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SAVER: Safe Learning-Based Controller for
Real-Time Voltage Regulation

Yize Chen, Yuanyuan Shi, Daniel Arnold and Sean Peisert

Abstract—Fast and safe voltage regulation algorithms can
serve as fundamental schemes for achieving a high level of
renewable penetration in the modern distribution power grids.
Faced with uncertain or even unknown distribution grid models
and fast-changing power injections, model-free deep reinforce-
ment learning (DRL) algorithms have been proposed to find
the reactive power injections for inverters while optimizing the
voltage profiles. However, such data-driven controllers can not
guarantee satisfaction of the hard operational constraints, such
as maintaining voltage profiles within a certain range of the
nominal value. To this end, we propose SAVER: SAfe VoltagE
Regulator, which is composed of an RL learner and a specifically
designed, computational efficient safety projection layer. SAVER
provides a plug-and-play interface for a set of DRL algorithms
that guarantees the system voltages to be within safe bounds most
of the time. Numerical simulations on real-world data validate
the performance of the proposed algorithm.

Index Terms—Machine Learning, Power Systems Operations,
Reinforcement Learning, Safety

I. INTRODUCTION

The voltage regulation problem has been investigated for
decades, yet the increasing penetration from distributed re-
newable resources keeps adding new challenges to such foun-
dational control tasks. With the greater fluctuations coming
from active power injections (e.g., rooftop solar panels and
electric vehicles), along with the high r/x ratios of distribution
lines/cables, unacceptable voltage swings may appear in the
current distribution grids [1]. While on the other hand, smart
inverters of fast-acting distributed energy resources (DERs)
can provide reactive power injections in real-time, which can
be systematically designed to optimize the voltage profiles [2].

Previous efforts on the voltage regulation problem focus
on designing either centralized or decentralized controllers
with optimality guarantees with exact grid models [3], [4].
This requires distribution grid system operators to either know
the exact topology and line parameters or take extra steps to
identify such modeling knowledge [5]. With the increasing
availability of grid measurements and sensing data, there is a
growing interest in designing model-free, data-driven voltage
regulation algorithms such as reinforcement learning (RL) to
achieve real-time decision making [6], [7].

The RL training process holds the promise of finding control
policies with good performance in terms of minimizing the
voltage deviations and regulating costs, while it does not need
explicit knowledge of the grid parameters. By aggregating
nodal voltage and active power injections as the states, the RL
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Fig. 1: The proposed learning-based control strategy to safely regulate
distribution grid voltage.

agent is trained by interacting with the power grid environment
by using learned reactive power injections as actions. However,
compared to the model-based counterparts [4], RL is trained
to maximize the accumulated reward, while hard physical
constraints such as feasible voltage magnitudes are mostly not
guaranteed to be satisfied. Unsafe reactive power injections can
cause severe impacts over the grids such as voltage collapse
and load shedding [8], [9].

Recent works seek to promote RL safety by reward function
shaping [10], whereby combining constraint violation infor-
mation, the RL agent learns to avoid unsafe actions and states
as such can lead to a high penalty. However, in the training
process agents still have to violate the safety constraint and
receive the penalty multiple times before it learns to avoid it.
In addition, safety is more like an implicit regularization in
such methods, as violations of the safety constraint can lead
to high costs, while it does not always guarantee safety during
implementation. In [11], [12], the voltage regulation problem
is modeled as constrained Markov Decision Process (CMDP)
to constrain the state in safe space probabilistically, yet no
formal guarantees can be made regarding the voltage profiles
in the training or implementation stage.

In this paper, we propose SAVER, which is composed of a
novel safety layer to overcome such safety concerns regarding
RL voltage regulators. By making use of the underlying grid
information, we design a projection layer that projects the
reactive power injection outputted by the trained RL policy
into a safety set of nodal voltage magnitudes. The scheme of
the resulting procedure is illustrated in Fig. 1. The proposed
method can fast compute safe reactive power injections in
terms of voltage constraints with guarantees. Moreover, the
safety learning framework can be embedded as a lightweight
plug-and-play module for most if not all standard reinforce-
ment learning algorithms. This work is partly inspired by [13],
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where a safe exploration strategy is proposed for reinforcement
learning agents in the area of robotic control. We also note
that [14] proposed a linear projection for safe voltage control
policy, yet it only works for the special case where only
one single node’s voltage hits the safety boundary, while this
paper’s safety layer works for the general voltage safety set.

