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ABSTRACT

Maintaining a k-core decomposition quickly in a dynamic graph
has important applications in network analysis. The main challenge
for designing efficient exact algorithms is that a single update to
the graph can cause significant global changes. Our paper focuses
on approximation algorithms with small approximation factors that
are much more efficient than what exact algorithms can obtain.

We present the first parallel, batch-dynamic algorithm for ap-
proximate k-core decomposition that is efficient in both theory
and practice. Our algorithm is based on our novel parallel level
data structure, inspired by the sequential level data structures of
Bhattacharya et al. [STOC ’15] and Henzinger et al. [2020]. Given a
graph with n vertices and a batch of updates B, our algorithm prov-
ably maintains a (2 + ¢)-approximation of the coreness values of all
vertices (for any constant ¢ > 0) in O(|8|log? n) amortized work
and O(log? nloglog n) depth (parallel time) with high probability.

As a by-product, our k-core decomposition algorithm also gives
a batch-dynamic algorithm for maintaining an O(«) out-degree ori-
entation, where « is the current arboricity of the graph. We demon-
strate the usefulness of our low out-degree orientation algorithm by
presenting a new framework to formally study batch-dynamic algo-
rithms in bounded-arboricity graphs. Our framework obtains new
provably-efficient parallel batch-dynamic algorithms for maximal
matching, clique counting, and vertex coloring.

We implemented and experimentally evaluated our k-core de-
composition algorithm on a 30-core machine with two-way hyper-
threading on 11 graphs of varying densities and sizes. Compared
to the state-of-the-art algorithms, our algorithm achieves up to a
114.52% speedup against the best parallel implementation, up to a
544.22X speedup against the best approximate sequential algorithm,
and up to a 723.72X speedup against the best exact sequential algo-
rithm. We also obtain results for our algorithms on graphs that are
orders-of-magnitude larger than those used in previous studies.

1 INTRODUCTION

Discovering the structure of large-scale networks is a fundamental
problem for many areas of computing. One of the key challenges is
to detect communities in which individuals (or vertices) have close
ties with one another, and to understand how well-connected a
particular individual is to the community. The well-connectedness

This work was done while the authors were at MIT CSAIL.

of a vertex or a group of vertices is naturally captured by the concept
of a k-core or, more generally, the k-core decomposition; hence,
this particular problem and its variants have been widely studied in
the machine learning [3, 33, 40], database [18, 23, 32, 62, 73], social
network analysis and graph analytics [27, 28, 52, 54], computational
biology [24, 55, 66, 71], and other communities [39, 54, 69, 79].

Given an undirected graph G, with n vertices and m edges, the
k-core of the graph is the maximal subgraph H C G such that
the induced degree of every vertex in H is at least k. The k-core
decomposition of the graph is defined as a partition of the graph into
layers such that a vertex v is in layer k if it belongs to a k-core but not
a (k + 1)-core; this value is known as the coreness of the vertex, and
the coreness values induce a natural hierarchical clustering. Classic
algorithms for k-core decomposition are inherently sequential. A
well-known algorithm for finding the decomposition is to iteratively
select and remove all vertices v with smallest degree from the graph
until the graph is empty [72]. Unfortunately, the length of the
sequential dependencies, or the depth, of such a process can be
Q(n) given a graph with n vertices. As k-core decomposition is a P-
complete problem [5], it is unlikely to have a parallel algorithm with
polylogarithmic depth. To obtain parallel methods with poly(log n)
depth, we relax the condition of obtaining an exact decomposition
to one of obtaining a close approximate decomposition.

