
Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition
and Related Graph Problems

Quanquan C. Liu
†

Northwestern University

USA

quanquan@northwestern.edu

Jessica Shi

MIT CSAIL

USA

jeshi@mit.edu

Shangdi Yu

MIT CSAIL

USA

shangdiy@mit.edu

Laxman Dhulipala
†

University of Maryland

USA

laxman@umd.edu

Julian Shun

MIT CSAIL

USA

jshun@mit.edu

ABSTRACT
Maintaining a 𝑘-core decomposition quickly in a dynamic graph

has important applications in network analysis. The main challenge

for designing efficient exact algorithms is that a single update to

the graph can cause significant global changes. Our paper focuses

on approximation algorithms with small approximation factors that

are much more efficient than what exact algorithms can obtain.

We present the first parallel, batch-dynamic algorithm for ap-

proximate 𝑘-core decomposition that is efficient in both theory

and practice. Our algorithm is based on our novel parallel level
data structure, inspired by the sequential level data structures of

Bhattacharya et al. [STOC ’15] and Henzinger et al. [2020]. Given a

graph with 𝑛 vertices and a batch of updates B, our algorithm prov-

ably maintains a (2 + 𝜀)-approximation of the coreness values of all

vertices (for any constant 𝜀 > 0) in 𝑂 (|B| log2 𝑛) amortized work

and 𝑂 (log2 𝑛 log log𝑛) depth (parallel time) with high probability.

As a by-product, our 𝑘-core decomposition algorithm also gives

a batch-dynamic algorithm for maintaining an𝑂 (𝛼) out-degree ori-
entation, where 𝛼 is the current arboricity of the graph. We demon-

strate the usefulness of our low out-degree orientation algorithm by

presenting a new framework to formally study batch-dynamic algo-

rithms in bounded-arboricity graphs. Our framework obtains new

provably-efficient parallel batch-dynamic algorithms for maximal

matching, clique counting, and vertex coloring.

We implemented and experimentally evaluated our 𝑘-core de-

composition algorithm on a 30-core machine with two-way hyper-

threading on 11 graphs of varying densities and sizes. Compared

to the state-of-the-art algorithms, our algorithm achieves up to a

114.52× speedup against the best parallel implementation, up to a

544.22× speedup against the best approximate sequential algorithm,

and up to a 723.72× speedup against the best exact sequential algo-

rithm. We also obtain results for our algorithms on graphs that are

orders-of-magnitude larger than those used in previous studies.

1 INTRODUCTION
Discovering the structure of large-scale networks is a fundamental

problem for many areas of computing. One of the key challenges is

to detect communities in which individuals (or vertices) have close

ties with one another, and to understand how well-connected a

particular individual is to the community. The well-connectedness

†
This work was done while the authors were at MIT CSAIL.

of a vertex or a group of vertices is naturally captured by the concept

of a 𝑘-core or, more generally, the 𝑘-core decomposition; hence,

this particular problem and its variants have been widely studied in

the machine learning [3, 33, 40], database [18, 23, 32, 62, 73], social

network analysis and graph analytics [27, 28, 52, 54], computational

biology [24, 55, 66, 71], and other communities [39, 54, 69, 79].

Given an undirected graph 𝐺 , with 𝑛 vertices and𝑚 edges, the

𝑘-core of the graph is the maximal subgraph 𝐻 ⊆ 𝐺 such that

the induced degree of every vertex in 𝐻 is at least 𝑘 . The 𝑘-core

decomposition of the graph is defined as a partition of the graph into

layers such that a vertex 𝑣 is in layer𝑘 if it belongs to a𝑘-core but not

a (𝑘 + 1)-core; this value is known as the coreness of the vertex, and
the coreness values induce a natural hierarchical clustering. Classic

algorithms for 𝑘-core decomposition are inherently sequential. A

well-known algorithm for finding the decomposition is to iteratively

select and remove all vertices 𝑣 with smallest degree from the graph

until the graph is empty [72]. Unfortunately, the length of the

sequential dependencies, or the depth, of such a process can be

Ω(𝑛) given a graph with 𝑛 vertices. As 𝑘-core decomposition is a P-
complete problem [5], it is unlikely to have a parallel algorithmwith

polylogarithmic depth. To obtain parallel methods with poly(log𝑛)
depth, we relax the condition of obtaining an exact decomposition

to one of obtaining a close approximate decomposition.

Previous works studied approximate 𝑘-core decompositions as

a way for obtaining faster and more scalable algorithms in larger

graphs than in exact settings [21, 23, 33, 40, 83]. Approximate core-

ness values are useful for applications where existing methods are

already approximate, such as diffusion protocols in epidemiological

studies [24, 55, 66, 71], community detection and network centrality

measures [30, 34, 46, 74, 86, 90], network visualization and model-

ing [3, 20, 89, 91], protein interactions [4, 7], and clustering [41, 60].

Furthermore, due to the rapidly changing nature of today’s large

networks, many recent studies have focused on the dynamic setting,
where edges and vertices can be inserted and deleted, and the 𝑘-core

decomposition is computed in real time. There has been significant

interest in obtaining fast and practical dynamic, approximate and ex-

act 𝑘-core algorithms. Dynamic algorithms have been developed for

both the sequential [63, 63, 65, 78, 83, 88, 94] and parallel [6, 48, 51]

settings. There has also been interest in the closely-related dynamic

𝑘-truss problem [1, 49, 70, 93]. However, to the best of our knowl-

edge, there are no existing parallel batch-dynamic 𝑘-core algorithms
with provable polylogarithmic depth, which our algorithm achieves.

1

ar
X

iv
:2

10
6.

03
82

4v
3

 [c
s.D

S]
 2

3
D

ec
 2

02
2

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

3/2-Approximate
3-Core

3-Core

2-Core

1-Core 1-Core

Figure 1: Exact 𝑘-core decomposition (left) and (3/2)-approximate
𝑘-core decomposition (right).

Our paper focuses on the batch-dynamic setting where updates

are performed over a batch of multiple edge updates applied simul-

taneously. Such a setting is conducive to parallelization, which we

leverage to obtain scalable algorithms. We provide a work-efficient

batch-dynamic approximate 𝑘-core decomposition algorithm based

on a parallel level data structure that we design. We implement our

algorithm and show experimentally that it performs favorably com-

pared to the state-of-the-art. Furthermore, we show that our parallel

level data structure can be used to obtain work-efficient parallel

batch-dynamic algorithms for several other problems, specifically,

low out-degree orientation, maximal matching, 𝑘-clique counting,

and vertex coloring.

We introduce the necessary definitions in Section 2 before giving

a technical overview of our results in Section 3. Section 5 presents

our parallel level data structure and𝑘-core decomposition algorithm

in more detail. Section 6 presents experimental results. Section 7

gives our parallel, static, approximate algorithm for 𝑘-core decom-

position. Finally, Section 8 gives our low out-degree framework for

our maximal matching (Section 9), 𝑘-clique counting (Section 10),

and coloring (Section 11) results.

2 PRELIMINARIES
This paper studies undirected, unweighted graphs, and we use 𝑛 to

denote the number of vertices and𝑚 to denote the number of edges

in a graph. Definition 2.3 defines approximate𝑘-core decomposition.

The definition requires the definition of a 𝑘-core, which we define

first.

Definition 2.1 (𝑘-Core). For a graph 𝐺 and positive integer 𝑘 , the
𝑘-core of 𝐺 is the maximal subgraph of 𝐺 with minimum induced
degree 𝑘 .
Definition 2.2 (𝑘-Core Decomposition). A 𝑘-core decomposition
is a partition of vertices into layers such that a vertex 𝑣 is in layer 𝑘 if
it belongs to a 𝑘-core but not to a (𝑘 + 1)-core. 𝑘 (𝑣) denotes the layer
that vertex 𝑣 is in, and is called the coreness of 𝑣 .

Definition 2.2 defines an exact 𝑘-core decomposition. A

𝑐-approximate 𝑘-core decomposition is defined as follows.

Definition 2.3 (𝑐-Approximate 𝑘-Core Decomposition). A
𝑐-approximate 𝑘-core decomposition is a partition of vertices into
layers such that a vertex 𝑣 is in layer 𝑘 ′ only if 𝑘 (𝑣)𝑐 ≤ 𝑘 ′ ≤ 𝑐𝑘 (𝑣),
where 𝑘 (𝑣) is the coreness of 𝑣 .

We let
ˆ𝑘 (𝑣) denote the estimate of 𝑣 ’s coreness. Fig. 1 shows an

example of a 𝑘-core decomposition and a (3/2)-approximate 𝑘-core

decomposition.

Model Definitions. We analyze the theoretical efficiency of our

parallel algorithms in the work-depth model. The model is defined

in terms of two complexity measures, work and depth [25, 50].

The work is the total number of operations executed by the algo-

rithm. The depth is the longest chain of sequential dependencies.

Symbol Meaning

𝐺 = (𝑉 , 𝐸) undirected/unweighted graph

𝑛,𝑚 number of vertices, edges, resp.

𝛼 current arboricity of graph

Δ current maximum degree of graph

𝐾 number of levels in PLDS

𝑁 (𝑣) (resp. 𝑁 (𝑆)) set of neighbors of vertex 𝑣 (resp. vertices 𝑆)

dl(𝑣) desire-level of vertex 𝑣
ℓ , ℓ (𝑣) a level (starting with level ℓ = 0), current level of vertex 𝑣, resp.

𝑉ℓ , 𝑍ℓ set of vertices in level ℓ , set of vertices in levels ≥ ℓ , resp.
𝑔𝑖 set of levels in group 𝑖 (starting with 𝑔0)

𝑔 (𝑣), 𝑔𝑛 (ℓ) group number of vertex 𝑣, index 𝑖 where level ℓ ∈ 𝑔𝑖 , resp.
𝑘 (𝑣) , ˆ𝑘 (𝑣) coreness of 𝑣, estimate of the coreness of 𝑣, resp.

up(𝑣) ,up∗ (𝑣) up-degree of 𝑣, up*-degree of 𝑣, resp.
𝜀, 𝜆, 𝛿 constants where 𝜀, 𝜆, 𝛿 > 0

Table 1: Table of notations used in this paper.

We assume that concurrent reads and writes are supported in 𝑂 (1)
work/depth. A work-efficient parallel algorithm is one with work

that asymptotically matches the best-known sequential time com-

plexity for the problem. We say that a bound holds with high
probability (w.h.p.) if it holds with probability at least 1 − 1/𝑛𝑐
for any 𝑐 ≥ 1.

We use parallel primitives in our algorithms, which take as input

a sequence 𝐴 of length 𝑛, including: parallel reduce-add, which
returns the sum of the entries in 𝐴, and parallel filter , which also

takes as input a predicate function 𝑓 , and returns the sequence 𝐵

containing each element 𝑎 ∈ 𝐴 where 𝑓 (𝑎) is true, while preserv-
ing the same relative order as the order of elements in 𝐴. These

primitives take 𝑂 (𝑛) work and 𝑂 (log𝑛) depth [50]. We also use

parallel hash tables that support insertions, deletions, and mem-

bership queries; they can perform 𝑛 insertions or deletions in 𝑂 (𝑛)
work and 𝑂 (log∗ 𝑛) depth w.h.p., and 𝑛 membership queries in

𝑂 (𝑛) work and𝑂 (1) depth w.h.p. [42]. Provided an input sequence

𝐴, a parallel prefix-sum takes as input an identity 𝑥 and an asso-

ciative binary operator ⊕, and returns the sequence 𝐵 of length 𝑛

where 𝐵 [𝑖] =
⊕

𝑗<𝑖 𝐴[𝑗] ⊕ 𝑥 . This primitive takes 𝑂 (𝑛) work and

𝑂 (log𝑛) depth [50].

Our parallel algorithms operate in the batch-dynamic setting. A

batch-dynamic algorithm processes updates (vertex or edge in-

sertions/deletions) in batches B of size |B|. For simplicity, since we

can reprocess the graph using an efficient parallel static algorithm

when |B| ≥ 𝑚, we consider 1 ≤ |B| < 𝑚 for our bounds.

Given a graph 𝐺 = (𝑉 , 𝐸) and a sequence of batches of edge

insertions and deletions, B1, . . . ,B𝑁 , where B𝑖 = (𝐸𝑖delete, 𝐸
𝑖
insert),

the goal is to efficiently maintain a (2 + 𝜀)-approximate 𝑘-core

decomposition (for any constant 𝜀 > 0) after applying each

batch B𝑖 (in order) on 𝐺 . In other words, let 𝐺𝑖 = (𝑉 , 𝐸𝑖) be the
graph after applying batches B1, . . . ,B𝑖 and suppose that we

have a (2 + 𝜀)-approximate 𝑘-core decomposition on 𝐺𝑖 ; then, for

B𝑖+1, our goal is to efficiently find a (2 + 𝜀)-approximate 𝑘-core

decomposition of 𝐺𝑖+1 = (𝑉 , (𝐸𝑖 ∪ 𝐸𝑖+1insert) \ 𝐸
𝑖+1
delete).

All notations used are summarized in Table 1. Our data

structure also maintains a low out-degree orientation, which may be

parameterized by a graph property known as the arboricity.
Definition 2.4 (Arboricity). The arboricity (𝛼) of a graph is the
minimum number of spanning forests needed to cover the graph.

2

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Definition 2.5 (𝑐-Approximate Low Out-Degree Orientation).
Given an undirected graph 𝐺 = (𝑉 , 𝐸), a 𝑐-approximate low
out-degree orientation is an acyclic orientation of all edges in 𝐺
such that the maximum out-degree of any vertex, 𝑑+𝑚𝑎𝑥 , is within a
𝑐-factor of the minimum possible maximum out-degree, 𝑑+𝑜𝑝𝑡 of any
acyclic orientation:1 𝑑+𝑜𝑝𝑡/𝑐 ≤ 𝑑+𝑚𝑎𝑥 ≤ 𝑐 · 𝑑+𝑜𝑝𝑡 .

We define an 𝑂 (𝛼) out-degree orientation to be an acyclic ori-

entation where all out-degrees are𝑂 (𝛼). For an oriented graph, we

call neighbors of vertex 𝑣 connected by outgoing edges the out-
neighbors of 𝑣 and neighbors of 𝑣 connected by incoming edges the

in-neighbors of 𝑣 . Definitions of the other problems we consider

are given at the top of their respective sections (Sections 9 to 11).

3 TECHNICAL OVERVIEW
In this paper, we provide a number of parallel work-efficient al-

gorithms for various problems. This section gives an overview of

our algorithms and how they compare with prior work. Table 2

summarizes our algorithmic results.

We first discuss 𝑘-core decomposition. A number of previous

works [64, 68, 78, 92, 93] providedmethods formaintaining the exact
𝑘-core decomposition under single edge updates in the sequential

setting. Unfortunately, none of these works provide algorithms

with provable polylogarithmic update time. The main bottleneck

for obtaining provably-efficient methods is that a single edge update

can cause all coreness values to change: consider a cycle with one

edge removed as a simple example. Removing and adding the edge

into this cycle, repeatedly in succession, causes the coreness of all

vertices to change by one with each update. In the parallel setting,

a number of previous works [6, 38, 48, 51, 87] investigated batch-

dynamic algorithms for exact 𝑘-core decomposition. Unfortunately,

none of these works have poly(log𝑛) depth and some even have

Ω(𝑛) depth.
This paper shows that we can surprisingly obtain a parallel

batch-dynamic 𝑘-core decomposition algorithm with amortized

time bounds that are independent of the number of vertices that

changed coreness for approximate coreness. Such provable time

bounds can be obtained by cleverly avoiding updating coreness

values until enough error has accumulated; once such error has

accumulated, we can charge the amount of time required to up-

date the coreness to the number of updates that occurred. Doing

so carefully allows a provable 𝑂 (log2 𝑛) amortized work per up-

date that is independent of the number of changed coreness values.

A recent paper by Sun et al. [83] provides a sequential dynamic

approximate 𝑘-core decomposition algorithm that takes 𝑂 (log2 𝑛)
amortized time per update. Their algorithm is a threshold peeling/e-

limination procedure that gives a (2 + 𝜀)-approximation bound.

They also provide another sequential algorithm, which they call

round-indexing, that performs faster in practice.
2
However, they do

not provide formal runtime proofs for this algorithm. Their thresh-

old peeling algorithm is inherently sequential since a vertex that

changes thresholds can cause another to change their threshold

(and coreness estimate), resulting in a long chain of sequential de-

pendencies; such a situation results in polylogarithmic amortized
1𝑑+𝑜𝑝𝑡 , is equal to the degeneracy, 𝑑 , of𝐺 , and is closely related to 𝛼 : 𝑑/2 ≤ 𝛼 ≤ 𝑑 .
2
Our experiments compare against the round-indexing algorithm since it is faster than

their thresholding peeling algorithm in practice.

Table 2: Work and depth bounds of algorithms in this paper.3

Problem Approx Work Depth Adversary

𝑘-core (2 + 𝜀) 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛)4 Adaptive

𝑘-core (2 + 𝜀) 𝑂 (𝑚 + 𝑛) 𝑂 (log3 𝑛) Static

Orientation (4 + 𝜀) 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛) Adaptive

Matching Maximal 𝑂 (|B | (𝛼 + log2 𝑛)) 𝑂 (logΔ log
2 𝑛)6 Adaptive

𝑘-clique Exact 𝑂 (|B |𝛼𝑘−2 log2 𝑛) 𝑂 (log2 𝑛) Adaptive

Coloring 𝑂 (𝛼 log𝑛)5 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛) Oblivious

Coloring 𝑂 (2𝛼) 𝑂 (|B | log3 𝑛) 𝑂 (log2 𝑛) Adaptive

depth, whereas efficient parallel algorithms require polylogarithmic

depth w.h.p. in the worst case, which we obtain.

To design our 𝑘-core decomposition algorithm, we formulate a

parallel level data structure (PLDS) inspired by the sequential level

data structures (LDS) of Bhattacharya et al. [13] and Henzinger et

al. [47] to maintain a partition of the vertices satisfying specific

degree properties in certain induced subgraphs. In the LDS, vertices

are updated one at a time. One of our main technical insights is

that we can update many vertices simultaneously, leading to high

parallelism. Our 𝑘-core decomposition algorithm is work-efficient,

and matches the approximation factor of the best-known sequential

dynamic approximate 𝑘-core decomposition algorithm of Sun et

al. [83], while achieving polylogarithmic depth w.h.p.

Dynamic problems related to 𝑘-core decompositions have been

recently studied in the theory community, such as densest sub-

graph [13, 80] and low out-degree orientations [10, 19, 45, 47, 53,

56, 57, 82]; some of these works use the LDS. However, none of

these previous works proved guarantees regarding the 𝑘-core de-

composition that can be maintained via a LDS. Notably, we show

via a new, intuitive proof that one can use the level of a vertex to

estimate its coreness in the LDS of [47]. Unlike the proof in [83] for

their dynamic algorithm, our proof does not require densest sub-

graphs nor any additional information besides the two invariants

maintained by the structure.

Our main theoretical and practical technical contributions for

𝑘-core decomposition are three-fold: (1) we present a simple modifi-

cation and a new (2+𝜀)-approximate coreness proof for the sequen-

tial level data structure of [13, 47] (which were not previously used

for coreness values) using only the levels of the vertices—no such

modification was known prior to this work since [83] requires an

additional elimination/peeling/round-indexing procedure; (2) we

provide the first parallel work-efficient batch-dynamic level data

structure that takes 𝑂 (log2 𝑛 log log𝑛) depth w.h.p., which we use

to obtain a (2 + 𝜖)-approximate batch-dynamic 𝑘-core decomposi-

tion algorithm; and (3) we provide multicore implementations of

our new algorithm and demonstrate its practicality through exten-

sive experimentation with state-of-the-art parallel and sequential

algorithms.

The following theorems give our theoretical bounds.

Theorem 3.1 (Batch-Dynamic 𝑘-Core Decomposition). Given𝐺 =

(𝑉 , 𝐸) where𝑛 = |𝑉 | and batch of updatesB, our algorithmmaintains
(2+ 𝜀)-approximations of core values for all vertices (for any constant
𝜀 > 0) in𝑂 (|B| log2 𝑛) amortized work and𝑂 (log2 𝑛 log log𝑛) depth
w.h.p., using 𝑂 (𝑛 log2 𝑛 +𝑚) space.
3
All bounds are w.h.p., except for the work of static 𝑘-core and𝑂 (𝛼 log𝑛)-coloring.

4𝑂 hides a factor of𝑂 (log log𝑛) .
5
Wedenote by𝛼 the current arboricity of the graph after processing all updates including
the most recent ones.

3

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

Using the same parallel level data structure, we also obtain the

following result for maintaining a low out-degree orientation.

Theorem 3.2 (Batch-Dynamic Low Out-Degree Orientation). Our
algorithm maintains an (4 + 𝜀)-approximation of a minimum acyclic
out-degree orientation, with the same bounds as Theorem 3.1, where
the amortized number of edge flips is 𝑂 (|B| log2 𝑛).

A consequence of Theorem 3.2 is the following corollary.

Corollary 3.3 (𝑂 (𝛼) Out-Degree Orientation). Our algorithm
maintains an 𝑂 (𝛼) out-degree orientation, where 𝛼 is the current
arboricity (Definition 2.4), with the same bounds as Theorem 3.2.

Using Theorem 3.2, we design a framework for parallel batch-

dynamic algorithms on bounded-arboricity graphs for batch of

updates B, which in addition to problem-specific techniques allows

us to obtain a set of batch-dynamic algorithms for a variety of other

fundamental graph problems including maximal matching, clique

counting, and vertex coloring. The coloring algorithms are based

heavily on the sequential algorithms of Henzinger et al. [47], but we

present them as an application of our framework. For the problems

we consider in this paper, Fig. 3 summarizes the update times of the

previous best-known sequential results for their respective settings.

Theorem 3.4 (Batch-Dynamic Maximal Matching). We maintain
a maximal matching in 𝑂 (|B|(𝛼 + log

2 𝑛)) amortized work and
𝑂 (log2 𝑛 (logΔ + log log𝑛)) depth w.h.p.,6 in𝑂 (𝑛 log2 𝑛 +𝑚) space.
Theorem 3.5 (Batch-Dynamic Implicit 𝑂 (2𝛼)-Vertex Coloring).
We maintain an implicit 𝑂 (2𝛼)-vertex coloring7 in 𝑂 (|B| log3 𝑛)
amortized work and 𝑂 (log2 𝑛) depth w.h.p. for updates, and
𝑂 (𝑄𝛼 log𝑛) work and 𝑂 (log𝑛) depth w.h.p., for 𝑄 queries, using
𝑂 (𝑛 log2 𝑛 +𝑚) space.
Theorem 3.6 (Batch-Dynamic 𝑘-Clique Counting). We maintain
the count of 𝑘-cliques in 𝑂 (|B|𝛼𝑘−2 log2 𝑛) amortized work and
𝑂 (log2 𝑛 log log𝑛) depth w.h.p., in 𝑂 (𝑚𝛼𝑘−2 + 𝑛 log2 𝑛) space.

All of the above results are robust against adaptive adversaries
which have access to the algorithm’s previous outputs. The follow-

ing algorithm is robust against oblivious adversaries which do not

have access to previous outputs.

Theorem 3.7. We maintain an 𝑂 (𝛼 log𝑛)-vertex coloring in
𝑂 (|B| log2 𝑛) amortized expected work and 𝑂 (log2 𝑛 log log𝑛)
depth w.h.p., in 𝑂 (𝑚 + 𝑛 log2 𝑛 + 𝛼 log𝑛) space.

Our 𝑘-core, low out-degree orientation, and vertex coloring algo-

rithms arework-efficientwhen compared to the best-known sequen-

tial, dynamic algorithms for the respective problems [13, 47, 83].

For maximal matching, our algorithm is work-efficient when 𝛼 =

Ω(log2 𝑛) when compared to the best-known sequential algorithm

that is robust against adaptive adversaries [45, 75]; the extra work

when 𝛼 = 𝑜 (log2 𝑛) comes from the fact that our bounds are with

respect to the current arboricity, compared to [45, 75] whose bounds

are with respect to the maximum arboricity over the sequence of

updates.

The best-known batch-dynamic algorithm for 𝑘-clique count-

ing, by Dhulipala et al. [29], takes 𝑂 (|B|𝑚𝛼𝑘−4) expected work

and 𝑂 (log𝑘−2 𝑛) depth w.h.p., using 𝑂 (𝑚 + |B|) space. Compared

with their algorithm, our algorithm uses less work when 𝑚 =

6Δ denotes the maximum current degree of the graph after processing all updates.
7
An implicit vertex coloring algorithm returns valid colorings for queried vertices.

Levels

𝑘-Core Decomposition
𝑂 𝛼 Out-Degree Orientation

Orientation Maximal Matching
𝑘-Clique Counting

Implicit 𝑂 2! -Coloring

𝑂(𝛼	log	𝑛)-ColoringBoth

PLDS

Figure 2: This figure shows what parts of the PLDS are used in each
result. The level of each vertex is used to determine the 𝑘-core de-
composition (Theorem 3.1) and low out-degree orientation (Theo-
rem 3.2 and Corollary 3.3). The orientation of the edges is used for
maximal matching (Theorem 3.4), implicit 𝑂 (2𝛼)-coloring (Theo-
rem 3.5), and𝑘-clique counting (Theorem 3.6). Finally, both are used
for𝑂 (𝛼 log𝑛)-coloring (Theorem 3.7).

𝜔 (𝛼2 log2 𝑛). In many real-world networks, 𝛼 <<
√
𝑚 (see e.g., Ta-

ble 3, for maximum 𝑘-core values, which upper bound 𝛼); thus, our

result is more efficient in many cases at an additional multiplicative

space cost of 𝑂 (𝛼𝑘−2). We also obtain smaller depth for all 𝑘 > 4.

We provide further comparisons with the best-known sequential

clique counting algorithm [31], and we describe more specific batch-

dynamic challenges we face in designing the above algorithms in

their respective sections. The components of the PLDS used in each

of the above results are summarized in Fig. 2.

Finally, using ideas from our batch-dynamic 𝑘-core decomposi-

tion algorithm, we provide a new parallel static (2+𝜀)-approximate

𝑘-core decomposition algorithm. We compare this algorithm with

the best-known parallel static exact algorithm of [27] which uses

𝑂 (𝑚 + 𝑛) expected work and 𝑂 (𝜌 log𝑚) depth w.h.p., where 𝜌 is

the number of steps necessary to peel all vertices (𝜌 could potentially

be Ω(𝑛)). Hence, [27] does not guarantee poly(log𝑛) depth.
Theorem 3.8. Given 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 =

|𝐸 | edges, for any constant 𝜀 > 0, our algorithm finds an (2 + 𝜀)-
approximate 𝑘-core decomposition in 𝑂 (𝑛 +𝑚) expected work and
𝑂 (log3 𝑛) depth w.h.p., using 𝑂 (𝑛 +𝑚) space.
Experimental Contributions. In addition to our theoretical con-

tributions, we also provide optimized multicore implementations

of our 𝑘-core decomposition algorithms. We compare the perfor-

mance of our algorithms with state-of-the-art algorithms on a va-

riety of real-world graphs using a 30-core machine with two-way

hyper-threading. Our parallel static approximate 𝑘-core algorithm

achieves a 2.8–3.9x speedup over the fastest parallel exact 𝑘-core

algorithm [27] and achieves a 14.76–36.07x self-relative speedup.

We show that our parallel batch-dynamic 𝑘-core algorithm

achieves up to 544.22× speedups over the state-of-the-art sequen-

tial dynamic approximate 𝑘-core algorithm of Sun et al. [83], while

achieving comparable accuracy. We also achieve up to 114.52×
speedups over the state-of-the-art parallel batch-dynamic exact

𝑘-core algorithm of Hua et al. [48], and up to 723.72× speedups

against the state-of-the-art sequential exact 𝑘-core algorithm of

Zhang and Yu [93]. Our batch-dynamic algorithm outperforms the

best multicore static 𝑘-core algorithms by up to 121.76× on batch

sizes that are less than 1/3 of the number of edges in the entire

graph.

Our algorithm exhibits improvements in runtime while maintain-

ing the same or smaller error, even when using only four threads

(available on a standard laptop), and remains competitive at one

4

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

thread. We demonstrate that existing exact dynamic implementa-

tions are not efficient or scalable enough to handle graphs with

billions of edges, whereas our algorithm is able to. Furthermore,

our demonstrated speedups of up to two orders of magnitude in-

dicates that our implementation not only fills the gap for process-

ing graphs that are orders of magnitude larger than can be han-

dled by existing implementations, but also that it is the best op-

tion for many smaller networks. Our code is publicly available at

https://github.com/qqliu/batch-dynamic-kcore-decomposition.

4 COMPARISONS WITH OTHER RELATED
WORK

Parallel Exact Batch-Dynamic Algorithms. The most recent, state-

of-the-art parallel batch-dynamic algorithm by Hua et al. [48] im-

proves upon the previous parallel algorithms of Aridhi et al. [6],

Wang et al. [87], and Jin et al. [51]. Their algorithm relies on the

concept of a joint edge set, whose insertion and removal deter-

mines the core numbers of the vertices. However, their algorithm

could take Ω(𝑛) depth as they use a standard depth-first search to

traverse vertices in the joint edge set as well as vertices outside

of the joint edge set. In comparison, our algorithm provably has

𝑂 (log2 𝑛 log log𝑛) depth w.h.p. Our theoretical improvements also

translate to practical gains since we demonstrate greater scalability

in our experiments.

Another recent work by Gabert et al. [38] provides a scalable ex-

act 𝑘-core maintenance algorithm. Both their asymptotic work and

depth is super-polylogarithmic (in fact, in the worst case it could be

as bad as computing from scratch). Unfortunately, the code for their

experiments is proprietary and hence not available for comparison.

However, their reported experimental results overall appear slower

than our results, described in more detail in Section 6.4.

Low Out-Degree Orientations. Many previous works give dy-

namic algorithms for low out-degree orientations with respect to

bounds on the maximum arboricity that ever exists in the graph,

𝛼𝑚𝑎𝑥 [10, 19, 45, 53, 56, 57, 82]. Noticeably, these sequential, dy-

namic works save a 𝑂 (log𝑛) factor in the running time compared

to sequential dynamic algorithms that compute the orientation with

respect to the current arboricity [13, 47]. In practice, the arboricity

of real-world graphs may vary as batches of updates are applied,

and in particular, the 𝑘-core numbers of each vertex can change

drastically (e.g., many follows and unfollows can occur in a very

short period of time following a viral post). Our work matches the

update time of [13, 47] for maintaining a low out-degree orientation

for the current 𝛼 . This explains why our work bounds for maxi-

mal matching requires an additional 𝑂 (log𝑛) factor compared to

previous works [45, 75] that were in terms of 𝛼𝑚𝑎𝑥 .

Other Graph Problems. Using low out-degree orientations, a num-

ber of works in the past have studied the other dynamic graph prob-

lems we study in this paper, including maximal matching, vertex

coloring, and clique counting [8, 11, 12, 22, 29, 31, 37, 44, 45, 47,

58, 67, 75, 76, 82]. The best update time for these problems in the

sequential settings are summarized in Fig. 3.

In the sequential setting, the best-known algorithm for 𝑘-clique

counting uses𝑂 (log𝑘2 𝑛) update time in bounded expansion graphs

Figure 3: Previous best-known sequential algorithm results.

Summary of Best-Known Sequential Results

Problem Approx Update Time Adversary

𝑘-core (2 + 𝜀) 𝑂 (log2 𝑛) [47, 83], Lemma 5.12 Adaptive

Orientation (4 + 𝜀) 𝑂 (log2 𝑛) [47] Adaptive

Matching Maximal 𝑂 (𝛼𝑚𝑎𝑥 + log𝑛/log log𝑛) [45, 75] Adaptive

𝑘-clique Exact 𝑂 (𝛼𝑘2𝑚𝑎𝑥 log
𝑘2 𝑛) [31] Adaptive

Coloring 𝑂 (𝛼 log𝑛) 𝑂 (log2 𝑛) [47] Oblivious

Coloring 𝑂 (2𝛼) 𝑂 (log3 𝑛) [47] Adaptive

for any 𝑘-vertex subgraph [31]. Bounded expansion is a more re-

stricted class of graphs than bounded arboricity.
8
Their algorithm

crucially requires the fraternal augmentation graph, 𝐺 ′, which is

created from an input directed graph,𝐺 = (𝑉 , 𝐸), by adding an edge
(𝑢, 𝑣) (direction chosen arbitrarily) if and only if (𝑤,𝑢) and (𝑤, 𝑣)
exist. Provided an out-degree orientation of size 𝜎 , their algorithm

runs in𝑂 (𝜎𝑘2 log𝑘2 𝑛) time; so for bounded arboricity graphs, their

algorithm can find any subgraph of size 𝑘 with 𝑂 (𝛼𝑘2 log𝑘2 𝑛) up-
date time [31]. Our algorithm also gives a better update time in the

sequential setting than [31] for counting cliques (for |B| = 1).

5 BATCH-DYNAMIC 𝑘-CORE
DECOMPOSITION

In this section, we describe our parallel, batch-dynamic algorithm

for maintaining an (2 + 𝜀)-approximate 𝑘-core decomposition (for

any constant 𝜀 > 0) and prove its theoretical efficiency.

5.1 Algorithm Overview
We present a parallel level data structure (PLDS) that maintains

a (2 + 𝜀)-approximate 𝑘-core decomposition that is inspired by

the class of sequential level data structures (LDS) of [13, 47]. Our

algorithm achieves 𝑂 (log2 𝑛) amortized work per update and

𝑂 (log2 𝑛 log log𝑛) depth w.h.p. We also present a deterministic

version of our algorithm that achieves the same work bound with

𝑂 (log3 𝑛) depth. Our data structure can also handle batches of

vertex insertions/deletions. Our data structure requires 𝑂 (log2 𝑛)
amortized work, which matches the 𝑂 (log2 𝑛) amortized update

time of [13, 47]. We also present a deterministic version of our

algorithm that achieves the same work bound with 𝑂 (log3 𝑛)
depth in Section 5.8.

In addition to edge updates, our data structure also handles

batches of vertex insertions/deletions, discussed in Section 5.9. As

in [47], our data structure can handle changing arboricity that is

not known a priori. Such adaptivity is necessary to successfully

maintain accurate approximations of coreness values.