The advantages of applying the proposed data-driven volt-
age regulator are multi-fold. First, it utilizes the empirically
proven advantages of RL algorithms to search the space of
neural network parameterized voltage controllers, that can
optimize the voltage derivations and control costs without the
exact grid information. Second, it limits the search of the safe
policy only to local control actions within the neighborhood
of a trained RL policy, adding little computation burden for
the resulting controller. Third, the use of such a safety layer
encodes the physical constraints, and opens the door for
designing a practical controller for inverters.

II. PRELIMINARIES: POWER FLOW MODELS AND
PROBLEM FORMULATION

In this work, we focus on the voltage regulation model for
a radial distribution network. We use the graph G = (N ∪
{0}, E) to represent a radial distribution feeder with N + 1
buses with bus 0 denoting the reference bus, and E is the set of
connected transmission lines. We denote p ∈ RN and q ∈ RN

as the nodal active and reactive power injections respectively.
The relationship between the voltage and power injections

can be stated as power flow equations. For each line, denote
sik = pik + jqik as the complex power flow from bus i to
bus k, and denote the line impedance as zik = rik + jxik. We
adopt the DistFlow formulation [15] as follows

−pj = pij − rij lij −
∑

k:(j,k)∈E

pjk, j = 1, ..., n (1a)

−qj = qij − xij lij −
∑

k:(j,k)∈E

qjk, j = 1, ..., n (1b)

vj = vi − 2 (rijpij + xijqij) + (r2ij + x2
ij)lij , (i, j) ∈ E

(1c)

lij =
p2ij + q2ij

vi
(1d)

where lij = |Iij |2, vi = |Vi|2. Equation (1) defines a nonlinear
relationship between the active power injection p, reactive
power injection q, and the nodal voltage magnitude v.

We consider our control devices are inverter-based DERs
(such as renewable generators, battery energy storage), that
can change their reactive power output q in a fast timescale
to provide voltage regulation. Denote the set of controllable
qi, i ∈ C using the set of nodes C. At each time step, the
optimal voltage regulation problem can be then formulated as
follows:

min
q

∑
i∈C

cqi (qi) + η
∑
i∈N

cvi (vi) (2a)

s.t. vj ≤ vj(p, q) ≤ v̄j , j ∈ N . (2b)

The control objective (2a) is to reduce the total control cost for
controllable inverters plus the penalty on voltage deviation for

all buses, with η as a hyperparameter that balances the weights
of the two costs. System operators can choose different func-
tion forms of cqi (·) and cvi (·) to achieve operational goals.
Equation (2b) is the voltage safety constraints that should be
ensured at each time step.

The challenge of directly solving (2) lies in the fact that even
though we can design a convex cost function (e.g., a quadratic
cost over reactive power injection and squared loss of voltage
deviation), the underlying power flow (1) is nonlinear and
non-convex, making directly solving the optimization problem
involving (2b) a hard problem. For the convex relaxation
methods based on SOCP or SDP formulations, even though
the resulting optimization problem is tractable, it needs the
exact information on grid topology and line parameters. In
addition, it can take a significant amount of time to solve the
optimization problem for large grids, which may not fulfill
the goal of achieving fast timescale voltage regulation. These
challenges lead to the design need for a computationally
efficient model-free controller.

III. LEARNING A VOLTAGE REGULATOR

In this section, we describe how we formulate the voltage
regulation problem as a RL problem, and illustrate the need
for explicitly incorporating safety as a constraint for standard
RL algorithm.

