT, we create M in the following manner. We obtain M [§] for each (value independently.
Line 16 iterates in parallel over the blocks that have the particular 3 value. For each block j, on Lines 17-18, we store its
starting position TPT[j] to M [S][c;], where o is the a value corresponding with the j™ block. Thus, we have constructed
MB][«] for all (8,) pairs such that o’ equals aypax g(v) for some v € V. The 2D array M created from our example
graph is visually represented by the first two levels of the index structure in Figure 4.

For pairs (5,) where o does not appear in aax g(v) for some v € V, we point M[f5][a] to the same location as

MB][a'] where ' is the smallest value > « that appears in ayax g(v) for some v € V. We accomplish this by performing
SUFFIX-MIN on M [5] on Line 19.
Analysis. Since P.size = O(m), and since we only need to sort each tuple (5, amax (v), v) by the first element 5 and
second element aax g(v), if we compress the pairs (3, amax) into integer keys, the range of these keys is bounded by
0321 < p<dmaxy MaXa(8)) = O(m) [28]. The compression can be done since we know the max, () value for each f3.
Thus, we can construct a mapping from each pair (3, @) to an index by running a prefix sum over the max,,(3) values for
each 8 € [1,dmaxy|. The mapping can then be stored in a parallel hash table to be used during the RADIX-SORT, which
as such takes O(m) work w.h.p. Lines 4-13 also take O(m) work, proportional to the sizes of TPT and FPT. Lines 14-19
take O(m) work, because we loop through M exactly once and the table takes O(m) space, as in its sequential counterpart
in [28].

Algorithm 2 has span O(logn) w.h.p., since RADIX-SORT, FILTER, SUFFIX-MIN, and hash table operations [16] are
bounded by O(log n) span w.h.p.

7 Experiments

In this section, we provide a comprehensive evaluation of our parallel bi-core decomposition algorithm.

7.1 Experimental Setup We experiment using real-world bipartite graphs from the KONECT graph database [25], the
details of which are given in Table 2. As seen in Table 2, the bi-core peeling complexities, or p, of these real-world graphs
are in general 3—4 orders of magnitude smaller than their numbers of edges m. This indicates that the O(plogn) span
w.h.p. achieved by our parallel bi-core decomposition algorithm is significantly lower than the O(m) span achieved by the
previous state-of-the-art parallel algorithm [28].

We use Google Cloud Platform c2-standard-60 instances, which are 30-core machines with two-way hyper-
threading, with Intel 3.1 GHz Cascade Lake processors and 240 GB of memory; the processors have a maximum turbo

Copyright © 2023 by SIAM
27 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Name |U| V| m dmax 0 P

Orkut 2778M 8.73M 327TM 318K 466 12100
Web Trackers 27.7M 12.7M 140.6M 11.57TM 437 4542
TREC 556K 1.17M 83.6M 457K 508 6029
LiveJournal 3.20M 7.49M 112M 1.05SM 108 6831
Reuters 781K 284K 60.6M 345K 192 4767
Epinions 120K 755K 13.67TM 162K 151 3049
Flickr 396K 104K 8.55M 35K 147 2300

Table 2: The graphs used in our experiments, along with the sizes, maximum degree (dmax), degeneracy (J), and number of rounds
required in peeling, or the bi-core peeling complexity, (p) are shown.

clock-speed of 3.8 GHz.