The LDS and our PLDS consists of a partition of the vertices into

𝐾 = 𝑂 (log2 𝑛) levels.9 We provide a very high level overview of

PLDS in this section. The levels are partitioned into equal-sized

groups of consecutive levels. Updates are partitioned into inser-

tions and deletions. Vertices move up and down levels depending

on the type of edge update incident to the vertex. Rules governing

the induced degrees of vertices to neighbors in different levels de-

termine whether a vertex moves. Using information about the level

of a vertex, we obtain a (2 + 𝜀)-approximation on the coreness of

the vertex.

8
Graphs with bounded expansion have bounded arboricity, but not vice versa.

9
When𝑚 = 𝑜 (𝑛) , we can also show that𝑂 (log2𝑚) levels suffice.

5

https://github.com/qqliu/batch-dynamic-kcore-decomposition

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

	𝑥

Group 0

Group 1

…

Θ log	𝑛
levels

Θ log	𝑛
levels 	𝑤

	𝑣
	𝑢

	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

	𝑥

	𝑤
	𝑣

	𝑢	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Figure 4: Example of a cascade of vertex movements caused by an
edge deletion on 𝑢 (shown by the dashed red line).

After every edge update, vertices update their levels depending

on whether they satisfy two invariants. One invariant upper bounds

the induced degree of each vertex 𝑣 in the subgraph consisting of all

vertices in the same or higher level. Vertices whose degree exceeds

this bound move up one or more levels. We process the levels from

smallest to largest level and move all vertices from the same level

in parallel. The second invariant lower bounds the induced degree

of each vertex 𝑣 in the subgraph consisting of all vertices in the

level below 𝑣 , the level of 𝑣 and all levels higher than the level of

𝑣 . Vertices that violate this invariant calculate a desire-level or the
closest level they can move to that satisfies this invariant. Then,

vertices with the same desire-level are moved in parallel to that level.

Finally, the coreness estimates of the vertices are computed based

on the current level of each vertex. We obtain the low out-degree

orientation by orienting edges from lower to higher levels (breaking

ties by vertex index). Fig. 5 shows the invariants maintained by our

algorithm; Figs. 6 and 7 show how our algorithm processes insertion

and deletion updates. Together, they demonstrate an example run

of our algorithm.

5.2 Sequential Level Data Structure (LDS)
The sequential level data structures (LDS) of [13, 47] maintains a

low out-degree orientation under dynamic updates. Within their

LDS, a vertex moves up or down levels one by one, where a vertex

𝑣 (incident to an edge update) first checks whether an invariant is

violated, and then may move up or down one level. Then, the vertex

checks the invariants and repeats. Such movements may cause

other vertices to move up or down levels. The LDS combined with

our Section 5.6 directly gives an 𝑂 (log2 𝑛) update time sequential,

dynamic algorithm that outputs (2+𝜀)-approximate coreness values.

Unfortunately, such a procedure can be slow in practice. Specifi-

cally, a vertex that moves one level could cause a cascade of vertices

to move one level. Then, if the vertex moves again, the same cascade

of movements may occur. An example is shown in Fig. 4. Further-

more, any trivial parallelization of the LDS to support a batch of

updates will run into race conditions and other issues, requiring

the use of locks which blows up the runtime in practice.

Thus, our PLDS solves several challenges posed by the sequential

LDS. Given a batch B of edge updates: (1) our algorithm processes

the levels in a careful order that yields provably low depth for

batches of updates; (2) our insertion algorithm processes vertices

on each level at most once, which is key to the depth bounds—

after vertices move up from level ℓ , no future step in the algorithm

moves a vertex up from level ℓ ; and (3) our deletion algorithm

moves vertices to their final level in one step. In other words, a

vertex moves at most once in a deletion batch.

	𝑣

	𝑥
	𝑦

	𝑤

	𝑢

Group 0

Group 1

Group 2

…

𝛿 = 0.4 and 𝜆 = 3

…

≤ 1.4 1 ⋅ 3 = 4.2
neighbors

≥ 1.4 4 = 1 neighbors
Θ log	𝑛
levels

Θ log	𝑛
levels

Θ log	𝑛
levels

Figure 5: Example of invariants maintained by the PLDS for 𝛿 = 0.4

and 𝜆 = 3. There areΘ(log𝑛) groups, each withΘ(log𝑛) . Each vertex
is in exactly one level of the structure and moves up and down by
somemovement rules. For example, vertex 𝑥 (blue) is on level 3 and
in group 1.

Algorithm 1 Update(B)
Input: A batch of edge updates B.
1: Let Bins = all edge insertions in B, and Bdel = all edge deletions in B.
2: Call RebalanceInsertions(Bins). [Algorithm 2]

3: Call RebalanceDeletions(Bdel). [Algorithm 3]

5.3 Detailed PLDS Algorithm
As mentioned previously, the vertices of the input graph𝐺 = (𝑉 , 𝐸)
in our PLDS are partitioned across 𝐾 levels. For each level ℓ =

0, . . . , 𝐾−1, let𝑉ℓ be the set of vertices that are currently assigned to
level ℓ . Let𝑍ℓ be the set of vertices in levels ≥ ℓ . Provided a constant
𝛿 > 0, the levels are partitioned into groups 𝑔0, . . . , 𝑔 ⌈log(1+𝛿) 𝑛⌉ ,
where each group contains 4⌈log(1+𝛿) 𝑛⌉ consecutive levels. Each
ℓ ∈

[
𝑖 ⌈log(1+𝛿) 𝑛⌉, . . . , (𝑖 + 1) ⌈log(1+𝛿) 𝑛⌉ − 1

]
is a level in group 𝑖 .

Our data structure consists of 𝐾 = 𝑂 (log2 𝑛) total levels. The PLDS
satisfies the following invariants as introduced in [13, 47], which

also govern how the data structure is maintained. The invariants

assume a given constant 𝛿 > 0 and a constant 𝜆 > 0.

Invariant 1 (Degree Upper Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ < 𝐾

and ℓ ∈ 𝑔𝑖 , then 𝑣 has at most (2 + 3/𝜆) (1 + 𝛿)𝑖 neighbors in 𝑍ℓ .
Invariant 2 (Degree Lower Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ > 0,
and ℓ − 1 ∈ 𝑔𝑖 , then 𝑣 has at least (1 + 𝛿)𝑖 neighbors in 𝑍ℓ−1.

Vertices with no neighbors are placed in level 0. An example

partitioning of vertices and maintained invariants is shown in Fig. 5.

Let ℓ (𝑣) be the level that 𝑣 is currently on. We define the group
number , 𝑔(𝑣), of a vertex 𝑣 to be the index 𝑖 of the group 𝑔𝑖 where
ℓ (𝑣) ∈ 𝑔𝑖 . Similarly, we define 𝑔𝑛(ℓ) = 𝑖 to be the group number for

level ℓ where ℓ ∈ 𝑔𝑖 . We define the up-degree, up(𝑣), of a vertex
𝑣 to be the number of its neighbors in 𝑍ℓ (𝑣) (up-neighbors), and
up*-degree, up∗ (𝑣), to be the number of its neighbors in 𝑍ℓ (𝑣)−1
(up∗-neighbors). These two notions of induced degree correspond

to the requirements of the two invariants of our data structure.

We define neighbors𝑤 of 𝑣 at levels ℓ (𝑤) < ℓ (𝑣) to be the down-
neighbors of 𝑣 . Lastly, the desire-level dl(𝑣) of a vertex 𝑣 is the

closest level to the current level of the vertex that satisfies both In-

variant 1 and Invariant 2.

Definition 5.1 (Desire-level). The desire-level, dl(𝑣), of vertex 𝑣 is
the level ℓ ′ that minimizes |ℓ (𝑣) − ℓ ′ |, and where up∗ (𝑣) ≥ (1 + 𝛿)𝑖′

and up(𝑣) ≤ (2 + 3/𝜆) (1+𝛿)𝑖 where ℓ ′ − 1 ∈ 𝑔𝑖′ , ℓ ′ ∈ 𝑔𝑖 , and 𝑖 ′ ≤ 𝑖 .
In other words, the desire-level of 𝑣 is the closest level ℓ ′ to the current
level of 𝑣 , ℓ (𝑣), where both Invariant 1 and Invariant 2 are satisfied.

6

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Algorithm 2 RebalanceInsertions(𝐵ins)

Input: A batch of edge insertions 𝐵ins.

1: Let𝑈 contain all up-neighbors of each vertex, keyed by vertex. So𝑈 [𝑣]
contains all up-neighbors of 𝑣.

2: Let 𝐿𝑣 contain all neighbors of 𝑣 in levels [0, . . . , ℓ (𝑣) − 1], keyed by

level number.

3: parfor each edge insertion 𝑒 = (𝑢, 𝑣) ∈ B𝑖𝑛𝑠 do
4: Insert 𝑒 into the graph.

5: for each level 𝑙 ∈ [0, . . . , 𝐾 − 1] starting with 𝑙 = 0 do
6: parfor each vertex 𝑣 incident to 𝐵ins or is marked, where ℓ (𝑣) =
𝑙 ∩ up(𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙) do

7: Mark and move 𝑣 to level 𝑙 + 1 and create 𝐿𝑣 [𝑙] to store 𝑣’s neigh-

bors at level 𝑙 .

8: parfor each 𝑤 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑤
stayed in level 𝑙 do

9: 𝑈 [𝑣] ← 𝑈 [𝑣] \ {𝑤 } , 𝐿𝑣 [𝑙] ← 𝐿𝑣 [𝑙] ∪ {𝑤 }.
10: parfor each 𝑢 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑢

is in level 𝑙 + 1 do
11: Mark 𝑢 if up(𝑢) > (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙+1) .
12: 𝑈 [𝑢] ← 𝑈 [𝑢] ∪ {𝑣 }, 𝐿𝑢 [𝑙] ← 𝐿𝑢 [𝑙] \ {𝑣 }.
13: parfor each 𝑥 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑥

is in level ℓ (𝑥) ≥ 𝑙 + 2 do
14: 𝐿𝑥 [𝑙] ← 𝐿𝑥 [𝑙] \ {𝑣 }, 𝐿𝑥 [𝑙 + 1] ← 𝐿𝑥 [𝑙 + 1] ∪ {𝑣 }.
15: Unmark 𝑣 if up(𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙+1) . Otherwise, leave 𝑣

marked.

We show that the invariants are always maintained except for

a period of time when processing a new batch of insertions/dele-

tions. During this period, the data structure undergoes a rebalance
procedure, where the invariants may be violated. The main update

procedure in Algorithm 1 separates the updates into insertions and

deletions (Line 1), and then calls RebalanceInsertions (Line 2) and

RebalanceDeletions (Line 3). We make two crucial observations:
when processing a batch of insertions, Invariant 2 is never violated;

and, similarly, when processing a batch of deletions, Invariant 1

is never violated. Thus, no vertex needs to move down when pro-

cessing an insertion batch and no vertex needs to move up when

processing a deletion batch. The two procedures are asymmetric,

and so we first describe RebalanceInsertions (Algorithm 2), and

then describe RebalanceDeletions (Algorithm 3).

Data Structures. Each vertex 𝑣 keeps track of its set of neighbors

in two structures. 𝑈 keeps track of the neighbors at 𝑣 ’s level and

above. We denote this set of 𝑣 ’s neighbors by 𝑈 [𝑣]. 𝐿𝑣 keeps track
of neighbors of 𝑣 for every level below ℓ (𝑣)—in particular, 𝐿𝑣 [𝑗]
contains the neighbors of 𝑣 at level 𝑗 < ℓ (𝑣).
RebalanceInsertions(𝐵ins). Algorithm 2 shows the pseudocode.

Provided a batch of insertions 𝐵ins, we iterate through the 𝐾 levels

from the lowest level ℓ = 0 to the highest level ℓ = 𝐾 − 1 (Line 5).
For each level, in parallel we check the vertices incident to edge

insertions in 𝐵ins or is marked to see if they violate Invariant 1

(Line 6). If a vertex 𝑣 in the current level 𝑙 violates Invariant 1, we

move 𝑣 to level 𝑙 + 1 (Line 7). After moving 𝑣 , we update structures

𝑈 [𝑣], 𝐿𝑣 , and the structures of 𝑤 ∈ 𝑁 (𝑣) where ℓ (𝑤) ∈ [𝑙, 𝑙 + 1].
First, we create 𝐿𝑣 [𝑙] to store the neighbors of 𝑣 in level 𝑙 (Line 7).

If 𝑣 moved to level 𝑙 + 1 and 𝑤 stayed in level 𝑙 , then we delete

𝑤 from 𝑈 [𝑣] and instead insert 𝑤 into 𝐿𝑣 [𝑙] (Lines 8–9). We do

not need to make any data structure modifications for 𝑤 since 𝑣

stays in 𝑈 [𝑤]. Similarly, no data structure modifications to 𝑣 and

𝑤 are necessary when both 𝑣 and 𝑤 move to level 𝑙 + 1. For each
neighbor of 𝑣 on level 𝑙 + 1, we need to check whether it now

violates Invariant 1 (Line 10). If it does, then we mark the vertex

(Line 11). We process any such marked vertices when we process

level 𝑙 + 1. We also update the𝑈 and 𝐿 arrays of every neighbor of

𝑣 on level 𝑙 + 1 (Line 12). Specifically, let 𝑢 be one such neighbor, we

add 𝑣 to 𝑈 [𝑢] and remove 𝑣 from 𝐿𝑢 [𝑙]. We conclude by making

appropriate modifications to 𝐿 for each neighbor on levels ≥ 𝑙 + 2
(Lines 13–14). Specifically, let 𝑥 be one such neighbor, we remove

𝑣 from 𝐿𝑥 [𝑙] and add 𝑣 to 𝐿𝑥 [𝑙 + 1]. All neighbors of vertices that
moved can be checked and processed in parallel. Finally, 𝑣 becomes

unmarked if it satisfies all invariants; otherwise, it remains marked

and must move again in a future step (Line 15).

Fig. 6 shows an example of our entire insertion procedure de-

scribed in Algorithm 2 for 𝛿 = 0.4 and 𝜆 = 3. The red lines in the

example represent the batch of edge insertions. Thus, in (𝑎), the
newly inserted edges are the edges (𝑢, 𝑣), (𝑢, 𝑥), and (𝑥,𝑤). We

iterate from the bottommost level (level 0) to the topmost level

(level 𝐾 − 1).
The first level where we encounter vertices that are marked or

are adjacent to an edge insertion is level 2. Since level 2 is part of

group 0, the cutoff for Invariant 1 is (2 + 3/𝜆) (1 + 𝛿)0 = 3 provided

𝜆 = 3 and 𝛿 = 0.4. In level 2, only 𝑤 violates Invariant 1 since

the number of its neighbors on levels ≥ 2 is 4 (𝑥 , 𝑦, 𝑧, and 𝑎), so

up(𝑤) = 4 > 3 (shown in (𝑏)). Then, in (𝑐), we move 𝑤 up to

level 3. We need to update the data structures for neighbors of𝑤 at

level 3 and above (as well as𝑤 ’s own data structures); the vertices

with data structure updates are 𝑥 , 𝑤 , 𝑦, and 𝑧. After the move, 𝑥

becomes marked because it now violates Invariant 1 (the cutoff for

level 3 is (2 + 3/3) (1 + 0.4) = 4.2 since level 3 is in group 1); 𝑤

becomes unmarked because it no longer violates Invariant 1. In (𝑑),
we move on to process level 3. The only vertex that is marked or

violates Invariant 1 is 𝑥 . Therefore, we move 𝑥 up one level (shown

in (𝑒)) and update relevant data structures (of 𝑥 , 𝑣 , 𝑦, 𝑧, and 𝑏).

RebalanceDeletions(𝐵del). Unlike in LDS, deletions in PLDS are

handled by moving each vertex at most once, directly to its final

level (the vertex does not move again during this procedure). We

show in the analysis that this guarantee is crucial to obtaining low
depth. The pseudocode is shown in Algorithm 3. For each vertex 𝑣

incident to an edge deletion, we checkwhether it violates Invariant 2

(Line 4). On Line 4, 𝑔𝑛(ℓ (𝑣) − 1) gives the group number 𝑖 where

ℓ (𝑣) − 1 ∈ 𝑔𝑖 . If 𝑣 violates Invariant 2, we calculate its desire-

level, dl(𝑣), using CalculateDesireLevel (Line 5), described next. We

iterate through the levels from 𝑙 = 0 to 𝑙 = 𝐾 − 1 (Line 6). Then, in
parallel for each vertex 𝑣 whose desire-level is 𝑙 , we move 𝑣 to level

𝑙 (Lines 7–8). We update the data structures of each 𝑣 that moved

and𝑤 ∈ 𝑁 (𝑣) where ℓ (𝑤) ≥ 𝑙 (Lines 9–21). Specifically, we need to
update𝑈 [𝑣],𝑈 [𝑤], 𝐿𝑣, and 𝐿𝑤 if 𝑣 was originally an up-neighbor of

𝑤 and becomes a down-neighbor or vice versa. Finally, we update

the desire-level of neighbors of 𝑣 that no longer satisfy Invariant 2

(Lines 22–23). We process all vertices that move and their neighbors

in parallel.

Fig. 7 shows an example of Algorithm 3 for 𝛿 = 1 and 𝜆 = 3. In

(𝑎), the newly deleted edges are (𝑥, 𝑧) and (𝑦,𝑤). For each vertex

adjacent to an edge deletion, we calculate its desire-level, or the

closest level to its current level that satisfies Invariant 2. In (𝑏),

7

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

𝛿 = 0.4 and 𝜆 = 3

(𝑎) (𝑏)

	𝑥
Group 0

Group 1

	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥

	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

	𝑏 	𝑏

	𝑥 	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥 	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

	𝑥
	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

(𝑐) (𝑑) (𝑒)

	𝑏 	𝑏 	𝑏

Figure 6: Example of RebalanceInsertions described in the text for 𝛿 = 0.4 and 𝜆 = 3. The red lines represent the batch of edge insertions.

Algorithm 3 RebalanceDeletions(Bdel)
Input: A batch of edge deletions Bdel.
1: Let𝑈 contain all up-neighbors of each vertex, keyed by vertex. So𝑈 [𝑣]

contains all up-neighbors of 𝑣. Let 𝐿𝑣 contain all neighbors of 𝑣 in levels

[0, . . . , ℓ (𝑣) − 1], keyed by level number.

2: parfor each edge deletion 𝑒 = (𝑢, 𝑣) ∈ Bdel do
3: Remove 𝑒 from the graph.

4: parfor each vertex 𝑣 where up∗ (𝑣) < (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−1) do
5: Calculate dl(𝑣) using CalculateDesireLevel(𝑣).
6: for each level 𝑙 ∈ [0, . . . , 𝐾 − 1] starting with level 𝑙 = 0 do
7: parfor each vertex 𝑣 where dl(𝑣) = 𝑙 do
8: Move 𝑣 to level 𝑙 .

9: parfor each vertex 𝑣 where dl(𝑣) = 𝑙 do
10: parfor each neighbor 𝑤 of 𝑣 where ℓ (𝑤) ≥ 𝑙 do
11: Let 𝑝𝑣 and 𝑝𝑤 be the previous levels of 𝑣 and 𝑤, respectively,

before the move.

12: if ℓ (𝑤) = 𝑙 then
13: 𝐿𝑤 [𝑝𝑣] ← 𝐿𝑤 [𝑝𝑣] \ {𝑣 }, 𝐿𝑣 [𝑝𝑤] ← 𝐿𝑣 [𝑝𝑤] \ {𝑤 }.
14: 𝑈 [𝑤] ← 𝑈 [𝑤] ∪ {𝑣 },𝑈 [𝑣] ← 𝑈 [𝑣] ∪ {𝑤 }.
15: else
16: if 𝑝𝑣 > ℓ (𝑤) then
17: 𝑈 [𝑤] ← 𝑈 [𝑤] \ {𝑣 }, 𝐿𝑣 [ℓ (𝑤)] ← 𝐿𝑣 [ℓ (𝑤)] \ {𝑤 }.
18: else if 𝑝𝑣 = ℓ (𝑤) then
19: 𝑈 [𝑤] ← 𝑈 [𝑤] \ {𝑣 }.
20: else 𝐿𝑤 [𝑝𝑣] ← 𝐿𝑤 [𝑝𝑣] \ {𝑣 }.
21: 𝐿𝑤 [𝑙] ← 𝐿𝑤 [𝑙] ∪ {𝑣 },𝑈 [𝑣] ← 𝑈 [𝑣] ∪ {𝑤 }.
22: if up∗ (𝑤) < (1 + 𝛿)𝑔𝑛 (ℓ (𝑤)−1) then
23: Recalculate dl(𝑤) using Algorithm 4.

only 𝑥 and 𝑧 violate Invariant 2. The lower bound on the number

of neighbors that must be at or above level 3 for 𝑥 and level 4 for 𝑧

is (1 + 𝛿)1 = 2 since 𝛿 = 1 and levels 3 and 4 are in group 1. (Recall

that the lower bound is calculated with respect to the level below 𝑥

and 𝑧.) We calculate that the desire-levels of 𝑥 and 𝑧 are both 3. The

desire-levels of 𝑦 and𝑤 are their current levels because they do not

violate the invariant. Then, we iterate from the bottommost level

(starting with level 0) to the topmost level (level 𝐾 − 1). Level 3 is
the first level where vertices want to move. Then, we move 𝑥 and 𝑧

to level 3 (shown in (𝑐)). We only need to update the data structures

of neighbors at or above 𝑥 and 𝑧 so we only update the structures of

𝑥 , 𝑦, and 𝑧. Invariant 2 is no longer violated for 𝑥 and 𝑧. In fact, our

algorithm guarantees that each vertexmoves at most once. We check

whether any of 𝑥 or 𝑧’s up-neighbors violate Invariant 2. Indeed, 𝑦

now violates the invariant. In (𝑑), we recompute the desire-level of

𝑦 and its desire-level is now 4. Then, we move 𝑦 to level 4 in (𝑒).
CalculateDesireLevel(𝑣). Algorithm 4 shows the procedure for

calculating the desire-level, dl(𝑣), of vertex 𝑣 , which is used in Al-

gorithm 3. Let 𝑔𝑛(ℓ) be the index 𝑖 where level ℓ ∈ 𝑔𝑖 . We use a

doubling procedure followed by a binary search to calculate the

desire-level. We initialize a variable 𝑑 to up∗ (𝑣) (number of neigh-

bors at or above level ℓ (𝑣) − 1). Starting with level ℓ (𝑣) − 2, we add
the number of neighbors in level ℓ (𝑣) − 2 to 𝑑 (Algorithm 4, Line 3).

Algorithm 4 CalculateDesireLevel(𝑣)

Input: A vertex 𝑣 that needs to move to a level 𝑗 < ℓ (𝑣) .
Output: The desire-level dl(𝑣) of vertex 𝑣.
1: 𝑑 ← up∗ (𝑣), 𝑝 ← 1, 𝑖 ← 2

2: while 𝑑 < (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−𝑝) and ℓ (𝑣) − 𝑝 > 0 do
3: 𝑑 ← 𝑑 +∑𝑖−1

𝑗=𝑝

��𝐿𝑣 [ℓ (𝑣) − 𝑗 − 1]��
4: if 𝑑 ≥ (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−𝑖) then
5: Binary search within levels [ℓ (𝑣) − 𝑖 + 1, . . . , ℓ (𝑣) − 𝑝] to find the

closest level to ℓ (𝑣) that satisfies Invariants 1 and 2; return this level.

6: 𝑝 ← 𝑖, 𝑖 ← min(2 · 𝑖, ℓ (𝑣)) .
7: return 0.

This procedure checks whether moving 𝑣 to ℓ (𝑣) − 1 satisfies Invari-
ant 2 (Line 4). If it passes the check, then we are done and we move

𝑣 to ℓ (𝑣) − 1. Otherwise, we iteratively double the number of levels

from which we count neighbors until we find a level where Invari-

ant 2 is satisfied (Line 6). On each iteration, we sum the number

of neighbors (Line 3) in the range of levels using a parallel reduce.

We continue until we find a level where Invariant 2 is satisfied. Let

this level be ℓ ′ and the previous cutoff be ℓprev. Finally, we perform

a binary search within the range [ℓ ′, . . . , ℓprev] to find the closest
level to ℓ (𝑣) that satisfies Invariant 2 (Line 5).

5.4 Efficiency Analysis
We now analyze the work and depth of our PLDS. First, it is easy

to show that there exists a level where both invariants are satisfied.

This allows our PLDS to assign each vertex to a single level.

Lemma 5.2. If a vertex 𝑣 violates Invariant 1, then there exists a
level 𝑙 > ℓ (𝑣) where 𝑣 satisfies both Invariant 1 and Invariant 2. If a
vertex𝑤 violates Invariant 2, then there exists a level 𝑙 < ℓ (𝑤) where
𝑤 satisfies both invariants or 𝑙 = 0 (it is in the bottommost level).

Proof. First note that no vertex can simultaneously violate

both Invariant 1 and Invariant 2. Thus, suppose first that 𝑣 vio-

lates Invariant 1. Then, this means that the number of neighbors of

𝑣 on levels ≥ ℓ (𝑣) is more than (2 + 3/𝜆) (1 + 𝛿)𝑔 (𝑣) where 𝑔(𝑣) is
the group number of 𝑣 . If 𝑣 still violates Invariant 1 on level ℓ (𝑣) + 1,
then we keep moving 𝑣 to the next level.

Otherwise, 𝑣 does not violate Invariant 1 on level ℓ (𝑣) + 1. Since
we know that 𝑣 violated Invariant 1 on level ℓ (𝑣), then after we

move 𝑣 to ℓ (𝑣) + 1, 𝑣 ’s up*-degree is greater than (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)) ;
hence, 𝑣 also does not violate Invariant 2. The very last level of

the 𝐾 levels has up-degree bound (2 + 3/𝜆) (1 + 𝛿) ⌈log1+𝛿 (𝑛) ⌉ > 2𝑛

when a vertex can be adjacent to at most 𝑛−1 vertices. Hence, there
must exist a level at or below the last level where both invariants

are satisfied. A similar argument holds for Invariant 2. □

Then, we make the following two observations that a batch of

insertions never violates Invariant 2 and a batch of deletions never

violates Invariant 1. This is true because deletions can never increase

8

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

𝛿 = 1 and 𝜆 = 3

(𝑎) (𝑏)

	𝑥

Group 0

Group 1

	𝑤

	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

(𝑐) (𝑑) (𝑒)

𝑑𝑙 𝑧 = 3

	𝑥

	𝑤

	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

𝑑𝑙 𝑥 = 3

𝑑𝑙 𝑦 = 5

𝑑𝑙 𝑤 = 2

	𝑥
	𝑤

	𝑧
	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥

	𝑤
	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

𝑑𝑙 𝑦 = 4

	𝑥
	𝑤

	𝑧
	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

Figure 7: Example of RebalanceDeletions described in the text for 𝛿 = 1 and 𝜆 = 3. The red dotted lines represent the batch of edge deletions.

the up-degree of any vertex and insertions can never decrease the

up*-degree of any vertex.

Observation 5.3 (Batch Insertions). Given a batch of insertions,
B𝑖𝑛𝑠 , Invariant 2 is never violated while B𝑖𝑛𝑠 is applied.

Proof. The first part of the algorithm inserts the edges into the

data structure. Since no edges are removed from the data structures,

the degrees of all the vertices after the insertion of edges cannot

decrease. Invariant 2 was satisfied before the insertion of the edges,

and hence, it remains satisfied after the insertion of edges because

no vertices lose neighbors. We prove that the lemma holds for the

remaining part of Algorithm 2 via induction on the level 𝑖 processed

by the procedure. In the base case, when 𝑖 = 0, all vertices 𝑣 in the

level which violate Invariant 1 are moved up to a level dl(𝑣) > 0.

By definition of desire-level, 𝑣 is moved to a level where Invariant 2

is still satisfied, by Lemma 5.2. Vertices from level 0 which move

to levels 𝑘 ≥ 1 cannot decrease the up*-degree for neighbors in all

levels 𝑗 where 𝑗 > 1. Thus, Invariant 2 cannot be violated for these

vertices. Vertices not adjacent to 𝑣 are not affected by the move.

We assume that Invariant 2 was not violated up to level 𝑖 and

prove it is not violated while processing vertices on level 𝑖 + 1. By
our induction hypothesis, no vertices violate Invariant 2 before we

process level 𝑖+1. Then, whenwe process level 𝑖+1, no verticesmove

down to a lower level than 𝑖 + 1 by construction of our algorithm

because Invariant 2 is not violated for any vertex on level 𝑖 + 1 and
if Invariant 1 is violated for any vertex 𝑤 , 𝑤 must move up to a

higher level. Any vertex𝑤 which moves up to a higher level cannot

decrease the up*-degree of neighbors of 𝑤 . Hence, no vertex on

levels ≥ 𝑖 + 1 can violate Invariant 2. The up*-degree of vertices on

levels < 𝑖 + 1 are not affected by the move. Hence, no vertices on

levels < 𝑖 + 1 violate Invariant 2. Finally, if a vertex on level 𝑖 + 1
violates Invariant 1, it will move to a level 𝑗 > 𝑖 + 1 where both

invariants are satisfied by Lemma 5.2. □

Observation 5.4 (Batch Deletions). Given a batch of deletions,
B𝑑𝑒𝑙 , Invariant 1 is never violated while B𝑑𝑒𝑙 is applied.

Proof. Algorithm 3 first applies all the edge deletions in the

batch. Edge deletions cannot make the up-degree of any vertex

greater; thus, no vertex violates Invariant 1 after applying the edge

deletions. We prove that the rest of the algorithm does not vio-

late Invariant 1 via induction over the levels 𝑖 . Specifically, we use

as our induction hypothesis that after processing the 𝑖’th level, no

vertices violate Invariant 1. In the base case, when 𝑖 = 0, no vertices

violate Invariant 1 at the beginning, and vertices from levels 𝑖 > 0

move to level 0. This means that during the processing of level 𝑖 = 0,

vertices only move to level 0 from a higher level. Thus, all such

vertices that move will move to a lower level. Since vertices which

move to lower levels do not increase the up-degree of any other

vertices, no vertex can violate Invariant 1 at the end of processing

level 0. We now prove the case for processing level 𝑖 + 1. In this

case, we assume by our induction hypothesis that no vertices vio-

late Invariant 1 after we finish processing level 𝑖 . Thus, all vertices

that want to move to level 𝑖 + 1 and violate Invariant 2 are at levels

𝑗 > 𝑖 + 1. Such vertices move down and thus cannot increase the

up-degree of any vertex. This means that after moving all vertices

that want to move to level 𝑖 + 1, no vertices violate Invariant 1. □

Batch InsertionDepth Bound.Using our observations, the depth
of our batch insertion algorithm (Algorithm 2) depends on the

following lemma which states that once we have processed a level

(after finishing the corresponding iteration of Line 5), no vertex will

want to move from any level lower than that level. This means that

each level is processed exactly once, resulting in at most 𝑂 (log2 𝑛)
levels to be processed sequentially.

Lemma 5.5. After processing level 𝑖 in Algorithm 2, no vertex 𝑣 in
levels ℓ (𝑣) ≤ 𝑖 will violate Invariant 1. Furthermore, no vertex𝑤 on
levels ℓ (𝑤) > 𝑖 will have dl(𝑤) ≤ 𝑖 .

Proof. We prove this via induction. For the base case 𝑖 = 0,

all vertices on level 0 are part of each other’s up-degree; then, no

vertices which move up from 𝑖 = 0 can cause the up-degree of

any vertices remaining in level 0 to increase. We now assume the

induction hypothesis for 𝑖 − 1 and prove the case for 𝑖 . Vertices

on level 𝑗 ≤ 𝑖 already contain vertices on levels ≥ 𝑖 in its up-

degree. Such vertices on levels ≥ 𝑖 when moved to a higher level

are still part of the up-degree of vertices on levels 𝑗 ≤ 𝑖 . Hence, no
vertices on levels 𝑗 ≤ 𝑖 will violate Invariant 1 due to vertices in

levels ≥ 𝑖 moving up to a level 𝑙 > 𝑖 . Then, in order for a vertex𝑤

with ℓ (𝑤) > 𝑖 to have dl(𝑤) ≤ 𝑖 , some neighbors of 𝑤 must have

moved to a level ≤ 𝑖 . By Observation 5.3, no vertices move down

during Algorithm 2, so this is not possible. □

Batch Deletion Depth Bound. For the batch deletion algorithm

(Algorithm 3), we prove that, starting from the lowest level, after all

vertices with dl(𝑤) = 𝑖 are moved to the 𝑖’th level, no vertex 𝑣 will

have dl(𝑣) ≤ 𝑖 . This means that each level is processed exactly once,

resulting in at most 𝑂 (log2 𝑛) levels to be processed sequentially.

Lemma 5.6. After processing all vertices that move to level 𝑖 in Al-
gorithm 3, no vertex 𝑣 needs to be moved to any level 𝑗 ≤ 𝑖 in a future
iteration of Line 6; i.e., no vertex 𝑣 has dl(𝑣) ≤ 𝑖 after processing 𝑖 .

Proof. We prove this via induction. In the base case when 𝑖 =

0, all vertices with dl(𝑣) = 0 are moved to level 0. All vertices

which have dl(𝑣) = 0 are vertices which have degree 0. Thus, all

vertices that do not have dl(𝑣) = 0 have degree ≥ 1 and have

dl(𝑤) ≥ 1. Hence, after moving all vertices with dl(𝑣) = 0 to level

0, no additional vertices need to be moved to level 0. Assuming our

induction hypothesis, we now show our lemma holds for level 𝑖 + 1.
All vertices that move to level 𝑖 + 1 violated Invariant 2 and hence

9

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

have up*-degree < (1 + 𝛿)𝑔𝑛 (𝑗−1) at level 𝑗 > 𝑖 + 1 and up*-degree

≥ (1+𝛿)𝑔𝑛 (𝑖) at level 𝑖+1. After moving all vertices with dl(𝑣) = 𝑖+1
to level 𝑖 + 1, no vertices on levels 𝑘 ≤ 𝑖 + 1 have their up*-degree
decreased by the move. We conclude the proof with vertices at

levels 𝑙 > 𝑖 + 1. Suppose for the sake of contradiction that there

exists some vertex𝑤 on level 𝑙 > 𝑖 + 1 which has dl(𝑤) ≤ 𝑖 + 1 after
the move. In order for dl(𝑤) ≤ 𝑖 + 1, some neighbor(s) of𝑤 must

move below level 𝑖 , a contradiction. Finally, due to Observation 5.4,

no vertices below level 𝑖 + 1 will move up. □

We describe the depth of our parallel data structures next. We

provide a set of linear-space data structures in Section 5.8 at the

cost of increased depth.