RL provides a powerful paradigm for solving (2), in the
sense that during the training process, we can train a policy
network that maps the states to reactive power injections,
to minimize the control objectives defined by (2a). First,
we define a Markov Decision Process (MDP) of 4-tuple
(S,A,P, r) to represent the voltage control model. The states
and actions for timestep t can be defined as,

s(t) := ((vi)i∈N (t), (pi)i∈N (t)); (3a)
a(t) := ((qi)i∈C(t)). (3b)

Without loss of generality, in this paper, we use s(t),a(t)
and s,a interchangeably. The state transition model P :
S ×A → S, is determined by the power flow equations (1)
and external dynamics such as renewable generation and nodal
demand; and r : S×A → R is a scalar function that is defined
as follows

r(s(t),a(t)) = ||v(t)− v0||22 + η||q(t)||22; (4)

where v0 = v0 · 1 and v0 is the feeder head voltage.
To summarize, given MDP model and an initial policy πθ,

the RL for optimal voltage control problem is formulated as

max
θ

J(θ) := EP,π

[ ∞∑
t=1

γtr(s(t),a(t))

]
(5a)

s.t. a(t) = πθ(s(t)) , (5b)
g(s(t),a(t)) ∈ G, (5c)
s(t+ 1) = f (s(t),a(t),yext(t)) ; (5d)

where πθ(st) are the parameters of the voltage control policy,
and G represents the set of safety constraints. γ is a discount
factor. To be more specific, g(s(t),a(t)) refers to the state
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safety constraint vj ≤ vj(p, q) ≤ v̄j , j ∈ N . The under-
lying dynamics including external variable yext is modeled
as (5d). During the training phase, RL agent interacts with
the environment driven by the power flow equations, and
learns the reactive power dispatch a = πθ(s) to maximize
the accumulated discounted reward. Recent developments of
deep RL models have enabled a set of deep learning based
algorithms to efficiently solve such reward maximization prob-
lem, such as Deep Q Learning for discrete actions (e.g.,
tap position) [16], and Deep Deterministic Policy Gradient
(DDPG) for continuous actions [17].

However, one intrinsic challenge for DRL policies is to
validate the policies given by deep neural networks can
always guarantee the voltage staying within the safe region
[vi, v̄i], i ∈ N . This is due to the fact that during the DRL
training stage, the RL agent only focused on maximizing the
reward while there is no hard constraint on πθ to ensure
safety. In addition, even if the learned policy appears “safe”
on the training data (with finite training episodes), it is not
guaranteed to be safe under all scenarios. The lack of formal
safety guarantees is a major obstacle in the deployment of RL
to real-world power systems, as a violation of safe operation
constraints can lead to severe impacts such as voltage collapse
and cascading failure. Motivated by the challenge above, our
goal is to ensure the RL algorithm obtain provably safety
guarantee during both policy training and policy deployment
(after training).

IV. SAFETY VOLTAGE LAYER

In this section, we will first discuss how to explicitly model
the safety constraint set C for the RL controller with a tractable
form. We will then describe our safe controller design.

To ensure safety during both training and execution, we
first need to identify unsafe actions from RL agents, and
then modify the reactive power injections so that the voltage
is within safe bounds. We achieve this by incorporating the
power flow relationship in a compact way for the learned RL
agents. In the original DistFlow formulation, we can further
neglect the line loss via setting lij = 0 for all (i, j) ∈ E.
For each node, by assuming vi ≈ 1, while by approximating
v2j − v2i ≈ 2(vj − vi), we can get the linearized version of
DistFlow model

−pj = pij −
∑

k:(j,k)∈E

pjk

−qj = qij −
∑

k:(j,k)∈E

qjk

vi − vj = 2(rijpij + xijqij).

(6)

By collecting v = [v1, ..., vn]
T , and substituting pij , qij

into the last equation of (6), we can represent the voltage
profile in a more compact form

v = v0 +Rp+Xq, (7)

where v0 is the voltage for the feeder head, and R and X are
positive matrices.

Once we get the policy πθ and the safety constraint model
for the voltage profile, we want to find the reactive power

Fig. 2: CAISO daily demand data samples used for RL training.

injections that avoid unsafe voltage deviations. At each control
time step, it leads to the following optimization problem

min
q

1

2
||q − πθ(s(t))||22

s.t. Rp+Xq + v0 ≤ v̄

Rp+Xq + v0 ≥ v.