7.2 Implementation and Other Optimizations While our parallel bi-core decomposition algorithm (Algorithm 1)
is theoretically efficient, it is practically slow due to the overhead incurred by the histogram-based PAR-DEL-UPDATE
subroutine. We implemented the fully parallel algorithm and found it to be orders of magnitude slower than Liu et al.’s
algorithm on certain graphs, and it is overall slower on all of the datasets that we experiment with. Thus, for a practically
fast implementation, we do not parallelize the bi-core peeling process as described in Section 4. Instead, we only parallelize
across different peeling processes, similar to Liu et al.’s parallel algorithm [28]. Our parallel implementation differs from
Liu et al.’s work in that we utilize the Julienne bucketing structure [11] to search for the next set of vertices with minimum
induced degree in each peeling iteration. Julienne was originally designed as a parallel bucketing structure, but we use a
sequential version, since the additional parallelism does not improve our algorithm’s performance. Liu et al.’s algorithm,
on the other hand, uses a simple sequential search to find the next set of vertices with minimum induced degree. In addition,
our parallel implementation includes the peeling space pruning optimization described in Section 4.3. We demonstrate in
this section that our optimization techniques are effective.

We use Liu er al.’s sequential and parallel bi-core decomposition algorithms as baselines. In total, we perform our
experimental analysis on the following bi-core decomposition algorithms:

1. LIU-SEQ: Liu et al.’s sequential algorithm [28];

2. LIU-PAR: Liu et al.’s parallel algorithm [28]; and

3. PAR: Our parallel algorithm, which differs from LIU-PAR in that we use Julienne [11] and the peeling space pruning
optimization described in Section 4.3.

We also perform experiments on the following bi-core index construction and query algorithms. Note that Liu et
al. do not provide parallel implementations for their bi-core index construction and query algorithms, so their sequential
implementations are the state of the art.

1. LIU-CONS: Liu et al.’s sequential bi-core index construction algorithm [28];

2. LIU-QUERY: Liu e al.’s sequential bi-core query algorithm [28];

3. IND-CONS: Our parallel bi-core index construction algorithm as detailed in Algorithm 2; and
4. QUERY: Our parallel bi-core query algorithm, as described in Section 6.

We use the Graph Based Benchmark Suite (GBBS) [12] to implement our algorithms. All of our code is written in
C++ and compiled with the —03 flag, and we use the work-stealing scheduler from PARLAYLIB by Blelloch er al. [5]. We
perform each experiment three times and report the average running time.

Because QUERY and LIU-QUERY are extremely fast, we perform query experiments in batches of 10,000 bi-core queries
per batch, and report the total time for the batch. For each («, 3)-core query in the batch, the («, 8)-core to be queried is
uniformly at random selected from all non-empty bi-cores in the input graph. We test both QUERY and LIU-QUERY on the
same set of randomly sampled (c, 3)-cores.

We run our parallel algorithms, including PAR, IND-CONS, and QUERY, on 30 threads; using 60 hyper-threads, in
general, does not improve their performances. However, we find that LIU-PAR benefits from hyper-threading, and we
compare to LIU-PAR using 60 hyper-threads.

7.3 Bi-core Decomposition In this section, we discuss the performance of the bi-core decomposition algorithms LIU-
SEQ, LIU-PAR, and PAR.
Comparison to Prior Work. Figure 5 shows the comparison of our parallel bi-core decomposition implementation to the

Copyright © 2023 by SIAM
28 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm B liu-par (30 threads)
10000

Bl liu-seq B liu-par (60 hyper-threads) 15
. Bl par (1 thread) par (30 threads) g —+— Orkut
-~ ° = Web Trackers
Q
8 100 8101 —~ TREC
o 1 .
£ 3 E —— LiveJournal
= 10 | b
©
2 | 1 ® 54 —— Reuters
€ | o ..
é 1 | = —o— Epinions
j @ —=— Flickr
0.1 T T T T T T T 0 T T T T T 1
Orkut Web Trackers TREC LiveJournal Reuters Epinions Flickr 2 4 8 16 30 60h
Dataset Number of Threads

Figure 5: This figure compares the running time (in seconds)