Lemma 5.7. Algorithm 1 returns a randomized parallel level
data structure that maintains Invariant 1 and Invariant 2 and has
𝑂 (log2 𝑛 log log𝑛) depth, w.h.p., and 𝑂 (𝑛 log2 𝑛 +𝑚) space.

Proof. By Lemma 5.5 and Lemma 5.6, Algorithm 2 (Line 5)

and Algorithm 3 (Line 6) iterates through 𝑂 (log2 𝑛) levels sequen-
tially. Thus, the depth of algorithms is determined by the depth

of the procedures that are run in each level the algorithm iterates

through.

We maintain the list of neighbors using separate parallel hash

tables for each vertex 𝑣 . One hash table contains 𝑣 ’s neighbors at

the same or higher levels. Vertex 𝑣 ’s neighbors in levels below ℓ (𝑣)
are placed in a separate hash table for each level. Parallel lookups

into the hash tables require 𝑂 (1) depth w.h.p., and inserting and

deleting elements within the tables require 𝑂 (log∗ 𝑛) depth w.h.p.

Simultaneously changing the values within the hash table require

𝑂 (log∗ 𝑛) depth w.h.p. Then, the depth per level of the structure is

dominated by Algorithm 4.

The only additional depth we need to consider is the depth in-

curred from Algorithm 4. Both the doubling search and the binary

search require 𝑂 (log𝐾) = 𝑂 (log log𝑛) depth. All other contribu-
tions come from concurrently modifying and accessing dynamic

arrays and hash tables and can be done in 𝑂 (log∗ 𝑛) depth w.h.p.

Using the above, we successfully prove that the depth of Algo-

rithm 1 is 𝑂 (log2 𝑛 log log𝑛) w.h.p. The extra space in addition to

storing the graph is 𝑂 (𝑛 log2 𝑛) because we must have 𝑂 (log2 𝑛)
size dynamic arrays for each vertex to track their neighbors at

lower levels (i.e., the neighbors in 𝐿𝑣). Thus, the total depth of our

randomized algorithm is 𝑂 (log2 𝑛 log log𝑛) w.h.p., and the space

used is 𝑂 (𝑛 log2 𝑛 +𝑚). □

5.5 Potential Argument for Work Bound
Our work bound uses the potential functions presented in Section

4 of [13]. We show that we can analyze our algorithm using these

potential functions and our parallel algorithm serializes to a set of

sequential steps that obey the potential function. We obtain the

following lemma by the potential argument provided in this section.

Lemma 5.8. For a batch of |B| < 𝑚 updates, Algorithm 1
returns a PLDS that maintains Invariant 1 and Invariant 2 in
𝑂 (|B| log2 𝑛) amortized work and 𝑂 (log2 𝑛 log log𝑛) depth w.h.p.,
using 𝑂 (𝑛 log2 𝑛 +𝑚) space.

5.5.1 Proof of Work Bound. Unlike the algorithm presented in [13,

47], in each round, to handle deletions, we recompute the dl(𝑣) of

any vertex 𝑣 that we want to move to a lower level. Specifically,

we compute and move 𝑣 to the closest level that satisfies both In-

variant 1 and Invariant 2. This is a different algorithm from the

algorithm presented in [13, 47], and so we present for completeness

a work argument for our modified algorithm. The work bound we

present accounts for the work of any one vertex’s movement up

or down levels using the potential function argument of [13]. Note

that this potential function also gives us the amortized work per

edge update of our algorithm since there exists a corresponding

set of sequential updates that cannot do less work than the set of

parallel updates. Although the algorithm is different, the below

potential work bound argument follows closely the work bound

proof presented in Bhattacharya et al. [13]. However, we repeat the

proof again here (with some modifications) for completeness.

Charging the Cost of Moving Levels. The strategy behind our

potential function is to use the increase in our potential function

due to edge updates to pay for the decrease in potential due to

vertices moving up or down levels, which is enough to account

for the work of moving the vertices. We can then charge our costs

to the increase in potential due to edge updates. Below, we bound

the increase in potential due to edge updates and the decrease in

potential due to vertex movements.

We use the following potential function to calculate our potential.

First, recall some notation. Let 𝑍𝑖 be the set of vertices in levels

𝑖 to 𝐾 . In other words, 𝑍𝑖 =
⋃𝐾
𝑗=𝑖 𝑉𝑗 . Let 𝑁 (𝑢, 𝑍𝑖) be the set of

neighbors of 𝑢 in the induced subgraph given by 𝑍𝑖 . Let ℓ (𝑢) be the
current level that 𝑢 is on. Finally, let 𝑔𝑛(ℓ) be the group number of

level ℓ ; in other words, ℓ ∈ 𝑔𝑔𝑛 (ℓ) . Let 𝑓 : [𝑛] × [𝑛] → {0, 1} be a
function where 𝑓 (𝑢, 𝑣) = 1 when ℓ (𝑢) = ℓ (𝑣) and 𝑓 (𝑢, 𝑣) = 0 when

ℓ (𝑢) ≠ ℓ (𝑣). Using the potential functions defined in [13], for some

constant 𝜆 > 0:

Π =
∑︁
𝑣∈𝑉

Φ(𝑣) +
∑︁
𝑒∈𝐸

Ψ(𝑒) (1)

Φ(𝑣) = 𝜆
ℓ (𝑣)−1∑︁
𝑖=0

max(0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑖) − |𝑁 (𝑣, 𝑍𝑖) |) (2)

Ψ(𝑢, 𝑣) = 2 (𝐾 −min(ℓ (𝑢), ℓ (𝑣))) + 𝑓 (𝑢, 𝑣) (3)

We first calculate the potential changes for insertions and deletions

of edges.

Insertion. The insertion of an edge (𝑢, 𝑣) creates a new edge

with potential Ψ(𝑢, 𝑣). The new potential has value at most 2𝐾 + 1.
With an edge insertion Φ(𝑢) and Φ(𝑣) cannot increase. Thus, the
potential increases by at most 2𝐾 + 1.

Deletion. The deletion of edge (𝑢, 𝑣) increases potentials Φ(𝑢)
and Φ(𝑣) by at most (2𝜆 + 3)𝐾 and 2𝐾 , respectively. It does not

increase any other potential since the potential of edge (𝑢, 𝑣) is
eliminated.

First it is easy to see that the potential Π is always non-

negative. Thus, we can use the positive gain in potential over edge

insertions and deletions to pay for the decrease in potential caused

by moving vertices to different levels.

10

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Now we discuss the change in potential given a movement of a

vertex to a higher or lower level. Moving such a vertex decreases

the potential and we show that this decrease in potential is enough

to pay for the cost of moving the vertex to a higher or lower level.

A vertex 𝑣 moves from level 𝑖 to level dl(𝑣) < 𝑖 due to Algorithm 3.
Since vertex 𝑣 moved down at least one level, this means that prior

to the move, its up*-degree is up∗ (𝑣) < (1+𝛿)𝑔𝑛 (ℓ (𝑣)−1) . It is moved

to a level dl(𝑣) where its up*-degree is at least (1 + 𝛿)𝑔𝑛 (dl(𝑣)−1)
and its up-degree is at most (2 + 3/𝜆) (1+𝛿)𝑔𝑛 (dl(𝑣)) (or it is moved

to level 0).

The potential before the move is at least

𝜆

dl(𝑣)−1∑︁
𝑖=0

max

(
0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑖) − |𝑁 (𝑣, 𝑍𝑖) |

)
+
ℓ (𝑣)−1∑︁
𝑖=dl(𝑣)

(𝜆 + 3) (1 + 𝛿)𝑔𝑛 (𝑖)

since we only move a vertex to a lower level if up∗ (𝑣) <

(1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−1) and we move it to the closest level dl(𝑣)
where Invariant 2 is no longer violated. To derive the second term,

since we moved vertex 𝑣 to level dl(𝑣), we know that its degree

|𝑁 (𝑣, 𝑍dl(𝑣)) | < (1 + 𝛿)𝑔𝑛 (dl(𝑣)) (otherwise, we could have moved

𝑣 to level dl(𝑣) + 1). Then, substituting (1 + 𝛿)𝑔𝑛 (𝑖) for all levels
𝑖 ≥ dl(𝑣) into Φ(𝑣) allows us to obtain

∑ℓ (𝑣)−1
𝑖=dl(𝑣) (𝜆 + 3) (1 + 𝛿)

𝑔𝑛 (𝑖)
.

Then, when it reaches its final level, we know that it is at the

highest level it can move to or at level 0. In both cases,

Φ(𝑣) = 𝜆
dl(𝑣)−1∑︁
𝑖=0

max

(
0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑖) − |𝑁 (𝑣, 𝑍𝑖) |

)
after the move. In this case, Φ(𝑣) decreases by at least

∑ℓ (𝑣)−1
𝑖=dl(𝑣) (𝜆 +

3) (1 + 𝛿)𝑔𝑛 (𝑖) .
We need to account for two potential increases: the increase in

Ψ and the increase in Φ from neighbors of 𝑣 . There are less than

(1 + 𝛿)𝑔𝑛 (dl(𝑣)) such neighbors that we need to consider. Namely,

there are less than (1 + 𝛿)𝑔𝑛 (dl(𝑣)) neighbors in levels ≥ dl(𝑣) that
we need to consider for the potential increase. This is due to the

fact that we moved 𝑣 to the highest level that satisfies the invariants.
If 𝑣 has ≥ (1 + 𝛿)𝑔𝑛 (dl(𝑣)) neighbors in 𝑍dl(𝑣) , then the desire-

level of 𝑣 would be dl(𝑣) + 1 since 𝑣 satisfies Invariant 2 at level

dl(𝑣) + 1 and we can increase its dl(𝑣). Furthermore, we only need

to consider neighbors in levels ≥ dl(𝑣) since only these neighbors

will contribute to the potential increase by Eq. (2) and Eq. (3).

We first consider the increase in Ψ. The total potential increase
in Ψ(𝑢, 𝑣) (Eq. (3)) summed over the increase for every edge (𝑢, 𝑣)
where ℓ (𝑢) ≥ dl(𝑣) is at most 2(ℓ (𝑣) − dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣)) . This
is due to the fact that for each edge (𝑢, 𝑣), the potential gain from

Ψ is upper bounded by 2 for every level in [dl(𝑣), ℓ (𝑣) − 1]. Thus,
in total over < (1 + 𝛿)𝑔𝑛 (dl(𝑣)) such neighbors results in a total

potential increase of less than 2(ℓ (𝑣) − dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣)) .
Now we consider the potential increase in Φ. For this potential

increase, we need to account for the increase in potential of every

neighbor whose edge is flipped by the move. Decreasing the degree

of each neighbor by one for each of |𝑁 (𝑣, dl(𝑣)) | < (1 + 𝛿)𝑔𝑛 (dl(𝑣))

neighbors results in the total increase in Φ. In other words, for

each flipped edge (𝑣,𝑤), 𝑁 (𝑤,𝑍𝑖) decreases by 1 for each level

𝑖 ∈ [dl(𝑣) + 1, ℓ (𝑣)]. The total increase in Φ is then at most 𝜆(ℓ (𝑣) −
dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣)) by Eq. (2) over all flipped edges since there

are less than (1 + 𝛿)𝑔𝑛 (dl(𝑣)) such neighbors in levels ≥ dl(𝑣) + 1
and so the total number of flipped edges is less than (1+𝛿)𝑔𝑛 (dl(𝑣)) .

Then, in total, the potential decrease is at least

©­«
ℓ (𝑣)−1∑︁
𝑖=dl(𝑣)

(𝜆 + 3) (1 + 𝛿)𝑔𝑛 (𝑖)ª®¬ − 2(ℓ (𝑣) − dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣))
−𝜆(ℓ (𝑣) − dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣)) ≥ (ℓ (𝑣) − dl(𝑣)) (1 + 𝛿)𝑔𝑛 (dl(𝑣))

which is enough to pay for the at most (1 + 𝛿)𝑔𝑛 (dl(𝑣)) edge flips
as well as the 𝑂 (ℓ (𝑣) − dl(𝑣)) work for computing the desire-level.

The total number of edge flips is upper bounded by |𝑁 (𝑣, dl(𝑣)) |.
Since we moved 𝑣 to dl(𝑣) and not dl(𝑣) + 1, we know that 𝑣 satis-

fies Invariant 2 at dl(𝑣) and not at dl(𝑣) + 1. Then, this means that

|𝑁 (𝑣, dl(𝑣))) | < (1 + 𝛿)𝑔𝑛 (dl(𝑣)) . Hence, our number of edge flips

is also bounded by (1 + 𝛿)𝑔𝑛 (dl(𝑣)) .

A vertex 𝑣 moves from level 𝑖 to level 𝑖 + 1 due to Algorithm 2. In
order for Algorithm 2 to move a vertex from level 𝑖 to 𝑖 + 1, it must

have violated Invariant 1 and that up(𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑖)
before the move. Before and after the move, Φ(𝑣) = 0, since in these

cases up∗ (𝑣) > (2 + 3/𝜆) (1+𝛿)𝑔𝑛 (𝑖−1) and up∗ (𝑣) > (2 + 3/𝜆) (1+
𝛿)𝑔𝑛 (𝑖) , respectively. Thus, Φ(𝑣) does not change in value. Further-

more, the Φ(𝑤) of its neighbors𝑤 cannot increase. Then, this leaves

us with the potential change in Ψ(𝑣,𝑤).
𝑍𝑖 is the set of neighbors that 𝑣 has to iterate through within

its data structures if 𝑣 goes up a level. The potential decrease for

every neighbor of 𝑣 on 𝑖 = ℓ (𝑣) is 1. The potential decrease for

every neighbor on level 𝑖 + 1 is 1. Finally, the potential decrease for
every neighbor in levels > dl(𝑣) is 2. Then, the potential decrease
for every neighbor in 𝑍𝑖 is at least 1 and is enough to pay for the

𝑂 (|𝑍𝑖 |) cost of iterating and moving the neighbors of 𝑣 in its data

structures.

Parallel Amortized Work. The last part of the proof that needs to
be shown is that any set of parallel level data structure operations

that is undertaken by Algorithm 2 or Algorithm 3 has a sequential

set of operations of the form detailed above (i.e., moving 𝑣 to dl(𝑣)
or moving 𝑣 from level 𝑖 to 𝑖 + 1) that consists of the same or strictly

larger set of operations.

Lemma 5.9. For any set of operations performed in parallel by Al-
gorithm 2 or Algorithm 3, there exists an identical set of sequential
operations to the set of parallel operations.

Proof. In Algorithm 2, the parallel set of operations consists

of moving all vertices that violate Invariant 1 in the same level 𝑖

up to level 𝑖 + 1. Again, suppose we choose an arbitrary order to

move the vertices in level 𝑖 to level 𝑖 + 1. Given two neighbors in

the order 𝑣 and𝑤 , if 𝑣 moves to level 𝑖 + 1, the up-degree of𝑤 still

includes 𝑣 ; since the up-degree of any vertex𝑤 is not affected by

the previous vertices that moved to level 𝑖 + 1,𝑤 moves to 𝑖 + 1 on
its turn. This order provides a sequential set of operations that is

equivalent to the parallel set of operations.

11

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

In Algorithm 3, the parallel set of operations consists of moving

a set of vertices down from arbitrary levels to the same level 𝑖 . We

show that there exists an identical set of sequential operations to

the parallel operations. First, any vertex whose dl(𝑣) = 𝑖 considered
all vertices in levels ≥ 𝑖 − 1 in its calculation of dl(𝑣). Thus, any
other vertex 𝑤 moving from a level 𝑗 > 𝑖 to level 𝑖 is included in

calculating the desire-level of vertex 𝑣 . Suppose we pick an arbitrary

order to move the vertices that have dl(𝑣) = 𝑖 to level 𝑖 . Then, the

desire-level of any vertex𝑤 whose dl(𝑤) = 𝑖 does not change after 𝑣
is moved to level 𝑖 . Hence, when it is𝑤 ’s turn in the order,𝑤 moves

to level 𝑖 . This arbitrary order is a sequential set of operations that

is identical to the parallel set of operations. □

Lemma 5.10. For a batch of |B| < 𝑚 updates, Algorithm 1 requires
𝑂 (|B| log2 𝑛) amortized work with high probability. The required
space is 𝑂 (𝑛 log2 𝑛 +𝑚) using the randomized data structures.

Proof. Our potential argument handles the cost of moving

neighbors of a vertex 𝑣 between different levels. Namely, our po-

tential argument shows that such costs of updating neighbor lists

of nodes require 𝑂 (log2 𝑛) amortized work per edge update to the

structure since we showed that the 𝑂 (log2 𝑛) potential increase
from each edge insertion or deletion is enough to pay for the cost

of moving vertices to different levels.

Then, it remains to calculate the amount of work of Algorithm 4.

We can obtain the size of each neighbor list in𝑂 (1) work and depth.
If we show that the work of running Algorithm 4 is asymptotically

bounded by the work of calculating the set of neighbor vertices

that need to be moved between neighbor lists for a vertex, then

we can also charge this work to the potential. To compute the first

lower bound on dl(𝑣), we maintain a cumulative sum of the total

number of neighbors for each vertex at or below the current level

ℓ (𝑣). Then, we sequentially double the number of elements we use

to compute the next level. We use 𝑂 (ℓ − dl(𝑣)) work to compute

dl(𝑣).
Finally, we also bound the work of the final binary search. Let 𝑅

be the size of the range of values in which we perform our binary

search. The size of the number of possible levels becomes smaller

as we decrease our range of values to search. Whenever we go

right in the binary search, we perform 𝑅/2 work. Whenever we

go left in the binary search, we also perform at most 𝑅/2 work.

Thus, the total amount of work we perform while doing the binary

search is 𝑂 (𝑅). And by the argument above, the amount of work is

𝑂

(
|𝑍dl(𝑣) \ 𝑍ℓ (𝑣) |

)
.

The total work of Algorithm 4 is𝑂 (|𝑍dl(𝑣) \𝑍ℓ (𝑣) | + (ℓ − dl(𝑣)))
which we can successfully charge to the potential. We conclude

that the amount of work per update is 𝑂 (log2 𝑛). □

5.6 Estimating the Coreness and Orientation
(2 + 𝜀)-Approximation of Coreness. The coreness estimate, ˆ𝑘 (𝑣),
is an estimate of the coreness of a vertex 𝑣 . We compute a coreness

estimate using only 𝑣 ’s level and the number of levels per group

(which is fixed). We show how to use such information to obtain a

(2+𝜀)-approximation to the actual coreness of 𝑣 for any constant 𝜀 >

0. (We can find an approximation for any fixed 𝜀 by appropriately

setting 𝛿 and 𝜆.) To calculate
ˆ𝑘 (𝑣), we find the largest index 𝑖 of a

group 𝑔𝑖 , where ℓ (𝑣) is at least as high as the highest level in 𝑔𝑖 .

Definition 5.11 (Coreness Estimate). The coreness estimate
ˆ𝑘 (𝑣)

of vertex 𝑣 is (1 + 𝛿)max(⌊ (ℓ (𝑣)+1)/4 ⌈log
1+𝛿 𝑛⌉ ⌋−1,0) , where each group

has 4⌈log(1+𝛿) 𝑛⌉ levels.
To see an example, consider vertex 𝑦 in Fig. 7 (𝑒). We estimate

ˆ𝑘 (𝑦) = 1 since the highest level that is the last level of a group and

is equal to or below level ℓ (𝑦) = 4 is level 2. Level 2 is part of group

0, and so our coreness estimate for 𝑦 is (1 + 𝛿)0 = 1. This is a 2-

approximation of its actual coreness of 2. Using Definition 5.11, we

prove that our PLDS maintains a (2 + 3/𝜆) (1 + 𝛿)-approximation

of the coreness value of each vertex, for any constants 𝜆 > 0 and

𝛿 > 0. Therefore, we obtain the following lemma giving the desired

(2 + 𝜀)-approximation. Our experimental analysis shows that our

theoretical bounds limit the maximum error of our experiments,

although our average errors are much smaller. To get a maximum

error bound of (2+𝜀) for any 𝜀 > 0, we can set 𝛿 = 𝜀/3 and 𝜆 = 9

𝜀 +3.
By Lemma 5.13, it suffices to return

ˆ𝑘 (𝑣) as the estimate of the

coreness of 𝑣 ; this proves the approximation factor in Theorem 3.1.

Lemma 5.12. Let ˆ𝑘 (𝑣) be the coreness estimate and 𝑘 (𝑣) be the
coreness of 𝑣 , respectively. If 𝑘 (𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔′ , then ˆ𝑘 (𝑣) ≥
(1 + 𝛿)𝑔′ . Otherwise, if 𝑘 (𝑣) < (1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿) , then
ˆ𝑘 (𝑣) < (1 + 𝛿)𝑔′ .

Proof. For simplicity, we assume the number of levels per group

is 4⌈log(1+𝛿)𝑚⌉ + 1 (a tighter analysis can accommodate the case

when the number of levels per group is ⌈log(1+𝛿)𝑚⌉). Let 𝑇 (𝑔′)
be the topmost level of group 𝑔′. In the first case, we show that if

𝑘 (𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔′ , then 𝑣 would be in a level higher than

𝑇 (𝑔′) in our level data structure. This would also imply that
ˆ𝑘 (𝑣) ≥

(1 + 𝛿)𝑔′ . Suppose for the sake of contradiction that 𝑣 is located

at some level ℓ (𝑣) where ℓ (𝑣) ≤ 𝑇 (𝑔′). This means that up(𝑣) ≤
(2 + 3/𝜆) (1 + 𝛿)𝑔′ at level ℓ (𝑣). Furthermore, by the invariants of

our level data structure, each vertex𝑤 at the same or lower level has

up(𝑤) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔′ . This means that when we remove all

vertices starting at level 0 sequentially up to and including ℓ (𝑣), all
vertices removed have degree ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔′ when removed.

Thus, when we reach ℓ (𝑣), 𝑣 also has degree ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔′ .
This is a contradiction with 𝑘 (𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔′ . It must then

be the case that 𝑣 is at a level higher than𝑇 (𝑔′) and ˆ𝑘 (𝑣) ≥ (1+𝛿)𝑔′ .
Now we prove that if 𝑘 (𝑣) < (1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿) , then
ˆ𝑘 (𝑣) < (1 + 𝛿)𝑔′ .

We assume for sake of contradiction that 𝑘 (𝑣) < (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) and

ˆ𝑘 (𝑣) ≥ (1 + 𝛿)𝑔′ . To prove this case, we consider the following

process, which we call the pruning process. Pruning is done on a

subgraph 𝑆 ⊆ 𝐺 . We use the notation𝑑𝑆 (𝑣) to denote the degree of 𝑣
in the subgraph induced by 𝑆 . For a given subgraph 𝑆 , we prune 𝑆 by

repeatedly removing all vertices 𝑣 in 𝑆 whose 𝑑𝑆 (𝑣) < (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) .

Note that in this argument, we need only consider levels from the

same group𝑔′ before we reach a contradiction, so we assume that all

levels are in the group𝑔′. Let 𝑗 represent the number of levels below

level𝑇 (𝑔′). (Recall that because ˆ𝑘 (𝑣) ≥ (1+𝛿)𝑔′ , ℓ (𝑣) ≥ 𝑇 (𝑔′), if we
consider a level ℓ (𝑣) > 𝑇 (𝑔′), then the up*-degree cannot decrease

due to Invariant 2 becoming stricter. This only makes our proof

easier, and so for simplicity, we consider ℓ (𝑣) = 𝑇 (𝑔′).) We prove

12

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

via induction that the number of vertices pruned from the subgraph

induced by 𝑍𝑇 (𝑔′)−𝑗 must be at least(
(2 + 3/𝜆) (1 + 𝛿)

2

) 𝑗−1 (
(1 + 𝛿)𝑔

′
− (1 + 𝛿)𝑔′

(2 + 3/𝜆) (1 + 𝛿)

)
or otherwise, 𝑘 (𝑣) ≥ (1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿) . We first prove the base case

when 𝑗 = 1. In the base case, we know that 𝑑𝑍𝑇 (𝑔′)−1 (𝑣) ≥ (1 + 𝛿)
𝑔′

by Invariant 2. Then, if fewer than (1+𝛿)𝑔′− (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) neighbors

of 𝑣 are pruned from the graph, then 𝑣 is part of a ≥ (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) -

core and 𝑘 (𝑣) ≥ (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) , a contradiction.

Thus, at least (1 + 𝛿)𝑔′ − (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿) vertices must be pruned

in this case. We now assume the induction hypothesis for 𝑗 and

prove that this is true for step 𝑗 + 1. By Invariant 2, each vertex

on level 𝑇 (𝑔′) − 𝑗 and above has degree at least (1 + 𝛿)𝑔′ in
graph 𝑍𝑇 (𝑔′)−𝑗−1. Then, in order to prune all 𝑋 vertices from

the previous induction step, we must prune at least
(1+𝛿)𝑔′𝑋

2

edges, since each edge decreases the degree of two vertices by 1;

all adjacent edges of a pruned vertex are also pruned/removed.

Each vertex that is pruned can remove at most (1+𝛿)𝑔′
(2+3/𝜆) (1+𝛿)

edges when it is pruned, by definition of our pruning procedure

since we prune vertices with degree <
(1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿) . Thus, the
minimum number of vertices we must prune in order to prune the

𝑋 =

(
(2+3/𝜆) (1+𝛿)

2

) 𝑗−1 (
(1 + 𝛿)𝑔′ − (1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿)

)
vertices from the

previous step is

edges that need to be pruned

max # edges pruned per pruned vertex

=
(1 + 𝛿)𝑔′𝑋

2
(1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿)

=
(2 + 3/𝜆) (1 + 𝛿)

2

𝑋

=

(
(2 + 3/𝜆) (1 + 𝛿)

2

) 𝑗 (
(1 + 𝛿)𝑔

′
− (1 + 𝛿)𝑔′

(2 + 3/𝜆) (1 + 𝛿)

)
.

Thus, we have proven our argument for the (𝑗 + 1)-st induc-
tion step. Note that for 𝑗 = ⌈log(2+3/𝜆) (1+𝛿)/2 (4𝑚 + 1)⌉, we have
𝑗 ≤ 4⌈log(1+𝛿) (𝑚)⌉ + 1. This is because, since we pick 𝜆 to be

a constant greater than 0, 2 + 3/𝜆 > 2 and for large enough 𝑚,

log(2+3/𝜆) (1+𝛿)/2 (4𝑚 + 1) ≤ 4⌈log(1+𝛿) (𝑚)⌉ + 1. Then, by our in-

duction, if we substitute 4⌈log(1+𝛿) (𝑚)⌉ + 1 for 𝑗 ,(
(2 + 3/𝜆) (1 + 𝛿)

2

)
4 ⌈log(1+𝛿) (𝑚) ⌉

(
(1 + 𝛿)𝑔

′
− (1 + 𝛿)𝑔′

(2 + 3/𝜆) (1 + 𝛿)

)
> 4𝑚 · (1/2) = 2𝑚.

This means we must prune at least 2𝑚+1 vertices at this step, which
we cannot because there are at most 2𝑚 vertices in a level that is

not level 0. This last step holds because all vertices with degree 0

must be on the first level. Hence, all vertices not on level 0 must be

adjacent to at least one edge, and 𝑛 ≤ 2𝑚 where 𝑛 is the number

of vertices on the level that is not level 0. Thus, our assumption is

incorrect and we have proven our desired property. □

We show that Lemma 5.12 implies Lemma 5.13.

Lemma 5.13. The coreness estimate ˆ𝑘 (𝑣) of a vertex 𝑣 satisfies
𝑘 (𝑣)
(2+𝜀) ≤ ˆ𝑘 (𝑣) ≤ (2 + 𝜀)𝑘 (𝑣) for any constant 𝜀 > 0.

Proof. Suppose
ˆ𝑘 (𝑣) = (1 + 𝛿)𝑔 . Then, by Lemma 5.12, we have

(1+𝛿)𝑔
(2+3/𝜆) (1+𝛿) ≤ 𝑘 (𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔+1. Then, substituting
ˆ𝑘 (𝑣) = (1 + 𝛿)𝑔 and solving the above bounds,

𝑘 (𝑣)
(2+3/𝜆) (1+𝛿) ≤

ˆ𝑘 (𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑘 (𝑣). For any constant 𝜀 > 0, there exists

constants 𝜆, 𝛿 > 0 where
𝑘 (𝑣)
2(1+𝜀) ≤ ˆ𝑘 (𝑣) ≤ 2(1 + 𝜀)𝑘 (𝑣). □

For arbitrary batch sizes, getting better than a 2-approximation

for coreness values is P-complete [5], and so there is unlikely to

exist a polylogarithmic-depth algorithm with such guarantees.

Proof of Theorem 3.2. The approximation factor for our algo-

rithm is given by Lemma 5.13. The work and depth bounds of our

algorithm is given by Lemma 5.10 and Lemma 5.7. Altogether, we

prove our main theorem. □

5.7 𝑂 (𝛼) Out-Degree Orientation
We orient all edges from vertices in lower levels to higher levels,

breaking ties for vertices on the same level by using their indices.

Such an orientation can be maintained dynamically in the same

work and depth as our PLDS via a parallel hash table keyed by

the edges and where the values give the orientation. Specifically,

we require the following data structures for maintaining a low

out-degree orientation. First, we maintain a parallel hash table, 𝐻 ,

containing the edges of the graph. The edge (𝑢, 𝑣) is the key in the

hash table where 𝑢 < 𝑣 (i.e. the index of 𝑢 is less than the index of

𝑣). The value for key (𝑢, 𝑣) is 0 if the edge is oriented from 𝑢 to 𝑣

and 1 if the edge is oriented from 𝑣 to 𝑢. The pseudocode is shown

in Algorithm 5. Additionally, we make a slight modification to our

update algorithm that keeps track of the edges that were searched

when a vertex moves to a higher or lower level. The pseudocode

for our algorithm is given in Algorithm 5.

Proof of Corollary 3.3. Let the degeneracy of the graph be 𝑑 .

As is well-known, the degeneracy of the graph is equal to 𝑘𝑚𝑎𝑥
where 𝑘𝑚𝑎𝑥 is the maximum 𝑘-core of the graph. Furthermore,

it is well-known that
𝑑
2
≤ 𝛼 ≤ 𝑑 . By Lemma 5.13, the vertices

in the largest 𝑘-core in the graph are in a level with group num-

ber at most log(1+𝛿) ((2 + 3/𝜆) (1 + 𝛿)𝑑) + 1. This means that the

up-degree of each vertex in that group is at most (2 + 3/𝜆) (1 +
𝛿)log(1+𝛿) ((2+3/𝜆) (1+𝛿)𝑑) = (4+𝜀)𝑑 for any constant 𝜀 > 0 for appro-

priate settings of 𝜆, 𝛿 > 0. We then also obtain an (8+𝜀)𝛼 out-degree

orientation where 𝛼 is the arboricity of the graph. □

5.8 Deterministic and Space-Efficient Data
Structures

In addition to the randomized data structures presented in Section

3.4, we present two additional sets of data structures that we can use

to obtain a deterministic and a space-efficient (2 + 𝜀)-approximate

𝑘-core algorithms.

13

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

Algorithm 5 LowOutdegreeOrient(B)
Input: A batch B of updates.

Output: A set of edges 𝐹 that were flipped after processing the batch of

updates. An edge (𝑢, 𝑣) ∈ 𝐹 represents the orientation of the edge

before the flip. Also returns oriented updates (𝑢, 𝑣) ∈ B where for edge

deletions (𝑢, 𝑣) is the orientation of the edge before the deletion and for

edge insertions (𝑢, 𝑣) is the orientation of the edge after the insertion.
1: 𝐹 ← ∅.
2: parfor each searched edge (𝑢, 𝑣) for a vertex that moved levels do
3: if 𝐻 [(𝑢, 𝑣)] = 0 and ((ℓ (𝑢) > ℓ (𝑣) or (ℓ (𝑢) = ℓ (𝑣) and 𝑣 < 𝑢))

then
4: 𝐹 ← 𝐹 ∪ (𝑢, 𝑣) .
5: else if 𝐻 [(𝑢, 𝑣)] = 1 and (ℓ (𝑣) > ℓ (𝑢) or (ℓ (𝑢) = ℓ (𝑣) and 𝑢 < 𝑣))

then
6: 𝐹 ← 𝐹 ∪ (𝑢, 𝑣) .
7: 𝐽 ← ∅.
8: parfor each edge update {𝑢, 𝑣 } ∈ B do
9: if {𝑢, 𝑣 } is an insertion then
10: Add to 𝐽 the orientation of edge after processing B.
11: else
12: Add to 𝐽 the orientation of edge before processing B.

return 𝐹, 𝐽 .

The work of all of our randomized, deterministic, and space-

efficient algorithms are the same; however, using randomization

allows us to obtain a better depth with slightly less complicated

data structures.

Deterministic Data Structures. We initialize an array𝑈 , of size 𝑛.

Each vertex is assigned a unique index in 𝑈 . The entry for the 𝑖’th

vertex,𝑈 [𝑖], contains a pointer to a dynamic array that stores the

neighbors of vertex 𝑣𝑖 at levels ≥ ℓ (𝑣𝑖). Each vertex 𝑣𝑖 also stores

another dynamic array, 𝐿𝑣𝑖 , that contains pointers to a set of dy-

namic arrays storing the neighbors of 𝑣𝑖 partitioned by their levels 𝑗

where 𝑗 < ℓ (𝑣𝑖). Specifically, we maintain a separate dynamic array

for each level from level 0 to level ℓ (𝑣𝑖) − 1 storing the neighbors
of 𝑣𝑖 at each respective level. We also maintain the current level of

each vertex in an array.

To perform a batch of insertions into a dynamic array, we insert

the elements at the end of the array. The array is resized and doubles

in size if too many elements are inserted into the array (and it

exceeds its current size). For a batch of deletions, the deletions

are initially marked with a “deleted” marker indicating that the

element in the slot has been deleted. A counter is used to maintain

how many slots contain “deleted.” Then, once a constant fraction

of elements (e.g. 1/2) has “deleted” marked in their slots, the array

is cleaned up by reassigning vertices to new slots and resizing the

array.

Lemma 5.14. Algorithm 1 returns a deterministic level data struc-
ture that maintains Invariant 1 and Invariant 2 and has 𝑂 (log3 𝑛)
worst-case depth and 𝑂 (𝑛 log2 𝑛 +𝑚) space.