Previous works studied approximate k-core decompositions as
a way for obtaining faster and more scalable algorithms in larger
graphs than in exact settings [21, 23, 33, 40, 83]. Approximate core-
ness values are useful for applications where existing methods are
already approximate, such as diffusion protocols in epidemiological
studies [24, 55, 66, 71], community detection and network centrality
measures [30, 34, 46, 74, 86, 90], network visualization and model-
ing [3, 20, 89, 91], protein interactions [4, 7], and clustering [41, 60].
Furthermore, due to the rapidly changing nature of today’s large
networks, many recent studies have focused on the dynamic setting,
where edges and vertices can be inserted and deleted, and the k-core
decomposition is computed in real time. There has been significant
interest in obtaining fast and practical dynamic, approximate and ex-
act k-core algorithms. Dynamic algorithms have been developed for
both the sequential [63, 63, 65, 78, 83, 88, 94] and parallel [6, 48, 51]
settings. There has also been interest in the closely-related dynamic
k-truss problem [1, 49, 70, 93]. However, to the best of our knowl-
edge, there are no existing parallel batch-dynamic k-core algorithms
with provable polylogarithmic depth, which our algorithm achieves.
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Figure 1: Exact k-core decomposition (left) and (3/2)-approximate
k-core decomposition (right).

Our paper focuses on the batch-dynamic setting where updates
are performed over a batch of multiple edge updates applied simul-
taneously. Such a setting is conducive to parallelization, which we
leverage to obtain scalable algorithms. We provide a work-efficient
batch-dynamic approximate k-core decomposition algorithm based
on a parallel level data structure that we design. We implement our
algorithm and show experimentally that it performs favorably com-
pared to the state-of-the-art. Furthermore, we show that our parallel
level data structure can be used to obtain work-efficient parallel
batch-dynamic algorithms for several other problems, specifically,
low out-degree orientation, maximal matching, k-clique counting,
and vertex coloring.

We introduce the necessary definitions in Section 2 before giving
a technical overview of our results in Section 3. Section 5 presents
our parallel level data structure and k-core decomposition algorithm
in more detail. Section 6 presents experimental results. Section 7
gives our parallel, static, approximate algorithm for k-core decom-
position. Finally, Section 8 gives our low out-degree framework for
our maximal matching (Section 9), k-clique counting (Section 10),
and coloring (Section 11) results.

2 PRELIMINARIES

This paper studies undirected, unweighted graphs, and we use n to
denote the number of vertices and m to denote the number of edges
in a graph. Definition 2.3 defines approximate k-core decomposition.
The definition requires the definition of a k-core, which we define
first.
Definition 2.1 (k-Core). For a graph G and positive integer k, the
k-core of G is the maximal subgraph of G with minimum induced
degree k.
Definition 2.2 (k-Core Decomposition). A k-core decomposition
is a partition of vertices into layers such that a vertexv is in layer k if
it belongs to a k-core but not to a (k + 1)-core. k(v) denotes the layer
that vertex v is in, and is called the coreness of v.

Definition 2.2 defines an exact k-core decomposition. A
c-approximate k-core decomposition is defined as follows.

Definition 2.3 (c-Approximate k-Core Decomposition). A
c-approximate k-core decomposition is a partition of vertices into
layers such that a vertex v is in layer k” only lf@ < k' < ck(v),
where k(v) is the coreness of v.

We let ];(U) denote the estimate of v’s coreness. Fig. 1 shows an
example of a k-core decomposition and a (3/2)-approximate k-core
decomposition.

Model Definitions. We analyze the theoretical efficiency of our
parallel algorithms in the work-depth model. The model is defined
in terms of two complexity measures, work and depth [25, 50].
The work is the total number of operations executed by the algo-
rithm. The depth is the longest chain of sequential dependencies.
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Symbol Meaning
G =(V,E) undirected/unweighted graph
n,m number of vertices, edges, resp.
a current arboricity of graph
A current maximum degree of graph
K number of levels in PLDS
N (v) (resp. N(S)) set of neighbors of vertex v (resp. vertices S)
dl(o) desire-level of vertex v
¢, £(0) a level (starting with level ¢ = 0), current level of vertex o, resp.
Ve, Ze set of vertices in level ¢, set of vertices in levels > ¢, resp.
gi set of levels in group i (starting with go)
g(0),gn(f) group number of vertex v, index i where level ¢ € g;, resp.
k(v), k(v) coreness of v, estimate of the coreness of v, resp.

up(0),up” (0) up-degree of v, up*-degree of v, resp.