(8)

By solving (8), we find q which are not only close to the
action given by the deep RL agent, but also satisfying the
hard constraints over nodal voltage.

Since (8) is a convex, quadratic optimization problem, and
we can use standard QP-solvers to solve it efficiently in
polynomial time [18]. Alternatively, we can first learn the
active constraints, and then use the closed-form solution for the
equality constrained problem. If there is at most one constraint
that is tight, [13] developed a closed-form solution. However,
for voltage control, there is usually more than one constraint
on voltage magnitude that can be active. Therefore, we need
to solve (8) rather than using the closed-form solution, unless
all active constraints can be identified beforehand [19]. In the
following, we also give two remarks regarding the linear power
flow model and the model knowledge.

Remark 1 Effects of Power Flow Linear Approximation
(7): We note that proposed method is a combination of model-
free RL and model-based optimization approach. In our safety
layer design, the use of linearized power flow is restricted to
validate if the policy πθ gives safe voltage. Thus we are not
losing the representation capability of deep RL on the complex
relationship between power injections and voltage. Moreover,
the linear DistFlow model has been proved accurate verified
by real-world data when estimating the voltage box constraints
in (8) [20].

Remark 2 Knowledge of Distribution Grid: Another as-
sumption we make for the proposed safety layer is that we
can explicitly write out the inequality constraints involving
grid parameters R and X. Such assumption can be justified
when the RL agent has access to historical grid operational
data, and can therefore employ machine learning or statistical
methods to estimate these parameters. There are also emerging
techniques for estimating both the network topology and line
parameters for distribution grid with observational data [5],
[21]. We leave the discussion of incorporating model learning
error to tighten voltage safety range [v, v] to future work.
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V. CASE STUDY

In this section, we demonstrate the effectiveness of the
proposed safety layer method for voltage control. Specially, we
show that by incorporating the safety layer in a standard deep
deterministic policy gradient (DDPG) [17] algorithm, we can
always find actions satisfying voltage constraints. We compare
the proposed safety layer with baseline linear policy or deep
RL methods, and validate the improved performance in terms
of control costs and safety measures.

Experiment Setup Throughout the simulation, we use the
IEEE 13-bus test feeder to validate the algorithm performance.
We use real-world load data from CAISO1, and normalize
the demand value based on the single-phase 13-bus system
configurations. The nominal voltage magnitude at each bus is
12kV , and we allow ±5% voltage deviation for each node.
We visualize 20 sample days of training data in Fig. 2.

We employ DDPG algorithm to train the deep RL agent, and
we employ 3-layer neural networks for both the policy network
and value network in the DDPG agent. For each episode, we
collect rollouts for 24 hours, and we also keep a replay buffer
for states throughout RL training process.

For model comparison, we also use a linear policy to output
the reactive power injections. Such linear policy actively
considers the voltage magnitude bound, but may take non-
optimal control actions which incur larger system costs or
short-term voltage violations. We refer readers to [22] for
the details of such an algorithm. For the implementation
of all the algorithms, we also constrain the reactive power
injections within box constraints considering the regulating
capabilities of the inverter of each DER. Once we get the
control actions from each controller, we use the full power
flow model to calculate the resulting voltage. We test the
performance of the proposed safe RL approach, standard RL
approach, and baseline linear policy using a high-resolution
real-world load and renewable data in Fig. 3 (left). Based on
the time resolution of the PV and load trajectory, controllers
adjust their control output every 6s. We use Pytorch to build
all RL models and run the training process. We report the
computation time by using a MacBook Pro Personal Laptop
with 16 GB 2400 MHz DDR4 memory and 2.2 GHz Intel Core
i7 processor. Training time for our case is within 10 minutes.