Proof. All edge updates can be partitioned into B𝑖𝑛𝑠 and B𝑑𝑒𝑙
in parallel in 𝑂 (log𝑛) depth. Then, it remains to bound the depth

of Algorithm 2 and Algorithm 3.

Algorithm 2 iterates through all 𝐾 = 𝑂 (log2 𝑛) levels sequen-
tially. By Lemma 5.5, no vertices on levels ≤ 𝑖 will violate Invariant 1
after processing level 𝑖 . Thus, by the end of the procedure no ver-

tices violate Invariant 1. By Observation 5.3, Invariant 2 was never

violated during Algorithm 2. Thus, both invariants are maintained

at the end of the algorithm. Since we iterate through 𝑂 (log2 𝑛)
levels and, in each level, we require checking the neighbors at

one additional level which can be done in parallel in 𝑂 (1) depth,
the total depth of this procedure is 𝑂 (log2 𝑛). For each level, an

additional depth of𝑂 (log𝑛) might be necessary to compute the ele-

ment offsets and then resize the arrays. Then, Algorithm 2 requires

𝑂 (log3 𝑛) worst-case depth.
Algorithm 3 iterates through all 𝐾 = 𝑂 (log2 𝑛) levels sequen-

tially. By Observation 5.4 and Lemma 5.6, after processing level 𝑖 ,

no vertices on a level higher than 𝑖 +1will have dl(𝑣) ≤ 𝑖 +1 and no
vertices on levels ≤ 𝑖 will violate Invariant 1. Thus, by the end of the
procedure all vertices satisfy Invariant 2. Furthermore, Invariant 1

was never violated due to Observation 5.4. There are 𝑂 (log2 𝑛)
levels and for each level we require running Algorithm 4 to obtain

the dl(𝑣) of each affected vertex 𝑣 that should be moved to each

level.

Running Algorithm 4 requires 𝑂 (log log𝑛) depth to obtain the

first level that satisfies invariants for each affected vertex 𝑣 and

𝑂 (log log𝑛) depth for the final binary search that determines the

closest level to ℓ (𝑣) that satisfies the invariants. In conclusion, Al-

gorithm 3 requires 𝑂 (log3 𝑛) worst-case depth.
Altogether, Algorithm 1 requires𝑂 (log3 𝑛) worst-case depth. □

𝑂 (𝑚) Total Space Data Structures. Here we describe how to re-

duce the total space usage of our data structures to𝑂 (𝑚). All of our
previous data structures use 𝑂 (𝑛 log2 𝑛 +𝑚) space, which means

that when𝑚 = 𝑂 (𝑛), we use space that is superlinear in the size

of the graph. To reduce the total space to 𝑂 (𝑚), we maintain two

structures for 𝐿𝑣𝑖 . We can use either the deterministic or random-

ized structures for the other structures. Each 𝐿𝑣𝑖 is maintained as

a linked list. The 𝑗 ’th node in the linked list maintains the num-

ber of neighbors of 𝑣𝑖 at the 𝑗 ’th non-empty level (a non-empty

level is one where 𝑣𝑖 has neighbors at that level) that is less than

ℓ (𝑣𝑖). The node representing a level is removed from the linked list

when the level becomes empty. Each node in 𝐿𝑣𝑖 contains pointers

to vertices at the level represented by the node. Each vertex then

contains pointers to every edge it is adjacent to and every edge

contains pointers to the two nodes in the two linked lists repre-

senting the levels on which the endpoints of the edge reside. Using

either dynamic arrays or hash tables for the lists of neighbors allow

us to maintain these data structures in 𝑂 (𝑚) space. Since we only
maintain a node in our linked list for every non-empty level, our

linked list contains 𝑂 (𝑚) nodes.
Using the data structures above, we can prove equivalent results

to Theorem 3.1.

Lemma 5.15. Algorithm 1 returns a deterministic level data struc-
ture that maintains Invariant 1 and Invariant 2 and has 𝑂 (log4𝑚)
depth, while using 𝑂 (𝑚) space.

Proof. The proof is the same as the proof of Lemma 5.14 except

that we replace Algorithm 4 with a linear search in the linked list,

which has size at most the number of levels, which is 𝑂 (log2 𝑛).
The specific data structure we use for each vertex 𝑣 is a linked list

with each node of the linked list representing a level ≤ ℓ (𝑣) − 1

which contains one or more neighbors of 𝑣 . Then, each node in the

linked list contains a pointer to a dynamic array containing the

neighbors in that level. Thus, the total depth is 𝑂 (log4 𝑛). □

14

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

5.8.1 Overall Work and Depth Bounds. Our deterministic and

space-efficient structures also give the following corollary using

our above depth bound arguments.

Using Lemma 5.14 and Lemma 5.15, we obtain the following two

corollaries.

Corollary 5.16. For a batch of |B| < 𝑚 updates, Algorithm 1 returns
a PLDS that maintains Invariant 1 and Invariant 2 in 𝑂 (|B| log2 𝑛)
amortized work and 𝑂 (log3 𝑛) depth, using 𝑂 (𝑛 log2 𝑛 +𝑚) space.
Corollary 5.17. For a batch of |B| < 𝑚 updates, Algorithm 1 returns
a PLDS that maintains Invariant 1 and Invariant 2 in 𝑂 (|B| log2 𝑛)
amortized work and 𝑂 (log4𝑚) depth, using 𝑂 (𝑚) space.

5.9 Handling Vertex Insertions and Deletions
We can handle vertex insertions and deletions by inserting vertices

that have zero degree and considering deletions of vertices to be a

batch of edge deletions of all edges adjacent to the deleted vertex.

When we insert a vertex with zero degree, it automatically gets

added to level 0 and remains in level 0 until edges incident to the

vertex are inserted. For a vertex deletion, we add all edges incident

to the deleted vertex to a batch of edge deletions. Note, first, that

all vertices which have 0 degree will remain in level 0. Thus, there

are at most 𝑂 (𝑚) vertices which have non-zero degree.

In this setting, we may need to rebuild the PLDS from scratch. In-

stead of maintaining ⌈4 log2 𝑛⌉ levels, we maintain ⌈8 log2 𝑛⌉ levels
in this setting. Doubling the number of levels is a very loose bound

to ensure that we can handle two times the number of vertices

in the graph before we perform a rebuild of our entire structure.

To maintain 𝑂 (log2 𝑛) levels in our data structure, we rebuild the

data structure once we have made 𝑛/2 vertex updates. Rebuilding
the data structure requires 𝑂 (𝑛 log2 𝑛) total work which we can

amortize to the 𝑛/2 vertex updates to obtain 𝑂 (log2 𝑛) amortized

work w.h.p. Running Algorithm 2 and Algorithm 3 on the entire set

of 𝑂 (𝑛 +𝑚) vertices and edges requires 𝑂 (poly log𝑛) depth w.h.p.

depending on the specific set of data structures we use.

Lastly, in order to obtain a set of vertices which are re-numbered

consecutively (in order to maintain our space bounds), we perform

parallel integer sort or hashing.

6 EXPERIMENTAL EVALUATION
In this section, we compare the performance of our dynamic PLDS

with existing approaches on a set of large real-world graphs. Our

results show that our algorithms consistently achieve speedups, by

up to two orders of magnitude, compared with all of the previous

state-of-the-art dynamic 𝑘-core decomposition algorithms.

Evaluated Algorithms. We evaluate two versions of our algo-

rithm: PLDS: an exact implementation of our theoretical algorithm

and PLDSOpt: a version with ⌈log
1+𝛿 𝑛/50⌉ levels per group. PLDS

maintains the approximation guarantees given by Lemma 5.13,

while PLDSOpt achieves better performance while maintaining

slightly worse approximation bounds.

We compare our algorithms with the following dynamic imple-

mentations: Sun: the sequential, approximate algorithm of Sun et

al. [83], specifically their faster, round-indexing algorithm, which

is publicly available [84]; Hua: the parallel, exact algorithm of Hua

et al. [48], kindly provided by the authors; Zhang: the sequential,

Table 3: Graph sizes and largest values of 𝑘 for 𝑘-core decomposi-
tion.

Graph Dataset Num. Vertices Num. Edges Largest value of 𝑘

dblp 317,080 1,049,866 101

brain 784,262 267,844,669 1200

wiki 1,094,018 2,787,967 124

youtube 1,138,499 2,990,443 51

stackoverflow 2,584,164 28,183,518 163

livejournal 4,846,609 42,851,237 329

orkut 3,072,441 117,185,083 253

ctr 14,081,816 16,933,413 2

usa 23,947,347 28,854,312 3

twitter 41,652,230 1,202,513,046 2484

friendster 65,608,366 1,806,067,135 304

exact algorithm of Zhang and Yu [93], kindly provided by the au-

thors; and LDS: our implementation of the sequential, approximate

algorithm of Henzinger et al. [47], but using our coreness approxi-

mation procedure in Section 5.6. All are state-of-the-art algorithms,

outperforming previous algorithms in their respective categories.

We also implemented ApproxKCore, our new static parallel

approximate 𝑘-core decomposition algorithm (Theorem 3.8). We

compared it with ExactKCore, the state-of-the-art parallel, static,
exact 𝑘-core algorithm of Dhulipala et al. [27].

Setup. We use c2-standard-60 Google Cloud instances (3.1 GHz

Intel Xeon Cascade Lake CPUs with a total of 30 cores with two-way

hyper-threading, and 236 GiB RAM) and m1-megamem-96 Google
Cloud instances (2.0 GHz Intel Xeon Skylake CPUs with a total of

48 cores with two-way hyper-threading, and 1433.6 GB RAM). We

use hyper-threading in our parallel experiments by default. Our

programs are written in C++, use a work-stealing scheduler [15],

and are compiled using g++ (version 7.5.0) with the -O3 flag. We

terminate experiments that take over 3 hours. PLDS and PLDSOpt

finished within 3 hours for all experiments.

Datasets. We test our algorithms on 11 real-world undirected

graphs from SNAP [61], the DIMACS Shortest Paths challenge

road networks [26], and the Network Repository [77], namely

dblp, brain, wiki, orkut, friendster , stackoverflow, usa, ctr ,
youtube, and livejournal. We also used twitter , a symmetrized

version of the Twitter network [59]. We remove duplicate edges,

zero-degree vertices, and self-loops. Table 3 reflects the graph sizes

after this removal, and gives the largest 𝑘-core values. Both stack-
overflow andwiki are temporal networks; for these, we maintain the

edge insertions and deletions in the temporal order from SNAP. usa
and ctr are two high-diameter road networks and brain is a highly

dense human brain network fromNeuroData (https://neurodata.io/).

All experiments are run on the c2-standard-60 instances, except

for twitter and friendster, which are run on the m1-megamem-96
instances as they require more memory.

Ins/Del/Mix Experiments. Our experiments are run for three
different types of batched updates, referred to by: (1) Ins: starting
with an empty graph, all edges are inserted in multiple size |B|
batches of insertion updates, (2) Del: starting with the original

graph, all edges are deleted in multiple size |B| batches of deletion
updates, and (3)Mix: starting with the initial graphminus a random

set 𝐼 of |B|/2 edges, a set𝐷 of |B|/2 random edges is chosen among

the edges in the graph; then, a single size |B|mixed batch of updates

with insertions 𝐼 and deletions𝐷 is applied. For the temporal graphs,

stackoverflow and wiki, the order of updates in the batches follows

the order in SNAP [61]. For the rest, updates are generated by

15

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

taking two random permutations of the edge list, one for Ins and
one forDel. Batches are generated by taking regular intervals of the
permuted lists. For Mix, 𝐼 and 𝐷 are chosen uniformly at random.

Some past works only ran experiments in theMix setting [48, 93],
while others [83] also consider Ins and Del. In this paper, we run

experiments in all three settings. For Ins and Del, we consider the
average running time across all batches as a good indicator of how

well the algorithm performs. ForMix, we test each algorithm and

dataset 3 rounds each and take the average.

We use the original timing functions provided by Hua, Sun,

Zhang, and ExactKCore. We use the original code of Hua and Zhang

for Mix and modify their code to perform Ins and Del. We note

that Hua’s timing function does not include the time to process

the graph and maintain their data structures; we include all such

times in our code. All other benchmarks also include this time. If

we include this time in their implementation, their running times

increase by up to 8× for some experiments. This explains some

of Hua’s experimental performance improvements over the other

benchmarks.

The static algorithms, ExactKCore and ApproxKCore, are re-

run on the entire graph after each batch of updates in Ins and

Del. For the Mix batch, we order all insertions in the batch before

all deletions. Then, we generate two static graphs per batch, one

following all insertions, and the other following all deletions. We re-

run the static algorithms on each static graph and take the average

of the times to obtain comparable per-batch running times. We do

this because some of the deletion updates may cancel the insertion

updates in the batch.

6.1 PLDS Implementation Details
We implemented our algorithms using the primitives from the

Graph Based Benchmark Suite [28]. We implemented the PLDS

with work, depth, and space bounds given in Theorem 3.1. One

can choose to instead implement our space-efficient version of our

data structure in exchange for additional poly(log𝑛) factors in the

theoretical depth.

Our data structure uses concurrent hash tables with linear prob-

ing [81], which support 𝑥 concurrent insertions, deletions, or finds

in 𝑂 (𝑥) amortized work and 𝑂 (log∗ 𝑥) depth w.h.p. [42]. For dele-

tions, we used the folklore tombstone method: when an element is

deleted, we mark the slot in the table as a tombstone, which can

be reused, or cleared during a table resize. We also use dynamic

arrays, which support adding or deleting 𝑥 elements from the end

in 𝑂 (𝑥) amortized work and 𝑂 (1) depth.
We first assign each vertex a unique ID in [𝑛]. Then, we maintain

an array𝑈 of size 𝑛 keyed by vertex ID that returns a parallel hash

table containing neighbors of 𝑣 on levels ≥ ℓ (𝑣). For each vertex 𝑣 ,

we maintain a dynamic array 𝐿𝑣 keyed by indices 𝑖 ∈ [0, ℓ (𝑣) − 1].
The 𝑖’th entry of the array contains a pointer to a parallel hash table

containing the neighbors of 𝑣 in level 𝑖 . Appropriate pointers exist

that allow𝑂 (1) work to access elements in structures. Furthermore,

we maintain a hash table which contains pointers to vertices 𝑣

where dl(𝑣) ≠ ℓ (𝑣), partitioned by their levels. This allows us to

quickly determine which vertices to move up (in Algorithm 2) or

move down (in Algorithm 3).

We make one modification in our parallel implementation of our

insertion procedure from our theoretical algorithm which is instead

of moving vertices up level-by-level, we perform a parallel filter

and sort that calculates the desire-level of vertices we move up.

This results in more work theoretically, but we find that, practically,

it results in faster runtimes. Also, notably, in practice, we optimized

the performance of our PLDS by considering ⌈ log(1+𝛿)𝑚
50

⌉ levels
per group instead of ⌈log(1+𝛿)𝑚⌉. We also implemented a version

of our structure that exactly follows our theoretical algorithm and

compared the performance of both structures.We see that even such

a simple optimization resulted in significant gains in performance,

up to 23.89×.

6.2 Accuracy vs. Running Time
We start by evaluating the empirical error ratio of the per-vertex

core estimates given by our implementations (PLDSOpt, PLDS,

LDS) and Sun on dblp and livejournal, using batches of size 105 and
10

6
, respectively. Fig. 8 shows the average batch time (in seconds)

against the average and maximum per-vertex core estimate error

ratio. This error ratio is computed as max

(
ˆ𝑘 (𝑣)
𝑘 (𝑣) ,

𝑘 (𝑣)
ˆ𝑘 (𝑣)

)
for each

vertex 𝑣 (where ˆ𝑘 (𝑣) is the core estimate and 𝑘 (𝑣) is the exact core
value). The average is the error ratio averaged across all vertices

and the maximum is the maximum error. If the exact core number

is 0, we ignore the vertex in our error ratio since our algorithm

guarantees an estimate of 0; for vertices of non-zero degree, the

lowest estimated core number is 1 for all implementations.

The parameters we use for PLDSOpt, PLDS, and LDS are all

combinations of 𝛿 = {0.2, 0.4, 0.8, 1.6, 3.2, 6.4} and 𝜆 = {3, 6, 12, 24,
48, 96}. We call these theoretically-efficient parameters, since they
maintain the work-efficiency of our algorithms. For Sun, we use

all combinations of their parameters 𝜀sun = 𝜆sun = {0.2, 0.4, 0.8, 1.6,
3.2}, and 𝛼sun = {2(1 + 3𝜀sun)}. We also tested 𝛼sun = {1.1, 2, 3.2},
as done in Sun et al.’s work [83]. When 𝛼 = 1.1, the theoretical

efficiency bounds by Sun et al. [83] no longer hold, but they yield

better estimates empirically. We compare this heuristic setting to

a similar one in our algorithms, where we replace (2 + 3/𝜆) with
1.1 in our code (where our efficiency bounds no longer hold) for

𝛿 = {0.4, 0.8, 1.6, 3.2}. We refer to these as the heuristic parameters.
Fig. 8 shows that, using theoretically-efficient parameters, our

PLDSOpt, PLDS, and LDS implementations are faster than Sun,

Zhang, and Hua, for parameters that give similar average and max-

imum per-vertex core estimate error ratios. Furthermore, besides

PLDS, PLDSOpt outperforms all other algorithms, regardless of ap-
proximation factor and error. This set of experiments demonstrates

the flexibility of our algorithm; one can achieve smaller error at

the cost of slightly increased runtime. However, as the experiments

demonstrate, PLDSOpt still outperforms all other algorithms even

when the parameters are tuned to give small error; this perfor-

mance gain is maintained for Ins, Del, and Mix. Greater speedups
are achieved on livejournal compared to dblp. Such a result is ex-

pected since larger batches allow for greater parallelism.

Concretely, compared with Zhang, PLDSOpt achieves 7.19–

147.59×, 19.70–58.41×, and 9.75–142.79× speedups on Ins, Del,
and Mix batches, respectively. Compared with Hua, PLDSOpt

achieves 2.49–33.95×, 6.81–24.51×, and 2.94–21.77× speedups.

16

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Zhang Hua PLDSOpt PLDS Sun

100 100.5

108

109

Avg. Ins Error (ratio)

D
B
L
P

M
ax

S
p
ac
e
(B

y
te
s)

100 100.5

109

1010

Avg. Ins Error (ratio)

L
J
M
ax

S
p
ac
e
(B

y
te
s)

100 101

108

109

Avg. Del Error (ratio)

D
B
L
P

M
ax

S
p
ac
e
(B

y
te
s)

100 101

109

1010

Avg. Del Error (ratio)

L
J
M
ax

S
p
ac
e
(B

y
te
s)

PLDSOpt PLDS Sun LDS Zhang Hua

100 100.2 100.4 100.6
10�2

10�1

100

101

DBLP Avg. Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

100 100.2 100.4 100.6

10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

100 100.2 100.4 100.6

10�2

10�1

100

DBLP Avg. Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100 100.2 100.4 100.6
10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100 100.2 100.4 100.6
10�2

10�1

100

101

DBLP Avg. Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

100 100.5
10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

100 101
10�2

10�1

100

101

DBLP Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

100 101 102

10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

100 101

10�2

10�1

100

DBLP Max Error (ratio)
A
v
g.

D
e
l
T
im

e
(s
ec
)

100 101 102
10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100 101
10�2

10�1

100

101

DBLP Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

100 101 102
10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

Figure 8: Comparison of the average per-batch time versus the average (top row) and maximum (bottom row) per-vertex core estimate error
ratio of PLDSOpt, PLDS, Sun, and LDS, using varying parameters, on the dblp and livejournal graphs, with batch sizes 105 and 10

6, respectively.
Experiments were run for Ins, Del, and Mix. The data uses theoretically-efficient parameters as well as the heuristic parameters where (2 +
3/𝜆) = 𝛼sun = 1.1. Runtimes for Hua and Zhang are shown as horizontal lines.

Against PLDS, PLDSOpt obtains 2.98–47.8×, 1.03–25.58×, and
1.5–76.94× speedups for Ins, Del, and Mix, respectively, on
parameters that give similar approximations. Compared with

Sun, on parameters that give similar theoretical guarantees and

smaller empirical average error, PLDSOpt achieves 21.34–544.22×,
25.49–128.65×, and 19.04–248.36× speedups for Ins, Del, andMix,
respectively. Neither Zhang nor Hua guarantee polylogarithmic

work. The peeling-based algorithm of Sun can have large depth

and they do not provide a concrete bound on their amortized

work for their faster, round-indexing implementation. Thus, the

speedups we obtain over the benchmarks are due to the greater

theoretical efficiency and because our algorithms are parallel.

Finally, PLDSOpt achieves average error in the ranges 1.26–2.13,

1.47–4.20, and 1.28–2.33 for Ins, Del, and Mix, respectively. PLDS
gives comparable average errors in the ranges 1.27–4.22, 1.33–3.39,

and 1.63–5.73, for Ins, Del, andMix, respectively, while running
slower than PLDSOpt for all parameters, despite the guarantee

that the maximum error of PLDS is bounded by (1 + 𝛿) (2 + 3/𝜆)
(Lemma 5.13). Thus, our optimized version allows us to obtain good

error bounds empirically while drastically improving performance.

For all of the remaining experiments, set 𝛿 = 0.4 and 𝜆 = 3.

6.3 Batch Size vs. Running Time
Fig. 9 shows the average per-batch running times for Ins, Del,
and Mix on varying batch sizes for PLDSOpt, PLDS, Hua, LDS,

and Zhang on dblp and livejournal. We do not run this experiment

on Sun since their implementation does not have batching. Our

experiments show that PLDSOpt is faster for all batch sizes except

for the smallest Del and Mix batches.

Against PLDS, PLDSOpt achieves a speedup over all batches from

10.85–21.25×, 2.81–5.65×, and 10.42–29.28× for Ins, Del, andMix,
respectively, on dblp and 8.47–16.9×, 1.99–7.18×, and 1.9–15.26×
for Ins, Del, and Mix, respectively, on livejournal for all but the
batch of size 100 for Del. On the batch size of 100 , PLDS performs

better than PLDSOpt by a 1.79× factor. Compared with Hua, PLD-

SOpt achieves speedups over all batches from 5.17–16.43×, 3.39–
44.58×, and 2.53–13.05× for Ins,Del, andMix, respectively, on dblp
and 15.97–114.52×, 1.71–45.01×, and 9.10–19.82× for Ins, Del, and

Mix, respectively, on livejournal. Compared with Zhang, PLDSOpt

achieves speedups of 2.49–22.74×, 2.00–29.92×, and 2.95–21.57× for
Ins, Del, andMix, respectively, on dblp, and 31.53–95.33×, 1.25–
73.19× and 4.26–87.05× for Ins, Del, and Mix, respectively, on
livejournal on all but the smallest batches for Del andMix. For Del
with a batch size of 100, Zhang is the fastest with speedups of 1.46×
and 6.86× over PLDSOpt on dblp and livejournal, respectively. For
Mix with batch size 100, LDS is the fastest with speedups of 3.19×
over PLDSOpt on livejournal. For small batch sizes, sequential algo-

rithms perform better than parallel algorithms since the runtimes

of parallel algorithms are dominated by parallel overheads.

6.4 Thread Count vs. Running Time
Fig. 10 shows the scalability of PLDSOpt, PLDS, and Hua with

respect to their single-thread running times on dblp and livejournal
using a batch size of 10

6
. LDS, Sun, and Zhang are represented

as horizontal lines since they are sequential. For Ins, Del, and
Mix batches, PLDSOpt and PLDS achieve up to 30.28×, 32.02×,
and 33.02×, and 26.46×, 25.33×, and 21.15×, self-relative speedup,
respectively. Hua achieves up to a 3.6× self-relative speedup. We

see that our PLDS algorithms achieve greater self-relative speedups

than Hua. Also, with just 4 threads (available on a standard laptop),

PLDSOpt already outperforms all other algorithms. Hua’s algorithm

performs DFS/BFS, which could lead to linear depth, potentially

explaining the bottleneck to their scalability with more cores.

Gabert et al. [38] present a parallel batch-dynamic 𝑘-core de-

composition algorithm but their code is proprietary. However, their

algorithm appears slower and less scalable based on their paper’s

stated results. For example, their algorithm on 10
5
edges using 32

threads for the livejournal graph requires 4 seconds, while our al-

gorithm on a batch of 10
6
edges using 30 threads (more edges and

fewer threads) requires a maximum of 0.35 seconds. Also, they ap-

pear to exhibit a maximum of 8× self-relative speedup on livejournal
while we exhibit 21.2× self-relative speedup on livejournal.

6.5 Results on Large Graphs
Fig. 11 shows the runtimes of PLDSOpt, PLDS, Hua, Sun, and Zhang

compared with the static algorithms ExactKCore and ApproxKCore

on additional graphs, using Ins,Del, andMix batches, all of size 106.
17

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

PLDSOpt PLDS � = 0.2 0.4 0.8 1.6 3.2
6.4 � = 3 6 12 24 48 96

PLDSOpt PLDS � = 3 6 12 24 48
96 � = 0.2 0.4 0.8 1.6 3.2 6.4

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

PLDSOpt PLDS LDS Zhang Hua

102 103 104 105 106 107

10�3

10�1

101

DBLP Batch Size (Insertions)

A
v
g.

In
s
T
im

e
(s
ec
)

102 103 104 105 106 107
10�4

10�3

10�2

10�1

100

DBLP Batch Size (Deletions)

A
v
g.

D
e
l
(s
ec
)

102 103 104 105 106 107

10�3

10�2

10�1

100

101

DBLP Batch Size (Mixed)

A
v
g.

M
ix

T
im

e
(s
ec
)

102 103 104 105 106 107

10�3

10�1

101

103

WLJ Batch Size (Insertions)W

A
v
g.

In
s
T
im

e
(s
ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Deletions)W

A
v
g.

D
e
l
T
im

e
(s
ec
)

102 103 104 105 106 107
10�3

10�1

101

WLJ Batch Size (Mixed)W

A
v
g.

M
ix

T
im

e
(s
ec
)

PLDSOpt PLDS Sun LDS Zhang Hua

0 20 40 60

10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

In
s
T
im

e
(s
ec
)

0 20 40 60

10�1

100

DBLP Number of Hyper-threads

A
v
g.

D
e
l
T
im

e
(s
ec
)

0 20 40 60
10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

M
ix

T
im

e
(s
ec
)

0 20 40 60

100

101

102

WLJ Number of Hyper-threadsWi

A
v
g.

In
s
T
im

e
(s
ec
)

0 20 40 60
10�1

100

101

WLJ Number of Hyper-threadsWW

A
v
g.

D
e
l
T
im

e
(s
ec
)

0 20 40 60

100

101

WLJ Number of Hyper-threadsW

A
v
g.

M
ix

T
im

e
(s
ec
)

Figure 9: Average Ins, Del, and Mix per-batch running times on varying batch sizes for PLDSOpt, PLDS, LDS, Zhang, and Hua on dblp and
livejournal.

PLDSOpt PLDS � = 0.2 0.4 0.8 1.6 3.2
6.4 � = 3 6 12 24 48 96

PLDSOpt PLDS � = 3 6 12 24 48
96 � = 0.2 0.4 0.8 1.6 3.2 6.4

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

In
s
T
im

e
(s
ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l
T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s
ec
)

PLDSOpt PLDS LDS Zhang Hua

102 103 104 105 106 107

10�3

10�1

101

DBLP Batch Size (Insertions)

A
v
g.

In
s
T
im

e
(s
ec
)

102 103 104 105 106 107
10�4

10�3

10�2

10�1

100

DBLP Batch Size (Deletions)

A
v
g.

D
e
l
(s
ec
)

102 103 104 105 106 107

10�3

10�2

10�1

100

101

DBLP Batch Size (Mixed)

A
v
g.

M
ix

T
im

e
(s
ec
)

102 103 104 105 106 107

10�3

10�1

101

103

WLJ Batch Size (Insertions)W

A
v
g.

In
s
T
im

e
(s
ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Deletions)W

A
v
g.

D
e
l
T
im

e
(s
ec
)

102 103 104 105 106 107
10�3

10�1

101

WLJ Batch Size (Mixed)W

A
v
g.

M
ix

T
im

e
(s
ec
)

PLDSOpt PLDS Sun LDS Zhang Hua

0 20 40 60

10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

In
s
T
im

e
(s
ec
)

0 20 40 60

10�1

100

DBLP Number of Hyper-threads

A
v
g.

D
e
l
T
im

e
(s
ec
)

0 20 40 60
10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

M
ix

T
im

e
(s
ec
)

0 20 40 60

100

101

102

WLJ Number of Hyper-threadsWi

A
v
g.

In
s
T
im

e
(s
ec
)

0 20 40 60
10�1

100

101

WLJ Number of Hyper-threadsWW

A
v
g.

D
e
l
T
im

e
(s
ec
)

0 20 40 60

100

101

WLJ Number of Hyper-threadsW

A
v
g.

M
ix

T
im

e
(s
ec
)

Figure 10: Parallel speedup of PLDSOpt, PLDS, and Hua, with respect to their single-threaded running times on dblp and livejournal on Ins,
Del, and Mix batches of size 10

6 for all algorithms. The “60” on the 𝑥-axis indicates 30 cores with hyper-threading. LDS, Sun, and Zhang are
shown as horizontal lines since they are sequential.

dblp youtu
be wiki ctr usa

stack
overfl

ow
livejo

urna
l

orkut brain twitt
er

friend
ster

10�1

100

101

T.O. T.O.

A
v
g.

In
s
T
im

e
(s
ec
)

PLDSOpt Hua ApproxKCore ExactKCore Zhang Sun PLDS

dblp youtu
be wiki ctr usa

stack
overfl

ow
livejo

urna
l

orkut brain twitt
er

friend
ster

10�2

10�1

100

101

T.O. T.O.

A
v
g.

D
e
l
T
im

e
(s
ec
)

dblp youtu
be wiki ctr usa

stack
overfl

ow
livejo

urna
l

orkut brain twitt
er

friend
ster

10�1

100

101

102

T.O. T.O.

A
v
g.

M
ix

T
im

e
(s
ec
)

Figure 11: Average per-batch running times for PLDSOpt, Hua,
PLDS, Sun, Zhang, ApproxKCore, and ExactKCore, on dblp, youtube,
wiki, ctr, usa, stackoverflow, livejournal, orkut, brain, twitter, and
friendster with batches of size 10

6 (and approximation settings 𝛿 =

0.4 and 𝜆 = 3 for PLDSOpt and PLDS). All benchmarks (except PLD-
SOpt and PLDS) timed out (T.O.) at 3 hours for twitter and friendster
for Ins and Del. Hua and Sun timed out on twitter and friendster
for Mix. The top graph shows insertion-only, middle graph shows
deletion-only, and bottom graph shows mixed batch runtimes.

ExactKCore and ApproxKCore are run from scratch over the entire

graph after every batch since they do not handle batch updates.

PLDSOpt and PLDS finished for all graphs and experiments while all

other algorithms timed out on Ins and Del batches for twitter and
friendster . Zhang was able to finish on Mix because their indexing

algorithm (used to create their data structures provided the initial

graph without the mixed batch) was able to finish; since only one

mixed batch is used to update the graph, the sum of the time needed

for indexing plus the update time of one batch fell under the timeout.

The same is true for ExactKCore and ApproxKCore. However, these

algorithms were not able to finish for Ins and Del because the sum
of the update times across all batches is too high.

PLDSOpt is faster than all other dynamic algorithms on all types

of batches, except for PLDS on ctr and usa. We report concrete

speedups for experiments which finished within the timeout. For

Ins, it gets 10.01–229.71× speedups over Zhang, 6.20–58.66×
speedups over Hua, 26.02–119.77× speedups over Sun, and 1.45–

23.89× speedups over PLDS. For Del, it gets 30–176.48× speedups

over Zhang, 15.79–52.36× speedups over Hua, 41.02–100.34×
speedups over Sun, and 2.51–23.45× speedups over PLDS (except
on ctr and usa). For Mix, it gets 17.54–723.72× speedups over

Zhang, 11.34–91.95× over Hua, 6.95–35.59× speedups over Sun,

and 2.81–18.68× speedups over PLDS (except on ctr and usa).
These massive speedups over previous work demonstrate the

utility of PLDSOpt not only on large graphs but also on smaller

graphs. Notably, our PLDSOpt and PLDS algorithms perform not

only well on dense networks but also on very sparse road networks.

For ctr and usa, PLDS performs better than PLDSOpt, achieving up

to a 1.09× speedup on Del and 1.12× speedup on Mix.
Compared to the static algorithms, PLDSOpt achieves speedups

for all but the smallest graphs, dblp, wiki, and youtube. For these
graphs, the batch of size 10

6
accounts for more than 1/3 of the

edges, and so even if the static algorithm reprocesses the entire

graph per batch, it does not process many more edges past the

batch size. Thus, it is expected that the parallel static algorithms

perform better on small graphs and large batches. For all but the

smallest graphs, PLDSOpt obtains 2.22–13.09×, 5.56–19.64×, and
4.4–121.76× speedups over the fastest static algorithm for each

graph for Ins, Del, and Mix, respectively. ExactKCore and Ap-

proxKCore both timeout for Ins and Del on twitter and friendster ;
otherwise, we expect to see the large improvements that we see for

Mix on these experiments.

6.6 Accuracy of Approximation Algorithms
We also computed the average and maximum errors of all of our

approximation algorithms for our experiments shown in Fig. 11.

According to our theoretical proofs, the maximum error (for PLDS)

should be (2+3/3) (1+0.4) = 4.2. We confirm that the maximum em-

pirical error for PLDS falls under this constraint. PLDSOpt achieves

an average error of 1.24–2.37 compared to errors of 1.26–3.48 for

18

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

PLDS, 1.01–4.17 for ApproxKCore, and 1.03–3.23 for Sun. PLDSOpt

gets a maximum error of 3–6 compared to 2–4.19 for PLDS, 3–5

for ApproxKCore, and 3–5.99 for Sun. We conclude that our error

bounds match those of the current best-known algorithms and are

sufficiently small to be of use for many applications.

6.7 Sensitivity of PLDS and PLDSOpt to 𝛿 and 𝜆
In Fig. 12, we provide a sensitivity analysis for the parameters 𝛿 and

𝜆 on themaximum error of our PLDS and PLDSOpt algorithms since

our theoretical guarantees are for the maximum error and as we

showed in Section 6.2, the average error does not vary significantly

for our chosen set of parameters. The first three graphs of Fig. 12

shows the effect of fixing 𝛿 while varying 𝜆 and the last three show

the opposite.