Ao constants where £, 1,6 > 0

Table 1: Table of notations used in this paper.

We assume that concurrent reads and writes are supported in O(1)
work/depth. A work-efficient parallel algorithm is one with work
that asymptotically matches the best-known sequential time com-
plexity for the problem. We say that a bound holds with high
probability (w.h.p.) if it holds with probability at least 1 — 1/n°
forany ¢ > 1.

We use parallel primitives in our algorithms, which take as input
a sequence A of length n, including: parallel reduce-add, which
returns the sum of the entries in A, and parallel filter, which also
takes as input a predicate function f, and returns the sequence B
containing each element a € A where f(a) is true, while preserv-
ing the same relative order as the order of elements in A. These
primitives take O(n) work and O(logn) depth [50]. We also use
parallel hash tables that support insertions, deletions, and mem-
bership queries; they can perform n insertions or deletions in O(n)
work and O(log* n) depth w.h.p., and n membership queries in
O(n) work and O(1) depth w.h.p. [42]. Provided an input sequence
A, a parallel prefix-sum takes as input an identity x and an asso-
ciative binary operator &, and returns the sequence B of length n
where B[i] = @jd A[j] @ x. This primitive takes O(n) work and
O(log n) depth [50].

Our parallel algorithms operate in the batch-dynamic setting. A
batch-dynamic algorithm processes updates (vertex or edge in-
sertions/deletions) in batches B of size |B|. For simplicity, since we
can reprocess the graph using an efficient parallel static algorithm
when |B| > m, we consider 1 < |8B| < m for our bounds.

Given a graph G = (V,E) and a sequence of batches of edge
insertions and deletions, By, ..., BN, where B; = (Efielete’ E;nsm),
the goal is to efficiently maintain a (2 + ¢)-approximate k-core
decomposition (for any constant ¢ > 0) after applying each
batch B; (in order) on G. In other words, let G; = (V, E;) be the
graph after applying batches Bj,...,8; and suppose that we
have a (2 + ¢)-approximate k-core decomposition on G;j; then, for
Bit1, our goal is to efficiently find a (2 + ¢)-approximate k-core
decomposition of Gi1 = (V, (E; U E::;slert) \ Eii:llete)'

All notations used are summarized in Table 1. Our data
structure also maintains a low out-degree orientation, which may be
parameterized by a graph property known as the arboricity.

Definition 2.4 (Arboricity). The arboricity («) of a graph is the
minimum number of spanning forests needed to cover the graph.



Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related Graph Problems

Definition 2.5 (c-Approximate Low Out-Degree Orientation).

Given an undirected graph G = (V,E), a c-approximate low
out-degree orientation is an acyclic orientation of all edges in G
+

such that the maximum out-degree of any vertex, d, ., is within a
c-factor of the minimum possible maximum out-degree, d;pt of any
acyclic orientation:! dgpt/c <dha <co d;pt'

We define an O(a) out-degree orientation to be an acyclic ori-
entation where all out-degrees are O(«). For an oriented graph, we
call neighbors of vertex v connected by outgoing edges the out-
neighbors of v and neighbors of v connected by incoming edges the
in-neighbors of v. Definitions of the other problems we consider
are given at the top of their respective sections (Sections 9 to 11).

3 TECHNICAL OVERVIEW

In this paper, we provide a number of parallel work-efficient al-
gorithms for various problems. This section gives an overview of
our algorithms and how they compare with prior work. Table 2
summarizes our algorithmic results.

We first discuss k-core decomposition. A number of previous
works [64, 68,78, 92, 93] provided methods for maintaining the exact
k-core decomposition under single edge updates in the sequential
setting. Unfortunately, none of these works provide algorithms
with provable polylogarithmic update time. The main bottleneck
for obtaining provably-efficient methods is that a single edge update
can cause all coreness values to change: consider a cycle with one
edge removed as a simple example. Removing and adding the edge
into this cycle, repeatedly in succession, causes the coreness of all
vertices to change by one with each update. In the parallel setting,
a number of previous works [6, 38, 48, 51, 87] investigated batch-
dynamic algorithms for exact k-core decomposition. Unfortunately,
none of these works have poly(logn) depth and some even have
Q(n) depth.