] . > . Figure 6: This figure compares the parallel self-relative
of various bi-core decomposition algorithms, namely LIU-

speedups of PAR (in black) and LIU-PAR (in green) over dif-
PAR, LIU-SEQ, and PAR. LIU-PAR on 60 hyper-threads runs ferent numbers of threads. LIU-PAR on 60 hyper-threads runs
out of memory for the Orkut and Web Trackers graphs, hence out of memory for the Orkut and Web Trackers graphs. Also,
the missing bars. However, LIU-PAR is able to finish running “60h” stands for 60 hyper-threads

on all graphs on 30 threads.

state-of-the-art sequential and parallel implementations [28]. Our parallel implementation PAR attains between 18.2-51.4x
speedups over LIU-SEQ, with an average speedup of 27.9x. Compared to LIU-PAR running on 60 hyper-threads, PAR also
achieves between 1.5-2.0x speedups over LIU-PAR, with an average speedup of 1.8x. However, we note that LIU-PAR runs
out of memory when running on 60 hyper-threads for large graphs, specifically Orkut and Web Trackers. This is because
LIU-PAR keeps a separate copy of the table storing the bi-core numbers (i.e. the amax g(v) and Bmax o(u) values) for
each thread, so it consumes a significant amount of memory when running on a large number of threads. In comparison, our
algorithm PAR keeps a single global copy of this table, which also reduces the overall memory consumption of PAR compared
to LIU-PAR. For Orkut and Web Trackers, the running times reported in Figure 5 represent LIU-PAR’s performance on 30
threads, which does not run out of memory on these graphs. Compared to running LIU-PAR on 30 threads, PAR is able to
achieve 1.9—4.9x speedups, with an average of 2.7x. Considering the best running times of LIU-PAR for each graph, PAR is
between 1.5-4.9x faster than LIU-PAR, with an average of 2.3x.

We outperform LIU-PAR due to our peeling space pruning optimization and our use of Julienne [11]. In particular,

LIU-PAR performs more repeated work for cores that are processed by both peeling along increasing « values and peeling
along increasing (3 value, as explained in detail in Section 4.3. Additionally, we note that our single-threaded running times
achieve between 1.8—10.3x speedups over LIU-SEQ, with an average speedup of 3.9x. This demonstrates the effectiveness
of our optimizations, particularly our peeling space pruning optimization, even in the sequential setting.
Analysis of Scalability. Figure 6 demonstrates the parallel scalability of our algorithm over different numbers of threads.
PAR achieves up to a 14.6x self-relative speedup, with an average of 12.2x across our different input graphs, comparing
our running time on 30 threads to our single-threaded running time. In comparison, LIU-PAR, when running on 60 hyper-
threads, achieves a similar average self-relative speedup of 13.5x and a maximum of 14.3x. When LIU-PAR is run on 30
threads, it attains an average self-relative speedup of 10.5x, with a maximum of 13.1x.

We note that there is a plateau of the speedup achieved by PAR from 30 threads to 60 hyper-threads due to the strong
inherent parallelism of our algorithm; the additional parallelism provided by hyper-threading does not improve its running
time.

7.4 Bi-core Index Now, we discuss the performance of the parallel bi-core index construction and query algorithms.
Bi-core Index Construction. As shown in Figure 7, our parallel index construction algorithm IND-CONS consistently
outperforms the sequential algorithm LIU-CONS across different graphs. Using 30 threads, IND-CONS achieves 10.6—
27.7x speedups over LIU-CONS, with an average speedup of 18.4x. We additionally note that constructing the index is not
computationally intensive compared to computing the bi-core decomposition, and the running times of IND-CONS constitute
2.2%-8.3% of the running times of PAR.

Figure 8 shows the self-relative speedups of IND-CONS across different number of threads and over graphs of different
sizes. We observe good scalability, with 20.7-28.5x self-relative speedups of IND-CONS on 30 threads; the average self-
relative speedup is 24.7x.