We see that for both PLDSOpt and PLDS, different 𝜆 values do

not affect either the error by much (each line is essentially a cluster

of points). This matches what we expect theoretically. Recall our

bound on error, (1 + 𝛿) (2 + 3/𝜆); suppose we set 𝛿 = 0.4 and 𝜆 = 3

as in our experiments. This leads to an upper bound of 4.2. If we

increase 𝜆 to 6, this only decreases the error to 3.5. On the other

hand, if 𝛿 is increased to 0.8, then the error increases to 5.4, resulting

in greater sensitivity to 𝛿 .

However, increasing 𝛿 leads to a drastic decrease in running time

(each line is a decreasing curve) at the expense of a large increase

in error. Again, this matches what we expect theoretically, since 𝛿

affects the number of levels in PLDS and PLDSOpt (recall that in

our algorithm, the number of levels per group is ⌈log(1+𝛿) (𝑚)⌉). A
larger number of levels leads to larger running time and we see this

in our results. We do not see as large an increase for PLDSOpt since

we divide the number of levels by 50. This means that for livejournal
the number of levels per group is ⌈log(1+𝛿) (42851237)/50⌉ = 1 for

all 𝛿 < 0.42. We see this in our experiments as the curves for

PLDSOpt are flat for 𝛿 ∈ [0.8, 6.4].
For the rest of the experiments, we fix 𝛿 = 0.4 and 𝜆 = 3 based on

our sensitivity analysis; these parameters offer a reasonable tradeoff

between approximation error and speed, as shown in Fig. 8 and

Fig. 12. For Sun, we choose the parameters 𝜀 = 𝜆 = 2 and 𝛼 = 2 since

we observe these parameters give similar approximation errors to

the parameters that we chose for our algorithms.

6.8 Space Usage
For each program, we implemented functions that measured the

space usage of the data structures used in the algorithms (specifi-

cally, the private and public variables maintained in their data struc-

ture classes); for all of the algorithms, we do not count ephemeral

space usage needed by auxiliary structures that are not maintained

as either private or public variables of their data structure class. For

this set of experiments, we only test on Ins andDel since maximum

space is used when the entire graph is present in memory.

Fig. 13 shows the results of our space-bound experiments. Al-

though PLDS uses more memory than most other implementations,

our PLDSOpt uses less memory than Hua and Zhang in most set-

tings (up to 1.34× factor less memory than the minimum space

used by either) for dblp and up to 1.08x additional space in a few

cases; for livejournal, it uses up to 1.72x additional space compared

to the minimum space used by Hua and Zhang. Sun uses more

Algorithm 6 Static Approximate 𝑘-core Decomposition

Input: An undirected graph𝐺 (𝑉 , 𝐸) .
Output: An array of (2+𝜀′)-approximate coreness values for any constant

𝜀′ > 0.

1: ∀𝑣 ∈ 𝑉 , let𝐶 [𝑣] = |𝑁 (𝑣) |.
2: finished ← 0, 𝑡 ← 0, 𝜀 ←

√
4𝜀′+9−3

2
, 𝛿 ← 2

𝜀
.

3: Let𝑀 be a bucketing structure formed by initially assigning each 𝑣 ∈ 𝑉
to the

⌈
log

1+𝜀 𝐶 [𝑣]
⌉
’th bucket.

4: while (finished < |𝑉 |) do
5: (𝐼 , bkt) ← Vertex IDs and bucket ID of next (peeled) bucket in𝑀 .

6: 𝑡 ← 𝑏𝑘𝑡 .

7: for iteration 𝑗 ∈ [⌈log
1+𝛿 (𝑛) ⌉] do

8: 𝑅 ← {(𝑣, 𝑟𝑣) | 𝑣 ∈ 𝑁 (𝐼) , 𝑟𝑣 = | { (𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝐼 } | }.
9: 𝑈 ← Array of length |𝑅 |.
10: parfor 𝑅 [𝑖] = (𝑣, 𝑟𝑣) , 𝑖 ∈ [0, |𝑅 |) do
11: inducedDeg = 𝐶 [𝑣] − 𝑟𝑣
12: 𝐶 [𝑣] = max(inducedDeg,

⌈
(1 + 𝜀)𝑡−1

⌉
)

13: newbkt = max(
⌈
log

1+𝜀 𝐶 [𝑣]
⌉
, 𝑡)

14: 𝑈 [𝑖] = (𝑣, newbkt)
15: Update𝑀 for each (𝑢, newbkt) in𝑈 .

16: 𝑛𝑒𝑥𝑡 -𝑏𝑘𝑡 ← bucket ID of the next smallest bucket in𝑀 .

17: if (1 + 𝜀)𝑛𝑒𝑥𝑡 -𝑏𝑘𝑡 ≤ (2 + 𝜀) (1 + 𝜀)𝑡 then
18: (𝐼 , 𝑛𝑒𝑥𝑡-𝑏𝑘𝑡) ← Vertex IDs of the next (peeled) bucket in𝑀 .

19: else
20: break
21: return𝐶 .

space than PLDSOpt for most cases; although for a few parameters

for deletions in dblp, it uses up to 1.9× less space. Since we have

a 𝑂 (log2 𝑛) factor in our space usage bound, we expect a slight

increase in our space usage compared to algorithms with linear

space; however, as we demonstrated, empirically our space usage is

not much greater, and we believe that this small extra space usage

is a small price to pay for the large improvement in performance

obtained by our algorithms. We provide theoretical space-efficient

implementations of our PLDS which may also prove to be more

space-efficient in practice.

7 STATIC (2 + 𝜀)-APPROXIMATE 𝑘-CORE
Due to the P-completeness of 𝑘-core decomposition for 𝑘 ≥ 3 [5],

all known static exact 𝑘-core algorithms do not achieve polylog-

arithmic depth. We introduce a linear work and polylogarithmic

depth (2 + 𝜀 ′)-approximate 𝑘-core decomposition algorithm (with

only one-sided error) based on the parallel bucketing-based peeling

algorithm for static exact 𝑘-core decomposition of Dhulipala et

al. [27]. The algorithm maintains a mapping 𝑀 from 𝑣 ∈ 𝑉 to a

set of buckets, with the bucket for a vertex 𝑀 (𝑣) changing over

the course of the algorithm. The algorithm starts at 𝑘 = 0, peels

all vertices with degree at most (2 + 𝜀) (1 + 𝜀)𝑘 where 𝜀 is set to√
4𝜀′+9−3

2
, increments 𝑘 , and repeats until the graph becomes empty.

The approximate core value of 𝑣 is (1 + 𝜀)𝑘−1 where we use the
value of 𝑘 when 𝑣 is peeled. We observe that the dynamic algorithm

in this paper can be combined with a peeling algorithm like the

above to yield a linear-work approximate 𝑘-core algorithm with

polylogarithmic depth.

Algorithm 6 shows pseudocode for our approximate 𝑘-core algo-

rithm, which computes an approximate coreness value for each ver-

tex. The algorithm sets the initial coreness estimates, 𝐶 [𝑣], of each
19

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

PLDSOpt PLDS � = 0.2 0.4 0.8 1.6 3.2
6.4 � = 3 6 12 24 48 96

PLDSOpt PLDS � = 3 6 12 24 48
96 � = 0.2 0.4 0.8 1.6 3.2 6.4

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
vg

.
In

s
T
im

e
(s
ec
)

101 102
10�1

100

101

Max Error (ratio)

A
vg

.
D
el

T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
vg

.
M

ix
T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
vg

.
In

s
T
im

e
(s
ec
)

101 102
10�1

100

101

Max Error (ratio)

A
vg

.
D
el

T
im

e
(s
ec
)

100.5 101 101.5
10�1

100

101

Max Error (ratio)

A
vg

.
M

ix
T
im

e
(s
ec
)

Figure 12: Sensitivity analysis of PLDSOpt and PLDS on livejournal. The first three plots fix 𝛿 ; each line is a fixed 𝛿 value and each point is a
different 𝜆 value. The last three plots fix 𝜆 and vary 𝛿 .

Zhang Hua PLDSOpt PLDS Sun

100 100.5

108

109

Avg. Ins Error (ratio)

D
B
L
P

M
ax

S
p
ac
e
(B

yt
es
)

100 100.5

109

1010

Avg. Ins Error (ratio)

L
J
M
ax

S
p
ac
e
(B

yt
es
)

100 101

108

109

Avg. Del Error (ratio)
D
B
L
P

M
ax

S
p
ac
e
(B

yt
es
)

100 101

109

1010

Avg. Del Error (ratio)

L
J
M
ax

S
p
ac
e
(B

yt
es
)

Zhang Hua PLDSOpt PLDS Sun LDS

100 100.2 100.4 100.6
10�1

100

101

102

LJ Avg. Error (ratio)

A
vg

.
In

s
.
T
im

e
(s
ec
)

100 100.2 100.4 100.6
10�1

100

101

102

LJ Avg. Error (ratio)

A
vg

.
D
el

T
im

e
(s
ec
)

100 100.5
10�1

100

101

102

LJ Avg. Error (ratio)

A
vg

.
M

ix
T
im

e
(s
ec
)

100 101 102
10�1

100

101

102

LJ Max Error (ratio)

A
vg

.
In

s
.
T
im

e
(s
ec
)

100 101 102
10�1

100

101

102

LJ Max Error (ratio)

A
vg

.
D
el

T
im

e
(s
ec
)

100 101 102
10�1

100

101

102

LJ Max Error (ratio)

A
vg

.
M

ix
T
im

e
(s
ec
)

Figure 13: Maximum space usage in bytes for PLDSOpt, Hua, Zhang, PLDS, and Sun in terms of the average error. We varied 𝛿 and 𝜆 and
computed the error ratio and space usage for the programs on dblp and livejournal. We tested against Ins and Del batches of size 10

5 for dblp
and batches of size 106 for livejournal.

𝛿 = 𝜖 = 	1

	𝑢

	𝑥

	𝑧

	𝑦

	𝑣

	𝑎
	𝑏

	𝑤 	𝑢

	𝑥

	𝑧

	𝑦

	𝑣

	𝑎
	𝑏

	𝑤

Estimate 2

	𝑢

	𝑥

	𝑧

	𝑦

	𝑣

	𝑎
	𝑏

	𝑤

Estimate 2

Estimate
4

(𝑎) (𝑏) (𝑐)

Figure 14: Example of a run of Algorithm 6 described in Exam-
ple 7.1.

vertex to its degree (Line 1). Then, it maintains a parallel bucketing

data structure𝑀 , which maps each vertex to the ⌈log
1+𝜀 𝐶 [𝑣]⌉’th

bucket (Line 3). It initializes a variable finished = 0 to keep track of

the number of vertices peeled and a variable 𝑡 = 0 used to compute

the approximate core values (Line 2). The rest of the algorithm per-

forms peeling, where the peeling thresholds are powers of (1 + 𝜀).
The peeling loop (Line 4–Line 20) first extracts the lowest non-

empty bucket from 𝑀 (Line 18), which consists of 𝐼 , a set of vertex

IDs of vertices that are being peeled, and the bucket number bkt. If
more than log

1+𝛿 (𝑛) rounds of peeling have occurred at the thresh-
old (2 + 𝜀) (1 + 𝜀)𝑡 (where we set 𝛿 = 2

𝜀), the algorithm increments

𝑡 (Line 6). Next, the algorithm computes in parallel an array 𝑅 of

pairs (𝑣, 𝑟𝑣), where 𝑣 is a neighbor of some vertex in 𝐼 and 𝑟𝑣 is

the number of neighbors of 𝑣 in 𝐼 (Line 8). Finally, the algorithm

computes in parallel the new buckets for the affected neighbors 𝑣

(Line 10–Line 14). The coreness estimate is updated to the maxi-

mum of the peeling threshold of the previous level and the current

induced degree of 𝑣 after 𝑟𝑣 of its neighbors are removed. Finally,

the algorithm updates the buckets using the new coreness estimates

for the updated vertices (Line 15), which can be done in parallel

using our bucketing data structure.

We provide an example of this algorithm below.

Example 7.1. Fig. 14 shows a run of Algorithm 6 on an example

graph. Given the parameters 𝜀 = 𝛿 = 1, the two buckets that the

vertices of the input graph (shown in (𝑎)) are partitioned into are

bucket index 1 (green vertices) and bucket index 2 (purple vertices).

Vertices 𝑣 ,𝑤 , 𝑎, and 𝑏 have degree 2 so they are put into the bucket

with index ⌈log
2
(2)⌉ = 1. Since 𝑢, 𝑥 , 𝑦, and 𝑧 have degree ≥ 3, they

are put into the bucket with index ⌈log
2
(3)⌉ = 2.

Since the bucket with index 1 has the smaller bucket index, we

peel off all the vertices in that bucket (the green vertices) and we

assign the core estimate of (1 + 𝜀)1 = 2 to all vertices in that

bucket (shown in (𝑏)). We update the buckets of all neighbors

of the peeled vertices; however, since 𝑢, 𝑥 , 𝑦, and 𝑧 all still have

degree ≥ 3, they remain in the bucket with index 2. Finally, we peel

bucket index 2 and assign all vertices in that bucket an estimate of

(1 + 𝜀)2 = 4 (shown in (𝑐)). In this example, the estimates produced

are 3-approximations of the real coreness values.

We prove below that Algorithm 6 finds an (2 + 𝜀)-approximate

𝑘-core decomposition in𝑂 (𝑚) expected work and𝑂 (log3𝑚) depth
w.h.p., using 𝑂 (𝑚) space, as stated in Theorem 3.8. We give the

approximation guarantees of our algorithm using lemmas from [40],

and use an efficient parallel semisort implementation [43] for our

work bounds.

Theorem 7.2. For a graph with 𝑚 edges,10 for any constant 𝜀 >

0, there is an algorithm that finds an (2 + 𝜀)-approximate 𝑘-core
decomposition in 𝑂 (𝑚) expected work and 𝑂 (log3𝑚) depth with
high probability, using 𝑂 (𝑚) space.

Proof. Our approximation guarantee is given by Observation

4 of [40]. Using Observation 4, the number of vertices with core

10
Our bounds in this paper assume𝑚 = Ω (𝑛) for simplicity, although our algorithms

work even if𝑚 = 𝑜 (𝑛) .
20

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

number (1 + 𝜀)𝑡 after one round of peeling in Algorithm 6 shrinks

by a factor of
2

2+𝜀 . Let𝑉≤(1+𝜀)𝑡 be the number of vertices with core

number at most (1 + 𝜀)𝑡 . After removing all vertices with degree

at most (2 + 𝜀) (1 + 𝜀)𝑡 , the number of vertices with core number

(1 + 𝜀)𝑡 and with degree greater than (2 + 𝜀) (1 + 𝜀)𝑡 is at most

2(1+𝜀)𝑡 |𝑉≤(1+𝜀)𝑡 |
(2+𝜀) (1+𝜀)𝑡 =

2 |𝑉≤(1+𝜀)𝑡 |
2+𝜀 . Since |𝑉≤(1+𝜀)𝑡 | ≤ 𝑛, the maximum

number of rounds needed to peel all vertices with core number

at most (1 + 𝜀)𝑡 is log(2+𝜀)/2 (𝑛). By induction on 𝑡 (Line 6), after

log(2+𝜀)/2 (𝑛) rounds, all vertices with core number at most (1 + 𝜀)𝑡
are removed. Hence, in round 𝑡 + 1, all vertices have core number

greater than (1+𝜀)𝑡 and have core number at most (2+𝜀) (1+𝜀)𝑡+1;
hence, we obtain a (2 + 𝜀) (1 + 𝜀) = 2 + 𝜀 ′ approximation (for any

constant 𝜀 ′ > 0 and appropriate setting of 𝜀) when we give coreness

approximations of (1 + 𝜀)𝑡 to all vertices peeled for 𝑡 + 1.
Our algorithm uses a number of data structures that we use to

obtain our work, depth, and space bounds. Our parallel bucketing

data structure (Line 3) can be maintained via a sparse set (hash

map), or by using the bucketing data structure from [27]. The outer

loop iterates for 𝑂 (log𝑛) times (Line 4). Within each iteration of

the outer loop, we iterate for 𝑂 (log(1+𝛿) 𝑛) = 𝑂 (log𝑛) rounds
for constant 𝛿 = 2

𝜀 . After obtaining a set of vertices, we update

the buckets using semisort in 𝑂 (log𝑛) depth w.h.p. [27]. Thus the

overall depth of the algorithm is 𝑂 (log3𝑚) for any constant 𝛿 > 0.

The work of the algorithm can be bounded as follows. We charge

the work for moving a vertex from its current bucket to a lower

bucket within a given round to one of the edges that was peeled

from the vertex in the round. Thus the total number of bucket

moves done by the algorithm is𝑂 (𝑚). Each round of the algorithm

also peels a number of edges and aggregates, for each vertex that

has a neighbor in the current bucket, the number of edges incident

to this vertex that are peeled (the 𝑟𝑣 variable in the algorithm). We

implement this step using a randomized semisort [43]. Since 2𝑚

edges are peeled in total, the overall work is 𝑂 (𝑚) in expectation.

Lastly, we bound the space used by the algorithm. There are a

total of𝑂 (log
1+𝜀 𝑛) = 𝑂 (log𝑛) buckets for any constant 𝜀 > 0. Each

vertex appears in exactly one bucket, and thus the overall space of

the bucketing structure is 𝑂 (𝑛). The algorithm also semisorts the

edges peeled from the graph in each step. Since all𝑚 edges could

be peeled and removed within a single step, and thus semisorted

the overall space used by the algorithm is 𝑂 (𝑚). □

The approximation guarantees provided by our algorithm are

essentially the best possible, under widely believed conjectures.

Specifically, Anderson and Mayr [5] show that the optimization

version of the High-Degree Subgraph problem, namely to compute

the largest core number, or degeneracy of a graph cannot be done

better than a factor of 2. Thus, obtaining a polynomial work and

polylogarithmic depth (2 − 𝜀)-approximation to the coreness value

of each vertex would yield a (2 − 𝜀)-approximation to the opti-

mization version of the High-Degree Subgraph problem, and show

that P = NC, contradicting a widely-believed conjecture in parallel

complexity theory.

In recent years, several results have given parallel algorithms that

obtain a (1 + 𝜀)-approximation to the coreness values in distributed

models of computation such as the Massively Parallel Computa-

tion model [33, 40]. These results work by performing a random

Algorithm 7 GraphProblemUpdate(𝐺,B)
Input: A graph𝐺 = (𝑉 , 𝐸) and a batch B of unique and valid updates.

Output: A solution to the relevant graph problem.

1: Update(B) [Algorithm 1].

2: 𝐴← LowOutdegreeOrient(B) .
3: Perform parallel filter on B to obtain a batch of insertions, Bins , and a

batch of deletions, Bdel .
4: BatchFlips(𝐴, Bins, Bdel) .
5: BatchDelete(Bdel) .
6: BatchInsert(Bins) .

sparsification of the graph into a subgraph that approximately pre-

serves the coreness values. They then send this subgraph to a single

machine, which runs the sequential peeling algorithm on the sub-

graph to find approximate coreness values. Crucially, this second

peeling step on a single machine can have Θ(𝑛) depth, and thus,

this approach does not yield a polylogarithmic depth algorithm in

the work-depth model of computation.

8 FRAMEWORK FOR BATCH-DYNAMIC
GRAPH ALGORITHMS FROM LOW
OUT-DEGREE ORIENTATIONS

In this section, we introduce a framework that we will use in all of

our batch-dynamic algorithms that use our batch-dynamic low out-

degree orientation algorithm (Section 5.6). Our framework assumes

three differentmethods for each of the problems (maximalmatching,

𝑘-clique counting, and vertex coloring) that we solve. Specifically,

these three methods handle batches of insertions and deletions

separately; let BatchFlips, BatchInsert, and BatchDelete denote

these three methods.

We assume for simplicity that all updates in the batch B are

unique, which means that no edge deletion occurs on an inserted

edge in the batch and vice versa. Furthermore, we assume that the

updates are valid, meaning that if an edge insertion (𝑢, 𝑣) is in B,
then (𝑢, 𝑣) does not exist in the graph, and if an edge deletion (𝑤, 𝑥)
is in B, then edge (𝑤, 𝑥) exists in the graph. Such assumptions are

only simplifying assumptions because it is easy to perform prepro-

cessing on B in 𝑂 (|B| log𝑛) work and 𝑂 (log𝑛) depth to ensure

that these assumptions are satisfied. In fact, our implementations

in Section 6 do perform this preprocessing on the input batches. To

find all unique updates, we perform a parallel sort in 𝑂 (|B| log𝑛)
work and 𝑂 (log𝑛) depth [17, 28, 50]; we first sort on the edge and

then the timestamp of the update. Then, we perform a parallel filter

in 𝑂 (|B|) work and 𝑂 (1) depth [17, 28, 50] where we keep each

edge with the latest timestamp. Then, we perform another parallel

filter to keep only edge insertions of nonexistent edges and edge

deletions of edges that exist in the graph. This preprocessing en-

sures B follows our simplifying assumptions and do not exceed the

complexity bounds of our PLDS, and hence, we assume all input

batches contain unique and valid updates. The work and depth for

preprocessing are subsumed by the bounds for the algorithms.

Detailed Framework. The pseudocode for our framework is

shown in Algorithm 7. We first update the PLDS by calling the

update procedure (Algorithm 1) on the batch of updates in Line 1.

Afterwards, we call our low out-degree orientation algorithm

to obtain the set of edges that were flipped, placed in set 𝐴

(Line 2). Then, we take the batch of updates B and split the batch

21

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

into a batch of insertions, Bins , and a batch of deletions, Bdel
(Line 3). We call BatchFlips (Line 4) on the set of flipped edges

𝐴, which processes the edge flips accordingly for each problem.

Finally, we call the problem specific functions BatchDelete and

BatchInsert (Lines 5 and 6) on Bdel and Bins , respectively; we first
call BatchDelete and then BatchInsert.

Analysis. By Corollary 3.3, our low out-degree orienta-

tion algorithm gives a 𝑂 (𝛼) out-degree orientation. Further-

more, the amortized work of the algorithm indicates that

𝑂 (|B| log2 𝑛) amortized flips occur with each batch B. Suppose
that BatchFlips(𝐴) takes 𝑂 (|𝐴|𝑊flips (𝛼)) work and 𝑂 (𝐷flips)
depth; BatchInsert(Bins) takes 𝑂 (|Bins |𝑊ins (𝛼)) work and

𝑂 (𝐷ins) depth, and BatchDelete (Bdel) takes 𝑂 (|Bdel |𝑊del (𝛼))
work and 𝑂 (𝐷del) depth; and the update methods require 𝑂 (𝑆)
space in total. Then, we show the following theorem about our

framework.

Theorem 8.1. Algorithm 7 takes

𝑂

(
|B|𝑊flips (𝛼) log2 𝑛 + |B|𝑊ins (𝛼) + |B|𝑊del (𝛼)

)
amortized work and

𝑂

(
log

2 𝑛 log log𝑛 + 𝐷flips + 𝐷ins + 𝐷del

)
depth w.h.p., in 𝑂 (𝑛 log2 𝑛 +𝑚 + 𝑆) space.

Proof. Theorem 3.2 states that updating the PLDS and

getting the flipped edges require 𝑂 (|B| log2 𝑛) amortized work,

𝑂 (log2 𝑛 log log𝑛) depth, and𝑂 (𝑛 log2 𝑛 +𝑚) space. Since the calls
to the procedures are independent and sequential, the total work,

depth and space equal the sum of the work, depth, and space of

our PLDS algorithm and BatchFlips,BatchDelete and BatchInsert.
Then, the only additional information we need are the sizes of

Bins and Bdel . By our algorithm, |Bins |, |Bdel | ≤ |B| since Bins ∪
Bdel = B. By Theorem 3.2,𝐴 has𝑂 (|B| log2 𝑛) amortized flips; thus,

the amortized work of BatchFlips is𝑂 (|B|𝑊flips (𝛼) log2 𝑛). Finally,
the PLDS uses𝑂 (𝑛 log2 𝑛+𝑚) space; thus, with the additional𝑂 (𝑆)
space, the total space used is 𝑂 (𝑛 log2 𝑛 +𝑚 + 𝑆). □

In addition, we assume that the algorithms BatchInsert and
BatchDelete correctly maintain the desired properties required

by each specific problem after processing Bins and Bdel , respec-
tively. Such an assumption ensures the correctness of the solutions

produced by our framework. We show in Sections 9 to 11 that this

is true for all of our procedures. Additionally, we can get rid of the

𝑂 (𝑛 log2 𝑛) term in space at the expense of an extra𝑂 (log2 𝑛) factor
in depth by using our space-efficient structures from Section 5.8.

Using this framework (with the PLDS guarantees given in The-

orem 3.1), we present batch-dynamic algorithms for a number of

problems in Sections 9 to 11 for maximal matching, 𝑘-clique count-

ing, and vertex coloring.

9 MAXIMAL MATCHING
A maximal matching in a graph 𝐺 = (𝑉 , 𝐸) is a set of edges 𝑀 in

the graph such that no vertex is adjacent to two edges in 𝑀 . Fur-

thermore, no additional edges can be added to𝑀 without causing

a vertex to be adjacent to two edges in𝑀 .

We provide the following parallel batch-dynamic algorithm for

maximal matching using our framework given in Section 8. We

instantiate BatchInsert and BatchDelete for the maximal matching

problem in this section. We use the simple algorithm of Neiman

and Solomon [75] as a starting point, although we will see that the

batch-dynamic setting introduces several non-trivial challenges.

Sequential Algorithm of Neiman and Solomon [75]. The sequential
algorithm of Neiman and Solomon [75] uses the dynamic orienta-

tion algorithm of Brodal and Fagerberg [19], which gives an 𝑂 (𝐷)
out-degree orientation for any𝐷 > 2𝛼𝑚𝑎𝑥 . Given an edge insertion,

they check whether both endpoints are in the maximal matching. If

not, they match the endpoints to each other. For each vertex 𝑢 ∈ 𝑉 ,
they maintain the set of unmatched in-neighbors, 𝐹 (𝑢), in a data

structure consisting of an array augmented with a linked list. On an

edge deletion (𝑢, 𝑣) where (𝑢, 𝑣) is in the matching, they check 𝐹 (𝑢)
(resp. 𝐹 (𝑣)) to see if any in-neighbors, 𝑢 ′ (resp. 𝑣 ′) are unmatched.

If so, they match 𝑢 to 𝑢 ′ (resp. 𝑣 to 𝑣 ′). If no in-neighbors are un-

matched, they check whether any of their out-neighbors, 𝑢 ′′ (resp.
𝑣 ′′) are unmatched. If so, 𝑢 (resp. 𝑣) matches with 𝑢 ′′ (resp. 𝑣 ′′). On
an edge deletion (𝑢, 𝑣) (where the edge is oriented from 𝑢 to 𝑣), if

𝑢 is unmatched, it removes itself from 𝐹 (𝑣). On an edge insertion,

(𝑢, 𝑣), if𝑢 is unmatched, it adds itself to 𝐹 (𝑣), and if𝑢 is matched we

do not do anything. Finally, for an edge flip from (𝑢, 𝑣) to (𝑣,𝑢), if 𝑢
is unmatched, it removes itself from 𝐹 (𝑣); if 𝑣 is free, it adds itself to
𝐹 (𝑢). Again if𝑢 is matched, we do not do anything. Maintaining the

maximal matching and updating all data structures can be done in

𝑂

(
log𝑛

log((log𝑛)/𝛼𝑚𝑎𝑥) + 𝛼𝑚𝑎𝑥
)
amortized time for 𝛼𝑚𝑎𝑥 = 𝑜 (log𝑛).

For 𝛼𝑚𝑎𝑥 = Ω(log𝑛), they obtain 𝑂 (𝛼𝑚𝑎𝑥) amortized time.

Unfortunately, the batch-dynamic setting introduces several chal-

lenges, the most important of which is: edge deletions may unmatch

many different vertices simultaneously, which need to be matched

to potentially the same set of in-neighbors. Thus, we can no longer

arbitrarily pick in-neighbors to match unmatched vertices since

many vertices may be matched to the same in-neighbor. But we also

cannot afford to look at all of the in-neighbors of an unmatched

vertex since the in-degree is potentially 𝜔 (𝛼). Even for edge in-

sertions, we cannot choose to add every edge insertion between

two unmatched vertices to the maximal matching since many edge

insertions may occur on the same unmatched vertex.

Batch-Dynamic Algorithm. Edge insertions are easier to handle;

for each edge insertion, in parallel, we check whether both end-

points adjacent to the insertion are unmatched. If so, we run a

static, parallel algorithm over all such vertices adjacent to an edge

insertion but is unmatched; this finds a maximal matching among

all vertices that want to be matched due to edge insertions. If not,

we do nothing for these vertices.

Deletions are trickier to handle. For each vertex incident to an

edge deletion, we check whether it is still matched or if it can be

matched with any of its neighbors. However, such an operation

could be expensive because although a vertex has bounded number

of out-neighbors, it may have many in-neighbors. To find a new

matching for unmatched vertices due to edge deletions, we make

22

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Algorithm 8 MaximalMatchingBatchFlips(𝐴,Bins,Bdel)
Input: A set of edge flips 𝐴.

Output: Updated data structures.

1: parfor each flipped edge (𝑢, 𝑣) ∈ 𝐴 do ⊲ The edge is flipped from

(𝑢, 𝑣) to (𝑣,𝑢) and stored as (𝑢, 𝑣) in 𝐴.
2: if (𝑢, 𝑣) is in the matching then
3: Remove 𝑢 from 𝐼𝑣 .

4: Add 𝑣 to 𝐼𝑢 .

use of the best-known low-depth, parallel, static maximal match-

ing algorithm which takes 𝑂 (𝑚 + 𝑛) work11 and 𝑂 (log2 𝑛) depth
w.h.p. [14, 16, 36] combined with a scheme where we progressively

double the number of in-neighbors we attempt to match. Details

about these procedures are provided in the next subsections.

Data Structure. We maintain the following data structures in our

algorithm. For each vertex 𝑣 , we maintain a parallel hash table, 𝐼𝑣 , of

in-neighbors which are unmatched. Each time a vertex 𝑣 becomes

unmatched, we inform all out-neighbors of 𝑣 that 𝑣 is unmatched.

Similarly, when 𝑣 becomes matched, we inform all out-neighbors

that it is matched. Then, each vertex that has been informed that 𝑣

has been unmatched adds 𝑣 to its hash table of unmatched incoming

neighbors, in parallel. We assume that the out-neighbors of every

vertex 𝑢 are also maintained in a parallel hash table 𝑋𝑢 , that is kept

up to date by the edge orientation algorithm. These data structures

require𝑂 (𝑚) in total space usage. Sequential versions of 𝐼𝑣 and 𝑋𝑢
are maintained by Neiman and Solomon [75].

9.1 Maximal Matching BatchFlips
The pseudocode for this procedure is given in Algorithm 8. To

implement BatchFlips for maximal matching, we update the data

structures 𝐼𝑤 to accurately account for unmatched in-neighbors

of vertices (which are stored in the 𝐼𝑣 structures for each vertex

𝑣). To do this in parallel, for each flipped edge from (𝑢, 𝑣) to (𝑣,𝑢)
(Line 1), we remove 𝑢 from 𝐼𝑣 (Line 3) and add 𝑣 to 𝐼𝑢 (Line 4).

9.2 Maximal Matching BatchInsert
The pseudocode for this procedure is given in Algorithm 9. To im-

plement BatchInsert for maximal matching, we need to check, in

parallel, whether both endpoints of the inserted edge are unmatched

(Line 3). If so, we know that they can potentially be matched to

each other. However, there could be multiple edge insertions inci-

dent to the same unmatched vertex; thus, we cannot simply add

every inserted edge between unmatched vertices to the maximal

matching. Instead, we keep track of all edge insertions between

two unmatched vertices in a dynamic array 𝑆 (Line 1) and run a

static, parallel maximal matching algorithm on the induced sub-
graph given by 𝑆 (Line 5). We specifically use the work-efficient

parallel, static maximal matching algorithm of Blelloch et al. [16]

which was shown to have a better depth than previously stated

in the analysis provided by Fischer and Noever [35]. Finally, each

newly matched vertex from Line 5 updates its out-neighbors that

it is now matched. For each such newly matched vertex 𝑣 , each

out-neighbors𝑤 of 𝑣 removes 𝑣 from 𝐼𝑤 .

11
The work of the parallel static matching algorithm given in [16] can be shown to

be𝑂 (𝑚 + 𝑛) w.h.p. when using the high probability analysis of parallel bucket sort

given by Bercea and Even [9].

Algorithm 9 MaximalMatchingBatchInsert(Bins)
Input: A batch Bins of unique and valid insertion updates.

Output: A maximal matching.

1: 𝑆 ← ∅. ⊲ 𝑆 contains matching candidate edges.

2: parfor each edge {𝑢, 𝑣 } ∈ Bins do
3: if 𝑢 and 𝑣 are unmatched then
4: 𝑆 ← 𝑆 ∪ {{𝑢, 𝑣 }}.
5: Run StaticMaximalMatching(𝐺 (𝑆)) .
6: parfor each newly matched vertex 𝑣 do
7: parfor each out-neighbor 𝑤 of 𝑣 do
8: Remove 𝑣 from 𝐼𝑤 .

Algorithm 10 MaximalMatchingBatchDelete(Bdel)
Input: A batch Bdel of unique and valid deletion updates.

Output: A maximal matching.

1: 𝑈 ← ∅. ⊲𝑈 contains newly unmatched vertices.

2: 𝑇 ← ∅. ⊲ Contains the out-neighbors of unmatched vertices.

3: parfor each edge {𝑢, 𝑣 } ∈ Bdel do
4: if {𝑢, 𝑣 } is in the matching then
5: 𝑈 ← 𝑈 ∪ {𝑢, 𝑣 }.
6: 𝑇 ← 𝑇 ∪𝑋𝑢 ∪𝑋𝑣 .

7: Run StaticMaximalMatching(𝐺 (𝑈 ∪𝑇)) .
8: parfor each newly matched vertex 𝑣 in𝐺 (𝑈 ∪𝑇) do
9: parfor each out-neighbor 𝑤 of 𝑣 do
10: Remove 𝑣 from 𝐼𝑤 .

11: 𝑈 ← 𝑈 \ {𝑣 }.
12: 𝑐 ← 1. ⊲ 𝑐 is the number of incoming unmatched neighbors picked to

run the static maximal matching algorithm.

13: while𝑈 ≠ ∅ do
14: parfor each vertex 𝑢 ∈ 𝑈 do
15: Pick 𝑐 incoming unmatched neighbors arbitrarily.