This paper shows that we can surprisingly obtain a parallel
batch-dynamic k-core decomposition algorithm with amortized
time bounds that are independent of the number of vertices that
changed coreness for approximate coreness. Such provable time
bounds can be obtained by cleverly avoiding updating coreness
values until enough error has accumulated; once such error has
accumulated, we can charge the amount of time required to up-
date the coreness to the number of updates that occurred. Doing
so carefully allows a provable O(log? n) amortized work per up-
date that is independent of the number of changed coreness values.
A recent paper by Sun et al. [83] provides a sequential dynamic
approximate k-core decomposition algorithm that takes O(log? n)
amortized time per update. Their algorithm is a threshold peeling/e-
limination procedure that gives a (2 + ¢)-approximation bound.
They also provide another sequential algorithm, which they call
round-indexing, that performs faster in practice.> However, they do
not provide formal runtime proofs for this algorithm. Their thresh-
old peeling algorithm is inherently sequential since a vertex that
changes thresholds can cause another to change their threshold
(and coreness estimate), resulting in a long chain of sequential de-

pendencies; such a situation results in polylogarithmic amortized
ld;pt’ is equal to the degeneracy, d, of G, and is closely related to a: d/2 < a < d.
2Qur experiments compare against the round-indexing algorithm since it is faster than
their thresholding peeling algorithm in practice.

Table 2: Work and depth bounds of algorithms in this paper.’

Problem Approx Work Depth Adversary
k-core (2+¢) O(|B|log*n) C~)(10g2 n)* Adaptive
k-core (2+¢) O(m+n) O(log® n) Static

Orientation (4+¢) O(|8|log? n) O(log? n) Adaptive

Matching Maximal ~ O(|B|(a +log? n)) 5(log Alog®n)®  Adaptive

k-clique Exact O(|B|ak? log2 n) 5(log2 n) Adaptive

Coloring  O(alogn)® O(|8|log? n) O(log? n) Oblivious

Coloring O (2%) O(|B|log® n) O(log? n) Adaptive

depth, whereas efficient parallel algorithms require polylogarithmic
depth w.h.p. in the worst case, which we obtain.

To design our k-core decomposition algorithm, we formulate a
parallel level data structure (PLDS) inspired by the sequential level
data structures (LDS) of Bhattacharya et al. [13] and Henzinger et
al. [47] to maintain a partition of the vertices satisfying specific
degree properties in certain induced subgraphs. In the LDS, vertices
are updated one at a time. One of our main technical insights is
that we can update many vertices simultaneously, leading to high
parallelism. Our k-core decomposition algorithm is work-efficient,
and matches the approximation factor of the best-known sequential
dynamic approximate k-core decomposition algorithm of Sun et
al. [83], while achieving polylogarithmic depth w.h.p.

Dynamic problems related to k-core decompositions have been
recently studied in the theory community, such as densest sub-
graph [13, 80] and low out-degree orientations [10, 19, 45, 47, 53,
56, 57, 82]; some of these works use the LDS. However, none of
these previous works proved guarantees regarding the k-core de-
composition that can be maintained via a LDS. Notably, we show
via a new, intuitive proof that one can use the level of a vertex to
estimate its coreness in the LDS of [47]. Unlike the proof in [83] for
their dynamic algorithm, our proof does not require densest sub-
graphs nor any additional information besides the two invariants
maintained by the structure.