Bi-core Index Query. Our parallel QUERY operation attains between 17.1-116.3x speedups over LIU-QUERY, as
demonstrated by Figure 9, with an average of 43.8x. Our significant speedups are due to our parallelization and due to

Copyright © 2023 by SIAM
29 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1000
. B liu-cons
0) 40
2 100 B ind-cons g -~ Orkut
g E 30 -=- Web Trackers
= 104 & -+ TREC
2 £ 204 ¥ LiveJournal
E 14 % Reuters
=} o
[& 107 -o- Epinions
2 .
0.1 @) = Flickr
& o <) A o < T T T T T 1
& o&oo és@«, & & 1 2 4 8 16 30 60h
< & T Number of Threads
Dataset . . .
Figure 8: This figure shows the parallel self-relative speedup
Figure 7: This figure shows the running times of Liu et al.’s of IND-CONS over different numbers of threads. Note that
sequential index construction algorithm, LIU-CONS and our “60h” stands for 60 hyper-threads.

parallel index construction algorithm, IND-CONS.

1000 -

B liu-query
'g B query 2 -o- Orkut
& 1007 8 -=- Web Trackers
2 a -+ TREC
= 104 3 + LiveJournal
o -
£ 3 Reuters
5 11 E -o- Epinions
« & = Flickr
0.1 0 T T T T T 1
g N B 1 2 4 8 16 30 60h
& & & > & &
& @ X & A © Number of Threads
° & < 4050‘) & Q\Q‘ Q
& >
b Dataset Figure 10: This graph shows the parallel self-relative
speedups of PAR-QUERY over different numbers of threads,
Figure 9: This graph shows the running times of Liu et running on a batch of 10,000 queries. Note that “60h” stands
al.’s sequential query algorithm, LIU-QUERY, and our parallel for 60 hyper-threads.

query algorithm, QUERY, on a batch of 10,000 queries.

our usage of a compact storage format for our index structure, which gives us better cache locality for batches of queries.

Figure 10 shows the parallel scalability of QUERY over different numbers of threads. QUERY achieves between 2.6—
6.9x self-relative speedup on 30 threads, with an average of 5.3x. Overall, it shows good scalability over most of our input
graphs, especially graphs with larger sizes.

8 Conclusion

In this paper, we develop a work-efficient shared-memory parallel bi-core decomposition algorithm with improved span
bounds. Our parallel algorithm improves the span complexity from the state-of-the-art O(m) to O(plogn) w.h.p.
Furthermore, we prove the problem of bi-core decomposition to be P-complete. We also introduce a parallel indexing
structure to store the bi-cores, and provide work-efficient parallel index construction and query algorithms. Finally,
we introduce a practical optimization reducing the amount of computation in the peeling process, and we provide fast
implementations of all of our algorithms. We perform a thorough experimental evaluation of our algorithms on real-world
bipartite graphs, and demonstrate that our parallel algorithms outperform the previous best parallel implementation by up
to 4.9x for computing the bi-core numbers, and outperform the previous best sequential implementation by up to 27.7x for
constructing the index structure and up to 116.3x for querying the bi-cores. We also show that our bi-core decomposition
algorithms are scalable to various real-world graphs with up to hundreds of millions of edges.

Acknowledgements

This research is supported by MIT PRIMES, NSF GRFP #1122374, DOE Early Career Award #DE-SC0018947, NSF
CAREER Award #CCF-1845763, Google Faculty Research Award, Google Research Scholar Award, cloud computing

Copyright © 2023 by SIAM
30 Unauthorized reproduction of this article is prohibited

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

credits from Google-MIT, FinTech@CSAIL Initiative, DARPA SDH Award #HR0011-18-3-0007, and Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]

(9]
[10]
(11]
[12]
[13]
(14]
[15]
[16]

(17]
(18]

[19]
(20]

(21]
(22]

(23]
(24]

[25]
[26]

(27]
(28]

Adel Ahmed, Vladimir Batagelj, Xiaoyan Fu, Seok-hee Hong, Damian Merrick, and Andrej Mrvar. Visualisation and analysis of
the internet movie database. In International Asia-Pacific Symposium on Visualization, pages 17-24, 2007.

Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S. Mailthody, Rakesh Nagi, Jinjun Xiong, and Wen-mei
Hwu. Update on k-truss decomposition on GPU. In IEEE High Performance Extreme Computing Conference (HPEC), pages 1-7,
2019.

Richard J. Anderson and Ernst W. Mayr. A p-complete problem and approximations to it. In Stanford Technical Report, 1984.
Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. Copycatch: Stopping group attacks
by spotting lockstep behavior in social networks. In Proceedings of the International Conference on World Wide Web, page 119-130,
2013.

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Brief announcement: ParlayLib — a toolkit for parallel algorithms on
shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 507-509,
2020.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing. J. ACM, 46(5):720-748,
sep 1999.

Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. Technical Report, National Security Agency, 2008.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press,
2009.

N. S. Dasari, R. Desh, and M. Zubair. ParK: An efficient algorithm for k-core decomposition on multicore processors. In IEEE
International Conference on Big Data, pages 9-16, 2014.

Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 269-274, 2001.

Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for parallel graph algorithms using work-efficient
bucketing. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 293-304, 2017.

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. The graph based benchmark suite (GBBS). In
GRADES-NDA, pages 1-8, 2020.

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. Efficient fault-tolerant group recommendation using alpha-beta-core.
In ACM on Conference on Information and Knowledge Management, page 2047-2050, 2017.

Daniel C Fain and Jan O Pedersen. Sponsored search: A brief history. Bulletin-American Society For Information Science And
Technology, 32(2):12, 2006.

Valeria Fionda, Luigi Palopoli, Simona Panni, and Simona E. Rombo. Bi-grappin: bipartite graph based protein-protein interaction
network similarity search. In /IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 355-361, 2007.

J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. In I[EEE Symposium on Foundations
of Computer Science (FOCS), pages 698710, 1991.

GraphChallenge. http://graphchallenge.mit.edu/.

Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. A top-down parallel semisort. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 24-34, 2015.

1. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

Rut Jesus, Martin Schwartz, and Sune Lehmann. Bipartite networks of wikipedia’s articles and authors: a meso-level approach. In
Proceedings of the International Symposium on Wikis and Open Collaboration, pages 1-10, 2009.

H. Kabir and K. Madduri. Parallel k-core decomposition on multicore platforms. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1482-1491, 2017.

Humayun Kabir and Kamesh Madduri. Parallel k-truss decomposition on multicore systems. In /IEEE High Performance Extreme
Computing Conference (HPEC), pages 1-7, 2017.

Dexter C Kozen. Theory of Computation, volume 121. Springer, 2006.

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawling the web for emerging cyber-communities.
Computer Networks, 31(11-16):1481-1493, 1999.

Jérdme Kunegis. KONECT: the Koblenz network collection. In International Conference on World Wide Web (WWW), pages
1343-1350, 05 2013.

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna, and Cesar A. F. De Rose. Receipt: Refine coarse-grained independent tasks
for parallel tip decomposition of bipartite graphs. Proc. VLDB Endow., 14(3):404—417, November 2020.

Don R Lick and Arthur T White. k-degenerate graphs. Canadian Journal of Mathematics, 22(5):1082—-1096, 1970.

Boge Liu, L. Yuan, Xuemin Lin, Lu Qin, W. Zhang, and Jingren Zhou. Efficient («, 3)-core computation in bipartite graphs. VLDB
J., 29:1075-1099, 2020.

Copyright © 2023 by SIAM
31 Unauthorized reproduction of this article is prohibited

http://graphchallenge.mit.edu/

Downloaded 01/22/23 to 12.138.45.132 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

(47]

(48]
[49]

[50]

David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417-427,
July 1983.

Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. Distributed k-core decomposition. [IEEE Transactions on
Parallel and Distributed Systems, 24(2):288-300, 2013.

Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou, Costas Bouyioukos, Evripides Markou, and Pantelis G Bagos.
Bipartite graphs in systems biology and medicine: a survey of methods and applications. GigaScience, 7(4), 02 2018.

Sanguthevar Rajasekaran and John H. Reif. Optimal and sublogarithmic time randomized parallel sorting algorithms. SIAM Journal
on Computing, 18(3):594-607, 1989.

Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyiice, and Srikanta Tirthapura. Butterfly counting in bipartite networks. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pages 2150-2159, 2018.

Ahmet Erdem Sariyiice and Ali Pinar. Peeling bipartite networks for dense subgraph discovery. In ACM International Conference
on Web Search and Data Mining (WSDM), pages 504-512, 2018.

Ahmet Erdem Sariyiice, C. Seshadhri, and Ali Pinar. Local algorithms for hierarchical dense subgraph discovery. VLDB
Endowment, 12(1):43-56, 2018.

Ahmet Erdem Sariyiice, C. Seshadhri, Ali Pinar, and Umit V. Catalyiirek. Nucleus decompositions for identifying hierarchy of
dense subgraphs. ACM Trans. Web, 11(3):16:1-16:27, July 2017.

EN Sawardecker, CA Amundsen, M Sales-Pardo, and Luis AN Amaral. Comparison of methods for the detection of node group
membership in bipartite networks. The European Physical Journal B, 72(4):671-677, 2009.

Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms. In SIAM Conference on Applied
and Computational Discrete Algorithms (ACDA), pages 135-146, 2021.

Jessica Shi, Laxman Dhulipala, and Julian Shun. Theoretically and practically efficient parallel nucleus decomposition.
Proceedings of the VLDB Endowment, 15(3):583-596, November 2021.

Jessica Shi and Julian Shun. Parallel algorithms for butterfly computations. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), pages 16-30, 2020.

Alok Tripathy, Fred Hohman, Duen Horng Chau, and Oded Green. Scalable k-core decomposition for static graphs using a dynamic
graph data structure. In IEEE International Conference on Big Data (Big Data), pages 1134-1141, 2018.

Charalampos Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the International Conference on World Wide
Web, page 1122-1132, 2015.

Jia Wang and James Cheng. Truss decomposition in massive networks. Proc. VLDB Endow., 5(9):812-823, May 2012.

Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying user-based and item-based collaborative filtering approaches by
similarity fusion. In International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 501-508,
2006.

Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. Towards efficient solutions of bitruss decomposition for large-scale
bipartite graphs. The VLDB Journal, pages 1-24, 03 2021.

Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang. Efficient and effective community search on
large-scale bipartite graphs. In IEEE International Conference on Data Engineering (ICDE), pages 85-96, 2021.

SiZhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, and Hanghang Tong. Hidden: hierarchical
dense subgraph detection with application to financial fraud detection. In SIAM International Conference on Data Mining (SDM),
pages 570-578, 2017.

Yang Zhang and Srinivasan Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs within networks. In IEEE
International Conference on Data Engineering (ICDE), pages 1049-1060, 2012.

Feng Zhao and Anthony Tung. Large scale cohesive subgraphs discovery for social network visual analysis. Proceedings of the
VLDB Endowment, 6:85-96, 12 2012.

Zhaonian Zou. Bitruss decomposition of bipartite graphs. In Database Systems for Advanced Applications, pages 218-233, 2016.

Copyright © 2023 by SIAM
32 Unauthorized reproduction of this article is prohibited

	Introduction
	Related Work
	Preliminaries
	Parallel Bi-core Decomposition
	Background
	Parallel Bi-core Decomposition Algorithm
	Peeling Space Pruning Optimization

	P-completeness of Bi-core Decomposition
	Parallel Bi-core Index Structure
	Parallel Index Construction

	Experiments
	Experimental Setup
	Implementation and Other Optimizations
	Bi-core Decomposition
	Bi-core Index

	Conclusion