16: if 𝐼𝑢 = ∅ then
17: 𝑈 ← 𝑈 \ {𝑢 }.
18: Let𝐺′ be the induced subgraph consisting of all vertices in𝑈 and

the picked incoming unmatched neighbors.

19: Run StaticMaximalMatching(𝐺′) .
20: parfor each newly matched vertex 𝑣 in𝐺′ do
21: parfor each out-neighbor 𝑤 of 𝑣 do
22: Remove 𝑣 from 𝐼𝑤 .

23: 𝑈 ← 𝑈 \ {𝑣 }.
24: Set 𝑐 ← 2 · 𝑐 .
25: parfor each 𝑣 ∈ 𝑈 do
26: if 𝑣 remains unmatched then
27: parfor each out-neighbor 𝑤 of 𝑣 do
28: Add 𝑣 to 𝐼𝑤 .

The correctness of our procedure follows from the fact that only

new edge insertions may be added to the matching. Because our

algorithm alwaysmaintains a maximal matching, any previous edge

that existed in the graph is either in the matching or is incident to a

matched vertex. Thus, our procedure only needs to consider newly

inserted edges and such edges can be determined using a parallel,

static maximal matching algorithm [16].

9.3 Maximal Matching BatchDelete
The pseudocode for this algorithm is given in Algorithm 10. For any

edge (𝑢, 𝑣) that is part of the matching that has been removed by an

edge deletion, we create an induced subgraph consisting of the set

of such vertices and their out-neighbors (Lines 1, 2, 5 and 6). Given

|Bdel | such deletion updates, the induced subgraph of each vertex 𝑣

23

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

affected by the deletions and its out-neighbors has size 𝑂 (|Bdel |𝛼).
We use the parallel, static algorithm of Blelloch et al. [16] to find a

matching in this induced graph (Line 7).

For vertices that remain unmatched after the above procedure

is run, we must now attempt to match these vertices with the set

of incoming unmatched neighbors. To do this, we run the parallel,

static maximal matching algorithm on some induced subgraphs of

the remaining unmatched vertices and a subset of incoming vertices.

Specifically, starting from 𝑐 = 1 (Line 12), each vertex remaining

in 𝑈 queries exactly 𝑐 of its in-neighbors (the in-neighbors can

be chosen arbitrarily) (Line 15). Suppose that 𝐺 ′ is the induced

subgraph consisting of all vertices in 𝑈 and the picked incoming

unmatched neighbors of the vertices in 𝑈 . We run [16] on 𝐺 ′ to
obtainmatchings (Line 19). Thematched vertices consists of vertices

in 𝑈 and (some) of their in-neighbors. For each newly matched

vertex 𝑣 , we remove it from the 𝐼𝑤 of each of its out-neighbors𝑤

(Line 22). Then, for each vertex in 𝑈 that becomes matched, we

remove it from 𝑈 (Line 23). We double 𝑐 and proceed with this

entire process again if there remains unmatched vertices 𝑢 in 𝑈

(Line 13) and 𝐼𝑢 is not empty (Line 17).

The correctness of Algorithm 10 follows immediately from our

procedures. Our algorithm always maintains a maximal matching

after processing a batch of updates. A vertex becomes unmatched

(if it was previously matched) if and only if it is incident to an

edge deletion and the edge deletion deletes a matched edge. An

unmatched vertex can be matched to one of its in-neighbors or

out-neighbors. We check both sets of neighbors in our procedure

in order to match all unmatched vertices adjacent to edge updates.

9.4 Work and Depth Analysis
Here we show the work and depth analysis of our maximal match-

ing algorithms (Algorithms 8 to 10).

Lemma 9.1. The depth of Algorithms 8 to 10 is 𝑂 (log2 𝑛(logΔ +
log log𝑛)) w.h.p.

Proof. We first prove the depth of each algorithm separately

and use Theorem 8.1 to find the total depth.

In Algorithm 8, we can process all flipped edges in parallel

(Line 1). Adding and removing vertices from the hash tables 𝐼𝑣 re-

quires 𝑂 (log∗ 𝑛) depth w.h.p. to perform in parallel (Lines 3 and 4).

In Algorithm 9, finding all edges in Bins that are between two

unmatched vertices can be done in parallel in 𝑂 (1) depth (Lines 2

to 4). Then, by the analysis in [16, 35], the parallel, static algorithm

we use in Line 5 runs in𝑂 (log2 𝑛) depth w.h.p. Finally, updating the
𝐼𝑤 of each out-neighbor𝑤 of a newly matched vertex 𝑣 can be done

in parallel in𝑂 (log∗ 𝑛) depth w.h.p. (Lines 6 to 8). Thus, Algorithm 9

can be done in 𝑂 (log2 𝑛) depth w.h.p.

In Algorithm 10, finding all newly unmatched vertices and mak-

ing the induced subgraph consisting of the these vertices and their

out-neighbors can be done in𝑂 (log𝑛) depth (Lines 3 to 4 and 6) us-

ing a parallel filter. As before, running the parallel, static algorithm

takes 𝑂 (log2 𝑛) depth w.h.p. (Line 7). Then, removing each newly

matched vertex 𝑣 from the 𝐼𝑤 of each out-neighbor 𝑤 of 𝑣 takes

𝑂 (log∗ 𝑛) depth (Lines 8 to 10). Removing the matched vertices 𝑣

from𝑈 can also be done in parallel in𝑂 (log∗ 𝑛) depth (Line 11) if𝑈

is maintained as a parallel hash table. The depth of the outer while

loop (Line 13) is𝑂 (logΔ) since the while loop iterates to a value of

𝑐 that is at most 𝑐 = 𝑂 (Δ). When 𝑐 = Δ, all incoming neighbors of

every vertex would be included in the induced subgraph 𝐺 ′ and,
hence, a maximal matching is guaranteed in this final case. Because

the value of 𝑐 is doubled each time, the total number of iterations

of the while loop is 𝑂 (logΔ). The depth of the static matching

procedure is 𝑂 (log2 𝑛) w.h.p., and so the total depth of Lines 12

to 24 is 𝑂 (logΔ log
2 𝑛) w.h.p. Finally, the last step of adding each

remaining unmatched vertex from 𝐼𝑤 of each of its out-neighbors𝑤

takes𝑂 (log∗ 𝑛) depth. Note that the matched vertices have already

been removed from 𝐼𝑤 in the previous lines (Lines 10 and 22). Thus,

Algorithm 10 takes 𝑂 (logΔ log
2 𝑛) depth w.h.p.

By Theorem 8.1, the total depth of Algorithms 8 to 10 is

𝑂 (log2 𝑛(logΔ + log log𝑛)) w.h.p. □

Lemma9.2. Algorithms 8 to 10 require𝑂 (|B|(𝛼+log2 𝑛)) amortized
work w.h.p.

Proof. As in the depth proof, we first prove the work of each

of the individual algorithms and then use Theorem 8.1 to show the

final work bound.

By Theorem 3.2, the number of edge flips is 𝑂 (|B| log2 𝑛) amor-

tized. Thus, in Algorithm 8, the number of edge flips we process

in total is 𝑂 (|B| log2 𝑛) (Line 1). For each edge flip, we spend 𝑂 (1)
work to add and remove, respectively, from 𝐼𝑢 and 𝐼𝑣 (Lines 3 and 4).

Then, the total work of Algorithm 8 is 𝑂 (|B| log2 𝑛) amortized.

In Algorithm 9, there are at most |B| insertions and checking

whether the endpoints of the edges are unmatched requires𝑂 (|B|)
work. This procedure produces at most 𝑂 (|B|) unmatched vertices

in 𝑆 since each edge is incident to two vertices. Then, running the

parallel, static work-efficient maximal matching algorithm of [16]

on the induced subgraph of the unmatched vertices requires𝑂 (|B|)
work w.h.p. Then, removing the matched vertices from the 𝐼𝑤 of

each out-neighbor requires 𝑂 (|B|) work. Thus, Algorithm 2 takes

𝑂 (|B|) work w.h.p..

The remainder of the proof focuses on proving the work for Al-

gorithm 10. First, we note that each vertex that becomes matched

is either a vertex in 𝑢 ∈ 𝑈 (Line 4) or is an unmatched incoming

neighbor of 𝑢. There can be at most 4|𝑈 | unmatched vertices that

may become matched since each deletion update can unmatch at

most two vertices. Thus, the work of informing all out-neighbors

throughout the procedure is 𝑂 (|B|𝛼) since by Theorem 3.2, we

maintain an𝑂 (𝛼) out-degree orientation and there are𝑂 (|B|) dele-
tion updates. Running the static algorithm (Line 7) on the induced

subgraph of𝑈 and its out-neighbors requires 𝑂 (|B|𝛼) work w.h.p.

Then, the remaining work comes from the work of looking at 𝑐

incoming neighbors of each node 𝑢 ∈ 𝑈 of the set of vertices𝑈 that

have not been matched and have at least one unmatched neighbor.

This requires 𝑂 (𝑐 |𝑈 |) work to find a maximal matching in the in-

duced subgraph of 𝑈 and 𝑐 incoming vertices of each vertex in 𝑈 .

We perform the following charging argument to calculate the work

over all attempted 𝑐 values.

The key to the charging argument is that we charge the cost

of attempted matchings of a vertex to when it or its in-neighbors
are matched. More specifically, let a query be an instance when an

in-neighbor of a vertex is chosen in Line 15 and the static algorithm

is run on the induced subgraph of the selected in-neighbors and the

vertices remaining in𝑈 . When an in-neighbor becomes matched,

24

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

we charge to it the cost of each previous vertex that queried the
matched in-neighbor. Since each matched in-neighbor has at most

𝑂 (𝛼) out-degree, each such matched in-neighbor will be queried

at most 𝑂 (𝛼) times. The static algorithm we run in Line 19 takes

work that is linear in the size of the induced subgraph 𝐺 ′; thus,
this is 𝑂 (1) amortized per vertex in 𝑈 and its chosen in-neighbors.

Furthermore, as we stated before, there can be at most 𝑂 (|𝑈 |)
matched in-neighbors. Thus, the total charged cost to each matched

in-neighbor is𝑂 (𝛼 |𝑈 |). We now need to account for the cost of the

in-neighbors that were queried but not matched.

To bound the number of such vertices, for each vertex 𝑣 ∈ 𝑈 , con-

sider the last run of the static algorithmwhere 𝑣 remains unmatched

after the run. During this previous run, all queried in-neighbors of 𝑣

were matched to some vertices in𝑈 ; if there exists an in-neighbors

that is unmatched, it would have been matched to 𝑣 . In the final

run of the static algorithm for 𝑣 , we query at most two times the

number of in-neighbors queried in the previous round. Thus, the

remaining unmatched, queried in-neighbors in the final run for 𝑣

can be charged to the previous run where all queried in-neighbors

were matched. This results in an additional cost of 𝑂 (1) that is
charged to each matched in-neighbor.

In total, our charging argument shows that finding the maximal

matching in each subgraph takes𝑂 (𝛼 |𝑈 |) work. |𝑈 | = 𝑂 (|B|), and
so the total work of Algorithm 10 is 𝑂 (𝛼 |B|).

By Theorem 8.1, the total work of our batch-dynamic maximal

matching algorithm is 𝑂 (|B|(log2 𝑛 + 𝛼)) amortized, w.h.p. □

Theorem 9.3. Our maximal matching algorithm takes 𝑂 (|B|(𝛼 +
log

2 𝑛)) amortized work and𝑂 (log2 𝑛(logΔ+log log𝑛)) depth w.h.p.,
and uses 𝑂 (𝑛 log2 𝑛 +𝑚) space.

Proof. The work and depth follow from Lemma 9.1

and Lemma 9.2. The algorithm uses space equal to the space

required by the 𝑘-core decomposition algorithm since it only

stores the additional 𝐼𝑣 data structures which in total takes 𝑂 (𝑚)
additional space. Thus, the space required by our algorithm is

𝑂 (𝑛 log2 𝑛 +𝑚). □

10 CLIQUE COUNTING
A𝑘-clique is a set of𝑘 vertices where edges exist between all pairs of

vertices in the set. Specifically, using our framework (Algorithm 7)

and our problem specific methods, we obtain a 𝑘-clique counting

algorithm (for constant 𝑘) that runs in𝑂 (𝛼𝑘−2 |B| log2 𝑛) work and
𝑂 (log2 𝑛) depth w.h.p., using 𝑂 (𝑚𝛼𝑘−2 + 𝑛 log𝑛) space.

10.1 Algorithm Overview
Due to the complexity of our algorithm, we first provide some intu-

ition behind the core ideas before we give the specific details. First,

we make the simple observation that any clique in a directed acyclic

graph has a vertex where all edges in the clique that are adjacent to

the vertex are directed out from the vertex. For a particular clique

𝐶 , we call this vertex the source of 𝐶 .
Observation 10.1. Provided a directed acyclic orientation of a graph
𝐺 = (𝑉 , 𝐸), for any clique 𝐶 ∈ 𝐺 , there exists a unique vertex 𝑣 ∈ 𝐶
where all edges from 𝑣 to all other vertices𝑤 ∈ 𝐶 are directed from 𝑣

to𝑤 .

Proof. First, it is easy to see that the source is unique. This

is because for any two vertices 𝑢 and 𝑣 in the clique, the edge

{𝑢, 𝑣} must be directed either in the (𝑢, 𝑣) direction or in the (𝑣,𝑢)
direction, one of which makes 𝑣 (resp. 𝑢) no longer the source.

Then, a simple proof by contradiction shows that the source

exists. Suppose for contradiction that all vertices in 𝐶 have at least

one out-neighbor and one in-neighbor. We start with vertex 𝑣 . Sup-

pose that 𝑣 ’s out-neighbor is 𝑤 and 𝑣 ’s in-neighbor is 𝑢. By our

assumption,𝑤 must have at least one out-neighbor, 𝑥 . 𝑥 ≠ 𝑢, oth-

erwise, there exists a 3-cycle in the graph. (𝑥 ≠ 𝑣 also since we’re

only considering simple graphs.) By the same argument, 𝑥 must

have at least one out-neighbor, 𝑦. 𝑦 ∉ {𝑥,𝑢, 𝑣,𝑤}, otherwise, by the

same argument, there would exist a cycle and we only consider

simple graphs. Making the same argument for the 𝑘-th unique out-

neighbor, we require a (𝑘 +1)-st unique vertex in order to not create
a cycle. This contradicts the fact that 𝐶 is a 𝑘-clique. □

We begin our description with an explanation of how to find

the newly created cliques resulting from edge insertions. Using Ob-

servation 10.1, we make the second observation that for any edge

update (𝑢, 𝑣), we can count the number of 𝑘-cliques (for constant 𝑘)

incident to (𝑢, 𝑣) and where 𝑢 is the source vertex of the clique in

𝑂 (𝛼𝑘−2) work and 𝑂 (1) depth, provided an 𝑂 (𝛼) acyclic low out-

degree orientation. This is because𝑢 and 𝑣 must be in the clique and,

thus, there are

(𝑐𝛼
𝑘−2

)
= 𝑂 (𝛼𝑘−2) additional vertices to choose from

among 𝑢’s out-neighbors (for some constant 𝑐 hidden in the 𝑂 (𝛼)).
This observation also means that we do not have to worry about

finding a clique until after all edges adjacent to its source vertices are
added. The clique will be found by the last of these source edges

when it is added. Thus, the main challenge of our algorithm is how

to find the cliques resulting from edge updates to other vertices

aside from those adjacent to the source vertex.
This leads to our third and final observation: a 𝑘-clique can be

formed from a (𝑘 − 1)-clique by attaching a source vertex where

all edges from the source vertex are directed into the vertices of

the (𝑘 − 1)-clique. The last crucial observation allows us to count

𝑘-cliques inductively by counting (𝑘 − 1)-cliques, which are in

turn counted using (𝑘 − 2)-cliques, and so on. This means that for

any 𝑘-clique 𝐶 , by Observation 10.1, there exists a set of unique
source vertices responsible for the set of smaller cliques within 𝐶 .

Specifically, for every clique 𝐶𝑖 ⊆ 𝐶 of size 𝑖 ∈ [2, . . . , 𝑘], there
exists a source for this clique. For every edge insertion, we first

determine the possible sets of 𝑘 vertices which can be completed
by future edge insertions to form 𝑘-cliques. Potential cliques are

determined using the above observation by assuming for each edge

insertion (𝑢, 𝑣), 𝑢 is the source of the clique. Suppose 𝐶 is one such

set. We assign the responsibility of counting the potential 𝑘-clique

𝐶 to the largest incomplete clique, 𝐶𝑖 ⊂ 𝐶 , without a source. This
can occur when 𝐶𝑖 does not yet have enough edges to determine

the source (see (1) in Fig. 15 where {𝑎, 𝑏, 𝑑, 𝑒} does not yet have
a source). The base case, the smallest possible largest incomplete

clique without a source, is an edge; once this edge is inserted, the

source of the edge counts the clique. The concept of the largest

incomplete clique without a source is fundamental to our algorithm.

Given a batch of edge insertions, if a set of edges completes the

largest incomplete clique without a source, 𝐶𝑖 , of 𝐶 , then the new

source of this clique is responsible for counting𝐶 in the clique count.

25

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

𝑎

𝑏

𝑐

𝑑

𝑒

𝑎

𝑏

𝑐

𝑑

𝑒

𝑎

𝑏

𝑐

𝑑

𝑒

(1) (2) (3)
Figure 15: Example of incomplete cliques in our counting algorithm
for counting 𝑘 = 5 cliques. In (1), 𝑐 is the source of a potential 5-
clique. {𝑎,𝑏, 𝑐,𝑑, 𝑒 } represents a potential 5-clique. We do not yet
know the source of the 4-clique consisting of {𝑎,𝑏,𝑑, 𝑒 } (the purple
edges represent potential edges), and so we store {𝑎,𝑏,𝑑, 𝑒 } in ta-
ble 𝐼4. (2) shows a set of edge insertions (indicated by the red edges)
which determines a source (𝑒) for the 4-clique. Thus, we insert
{𝑎,𝑏,𝑑 } in table 𝐼3. Suppose that this is the only clique that would be
counted when edges are inserted between all pairs in {𝑎,𝑏,𝑑 }. Thus,
we associate with this key, a count of 1 in table 𝐼3. Finally, (3) shows
two edge insertions which completes the triangle; hence, we count
the clique using the key {𝑎,𝑏,𝑑 } and increment the 𝑘-clique count
using the count associated with it (in this example, the count is 1)
in table 𝐼3.

Crucially, 𝐶 cannot be counted until 𝐶𝑖 is completed; furthermore,

for any set of 𝑘 vertices 𝐶 with a source, but is not a clique, there

exists a 𝐶𝑖 that can count 𝐶 . If the batch does not complete the

clique but a source has been found for 𝐶𝑖 , then, we determine the

new largest incomplete clique without a source, 𝐶 𝑗 (where 𝑗 < 𝑖),

that will be responsible for counting𝐶 . In Fig. 15, (2) shows a set of

insertions that determines that 𝑒 is the source of {𝑎, 𝑏, 𝑑, 𝑒}. Then,
the new largest incomplete clique without a source is {𝑎, 𝑏, 𝑑}.

This naturally leads to an algorithm for counting 𝑘-cliques. We

create 𝑘 − 2 parallel hash tables, where for each potential 𝑘-clique

𝐶 , we store the indices of the vertices comprising the largest in-

complete cliques, 𝐶𝑖 , without a source, for 𝑖 ∈ [2, 𝑘 − 1], in table 𝐼𝑖 .

The values stored in these hash tables are the numbers of 𝑘-cliques

𝐶 that would be completed if 𝐶𝑖 in table 𝐼𝑖 is completed. Storing

the indices of all vertices allows us to determine the source when

the appropriate edges have been inserted. (More details are given

in our detailed algorithm below.) Given this set of structures, we

increase the 𝑘-clique count when a clique from table 𝐼𝑖 is completed

by a batch of insertions; to increase the 𝑘-clique count, we use the

value stored for the clique. If there remains any incomplete cliques,

we use each table 𝐼 𝑗 for 𝑗 > 2 to update tables 𝐼𝑖 for 𝑖 < 𝑗 if any

incomplete cliques in 𝑗 have found sources. We give an example

illustration of this part of the algorithm in Fig. 15.

Data Structures. Wemaintain the following data structures in our

algorithm. We maintain 𝑘−2 parallel hash tables, 𝐼𝑖 for 𝑖 ∈ [2, 𝑘−1].
For each 𝐼𝑖 , the keys are ordered sets of vertices of size 𝑖 , and the

values are counts. The counts represent the number of 𝑘-cliques

that would form if all edges among the vertices in the keys exist.

To prevent over-counting, one edge update incident to the new

source of any newly completed clique stored in 𝐼𝑖 is responsible for

increasing the count by the stored value.

Algorithm 11 CliqueCountingBatchFlips(𝐴,Bins,Bdel)
Input: A set of edge flips 𝐴.

Output: Updates Bins, Bdel .
1: parfor each flipped edge (𝑢, 𝑣) ∈ 𝐴 do ⊲ The edge is flipped from

(𝑢, 𝑣) to (𝑣,𝑢) and stored as (𝑢, 𝑣) in 𝐴.
2: Bdel ← Bdel ∪ (𝑢, 𝑣) .
3: Bins ← Bins ∪ (𝑣,𝑢) .

Algorithm 12 CliqueCountingBatchInsert(Bins)
Input: A batch Bins of unique and valid insertion updates.

Output: An updated 𝑘-clique count and updated data structures.

1: Let count be the current count of the number of 𝑘-cliques in the graph.

2: Insert the edges in Bins into the graph in the orientation specified by

Bins . Mark all edges in Bins in the graph.

3: Let 𝑅 be the order of the edges in Bins .
4: parfor each edge (𝑢, 𝑣) ∈ Bins do ⊲ The edge is oriented from 𝑢 to 𝑣.

5: for 𝑖 ∈ [1, . . . , 𝑘 − 2] do
6: parfor each subset𝑇 of 𝑖 out-neighbors of 𝑢 (excluding 𝑣) do
7: Let𝑇 ′ be the ordered set of𝑇 ∪ {𝑢, 𝑣 } sorted by vertex index.

8: if 𝑢 is the source of𝑇 ′ and (𝑢, 𝑣) is the earliest in 𝑅 out of all

marked edges from 𝑢 to 𝑤 ∈ 𝑇 ′ then
9: if all edges between each pair 𝑥, 𝑦 ∈ 𝑇 ′ exists then
10: 𝑗 ← 2.

11: else
12: Find largest incomplete clique without a source,𝐶′, in𝑇 ′.
13: Let 𝑗 be the size of𝐶′.

14: 𝑇𝑠𝑢𝑏 ← 𝑇 ′.
15: for 𝑙 = 𝑖 + 1 to 𝑗 do
16: Find 𝑠 the source of𝑇𝑠𝑢𝑏 .

17: 𝑇𝑠𝑢𝑏 ← 𝑇𝑠𝑢𝑏 \ 𝑠 .
18: if |𝑇𝑠𝑢𝑏 | = 𝑘 − 1 then
19: if 𝑙 == 𝑖 + 1 and𝑇 ′ is a (𝑖 + 2)-size clique then
20: count← count + 1.
21: 𝐼𝑙 [𝑇𝑠𝑢𝑏] ← 𝐼𝑙 [𝑇𝑠𝑢𝑏] + 1.
22: else if 𝑇 ′ ∈ 𝐼𝑖+2 then
23: if 𝑙 == 𝑖 + 1 and𝑇 ′ is a (𝑖 + 2)-size clique then
24: count← count + 𝐼𝑖+2 [𝑇 ′].
25: 𝐼𝑙 [𝑇𝑠𝑢𝑏] ← 𝐼𝑙 [𝑇𝑠𝑢𝑏] + 𝐼𝑖+2 [𝑇 ′].
26: Unmark all marked edges in the graph.

10.2 BatchFlips Implementation
Our algorithm uses the framework given in Section 8. We first in-

stantiate the algorithm for BatchFlips(𝐴,Bins,Bdel), which creates

a set of edge insertions and deletions from the flipped edges in 𝐴

and appends these edges to Bins and Bdel . The pseudocode is given
in Algorithm 11. In parallel, for each edge that is flipped from (𝑢, 𝑣)
to (𝑣,𝑢) (Line 1), we add (𝑢, 𝑣) to Bdel (Line 2) and add (𝑣,𝑢) to
Bins (Line 3).

10.3 BatchInsert Implementation
We now instantiate BatchInsert for 𝑘-clique counting. The main

basis of our BatchInsert and BatchDelete subroutines is to main-

tain our parallel hash tables throughout edge insertions and dele-

tions. We first describe CliqueCountingBatchInsert, given in Al-

gorithm 12. CliqueCountingBatchDelete is symmetric and is dis-

cussed in Section 10.4.

Before we dive into the details of the implementation of Algo-

rithm 12, we first provide some intuition for how our algorithm

implements our intuitive approach in Section 10.1. The key piece

26

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

of information that our algorithm maintains after all updates is

how many sets of 𝑘 vertices, 𝐶 , can be a 𝑘-clique if a subset of

2 ≤ 𝑖 ≤ 𝑘 − 1 vertices, 𝐶𝑖 ⊂ 𝐶 , has edges between all pairs of

vertices in the set. Table 𝑖 keeps all 𝐶𝑖 sets of vertices (as keys). In

other words, the entry 𝐼𝑖 [𝐶𝑖] precisely counts the number of unique

sets of 𝑘 distinct vertices, 𝐶 , where the following two properties

hold:

(1) 𝐶𝑖 ⊂ 𝐶 .
(2) For every 𝑣 ∈ 𝐶 \𝐶𝑖 , the directed edge from 𝑣 to 𝑤 , (𝑣,𝑤),

exists in 𝐺 for every𝑤 ∈ 𝐶𝑖 .
The bulk of Algorithm 12 is concerned with updating all of the

tables 𝐼𝑖 for 𝑖 ∈ [2, . . . , 𝑘 − 1] such that the above counts hold for

every entry. Using these counts, we can find the number of new 𝑘-

cliques created by insertingBins by checking for each𝐶 , whether its
largest incomplete clique without a source is completed. We can do

this efficiently because (1) we do not need to check this individually

for every 𝐶 since our tables 𝐼𝑖 already maintain these counts; and

(2) if a largest incomplete clique without a source 𝐶𝑖 is completed,

then it must be incident to an edge update (𝑢, 𝑣) ∈ Bins , where
𝑢 is the new source of 𝐶𝑖 and 𝑣 ∈ 𝐶𝑖 . Knowing (2), we can afford

to enumerate sets of out-neighbors of 𝐶𝑖 to determine whether 𝐶𝑖
is a clique. If 𝐶𝑖 is a clique, then we count all 𝐶 that has it as its

largest incomplete clique without a source by adding 𝐼𝑖 [𝐶𝑖] to the

cumulative count. The remaining parts of Algorithm 12 ensure that

we do not over-count newly formed cliques.

We now describe Algorithm 12 in detail. For each edge inser-

tion (𝑢, 𝑣) where the edge is oriented from 𝑢 to 𝑣 (Line 4), we

iterate through all possible subsets of 𝑖 out-neighbors of 𝑢 (ex-
cluding 𝑣 , since we know 𝑣 must be included in the clique) where

𝑖 ∈ [1, . . . , 𝑘−2] (Lines 5 and 6). We iterate through 𝑖 ∈ [1, . . . , 𝑘−2]
because 𝑢 and 𝑣 necessarily need to be included in the clique. This

is to account for all possible largest incomplete cliques without a

source that are currently in our hash tables. In order to find whether

Bins completes any of these cliques, we must find these cliques by

performing this enumeration. Let 𝑇 be the subset of out-neighbors

picked. We consider all cliques of size 𝑖 +2 consisting of the vertices
in 𝑇 ′ = 𝑇 ∪ {𝑢, 𝑣}. Then, Line 7 provides a canonical order for the
vertices in 𝑇 ′ so that we can search for 𝑇 ′ in 𝐼𝑖 . Note that we need
to avoid duplicate counting. To avoid duplication, we use the order

of the edge insertions in BatchInsert (Line 3) and assign the task of

updating the clique count to the first insertion in this order, (𝑢,𝑤),
where 𝑤 ∈ 𝑇 ′. Hence, the if statement in Line 8 checks that all

of these above conditions are satisfied. The if statement in Line 9

checks whether the newly inserted edges create a new clique, and

if not (Line 11), the algorithm then finds the largest incomplete

clique without a source, 𝐶 ′, that contains a subset of the vertices
in 𝑇 ′ (Line 12). The algorithm then sets a parameter 𝑗 to be the

size of 𝐶 ′ (Line 13). If 𝑇 ′ is a completed clique, it passes the check

on Line 9 and we assign 𝑗 = 2 (Line 11). Now, we consider two

possible scenarios.

First, (𝑢, 𝑣) along with the other edge insertions in Bins could
complete a largest incomplete clique without a source. In this case,

we should increase the 𝑘-clique count if 𝑢 is also the new source

of the clique. Furthermore, Lines 19 and 23 check if the clique is

completed. If𝑢 is a new source, the clique for which it is the source is

completed, and 𝑇 ′ ∈ 𝐼𝑖+2, then we increment the clique count with

the value 𝐼𝑖+2 [𝑇 ′] (Lines 22 and 23). The value stored in 𝐼𝑖+2 [𝑇 ′] is

the number of new cliques that are created if 𝑇 ′ is completed. Note

that Line 24 is only called if |𝑇 ′ | < 𝑘 since 𝑙 ≤ 𝑘 − 1 and Line 18

handles the case when |𝑇 ′ | = 𝑘 . This is because we do not store

size-𝑘 sets of vertices in any of the tables; we do not need to store

their values because we can enumerate them directly by checking

all (𝑘 − 1)-size subsets of out-neighbors of every 𝑢 in every edge

insertion (𝑢, 𝑣). We denote the ordered set of vertices that gives

the key in table 𝐼𝑙 by 𝑇𝑠𝑢𝑏 (initially setting 𝑇𝑠𝑢𝑏 ← 𝑇 ′ (Line 14)). If
𝑇 ′ ∉ 𝐼𝑖+2 and the size of 𝑇𝑠𝑢𝑏 is 𝑘 − 1 (implying the size of 𝑇 ′ is 𝑘),
then we directly increment the clique count by 1 (Lines 18 to 20).

As before, in this case, we directly enumerate the new clique for the

edge insertion (𝑢, 𝑣) without needing to check the tables. This also

means that 𝑢 is the source of the newly created 𝑘-clique consisting

of the vertices in 𝑇 ′.
After we update the 𝑘-clique count, we must then update the

𝐼𝑖 [𝐶𝑖] counts for each 𝐶𝑖 ⊂ 𝑇 ′. We need to update these counts

because now 𝑇 ′ contains a vertex 𝑣 ∈ 𝑇 ′ \𝐶𝑖 where there exists an
edge (𝑣,𝑤) for every𝑤 ∈ 𝐶𝑖 (this vertex did not exist previously).

Thus, the count for𝐶𝑖 must be incremented by 𝐼𝑖+2 [𝑇 ′] if 𝑖+2 ≤ 𝑘−1,
and 1 if 𝑖+2 = 𝑘 . This is because, as previously discussed, intuitively,
𝐼𝑖+2 [𝑇 ′] stores the number of 𝑘-cliques that would be created if 𝑇 ′

were completed, so we must similarly maintain the number of 𝑘-

cliques created now that each 𝐶𝑖 is completed. We prove this more

concretely in Section 10.5. When 𝑇 ′ is a clique, there exists a 𝐶𝑖
for every 2 ≤ 𝑖 < |𝑇 ′ | whose entry 𝐼𝑖 [𝐶𝑖] needs to be updated. So,

Line 15 loops through each of these possible sizes and the entries

are updated by Line 21 or Line 25 depending on whether |𝑇 ′ | = 𝑘 .
The second scenario is that (𝑢, 𝑣) and the other edge insertions

in Bins do not complete a clique but create a new source among the

vertices in𝑇 ′. The means that we need to find a new largest incom-

plete clique without a source within𝑇 ′. Again, to avoid duplication,
we assign the task to the earliest edge update that is incident to 𝑢.

Similar to the case when 𝑇 ′ is a clique, the algorithm also needs

to update tables 𝐼𝑖+1 to 𝐼 𝑗 in this case (Line 15). However, we do

not update all of the tables since 𝑇 ′ still has a largest incomplete

clique without a source (Line 12). Let 𝑙 ∈ [𝑗, 𝑖 + 1], the table 𝐼 𝑗 is
updated with the number of cliques that would be counted by it

if it were the largest incomplete clique without a source. We need

to update all of these tables (instead of just table 𝐼 𝑗) in order to be

able to handle deletions. This is due to the fact that when a smaller

clique becomes incomplete due to a batch of deletions, it may cause

a larger 𝑘-clique to become incomplete. We cannot afford to find

all such affected 𝑘-cliques; thus, we must store this information in

the tables.

To compute the key for table 𝐼𝑙 , we need to remove the source of

𝑇𝑠𝑢𝑏 from𝑇𝑠𝑢𝑏 (Lines 16 and 17). Then, there are two cases we must

consider (Line 18 and Line 22). In the first case, when |𝑇 ′ | = 𝑘 , 𝑢 is

a newly created source for a new potential 𝑘-clique (Line 18); thus,

no entries in the tables have counted 𝑇 ′ yet and we increment the

count of 𝐼𝑘−1 [𝑇𝑠𝑢𝑏] by 1 (Lines 18 and 21) so that𝑇 ′ will be counted
when 𝑇𝑠𝑢𝑏 is completed as the largest incomplete clique without a

source. In the second case (Line 22), 𝑇 ′ is already an entry in table

𝐼𝑖+2; this means that it already counts the a number of 𝑘-cliques

that exist if 𝑇 ′ is a clique. In this case, we increase the value for

𝐼𝑙 [𝑇𝑠𝑢𝑏] by 𝑇𝑖+2 [𝑇 ′] since by definition of the values we store in

𝐼𝑙 [𝑇𝑠𝑢𝑏], if 𝑇𝑠𝑢𝑏 is a clique, then all the 𝑘-cliques that are counted

27

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

Algorithm 13 CliqueCountingBatchDelete(Bdel)
Input: A batch Bdel of unique and valid deletion updates.

Output: An updated 𝑘-clique count and updated data structures.

1: Let count be the current count of the number of 𝑘-cliques in the graph.

2: Insert all edges in Bdel into the graph in the orientation specified by

Bdel . Mark all edges in Bdel in the graph.