Our main theoretical and practical technical contributions for
k-core decomposition are three-fold: (1) we present a simple modifi-
cation and a new (2+¢)-approximate coreness proof for the sequen-
tial level data structure of [13, 47] (which were not previously used
for coreness values) using only the levels of the vertices—no such
modification was known prior to this work since [83] requires an
additional elimination/peeling/round-indexing procedure; (2) we
provide the first parallel work-efficient batch-dynamic level data
structure that takes O(log? nloglogn) depth w.h.p., which we use
to obtain a (2 + €)-approximate batch-dynamic k-core decomposi-
tion algorithm; and (3) we provide multicore implementations of
our new algorithm and demonstrate its practicality through exten-
sive experimentation with state-of-the-art parallel and sequential
algorithms.

The following theorems give our theoretical bounds.

Theorem 3.1 (Batch-Dynamic k-Core Decomposition). Given G =
(V,E) wheren = |V| and batch of updates B, our algorithm maintains
(2 + ¢)-approximations of core values for all vertices (for any constant
£ > 0)inO(|B|log? n) amortized work and O(log? nlog log n) depth
wh.p., using O(nlog? n + m) space.

3lill bounds are w.h.p., except for the work of static k-core and O (e log n)-coloring.
40 hides a factor of O (loglog n).

SWe denote by @ the current arboricity of the graph after processing all updates including
the most recent ones.



Using the same parallel level data structure, we also obtain the
following result for maintaining a low out-degree orientation.
Theorem 3.2 (Batch-Dynamic Low Out-Degree Orientation). Our
algorithm maintains an (4 + €)-approximation of a minimum acyclic
out-degree orientation, with the same bounds as Theorem 3.1, where
the amortized number of edge flips is O(| 8| log? n).

A consequence of Theorem 3.2 is the following corollary.
Corollary 3.3 (O(a) Out-Degree Orientation). Our algorithm
maintains an O(«) out-degree orientation, where a is the current
arboricity (Definition 2.4), with the same bounds as Theorem 3.2.

Using Theorem 3.2, we design a framework for parallel batch-
dynamic algorithms on bounded-arboricity graphs for batch of
updates 8B, which in addition to problem-specific techniques allows
us to obtain a set of batch-dynamic algorithms for a variety of other
fundamental graph problems including maximal matching, clique
counting, and vertex coloring. The coloring algorithms are based
heavily on the sequential algorithms of Henzinger et al. [47], but we
present them as an application of our framework. For the problems
we consider in this paper, Fig. 3 summarizes the update times of the
previous best-known sequential results for their respective settings.

Theorem 3.4 (Batch-Dynamic Maximal Matching). We maintain
a maximal matching in O(|8|(a + log? n)) amortized work and
O(log? n (log A + loglog n)) depth w.h.p.% in O(nlog? n+m) space.
Theorem 3.5 (Batch-Dynamic Implicit O(2%)-Vertex Coloring).
We maintain an implicit O(2%)-vertex coloring’ in O(|8B|log® n)
amortized work and O(log?n) depth wh.p. for updates, and
O(Qalogn) work and O(logn) depth w.h.p., for Q queries, using
O(nlog? n +m) space.

Theorem 3.6 (Batch-Dynamic k-Clique Counting). We maintain
the count of k-cliques in O(|B|ak2 log? n) amortized work and
O(log? nloglogn) depth w.h.p., in O(ma*=2 + nlog? n) space.

All of the above results are robust against adaptive adversaries
which have access to the algorithm’s previous outputs. The follow-
ing algorithm is robust against oblivious adversaries which do not
have access to previous outputs.

Theorem 3.7. We maintain an O(alogn)-vertex coloring in
O(|8|log? n) amortized expected work and O(log? nloglogn)
depth w.h.p., in O(m + nlog? n + alogn) space.

Our k-core, low out-degree orientation, and vertex coloring algo-
rithms are work-efficient when compared to the best-known sequen-
tial, dynamic algorithms for the respective problems [13, 47, 83].
For maximal matching, our algorithm is work-efficient when a =
Q(log? n) when compared to the best-known sequential algorithm
that is robust against adaptive adversaries [45, 75]; the extra work
when o = o(log2 n) comes from the fact that our bounds are with
respect to the current arboricity, compared to [45, 75] whose bounds
are with respect to the maximum arboricity over the sequence of
updates.