Simulation Results We first compare the voltage profile
using three different control schemes. In Fig. 3, we show the
nodal voltage magnitude for one day’s test data. It can be seen
that all three algorithms take actions to try to stabilize the
voltage within the safe region ([11.4kV, 12.6kV ]). But during
the middle of the day, both linear controller and standard RL
agent lead to greater voltage deviation than the operational
limits. The linear policy is relatively “slow” in the sense of
acting to load and renewables generation change, causing the
spikes in voltage profiles. The RL agent finds the control
actions using least control efforts (which will be explained
in detail in Table I), but more than half of nodal voltage at
noon are exceeding the upper limits. This shows that even
though the trained RL agent is able to find control actions to

1https://www.caiso.com/Documents/HistoricalEMSHourlyLoadDataAvailable.
html

Method Time (s) Average qi
(kVAR) vi > %5 limit

Linear 9.02× 10−3 1.968 9.96%

RL 8.88× 10−3 1.543 10.82%

Safe RL 1.92× 10−2 1.829 0.01%

TABLE I: Statistics for average computation time (per in-
stance), average reactive power injection, and the frequency
of infeasible voltages for linear policy, standard RL policy
and safe RL policy.

maximize the reward, such training scheme can not exclude
unsafe voltage deviations during test time. On the contrary,
the proposed safe layer helps maintain voltage staying within
the safety bounds. We can further observe that the resulting
safe policy manages to reduce the voltages for multiple buses
at the same time, meaning that it is possible to refine a trained
RL agent to explicitly handle the hard, safety constraints.

In Fig. 4, we look into the nodal voltage profile, where
mean and variance of voltage deviation are plotted for the three
methods. We can observe that linear policy leads to voltage
profile with the largest deviation across all buses, which shows
that the linear model may not achieve satisfactory performance
faced with renewables integration in the distribution grid. On
average, the safe RL policy can reduce the voltage deviation
by more than 30% compared to RL counterparts, showing the
necessity of incorporating safety constraints into model-free
algorithm design.

We report the statistics for solution time, average control
efforts, and control results in Table I. Evaluations are based on
simulation results for all 14420 test data samples. Compared
to linear and standard RL policies, safe RL tends to use a bit
more reactive power to realize safety. The linear policy and RL
agent take nearly the same time to compute the reactive power
injections. The safe RL does not add much burden to the fast
RL policy inference process. The average computation time
for the safe RL method is still much smaller than the control
step resolution (6s), making it realistic to implement for real-
time voltage regulation. This shows that the benefits of the
proposed algorithm: with minimal added computational costs,
we can find safe policies as a plug-in-play module for off-the-
shelf RL algorithms. And all three methods take much shorter
time than solving a model-based optimization problem, e.g.,
by taking SOCP relaxation on the voltage regulation task [6].
Note that in practice, we can also resort to the safety layer
computation to mini-batches for parallel computation, which
can further accelerate the solution process of the proposed
algorithm. Such features allow over design can be scaled up
to larger systems.

The effects of the safety layer are further reflected in the
average reactive power injection, and the occurrences of unsafe
voltage deviation. As is shown in Table I, safe RL may take
more reactive power resources to achieve the regulation task.
But compared to both linear policy and standard DDPG agent,
the safe RL agent can guarantee for almost all test instances,
the resulting voltages are safe. Only for 0.01% of the test
samples, safe RL can not find a safe policy, which may be
caused by the representation limitation of the linearized power
flow model, or the inability to find feasible control actions by
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Fig. 3: Results on voltage regulation. Dark dashed lines denote the [vi, v̄i] region. By using proposed safety layer, the resulting reactive power injections
enforce the voltage magnitude to be within the safe regions.

Fig. 4: The mean and variance of voltage deviation on each bus under
different control schemes.

only controlling reactive power injections at DER buses.

VI. CONCLUSION AND DISCUSSION

In this work, we present SAVER, a computationally efficient
safe layer for learning-based voltage regulators. By explicitly
taking the constraints on voltage magnitude into controller
design, we show the resulting controller can output reactive
power injections that guarantee voltage safety almost surely.
Simulation results demonstrate such safety layer involving
linear constraints over the voltage magnitude can be an effec-
tive plug-in module for off-the-shelf deep RL algorithms. For
future work, we will explore how to autonomously identify
the nonlinear relationship between reactive power injections
and nodal voltages and ensure fine-grained, safe control at the
same time. More advanced safe control schemes based on both
active and reactive power injections will also be investigated.
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