3: Let 𝑅 be the order of the edges in Bdel .
4: parfor each edge (𝑢, 𝑣) ∈ Bdel do ⊲ The edge is oriented from 𝑢 to 𝑣.

5: for 𝑖 ∈ [𝑘 − 2, . . . , 0] do
6: parfor each subset𝑇 of 𝑖 out-neighbors of 𝑢 do
7: Let𝑇 ′ be the ordered set of𝑇 ∪ {𝑢, 𝑣 } sorted by vertex index.

8: if 𝑢 is the source of𝑇 ′ and (𝑢, 𝑣) is the earliest in 𝑅 out of all

marked edges from 𝑢 to 𝑤 ∈ 𝑇 ′ then
9: if all edges between each pair 𝑥, 𝑦 ∈ 𝑇 ′ exists then
10: 𝑗 ← 2.

11: else
12: Find largest incomplete clique without a source,𝐶′, in𝑇 ′.
13: Let 𝑗 be the size of𝐶′.

14: 𝑇𝑠𝑢𝑏 ← 𝑇 ′.
15: for 𝑙 = 𝑖 + 1 to 𝑗 do
16: Find 𝑠 the source of𝑇𝑠𝑢𝑏 .

17: 𝑇𝑠𝑢𝑏 ← 𝑇𝑠𝑢𝑏 \ 𝑠 .
18: if |𝑇𝑠𝑢𝑏 | = 𝑘 − 1 then
19: if 𝑙 == 𝑖 + 1 and𝑇 ′ is a clique then
20: count← count −1.
21: 𝐼𝑙 [𝑇𝑠𝑢𝑏] ← 𝐼𝑙 [𝑇𝑠𝑢𝑏] −1.
22: else if 𝑇 ′ ∈ 𝐼𝑖+2 then
23: if 𝑙 == 𝑖 + 1 and𝑇 ′ is a clique then
24: count← count −𝐼𝑖+2 [𝑇 ′].
25: 𝐼𝑙 [𝑇𝑠𝑢𝑏] ← 𝐼𝑙 [𝑇𝑠𝑢𝑏] −𝐼𝑖+2 [𝑇 ′].
26: Delete all marked edges in the graph.

when𝑇 ′ is a clique will now be counted when 𝑇𝑠𝑢𝑏 is completed as

the largest incomplete clique without a source (Line 25).

10.4 BatchDelete Implementation
Our CliqueCountingBatchDelete algorithm is nearly identical to

our CliqueCountingBatchInsert algorithm; in places where we as-

sign clique counts in the insertion algorithm, we instead remove

clique counts in the deletion algorithm. Such changes are expected

since deletions of edges remove cliques from the count and also

remove assignments of cliques to largest incomplete cliques with-

out a source. The pseudocode is provided in Algorithm 13. The few

changes to the algorithm are highlighted in blue.

10.5 Correctness
To prove the correctness of our algorithm, we first show that Algo-

rithm 12 and Algorithm 13 accurately store the counts associated

with the largest incomplete cliques without sources. For simplicity,

we provide separate lemmas for Algorithm 12 and Algorithm 13,

although fundamentally, the proof techniques are the same for both

algorithms.

We use the following notation in Lemma 10.2 and Lemma 10.3.

Let 𝑐𝐿 be the number of sets of 𝑘 vertices in the graph which do

not form a clique, contains a source, and whose largest incomplete

cliques without sources is the set of vertices in 𝐿 after processing
the current, input batch of updates. We show that after running Al-

gorithm 12 or Algorithm 13, 𝐼 |𝐿 | [𝐿] = 𝑐𝐿 . In fact, we show an even

stronger lemma; suppose that 𝐽 is a set of vertices in the graph

where 2 ≤ |𝐽 | ≤ 𝑘 − 1. If we remove all edges between pairs of

vertices in 𝐽 , let 𝑐 𝐽 be the number of sets of 𝑘 vertices that do not

form a clique, contains a source, and whose largest incomplete

cliques without sources is the set of vertices in 𝐽 . We show that

𝐼 | 𝐽 | [𝐽] = 𝑐 𝐽 . This stronger form of the lemma is not necessary if

we only consider insertion updates; however, under deletion up-

dates, we require this stronger lemma in order to prove correctness.

It is sufficient to assume that all data structures are maintained

corrected at the beginning of Algorithm 12 and Algorithm 13 and

they remain correct at the end of the algorithms (since by induc-

tion, this would prove that the data structures are always correctly

maintained).

Lemma 10.2. After running Algorithm 12 on Bins , 𝐼 | 𝐽 | [𝐽] = 𝑐 𝐽 for
every 𝑐 𝐽 where 2 ≤ |𝐽 | ≤ 𝑘 − 1.

Proof. We prove this lemma via induction on the table index 𝑖 ,

starting with 𝑖 = 𝑘 − 1. We first prove our base case for 𝑖 = 𝑘 − 1.
In Algorithm 12, the value stored in 𝐼𝑘−1 [𝐽] is only ever incre-

mented in Line 21 since this is the only time when table 𝐼𝑘−1 can be

modified (the condition in Line 22 is never satisfied for any entries

in table 𝐼𝑘−1). By the condition given in Line 8, 𝐼𝑘−1 [𝐽] is only incre-
mented when𝑇 ′ has a source 𝑠 where 𝐽 = 𝑇 ′\{𝑠}. Furthermore, the

condition that 𝐼𝑘−1 [𝐽] is incremented by the earliest edge update

incident to 𝑠 ensures that it is incremented at most once by each𝑇 ′.
The number of sets 𝑐 𝐽 of vertices 𝑇

′
where 𝐽 ∈ 𝐼𝑘−1 is the largest

incomplete clique without a source (if all edges in 𝐽 are removed) is

precisely the number of vertices 𝑠 in the graph with edges directed

into all vertices in 𝐽 . Our argument above shows that 𝐼𝑘−1 [𝐽] is
incremented exactly once for each such vertex 𝑠; furthermore, it

is incremented only if 𝑠 is adjacent to an edge update (𝑠, 𝑥) ∈ Bins
and 𝑥 ∈ 𝐽 . This proves our base case.

We assume for our induction step that 𝐼 | 𝐽 | [𝐽] = 𝑐 𝐽 for all tables
𝐼 𝑗 for 𝑗 ∈ [𝑘 − 1, . . . , 𝑘 − 𝑙] and prove the lemma holds for table

𝐼𝑘−𝑙−1. The value 𝐼𝑘−𝑙−1 [𝐽] is increased in Line 25. Every𝑇 ′ with 𝑘
vertices increases the value of 𝐼𝑘−𝑙−1 [𝐽] by 1 if its largest incomplete

clique without a source has size ≤ |𝐽 |. This is easy to see since if all

edges from 𝐽 are removed, then 𝐽 would be the largest incomplete

clique without a source for 𝑇 ′. By our induction hypothesis, the

counts of these 𝑇 ′s are correctly stored in tables 𝐼 𝑗 for 𝑗 ∈ [𝑘 −
1, . . . , 𝑘 − 𝑙]. Line 8 ensures that only one edge update is responsible
for incrementing 𝐼𝑘−𝑙−1 [𝐽] for each𝑇 ′; furthermore, it ensures that

𝐼𝑘−𝑙−1 [𝐽] is incremented with the value stored in 𝐼 |𝐶 | [𝐶] where
𝐶 ⊆ 𝑇 ′ is the previous largest incomplete clique without a source

before the current batch Bins of insertions. 𝐽 ⊂ 𝐶 by definition,

and 𝐽 is guaranteed to be the largest incomplete clique without a

source (after the edge insertions in Bins) by our argument above. In

addition, each 𝑇 ′ is counted in at most one 𝐶 ⊂ 𝑇 ′ in each table 𝐼 𝑗
where 𝑗 ∈ [𝑘−1, . . . , 𝑘−𝑙]. This is true by our induction hypothesis

since each 𝑇 ′ has one unique 𝐶 where |𝐶 | = 𝑗 which is the largest

incomplete clique without a source (if the edges in 𝐶 are removed).

The last step we need to prove in order to prove our induction

hypothesis is that 𝐼𝑘−𝑙−1 [𝐽] is incremented by 1 for𝑇 ′ with exactly

one 𝐼 |𝐶 | [𝐶] where𝐶 ⊂ 𝑇 ′. We prove this via contradiction. Suppose

there are two subsets 𝐶 ′ ⊂ 𝐶 ⊂ 𝑇 ′ which are used to increment

𝐼𝑘−𝑙−1 [𝐽]. Let 𝑠 ′ ∈ 𝐶 ′ be the source of 𝐶 ′ and 𝑠 ∈ 𝐶 be the source

of 𝐶 . This means that in order to satisfy Line 8, 𝑠 and 𝑠 ′ must be

incident to some update (𝑠, 𝑥) ∈ Bdel (resp. (𝑠 ′, 𝑥 ′) ∈ Bdel) where
28

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

𝑥, 𝑥 ′ ∈ 𝑇 ′. This means that 𝐶 was the previous largest incomplete

clique without a source for 𝑇 ′ and so 𝐶 ′ would not contain a count

for 𝑇 ′ by our induction hypothesis. Since, we process the tables

in Line 5 starting with table 𝐼2 in increasing order of table index,

𝐼𝑘−𝑙−1 [𝐽] cannot be incremented with the count for 𝑇 ′ from 𝐶 ′,
a contradiction. Thus, 𝐼 |𝐶 | [𝐶] correctly counts all 𝑇 ′ and hence,

𝐼𝑘−𝑙−1 [𝐽] is incremented exactly once for each 𝑇 ′ and we have

proven our inductive step. □

The proof of the property for Algorithm 13 is almost identical

to Lemma 10.2 except to account for the few changes shown in

blue in Algorithm 13. For simplicity, we present only the parts of

the proof that requires more effort than replacing decrement for all

mentions of increment in the proof of Lemma 10.2.

Lemma 10.3. After running Algorithm 13 on Bdel , 𝐼 | 𝐽 | [𝐽] = 𝑐 𝐽 for
every 𝑐 𝐽 where 2 ≤ |𝐽 | ≤ 𝑘 − 1.

Proof. We prove this lemma via induction on the table index

𝑖 , starting with 𝑖 = 𝑘 − 1. The proof of our base case for 𝑖 = 𝑘 − 1
directly follows from the proof of the base case in Lemma 10.2 when

we replace instances of increment with decrement.

We assume for our induction step that 𝐼 | 𝐽 | [𝐽] = 𝑐 𝐽 for all tables
𝐼 𝑗 for 𝑗 ∈ [𝑘 − 1, . . . , 𝑘 − 𝑙] and prove the lemma holds for table

𝐼𝑘−𝑙−1. The value 𝐼𝑘−𝑙−1 [𝐽] is increased in Line 25. The proof of the

inductive step follows from the proof of the inductive step in the

proof of Lemma 10.2 by replacing instances of increase by decrease,

except for the last step which we prove below.

The last step we need to prove in order to prove our induction

hypothesis is that 𝐼𝑘−𝑙−1 [𝐽] is decremented by 1 for𝑇 ′ with exactly

one 𝐼 |𝐶 | [𝐶] where 𝐶 ⊂ 𝑇 ′. We prove this via contradiction. The

initial setup is the same as the setup in the proof of Lemma 10.2.

Suppose there are two subsets 𝐶 ′ ⊂ 𝐶 ⊂ 𝑇 ′ which are used to

decrement 𝐼𝑘−𝑙−1 [𝐽]. Let 𝑠 ′ ∈ 𝐶 ′ be the source of 𝐶 ′ and 𝑠 ∈ 𝐶 be

the source of 𝐶 . This means that in order to satisfy Line 8, 𝑠 and 𝑠 ′

must be incident to some update (𝑠, 𝑥) ∈ Bins (resp. (𝑠 ′, 𝑥 ′) ∈ Bins)
where 𝑥, 𝑥 ′ ∈ 𝑇 ′.

This means that 𝐶 is now the largest incomplete clique without

a source for𝑇 ′ after processing the deletions in Bdel . Thus, because
we process the tables in decreasing order by table index, startingwith
table 𝐼2 (Line 5), 𝐶 satisfies the conditions in Line 8 and by Line 25,

𝐶 would have deleted the count of 𝑇 ′ from 𝐼 |𝐶′ |𝐶
′
. Thus, 𝐶 ′ would

not contain a count for 𝑇 ′ and 𝐼𝑘−𝑙−1 [𝐽] cannot be incremented

with the count for 𝑇 ′ from 𝐶 ′, a contradiction. 𝐼 |𝐶 | [𝐶] correctly
counts all 𝑇 ′ by our induction hypothesis and hence, 𝐼𝑘−𝑙−1 [𝐽] is
decremented exactly once for each 𝑇 ′ and we have proven our

inductive step. □

We are now ready to prove that our algorithms correctly return

the 𝑘-clique count provided batches of updates.

Theorem 10.4. Our algorithms, Algorithm 12 and Algorithm 13,
correctly returns the number of 𝑘-cliques in a given input graph,
𝐺 = (𝑉 , 𝐸), provided batches of updates Bins and Bdel , respectively.

Proof. Provided Lemma 10.2 and Lemma 10.3, we only need

to show the following: given Bins , each 𝑘-clique 𝐶 completed by

Bins (i.e. contains at least one edge in Bins), is counted exactly once,
and by exactly one update edge incident to the source of its largest

incomplete clique without a source (prior to the insertions); given

Bins , each 𝑘-clique 𝐶 destroyed by Bdel (i.e. contains at least one
edge in Bdel), is subtracted exactly once, and by exactly one update

edge incident to the source of its largest incomplete clique without

a source (after the deletions).
We first prove the above is true for insertions. The if statement in

Line 8 ensures at most one update edge for a set of vertices 𝐶 ⊂ 𝑇 ′,
where 𝑇 ′ is a newly formed clique, increments the clique count.

Now, we prove that at most one subset of vertices increments the

clique count for 𝑇 ′. Suppose for contradiction two sets of vertices

𝐶 ′ ⊂ 𝐶 ⊂ 𝑇 ′ increments the total clique count by 1 for𝑇 ′. Then, in
order to pass the if statement in Line 8, the sources of both 𝐶 ′ and
𝐶 must be adjacent to updates in Bins that point to vertices in 𝐶 ′

and 𝐶 . Since 𝐶 ′ ⊂ 𝐶 , 𝐶 was the previous largest incomplete clique

without a source for 𝑇 ′. By Lemma 10.2, 𝐶 ′ does not contain the

count for 𝑇 ′ and thus, only 𝐶 increments the total clique count by

1 for 𝑇 ′, a contradiction.
To prove that at least one subset of vertices increments the clique

count for 𝑇 ′, suppose that 𝐶 was the previous largest incomplete

clique without a source for 𝑇 ′ but 𝐶 does not increment the clique

count. Since 𝑇 ′ is a new clique, it must be incident to at least one

edge update in Bins . Since𝐶 does not increment the clique count, it

must not have found a source (and cannot satisfy Line 9). (It must

satisfy Line 19 or Line 23 since𝑇 ′ is a clique and we iterate through
all possible 𝑖). Since 𝐶 does not have a source, by Observation 10.1,

it must be missing at least one edge. Then, 𝑇 ′ is not a clique, a

contradiction.

The proof follows symmetrically for Lemma 10.3 except that

instead of the previous largest incomplete clique without a source,

we care about the largest incomplete clique without a source after
processing Bdel . Suppose for contradiction two sets of vertices

𝐶 ′ ⊂ 𝐶 ⊂ 𝑇 ′ decrement the clique count. Then, their sources must

both be incident to edge updates. Since, 𝐶 ′ ⊂ 𝐶 , 𝐶 is processed

first by Line 5 using Lines 15, 21 and 25. This means that the count

of 𝑇 ′ would have been subtracted from 𝐼 |𝐶′ | [𝐶 ′] and it cannot

decrement the clique count by 1 for 𝑇 ′, a contradiction. Suppose
instead, that 𝐶 is the largest incomplete clique without a source

for 𝑇 ′ after processing Bdel and it does not decrement the clique

count. Either one of two scenarios can occur: either 𝐼 |𝐶 | [𝐶] no
longer has the count for 𝑇 ′ or the source 𝑠 of 𝐶 is not incident to

any updates. No 𝐶 ′′ where 𝐶 ⊂ 𝐶 ′′ can decrement 𝐼 |𝐶 | [𝐶] for 𝑇 ′
since by our assumption, the source of 𝐶 ′′ is not incident to any

updates directed into vertices in 𝐶 ′′. Thus the first scenario cannot

occur and we consider the second scenario where the source 𝑠 must

not be incident to an edge update directed into the vertices in 𝐶 .

Then, 𝑠 still has all its directed edges to the vertices in 𝐶 and so is

the source of 𝐶 . This means that 𝐶 has a source and cannot be the

largest incomplete clique without a source, a contradiction. □

Together with the proof of correctness of our framework, Sec-

tion 8, our algorithm correctly provides the 𝑘-clique count provided

a batch of updates, B.

10.6 Work and Depth Analysis
We note for the following result that 𝛼 is defined as max(𝛼𝑏 , 𝛼𝑎)
where 𝛼𝑏 is the arboricity before the current batch of updates is

processed and 𝛼𝑎 is the arboricity after the current batch of updates

is processed.

29

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

Theorem 10.5. We obtain a batch-dynamic 𝑘-clique count-
ing algorithm that takes 𝑂 (𝛼 |B| log2 𝑛) amortized work and
𝑂 (log2 𝑛 log log𝑛) depth w.h.p., using 𝑂 (𝑚𝛼𝑘−2 + 𝑛 log2 𝑛) space.

Proof. We first show the work, depth, and space of our algo-

rithms, Algorithms 11 to 13, and then use Theorem 8.1 to show the

bounds for our algorithm. Note that the increments and decrements

to the global 𝑘-clique count can be performed in 𝑂 (log𝑛) depth in

parallel by writing each update to an array, and then using parallel

reductions at the end to update the global 𝑘-clique count. We use

the same strategy for updating the hash table counts. Furthermore,

our parallel hash table primitives allow us to concurrently modify

elements in parallel in 𝑂 (log𝑛) depth w.h.p.

In Algorithm 11, the batches Bins and Bdel can be obtained in

𝑂 (|B| log2 𝑛) work and 𝑂 (log𝑛) depth. Note that by construction,

|Bins |, |Bdel | = 𝑂 (|B| + |𝐴|) = 𝑂 (|B| log2 𝑛). All edges can be

checked in parallel (Line 1) and inserted into parallel dynamic

arrays; we can also use a simple parallel filter. For the remainder of

this proof, we discuss the work and depth complexity for a batch

Bins of edge insertions in Algorithm 12; the deletion algorithm

(Algorithm 13) has the same work, depth, and space complexity.

All edge insertions are processed in parallel using a parallel loop

(Line 4). We then run a sequential for loop of depth 𝑂 (𝑘) (Line 5).
Let 𝑖 be the current index of the sequential for loop. In order to

process edge insertions (𝑢, 𝑣), where 𝑢 is a source, we iterate in

parallel over all sets𝑇 of 𝑖 + 1 out-neighbors of 𝑢 including 𝑣 . Since

there are at most𝑂 (𝛼) out-neighbors of𝑢, and since 𝑣 is necessarily
included, we have

(𝑐𝛼
𝑖

)
= 𝑂 (𝛼𝑖) possible sets 𝑇 (assuming constant

𝑘). For constant 𝑘 , we perform a constant number of parallel hash

table operations and checks for the existence of edges per set 𝑇

(Lines 9, 10 and 12 to 14). We make 𝑂 (𝑘) iterations of the for loop
in Line 15; updating the hash tables (Lines 21 and 25) require 𝑂 (𝑘)
total work per edge update. Checking for the source of 𝑇𝑠𝑢𝑏 over

all 𝑇𝑠𝑢𝑏 requires 𝑂 (𝑘2) work per edge update (Line 16). Thus, per

edge insertion (𝑢, 𝑣), for constant 𝑘 , we incur 𝑂 (𝛼𝑖) work and

𝑂 (log𝑛) depth w.h.p. Over all 𝑖 ∈ [0, . . . , 𝑘 − 2], this results in∑𝑘−2
𝑖=0 𝑂 (𝛼𝑖) = 𝑂 (𝛼𝑘−2) total work over all 𝑖 , w.h.p. The depth is

𝑂 (log∗ 𝑛) w.h.p. due to the hash table operations and updating the

table values by writing to an array and using a parallel reduction

for each entry results in 𝑂 (log𝑛) depth.
Lastly, we update the global 𝑘-clique count by writing each

update to an array and using a parallel reduction at the end, which

maintains the same work and depth bound.

Processing the entire batch of insertions in parallel, we have

𝑂 (𝛼𝑘−2 |B| log2 𝑛) amortized work and𝑂 (log𝑛) depth w.h.p. Thus,

in total, our 𝑘-clique counting algorithm takes 𝑂 (𝛼𝑘−2 |B| log2 𝑛)
amortized work and 𝑂 (log2 𝑛) depth w.h.p. by Theorem 8.1.

Our space usage is proportional to the space required to store

the contents of the parallel hash tables 𝐼𝑖 for 𝑖 ∈ [2, . . . , 𝑘 − 1].
By construction, for each edge insertion (𝑢, 𝑣), we create at most∑𝑘−2
𝑗=0 𝑂 (𝛼 𝑗−2) = 𝑂 (𝛼𝑘−2) hash table entries across all 𝐼𝑖 . This fol-

lows directly from our work analysis. Thus, in total, we use space

proportional to 𝑂 (𝑚𝛼𝑘−2). □

10.7 Comparison with Previous Work
The best-known batch-dynamic algorithm for 𝑘-clique counting for

graphs with low arboricity is given by Dhulipala et al. [29]. They

give a 𝑂 (|B|𝑚𝛼𝑘−4) expected work and 𝑂 (log𝑘−2 𝑛) depth w.h.p.

algorithm using 𝑂 (𝑚 + |B|) space. Our algorithm improves upon

the work of this previous result when𝑚 = 𝜔 (𝛼2 log2 𝑛). Note that
𝛼 ≤
√
𝑚 [22]. Furthermore, in real-world graphs, often 𝛼 ≪

√
𝑚,

since real-world graphs tend to have small arboricity.

Our algorithm achieves better depth for all 𝑘 > 4. For 4-cliques,

our depth matches the previous algorithm while for larger cliques,

we achieve a better depth. Finally, we obtain these gains with an

increase in space of 𝑂 (𝛼𝑘−2 + log2 𝑛) multiplicative factor, but for

bounded arboricity graphs, this increase in space is small.

11 COLORING ALGORITHMS
The vertex coloring problem looks to assign colors to assign col-

ors to vertices such that no two adjacent vertices are assigned the

same color. A 𝑐-vertex coloring uses at most 𝑐 colors to color all

vertices in the graph. In this section, we present two batch-dynamic

algorithms. Although our algorithms are based heavily on the se-

quential algorithms by Henzinger et al. [47], we present them as

an example of using our framework. One maintains an (explicit)
coloring over the vertices and one maintains an implicit coloring.
In the explicit setting, a valid coloring is always maintained in

the graph among all vertices. In the implicit setting, the algorithm

maintains a set of data structures and on queries of one or more

vertices, returns a coloring that is valid on the induced subgraph

of the queried vertices. Thus, in the implicit setting, both updates

and queries could take Ω(1) work to process. Below, we give our

vertex coloring algorithms.

11.1 Explicit 𝑂 (𝛼 log𝑛)-Coloring
In this section, we present a parallel batch-dynamic, randomized

𝑂 (𝛼 log𝑛)-coloring algorithm that is robust against an oblivious ad-

versary and uses𝑂 (log2 𝑛) amortizedwork, matching the amortized

running time in the sequential setting. Notably, 𝛼 is the current ar-

boricity of the graph, after processing the current batch of updates.

This algorithm is inspired by the coloring algorithm of Henzinger

et al. [47], and directly uses the PLDS.

Sequential Explicit Coloring Algorithm of Henzinger et al. [47].
The explicit vertex coloring algorithm of Henzinger et al. [47] uses

a separate palette of colors for each level in the LDS. When a vertex

moves to a new level, it chooses a color uniformly at random from

among the free colors in the palette at its level; specifically, the free

colors are colors that are not occupied by its neighbors. If an edge

insertion occurs between two vertices with the same color, then an

arbitrary endpoint chooses a new color uniformly at random from

the free colors in its palette.

Since the sequential algorithm processes one vertex at a time,

it does not have to deal with color conflicts when more than one

vertex chooses a free color from the same palette. However, in the

batch-dynamic case, this is an issue since more than one vertex

on the same level may need to choose a free color. We show that

allowing such vertices to keep choosing colors is sufficient to ensure

30

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

Algorithm 14 ExplicitColoringBatchFlips(𝐴,Bins,Bdel)
Input: A set of edge flips 𝐴.

Output: A list of vertices which changed levels.

1: 𝑆 ← ∅.
2: parfor each edge (𝑢, 𝑣) ∈ 𝐴 ∪ Bins ∪ Bdel do
3: if 𝑢 (resp. 𝑣) changed levels then
4: 𝑆 ← 𝑆 ∪ {𝑢 } (resp. {𝑣 }).
5: return 𝑆 .

Algorithm 15 ExplicitColoringBatchDelete(Bdel)
Input: A batch Bdel of unique and valid insertion updates.

Output: A valid𝑂 (𝛼 log𝑛)-coloring.
1: parfor each edge {𝑢, 𝑣 } ∈ Bdel do
2: if 𝑢 ∈ 𝑆 (resp. 𝑣 ∈ 𝑆) then
3: 𝑆 ← 𝑆 \ {𝑢 } (resp. {𝑣 }).
4: while 𝑢 (resp. 𝑣) has a neighbor with the same color do
5: Recolor 𝑢 (resp. 𝑣) with a free color from 𝑃ℓ (𝑢) (resp. 𝑃ℓ (𝑣))

picked uniformly at random.

Algorithm 16 ExplicitColoringBatchInsert(Bins)
Input: A batch Bins of unique and valid insertion updates.

Output: A valid𝑂 (𝛼 log𝑛)-coloring.
1: parfor each edge {𝑢, 𝑣 } ∈ Bins do
2: if 𝑐 (𝑢) = 𝑐 (𝑣) then
3: while 𝑢 has a neighbor with the same color do
4: Recolor 𝑢 with a free color from 𝑃ℓ (𝑢) picked uniformly at

random.

5: 𝑆 ← 𝑆 \ {𝑢 }.
6: parfor each remaining vertex 𝑣 ∈ 𝑆 do
7: while 𝑣 has a neighbor with the same color do
8: Recolor 𝑣 with a free color from 𝑃ℓ (𝑣) picked uniformly at random.

both work-efficiency and low depth, w.h.p., provided we give a large

enough palette.

Batch-Dynamic 𝑂 (𝛼 log𝑛)-Vertex Coloring. As in the previous

sections, we use our framework given in Section 8 for our color-

ing algorithms. The pseudocode for our implementations of the

methods are given in Algorithms 14 to 16. Given that Algorithm 16

and Algorithm 15 are very similar to each other, we explain all

three algorithms here.

First, Algorithm 14 determines the set of vertices which changed

levels after processing the batches of insertions and deletions. We

can find these vertices in parallel (Line 2). The vertices which

changed edges are added to the set 𝑆 (Line 4 which can be accessed

by Algorithm 16 and Algorithm 15.

Each level ℓ ∈ 𝑔𝑖 is initialized with a unique palette with 2 · (2 +
3/𝜆) (1 + 𝜀)𝑖 colors. Vertices on level ℓ will be colored only with

colors from the palette on level ℓ . 𝑃ℓ denotes the palette for level ℓ .

A free color for a vertex 𝑣 is a color from 𝑃ℓ (𝑣) that is not occupied
by any neighbors of 𝑣 .

When a vertex moves up or down one or more levels, it recolors

itself using the palette of the new level ℓ ∈ 𝑔𝑖 .12 In Algorithm 15,

because deletions cannot cause two neighboring vertices to have

the same color, we only need to recolor the vertices which changed

levels (Line 2). To pick a free color (Algorithm 16 Line 4, Algo-

rithm 15 Line 5), the vertex 𝑣 looks at the colors occupied by all

its up-neighbors and picks a color that does not collide with the

12
This step is necessary to maintain our bound in terms of the current arboricity, 𝛼 ,

for the number of colors used in the coloring.

colors of any of its up-neighbors. We only need to check the up-

neighbors because the palettes are distinct across levels. In fact, a

vertex can only conflict with the neighbors in its own level, but

since we keep all up-neighbors in a single data structure, we check

all up-neighbors.

In addition to checking the vertices which changed levels, given

a batch of insertions, Bins , in Algorithm 16, we iterate over all

insertions in parallel (Line 1) and check whether any insertions

are between two vertices with the same color (Line 2). Then, for

each edge insertion {𝑢, 𝑣} between two vertices with the same

color, we arbitrarily select one vertex, 𝑢, to recolor itself (Line 4). 𝑣

selects a free color uniformly at random from its palette (Line 4). If

𝑣 still conflicts with any of its up-neighbors (Line 3), it recomputes

its palette of free colors again by looking at the colors of its up-

neighbors and picks a color uniformly at random. This process

repeats until no vertices conflict with their up-neighbors in color.

Finally, the remaining vertices which changed levels choose colors

from their respective palettes (Lines 6 to 8).

Analysis. Since each level has a unique palette and at most (2 +
3/𝜆) (1 + 𝜀)𝑖 neighbors of a vertex 𝑣 can be on the same level as 𝑣

if ℓ (𝑣) ∈ 𝑔𝑖 , 𝑣 has at least (2 + 3/𝜆) (1 + 𝜀) free colors that it can
choose from its palette of size 2 · (2 + 3/𝜆) (1 + 𝜀)𝑖 . We first show

that this strategy only requires𝑂 (𝛼 log𝑛) colors. Part of the proofs
of Lemmas 11.1 and 11.2 follow the analysis provided in [47] but

we present it for completeness.

Lemma 11.1. At most 𝑂 (𝛼 log𝑛) colors are required in our algo-
rithm.

Proof. Each level ℓ ∈ 𝑔𝑖 has𝑂 ((1+𝜀)𝑖) colors (assuming 𝜆 is con-

stant).We showed in Lemma 5.13 that our coreness estimate is upper

bounded by (2 + 𝜀)𝑘 (𝑣). This means that the largest group index

where a vertex is on a level in the group is log(1+𝜀) ((2 + 𝜀)𝑘 (𝑣)) +1.
Hence, 𝑖 = max𝑣

(
log(1+𝜀) (𝑘 (𝑣)) + log(1+𝜀) (2 + 𝜀) + 1

)
. Since each

group contains 𝑂 (log𝑛) levels, the number of colors used is

log(1+𝜀) (max𝑣 (𝑘 (𝑣)))+log(1+𝜀) (2+𝜀)+1∑︁
𝑖=0

2(2 + 3/𝜆) (1 + 𝜀)𝑖 log𝑛

= 𝑂 (max

𝑣
(𝑘 (𝑣)) log𝑛) = 𝑂 (𝛼 log𝑛).

□

We now show that our procedure requires 𝑂 (B log
2𝑚) amor-

tized work using PLDS.

Lemma 11.2. For a batch B, under the oblivious adversary assump-
tion,13 our coloring algorithm requires𝑂 (|B| log2 𝑛) amortized work,
in expectation.14

Proof. For a vertex that moves to a different level, the work to

recolor it can be charged to the work of the PLDS update procedure.

The bulk of this proof is devoted to proving this fact.

13
An oblivious adversary cannot see our algorithms outputs (i.e., they cannot see our

coloring) before determine the set of updates.

14
We can show the work to be𝑂 (|B | log3 𝑛) amortized w.h.p. somewhat tediously

using the Chernoff bound. However, the bound requires an additional𝑂 (log𝑛) factor
of work compared to the𝑂 (|B | log2 𝑛) amortized work bound in expectation.

31

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

First, we show that the oblivious adversary cannot cause re-

colorings too often via adversarial edge insertions between two

vertices with the same color. The proof for this part is similar to

the proof of Lemma 8 in [47]. To show this, we crucially rely on the

fact that the adversary cannot see the colors of the vertices before
they pick the updates. For an edge insertion (𝑢, 𝑣) between two

vertices, 𝑢 and 𝑣 , that are on the same level ℓ ∈ 𝑔𝑖 and causes a

conflict, 𝑢 and 𝑣 have at most (2 + 3/𝜆) (1 + 𝜀)𝑖 neighbors (at the
same level, using the same palette) but 2 · (2 + 3/𝜆) (1 + 𝜀)𝑖 total
colors in its palette. The algorithm arbitrarily picks one of the two

endpoints, without loss of generality 𝑢, to recolor itself. 𝑢 has at

least (2+3/𝜆) (1+𝜀)𝑖 free colors and it picks each color uniformly at

random from these (2 + 3/𝜆) (1 + 𝜀)𝑖 free colors.15 This means that

𝑢 picks any particular color 𝑐 in its palette with probability at most

1

(2+3/𝜆) (1+𝜀)𝑖 . The same argument holds for a vertex that moved

to a new level and needs to be recolored. Since the adversary is

oblivious, they have to guess which color 𝑢 picked. Even assuming

the much stronger assumption that the adversary knows the colors

of all vertices except 𝑢 (it does not in actuality), the adversary still

only has at most a
1

(2+3/𝜆) (1+𝜀)𝑖 chance of picking 𝑐 (𝑢’s color) and

creating an edge insertion between 𝑢 and a vertex with color 𝑐 .

Thus in, expectation, the adversary must create (2 + 3/𝜆) (1 + 𝜀)𝑖
edge insertions incident to 𝑢 before they pick one that conflicts

with 𝑢’s color. The𝑂 ((2 + 3/𝜆) (1 + 𝜀)𝑖) cost of finding a color for 𝑢
can be amortized over these edge insertions.

For the vertices that were recolored due to level movements, we

can charge their cost to the cost of moving levels. In expectation, the

vertex tries at most two times (by what we showed above) before it

is successfully recolored, resulting in𝑂 (1) total cost, in expectation.

Thus, the amortized update time is equal to the number of conflicts

and vertices that moved to a different level. This takes𝑂 (|B| log2 𝑛)
work in expectation since there are 𝑂 (|B| log2 𝑛) edge flips and

updates and is the same as the PLDS update time.

In addition to the cost of recoloring due to adversarial insertions,

recall that our batch-dynamic algorithm also requires multiple

vertices to keep picking colors uniformly at random until they pick

unique colors not occupied by their neighbors (Algorithm 15-Line 5,

Algorithm 16-Line 4). We need to show that this procedure does

not add too much additional cost to the cost of recoloring due to

adversarial updates. In fact, next we show that additionally picking

random colors until all vertices pick a non-conflicting color does

not add additional work, asymptotically, w.h.p. It is easy to show

that this running time also holds with high probability. Given a

set 𝑋 of vertices in level ℓ ∈ 𝑔𝑖 that randomly picked the same

color or that moved to a different level, in expectation, after a

round of recoloring, the number of vertices in 𝑋 that again result

in conflicts is
|𝑋 |

(2+3/𝜆) (1+𝜀)𝑖 ≤
|𝑋 |
(2+3/𝜆) ≤

|𝑋 |
2
. Since each vertex is

independently picking a color, we can show via the Chernoff bound

that with probability at most exp(𝜀2 |𝑋 |/6), more than (1 + 𝜀) · |𝑋 |
2

vertices need to pick colors again. Thus, when |𝑋 | ≥ 𝑐 log𝑛, for
large enough constant 𝑐 > 0, with high probability, the number of

vertices that need to re-pick their colors decreases by a factor of

2. Then, each time we recolor, the number of vertices that obtain

their final color decreases by a constant fraction w.h.p., and we can

15𝑢 may pick a random color multiple times, and we consider the palette that is last

used by 𝑢 to pick its final color.

charge the cost of all subsequent recolorings to the first time we

recolor the vertices.

When |𝑋 | < 𝑐 log𝑛, the probability that any 𝑐 log𝑛 consecu-

tive trials results in a vertex 𝑣 ∈ 𝑋 picking the same color is

(1
2
)𝑐 log𝑛 ≤ 1

𝑛𝑐 . By the union bound over the |B| updates, the
total probability that any two vertices conflict is

|B |
𝑛𝑐 . We can pick

𝑐 ≥ 3 to obtain with high probability that each insertion results

in 𝑂 (log𝑛) conflicts. Thus, the amortized update time is 𝑂 (log𝑛),
w.h.p., since each edge gets charged 𝑂 (log𝑛) for up to two end-

points. The total amortized work is 𝑂 (|B| log2 𝑛) which can be

charged to the time necessary to perform the orientation algorithm.

By Theorem 8.1, we obtain that the total work of our algorithm is

𝑂 (|B| log2 𝑛), in expectation, 𝑂 (|B| log3 𝑛) w.h.p. □

Lemma 11.3. Our coloring algorithm requires 𝑂 (log2 𝑛 log log𝑛)
depth per batch, with high probability.

Proof. All vertices that need to change colors pick their new

colors independently in parallel, and picking a new color takes

𝑂 (1) depth. All vertices, first, in parallel, record the colors of their

up-neighbors. Then, vertices, in parallel, pick colors not occupied

by their up-neighbors.

In the remainder of the proof, we prove that we need 𝑂 (log𝑛)
depth w.h.p. to resolve the conflicts resulting from multiple neigh-

boring vertices picking the same color. The probability that a vertex

conflicts with a neighbor is at most
1

(2+3/𝜆) (1+𝜀)𝑖 ≤
1

(2+3/𝜆) ≤
1

2
.

The probability that we still have conflicts after 𝑐 log𝑛 tries, for

some constant 𝑐 > 0, is then at most (1
2
)𝑐 log𝑛 ≤ 1

𝑛𝑐 . Picking 𝑐 ≥ 2

and applying a union bound over all vertices gives a polynomially

small probability that conflicts occur after 𝑐 log𝑛 tries. Thus, we

need to randomly choose colors 𝑂 (log𝑛) times, w.h.p..

Since the depth of picking a color for each vertex is𝑂 (1), the total
depth for picking colors is 𝑂 (log𝑛) w.h.p. This depth is additive

to the depth of our orientation algorithm because we first use our

PLDS to move vertices to their final levels and then recolor the

vertices. By Theorem 8.1, the overall depth is 𝑂 (log2 𝑛 log log𝑛)
w.h.p.. □

Theorem 11.4. Our batch-dynamic 𝑂 (𝛼 log𝑛)-vertex coloring al-
gorithm requires 𝑂 (|B| log2 𝑛) amortized work, 𝑂 (log2 𝑛 log log𝑛)
depth, w.h.p., using 𝑂 (𝑚 + 𝑛 log2 𝑛 + 𝛼 log𝑛) space.

Proof. Our work and depth bounds hold by Lemma 11.2

and Lemma 11.3, respectively. Finally, our coloring algorithm uses

an additional space equal to the total number of colors used by the

algorithm to maintain the palettes. Thus, the algorithm requires

an additional 𝑂 (𝛼 log𝑛) space; by Theorem 8.1, this results in

𝑂 (𝑚 + 𝑛 log2 𝑛 + 𝛼 log𝑛) space. □

11.2 Implicit 𝑂 (2𝛼)-Coloring
In this section, we present an implicit 𝑂 (2𝛼)-coloring algorithm,

where 𝛼 is the current arboricity of the graph, after processing the

most recent batch of updates. As defined previously, an implicit
coloring is maintained by a set of data structures whereby on queries
of one or more vertices, the data structures return a valid coloring

in the induced subgraph of the queried vertices.

To do this, we maintain a batch-dynamic version of the arboric-

ity forest decomposition structure of Henzinger et al. [47]. We

32

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

construct these forests using the batch-dynamic Euler tour data

structure of Tseng et al. [85]. As in previous sections, we use the

framework provided in Section 8. The sequential, dynamic algo-

rithm of Henzinger et al. [47] turns out to be somewhat tricky to

parallelize. Specifically, Henzinger et al. [47] prevents cycles in the

forests they create by sequentially inserting edges into one of two

possible trees. In the batch-dynamic setting, since we are inserting

multiple edges simultaneously, we need to run a cycle-breaking

algorithm to split the cycles among the trees; such an algorithm is

somewhat cumbersome to implement. Instead, we present a simpler

version of their algorithm below that is much easier to parallelize,

provided an acyclic low out-degree orientation; our simpler algo-

rithm provides the same guarantees.

Our Simplified Dynamic Arboricity Forest Decomposition Structure.
We first provide a simplified version of the arboricity forest decom-

position structure of [47] here. We are able to simplify the structure

since we assume an acyclic orientation algorithm, while the arboric-

ity decomposition structure in [47] can use any orientation algo-

rithm, not necessarily only acyclic ones. We also present some new

proofs that our simplified structure still solves the 𝑂 (2𝛼)-coloring
problem in the same work bounds as the structure presented in [47].

Then, we build on this simplified structure to design our parallel

batch-dynamic algorithm.

Provided an 𝜎 out-degree orientation, the key idea behind the

arboricity forest decomposition structure of [47] is to create 2𝜎

undirected forests. However, we show here that 𝜎 undirected forests

is sufficient for this problem if the out-degree orientation is also

acyclic. Below, we present a simpler version of the algorithm using

only 𝜎 undirected forests via a simple lemma (Lemma 11.5) we

prove.

They use two different types of data structures to maintain the

forests: the top tree data structures of [2] and an array for each node

maintaining which trees contain an outgoing edge of that node. We

denote the array for node 𝑣 by 𝐴𝑣 . Furthermore, we denote the 𝑖th

forest by 𝐹𝑖 . The forests maintain the following invariants:

(1) There exists a unique root for each tree in each forest.

(2) For each 𝑙 ∈ {0, . . . , 𝜎 − 1} and each 𝑣 ∈ 𝑉 , no forest 𝐹𝑙
contains two or more outgoing edges of 𝑣 .

(3) No forest where 𝑗 ≥ |𝑁 + (𝑣) | contains an outgoing edge of 𝑣 .

(4) 𝐴𝑣 [𝑖] = 1 (for 𝑖 ∈ [𝜎]) if and only if 𝐹𝑖 contains an outgoing

edge of 𝑣 . Otherwise, 𝐴𝑣 [𝑖] = 0.

The forests support the following two operations:

(1) Insert oriented edge:A new directed edge (𝑢, 𝑣) is inserted
into the structure in 𝑂 (log𝑛) time. Let 𝑑 (𝑢) = |𝑁 + (𝑢) |
(where 𝑁 + (𝑢) is the out-degree of 𝑢 before the new edge

insertion). This is done by inserting the edge into 𝐹𝑑 (𝑣) and
setting 𝐴𝑢 [𝑖] = 1. The top tree allows this operation to be

done in 𝑂 (log𝑛) time. The out-degree of 𝑣 is now 𝑑 (𝑣) + 1
and all invariants remain satisfied.

(2) Delete oriented edge:A directed edge (𝑢, 𝑣) is deleted from
the structure in𝑂 (log𝑛) time.We first find the location of the

edge in the forests. This can be done by maintaining pointers

from edges to their respective locations in the forests. Let 𝐹𝑖
be the forest that contains (𝑢, 𝑣). Delete (𝑢, 𝑣) from 𝐹𝑖 . The

top tree allows this operation to be done in 𝑂 (log𝑛) time.

Then, we find the tree with the largest index that contains

an outgoing edge of 𝑢. (By our invariants, this should be

𝐹𝑑 (𝑢)−1 where 𝑑 (𝑢) is the out-degree of 𝑢 before the edge

deletion.) Let 𝑒 be the outgoing edge of 𝑢 in 𝐹𝑑 (𝑢)−1. Then,
delete 𝑒 from 𝐹𝑑 (𝑢)−1 and insert 𝑒 into 𝐹𝑖 . The top tree allows
us to perform both operations in 𝑂 (log𝑛) time.

Any edge flips from (𝑢, 𝑣) to (𝑣,𝑢) in our orientation algorithm

can be handled by first performing an edge deletion of (𝑢, 𝑣) fol-
lowed by an edge insertion of (𝑣,𝑢) using the algorithms above.

We now prove the correctness of the simplified structure for

acyclic orientation algorithms.

Lemma 11.5. Let 𝜎 be the maximum out-degree of our acyclic ori-
entation algorithm. Then, 𝐹0, . . . , 𝐹𝜎−1 provides an arboricity decom-
position of the graph.

Proof. This proof relies on proving two parts of the simplified

algorithm. First, we need to show that the union of all forests in

𝐹0, . . . , 𝐹𝜎−1 gives all of the edges in the input graph. To show this

first property, we need only show that no outgoing edge of any

vertex 𝑣 ∈ 𝑉 is in any forest 𝐹 𝑗 where 𝑗 ≥ 𝑑 (𝑣) and 𝑑 (𝑣) is the
out-degree of vertex 𝑣 . This directly follows from the invariants.

Furthermore, each inserted edge is inserted into at least one of the

forests.

Then, we need to show that no cycles exists in any of the forests

(i.e., each 𝐹𝑖 is properly a forest). To do this, it is sufficient to show

that no cycles exist in any 𝐹𝑖 . We prove this via contradiction.

Suppose that a cycle exists in 𝐹𝑖 . By our invariant, this means that

no vertex 𝑣 incident to two edges, (𝑣,𝑤) and (𝑣,𝑢), in the cycle has

both (𝑣,𝑤) and (𝑣,𝑢) oriented outwards from 𝑣 . Otherwise, this

would violate the invariant that at most one outgoing edge of 𝑣 is in

any forest. Thus, for every vertex in the cycle, one of the incident

edges must be directed out and one directed in, in the orientation

produced by the orientation algorithm. This is a contradiction to

the acyclicity of the orientation algorithm. □

Batch-Dynamic Algorithm. We implement the batch-dynamic

algorithm in the following way. We implement the trees using the

batch-dynamic Euler tour trees of Tseng et al. [85]. These trees allow

inserts/deletes and distance-to-root operations in𝑂 (|B| log𝑛) work
and 𝑂 (log𝑛) depth w.h.p.

16
Furthermore, we maintain a parallel

hash table, 𝑇 , which contains the edges as keys and pointers to the

tree containing each edge as the values.

In this algorithm, let our batch of edges to insert into our forests

be the set of edge insertions, deletions, and edge flips. To implement

BatchFlips, we create two sets of updates per flipped edge: an edge

deletion and an edge insertion. Then, following the framework

in Section 8, we first process the deletions and then the insertions.

For each oriented deleted edge, we check, in parallel, in the hash

table 𝑇 for the location of each edge (which tree each edge is in).

Then, we perform, in parallel, deletions of the edges in the respective

parallel Euler tour trees. All of this can be done in 𝑂 (|B| log3 𝑛)
amortized work and 𝑂 (log𝑛) depth w.h.p. The work results from

performing Euler tree operations on the set of edges in Bins and
Bdel . There are 𝑂 (|B| log2 𝑛) updates in these batches and each

Euler tree operation requires 𝑂 (log𝑛) work; thus, our total work
is 𝑂 (|B| log3 𝑛). We can perform all updates to our Euler trees in

16
The high probability bound directly follows from the high probability bounds of

parallel skip-lists.

33

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

parallel, hence, the total depth is the depth of performing these

updates, 𝑂 (log𝑛) w.h.p.
For each vertex, we maintain the number of edges deleted from

its trees as well as the trees from which edges are deleted. This

can be done in 𝑂 (|B| log2 𝑛) amortized work and 𝑂 (log𝑛) depth
w.h.p. Finally, we find, in parallel, the 𝑋𝑖 outgoing edges of 𝑣𝑖 in

the last 𝑋𝑖 trees that contain an outgoing edge of 𝑣𝑖 , where 𝑋𝑖 is

the number of edges that were deleted from 𝑣𝑖 ’s trees. In parallel,

we arbitrarily pick a unique slot for each edge and assign it to to its

respective empty slots in the trees. This last step can also be done

in 𝑂 (|B| log3 𝑛) amortized work and 𝑂 (log𝑛) depth w.h.p.

For the insertion edges, we first sort the edges by their outgoing

endpoint. Then, we determine how many edges we are inserting in

each 𝑣𝑖 ’s trees by doing a parallel count. Then, finally, in parallel,

we insert each 𝑣𝑖 ’s edge into the next 𝑋𝑖 empty trees where 𝑋𝑖 is

the number of edge inserts that are oriented out from 𝑣𝑖 . All of this

requires 𝑂 (|B| log3 𝑛) amortized work and 𝑂 (log𝑛) depth.
The correctness of our procedure follows from Lemma 11.5. Al-

together, we obtain the following theorem of our batch-dynamic

algorithm implicit 𝑂 (2𝛼)-coloring, using Theorem 8.1.

Theorem 11.6. For a batch B, our batch-dynamic implicit color-
ing algorithm provides a 𝑂 (2𝛼)-coloring in 𝑂 (|B| log3 𝑛) amortized
work and 𝑂 (log2 𝑛) depth w.h.p. for updates, and 𝑂 (𝑄𝛼 log𝑛) work
and𝑂 (log𝑛) depth, w.h.p., for𝑄 queries, using𝑂 (𝑛 log2 𝑛+𝑚) space.

Proof. The work and depth follow from our above arguments

and Theorem 8.1. For queries, we parallelize the algorithm of [47].

For a set of 𝑄 vertices, for each vertex, we find the set of forests

[1, . . . , 𝑑 (𝑣)] where 𝑑 (𝑣) = 𝑂 (𝛼), containing each of the outgoing

edges of 𝑣 . As in [47], we let 𝑝𝑣 (𝑖) be the parity of the distance for

the 𝑖-th Euler tree. Then, in parallel, we determine the distance of 𝑣

from the root of the Euler tree in each of these forests. If the distance

is odd, we assign 𝑝𝑣 (𝑖) = 1 and 𝑝𝑣 (𝑖) = 0 otherwise. The color given

to 𝑣 is then (𝑝𝑣 (1), . . . , 𝑝𝑣 (𝑑 (𝑣))) ∈ {0, 1}𝑂 (𝛼) . Querying the Euler

trees require 𝑂 (log𝑛) work per tree query. We have 𝑂 (𝑄𝛼) total
queries, resulting in 𝑂 (𝑄𝛼 log𝑛) total work. Then, processing all
queries simultaneously requires 𝑂 (log𝑛) depth w.h.p.

Finally, the extra space required is the space to store the extra

Euler trees and the hash table 𝑇 . 𝑇 uses 𝑂 (𝑚) space. All of the
Euler trees store 𝑂 (𝑚) edges; thus, the total additional space used
is 𝑂 (𝑚). □

12 CONCLUSION
We design the first shared-memory, multi-core parallel batch-

dynamic level data structure that returns a (2 + 𝜀)-approximation

for the 𝑘-core decomposition problem, drawing inspiration

from the sequential level data structures of Bhattacharya et

al. [13] and Henzinger et al. [47] which were used for dynamic

densest subgraphs and dynamic low out-degree orientation,

respectively. Our algorithm achieves 𝑂 (log2𝑚) amortized work

and has 𝑂 (log2𝑚 log log𝑚) depth. We also present a proof of

the (2 + 𝜀)-factor of approximation for our data structure, a new

proof that is also applicable (with a simple change) to the original

sequential level data structures of Bhattacharya et al. [13] and

Henzinger et al. [47].

In addition to our batch-dynamic 𝑘-core decomposition results,

we also give a batch-dynamic algorithm for maintaining an 𝑂 (𝛼)
out-degree orientation, where 𝛼 is the current arboricity of the

graph. We demonstrate the usefulness of our low out-degree ori-

entation algorithm by presenting a new framework to formally

study batch-dynamic algorithms in bounded-arboricity graphs. Our

framework obtains new provably-efficient parallel batch-dynamic

algorithms for maximal matching, clique counting, and vertex col-

oring.

We perform extensive experimentation of our parallel batch-

dynamic 𝑘-core decomposition algorithm on large real-world data

sets that show that our PLDS is not only theoretically but also prac-

tically efficient. Our experiments tested error vs. runtime, batch

size vs. runtime, number of hyper-threads vs. runtime, and space vs.

error. We also tested the sensitivity of our implementation to the

various tunable parameters of our algorithm. Finally, we tested our

algorithm against six other benchmarks on 11 real-world graphs, in-

cluding graphs orders of magnitude larger than previously studied

by other dynamic algorithms. We see an improvement in perfor-

mance against all other benchmarks in our experiments. Specifically,

we achieve speedups of up to 114.52× against the best parallel imple-

mentation, up to 544.22× against the best approximate sequential

algorithm, and up to 723.72× against the best exact sequential algo-

rithm. Such speed-ups exceed the expected speed-up gained from

parallelism alone (since we only use 60 hyper-threads) and are also

due to the theoretical improvements of our algorithm as well as

our choice of heuristic optimizations.

An interesting open problem is to design a parallel batch-

dynamic algorithm that is space-efficient (uses linear space),

without incurring additional costs in depth.

ACKNOWLEDGEMENTS
This research is supported by NSF GRFP #1122374, DOE Early

Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,

Google Faculty Research Award, Google Research Scholar Award,

FinTech@CSAIL Initiative, DARPA SDHAward #HR0011-18-3-0007,

and Applications Driving Architectures (ADA) Research Center, a

JUMP Center co-sponsored by SRC and DARPA.

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-Based Community Search: A Truss-

Equivalence Based Indexing Approach. Proc. VLDB Endow. 10, 11 (Aug. 2017),
1298–1309.

[2] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2005.

Maintaining Information in Fully Dynamic Trees with Top Trees. ACM Trans.
Algorithms 1, 2 (oct 2005), 243–264.

[3] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large Scale Networks Fingerprinting and Visualization Using the

𝐾-Core Decomposition. In International Conference on Neural Information Pro-
cessing Systems.

[4] Altaf Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and Shigehiko Kanaya.

2006. Development and implementation of an algorithm for detection of protein

complexes in large interaction networks. BMC bioinformatics 7 (02 2006), 207.
[5] Richard Anderson and Ernst W. Mayr. 1984. A P-complete Problem and Approxi-

mations to It. Technical Report.
[6] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. 2016.

Distributed 𝐾 -Core Decomposition and Maintenance in Large Dynamic Graphs.

InACM International Conference on Distributed and Event-Based Systems. 161–168.
[7] Gary D. Bader and Christopher WV Hogue. 2003. An automated method for

finding molecular complexes in large protein interaction networks. BMC Bioin-
formatics 4, 1 (Jan. 2003), 2.

34

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems

[8] Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen,

Marcel Roeloffzen, and Sander Verdonschot. 2019. Dynamic Graph Coloring.

Algorithmica 81, 4 (2019), 1319–1341.
[9] Ioana O. Bercea and Guy Even. 2021. Upper tail analysis of bucket sort and

random tries. Theor. Comput. Sci. 895 (2021), 55–67.
[10] Edvin Berglin and Gerth Stølting Brodal. 2020. A Simple Greedy Algorithm for

Dynamic Graph Orientation. Algorithmica 82, 2 (feb 2020), 245–259.
[11] Aaron Bernstein and Cliff Stein. 2015. Fully Dynamic Matching in Bipartite

Graphs. In International Colloquium on Automata, Languages, and Programming,
Vol. 9134. 167–179.

[12] Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with

Small Approximation Ratios. In ACM-SIAM Symposium on Discrete Algorithms.
692–711.

[13] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos

Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense

Subgraphs on One-Pass Dynamic Streams. In ACM Symposium on Theory of
Computing (STOC). 173–182.

[14] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, andNodari Sitchinava.

2013. Efficient Parallel and External Matching. In International Conference on
Parallel Processing (Euro-Par). 659–670.

[15] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief Announce-

ment: ParlayLib – A Toolkit for Parallel Algorithms on Shared-MemoryMulticore

Machines. In ACM Symp. on Parallel Alg. (SPAA).
[16] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy sequen-

tial maximal independent set and matching are parallel on average. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 308–317.

[17] Guy E. Blelloch and Bruce M. Maggs. 1996. Parallel Algorithms. Commun. ACM
39 (1996), 85–97.

[18] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.

2014. Core Decomposition of Uncertain Graphs. In ACM SIGKDD. 1316–1325.
[19] Gerth Stølting Brodal and Rolf Fagerberg. 1999. Dynamic Representations of

Sparse Graphs. In Proc. 6th International Workshop on Algorithms and Data Struc-
tures (WADS). 342–351.

[20] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007.

A model of Internet topology using k-shell decomposition. Proceedings of the
National Academy of Sciences 104, 27 (2007), 11150–11154.

[21] T.-H. Hubert Chan, Mauro Sozio, and Bintao Sun. 2021. Distributed approximate

k-core decomposition and min-max edge orientation: Breaking the diameter

barrier. J. Parallel Distributed Comput. 147 (2021), 87–99.
[22] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing

Algorithms. SIAM J. Comput. 14, 1 (Feb. 1985), 210–223.
[23] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia,

and Chenyi Zhang. 2020. Finding the Best 𝑘 in Core Decomposition: A Time and

Space Optimal Solution. In IEEE ICDE. 685–696.
[24] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cattuto,

Francesco Gullo, and Alain Barrat. 2020. Relevance of temporal cores for epidemic

spread in temporal networks. Scientific Reports 10, 1 (July 2020).

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3. ed.). MIT Press.

[26] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 2008. Implemen-
tation Challenge for Shortest Paths. 395–398.

[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Frame-

work for Parallel Graph Algorithms Using Work-efficient Bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.

[28] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient

Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[29] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. 2021. Parallel

Batch-Dynamic k-Clique Counting. In 2nd Symposium on Algorithmic Principles
of Computer Systems (APOCS). 129–143.

[30] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and

Classification of Dense Implicit Communities in the Web Graph. ACM Trans.
Web 3, 2, Article 7 (April 2009), 36 pages.

[31] Zdenek Dvorák and Vojtech Tuma. 2013. A Dynamic Data Structure for Counting

Subgraphs in Sparse Graphs. In International Workshop on Algorithms and Data
Structures (WADS). 304–315.

[32] Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and KuiWu. 2019. Efficient

Computation of Probabilistic Core Decomposition at Web-Scale. In International
Conference on Extending Database Technology. 325–336.

[33] Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and

Streaming Algorithms for 𝐾 -Core Decomposition. In International Conference on
Machine Learning. 1397–1406.

[34] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.

Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 10, 6
(Feb. 2017), 709–720.

[35] Manuela Fischer. 2020. Improved deterministic distributed matching via rounding.

Distributed Comput. 33, 3-4 (2020), 279–291.

[36] Manuela Fischer and Andreas Noever. 2018. Tight Analysis of Parallel Random-

ized Greedy MIS. In ACM-SIAM Symposium on Discrete Algorithms. 2152–2160.
[37] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. 2003. Fully

dynamic shortest paths in digraphs with arbitrary arc weights. J. Algorithms 49,
1 (2003), 86–113.

[38] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-Memory Scalable

k-Core Maintenance on Dynamic Graphs and Hypergraphs. In IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 998–1007.

[39] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.

2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and

Applications. ACM Trans. Knowl. Discov. Data 14, 1, Article 11 (Jan. 2020).
[40] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. 2019. Improved Parallel

Algorithms for Density-Based Network Clustering. In International Conference
on Machine Learning. 2201–2210.

[41] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis

Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph Clustering Frame-

work. In AAAI. 44–50.
[42] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant time

parallel algorithms. In IEEE FOCS. 698–710.
[43] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel

Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24–34.

[44] Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. 2021. Fully Dynamic

Four-Vertex Subgraph Counting. CoRR abs/2106.15524 (2021).

[45] Meng He, Ganggui Tang, and Norbert Zeh. 2014. Orienting Dynamic Graphs,

with Applications to Maximal Matchings and Adjacency Queries. In International
Symposium on Algorithms and Computation. 128–140.

[46] JohnHealy, Jeannette Janssen, EvangelosMilios, andWilliamAiello. 2007. Charac-

terization of Graphs Using Degree Cores. In International Workshop on Algorithms
and Models for the Web-Graph (WAW). 137–148.

[47] Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Explicit

and Implicit Dynamic Coloring of Graphs with Bounded Arboricity. CoRR
abs/2002.10142 (2020).

[48] Q. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen. 2020. Faster

Parallel Core Maintenance Algorithms in Dynamic Graphs. IEEE Transactions on
Parallel and Distributed Systems 31, 6 (2020), 1287–1300.

[49] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-Truss Community in Large andDynamic Graphs. InACMSIGMOD International
Conference on Management of Data. 1311–1322.

[50] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[51] H. Jin, N. Wang, D. Yu, Q. Hua, X. Shi, and X. Xie. 2018. Core Maintenance in

Dynamic Graphs: A Parallel Approach Based on Matching. IEEE Transactions on
Parallel and Distributed Systems 29, 11 (2018), 2416–2428.

[52] H. Kabir and K. Madduri. 2017. Parallel 𝑘-Core Decomposition on Multicore

Platforms. In IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 1482–1491.

[53] Haim Kaplan and Shay Solomon. 2018. Dynamic Representations of Sparse

Distributed Networks: A Locality-Sensitive Approach. In ACM Symposium on
Parallelism in Algorithms and Architectures. 33–42.

[54] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.

K-Core Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9,
1 (Sept. 2015), 13–23.

[55] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H. Eugene Stanley, and Hernán A. Makse. 2010. Identification of influential

spreaders in complex networks. Nature Physics 6, 11 (Nov. 2010), 888–893.
[56] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-

enting Fully Dynamic Graphs with Worst-Case Time Bounds. In International
Colloquium on Automata, Languages and Programming (ICALP). 532–543.

[57] Lukasz Kowalik. 2007. Adjacency queries in dynamic sparse graphs. Inf. Process.
Lett. 102, 5 (2007), 191–195.

[58] Lukasz Kowalik. 2010. Fast 3-coloring Triangle-Free Planar Graphs. Algorithmica
58, 3 (2010), 770–789.

[59] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a Social Network or a News Media?. In International Conference on World
Wide Web. 591–600.

[60] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of

Algorithms for Dense Subgraph Discovery. In Managing and Mining Graph Data.
303–336.

[61] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[62] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

2019. Efficient Progressive Minimum K-Core Search. Proc. VLDB Endow. 13, 3
(Nov. 2019), 362–375.

[63] R. Li, J. Yu, and R. Mao. 2014. Efficient Core Maintenance in Large Dynamic

Graphs. IEEE Transactions on Knowledge & Data Engineering 26, 10 (oct 2014),

2453–2465.

[64] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. IEEE Transactions on Knowledge and Data Engineering

35

http://snap.stanford.edu/data

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

26, 10 (2014), 2453–2465.

[65] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian. 2021. Hier-

archical Core Maintenance on Large Dynamic Graphs. Proc. VLDB Endow. 14, 5
(2021), 757–770.

[66] Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. 2015. Core-like groups result

in invalidation of identifying super-spreader by k-shell decomposition. Scientific
Reports 5 (May 2015), 9602–9602.

[67] Shangqi Lu and Yufei Tao. 2021. Towards Optimal Dynamic Indexes for Approxi-

mate (and Exact) Triangle Counting. In 24th International Conference on Database
Theory (ICDT 2021), Vol. 186. 6:1–6:23.

[68] Qi Luo, Dongxiao Yu, Zhipeng Cai, Xuemin Lin, and Xiuzhen Cheng. 2021.

Hypercore Maintenance in Dynamic Hypergraphs. In IEEE ICDE. 2051–2056.
[69] Qi Luo, Dongxiao Yu, Feng Li, Zhenhao Dou, Zhipeng Cai, Jiguo Yu, and Xi-

uzhen Cheng. 2019. Distributed Core Decomposition in Probabilistic Graphs. In

Computational Data and Social Networks. 16–32.
[70] Qi Luo, Dongxiao Yu, Hao Sheng, Jiguo Yu, and Xiuzhen Cheng. 2021. Distributed

Algorithm for Truss Maintenance in Dynamic Graphs. In Parallel and Distributed
Computing, Applications and Technologies. 104–115.

[71] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. 2016.

Locating influential nodes in complex networks. Scientific Reports 6, 1 (2016).
[72] DavidW. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and Clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (July 1983), 417–427.

[73] Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj Singh. 2020. A Game The-

oretic Approach For K-Core Minimization. In 19th International Conference on
Autonomous Agents and MultiAgent Systems. 1922–1924.

[74] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in Large-Scale

Networks via Sampling. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 815–824.

[75] Ofer Neiman and Shay Solomon. 2015. Simple deterministic algorithms for fully

dynamic maximal matching. ACM Trans. on Alg. (TALG) 12, 1 (2015), 1–15.
[76] Merav Parter, David Peleg, and Shay Solomon. 2016. Local-on-Average Dis-

tributed Tasks. In ACM-SIAM Symposium on Discrete Algorithms. 220–239.
[77] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository

with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:

//networkrepository.com

[78] Ahmet Erdem Sariyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2016. Incremental 𝑘-core decomposition: algorithms and

evaluation. The VLDB Journal 25, 3 (2016), 425–447.
[79] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2013. Streaming Algorithms for K-Core Decomposition. Proc.
VLDB Endow. 6, 6 (April 2013), 433–444.

[80] Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic Densest

Subgraph. In ACM SIGACT Symposium on Theory of Computing. 181–193.
[81] Julian Shun and Guy E Blelloch. 2014. Phase-concurrent hash tables for determin-

ism. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
96–107.

[82] Shay Solomon and Nicole Wein. 2020. Improved Dynamic Graph Coloring. ACM
Trans. on Alg. (TALG) 16, 3, Article 41 (June 2020).

[83] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Approxi-

mate 𝐾 -Core Decomposition in Hypergraphs. ACM Trans. Knowl. Discov. Data
14, 4, Article 39 (May 2020).

[84] Bintao Sun, T-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Ap-
proximate 𝑘-Core Decomposition in Hypergraphs. https://github.com/btsun/

DynHyperCoreDecomp

[85] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019. Batch-Parallel Euler

Tour Trees. InWorkshop on Algorithm Engineering and Experiments (ALENEX).
92–106.

[86] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018. Efficient

Computing of Radius-Bounded k-Cores. In IEEE ICDE. 233–244.
[87] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua.

2017. Parallel Algorithm for Core Maintenance in Dynamic Graphs. In IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). 2366–2371.

[88] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. Yu. 2019. I/O Efficient Core Graph

Decomposition: Application to Degeneracy Ordering. IEEE Transactions on
Knowledge & Data Engineering 31, 01 (Jan 2019), 75–90.

[89] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network com-

munities based on ground-truth. Knowledge and Information Systems 42, 1 (Jan.
2015), 181–213.

[90] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When En-

gagement Meets Similarity: Efficient (k,r)-Core Computation on Social Networks.

Proc. VLDB Endow. 10, 10 (June 2017), 998–1009.
[91] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the k-

core decomposition to analyze the static structure of large-scale software systems.

J. Supercomput. 53, 2 (2010), 352–369.
[92] Y. Zhang, J. Yu, Y. Zhang, and L. Qin. 2017. A Fast Order-Based Approach for

Core Maintenance. In IEEE ICDE. 337–348.

[93] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss

Maintenance in Evolving Graphs. In ACM SIGMOD International Conference on
Management of Data. 1024–1041.

[94] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. 2017. A Fast Order-Based Approach for

Core Maintenance. In IEEE ICDE. 337–348.

36

http://networkrepository.com
http://networkrepository.com
https://github.com/btsun/DynHyperCoreDecomp
https://github.com/btsun/DynHyperCoreDecomp

	Abstract
	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 Comparisons with Other Related Work
	5 Batch-Dynamic k-Core Decomposition
	5.1 Algorithm Overview
	5.2 Sequential Level Data Structure (LDS)
	5.3 Detailed PLDS Algorithm
	5.4 Efficiency Analysis
	5.5 Potential Argument for Work Bound
	5.6 Estimating the Coreness and Orientation
	5.7 O() Out-Degree Orientation
	5.8 Deterministic and Space-Efficient Data Structures
	5.9 Handling Vertex Insertions and Deletions

	6 Experimental Evaluation
	6.1 PLDS Implementation Details
	6.2 Accuracy vs. Running Time
	6.3 Batch Size vs. Running Time
	6.4 Thread Count vs. Running Time
	6.5 Results on Large Graphs
	6.6 Accuracy of Approximation Algorithms
	6.7 Sensitivity of PLDS and PLDSOpt to and
	6.8 Space Usage

	7 Static (2+)-Approximate k-Core
	8 Framework for Batch-Dynamic Graph Algorithms from Low Out-Degree Orientations
	9 Maximal Matching
	9.1 Maximal Matching BatchFlips
	9.2 Maximal Matching BatchInsert
	9.3 Maximal Matching BatchDelete
	9.4 Work and Depth Analysis

	10 Clique Counting
	10.1 Algorithm Overview
	10.2 BatchFlips Implementation
	10.3 BatchInsert Implementation
	10.4 BatchDelete Implementation
	10.5 Correctness
	10.6 Work and Depth Analysis
	10.7 Comparison with Previous Work

	11 Coloring Algorithms
	11.1 Explicit O(logn)-Coloring
	11.2 Implicit O(2)-Coloring

	12 Conclusion
	References