The best-known batch-dynamic algorithm for k-clique count-
ing, by Dhulipala et al. [29], takes O(|B|ma*—*) expected work
and O(logk_2 n) depth w.h.p., using O(m + |8B|) space. Compared
with their algorithm, our algorithm uses less work when m =

A denotes the maximum current degree of the graph after processing all updates.
7 An implicit vertex coloring algorithm returns valid colorings for queried vertices.
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Figure 2: This figure shows what parts of the PLDS are used in each
result. The level of each vertex is used to determine the k-core de-
composition (Theorem 3.1) and low out-degree orientation (Theo-
rem 3.2 and Corollary 3.3). The orientation of the edges is used for
maximal matching (Theorem 3.4), implicit O(2%)-coloring (Theo-
rem 3.5), and k-clique counting (Theorem 3.6). Finally, both are used
for O(alogn)-coloring (Theorem 3.7).

w(a? log? n). In many real-world networks, @ << v/m (see e.g., Ta-
ble 3, for maximum k-core values, which upper bound «); thus, our
result is more efficient in many cases at an additional multiplicative
space cost of O(a*~2). We also obtain smaller depth for all k > 4.
We provide further comparisons with the best-known sequential
clique counting algorithm [31], and we describe more specific batch-
dynamic challenges we face in designing the above algorithms in
their respective sections. The components of the PLDS used in each
of the above results are summarized in Fig. 2.

Finally, using ideas from our batch-dynamic k-core decomposi-
tion algorithm, we provide a new parallel static (2 + ¢)-approximate
k-core decomposition algorithm. We compare this algorithm with
the best-known parallel static exact algorithm of [27] which uses
O(m + n) expected work and O(p log m) depth w.h.p., where p is
the number of steps necessary to peel all vertices (p could potentially
be Q(n)). Hence, [27] does not guarantee poly(log n) depth.

Theorem 3.8. Given G = (V,E) with n = |V| vertices and m =
|E| edges, for any constant ¢ > 0, our algorithm finds an (2 + ¢)-
approximate k-core decomposition in O(n + m) expected work and
O(log® n) depth w.h.p., using O(n + m) space.
Experimental Contributions. In addition to our theoretical con-
tributions, we also provide optimized multicore implementations
of our k-core decomposition algorithms. We compare the perfor-
mance of our algorithms with state-of-the-art algorithms on a va-
riety of real-world graphs using a 30-core machine with two-way
hyper-threading. Our parallel static approximate k-core algorithm
achieves a 2.8-3.9x speedup over the fastest parallel exact k-core
algorithm [27] and achieves a 14.76-36.07x self-relative speedup.

We show that our parallel batch-dynamic k-core algorithm
achieves up to 544.22X speedups over the state-of-the-art sequen-
tial dynamic approximate k-core algorithm of Sun et al. [83], while
achieving comparable accuracy. We also achieve up to 114.52x
speedups over the state-of-the-art parallel batch-dynamic exact
k-core algorithm of Hua et al. [48], and up to 723.72x speedups
against the state-of-the-art sequential exact k-core algorithm of
Zhang and Yu [93]. Our batch-dynamic algorithm outperforms the
best multicore static k-core algorithms by up to 121.76X on batch
sizes that are less than 1/3 of the number of edges in the entire
graph.

Our algorithm exhibits improvements in runtime while maintain-
ing the same or smaller error, even when using only four threads
(available on a standard laptop), and remains competitive at one
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thread. We demonstrate that existing exact dynamic implementa-
tions are not efficient or scalable enough to handle graphs with
billions of edges, whereas our algorithm is able to. Furthermore,
our demonstrated speedups of up to two orders of magnitude in-
dicates that our implementation not only fills the gap for process-
ing graphs that are orders of magnitude larger than can be han-
dled by existing implementations, but also that it is the best op-
tion for many smaller networks. Our code is publicly available at
https://github.com/qqliu/batch-dynamic-kcore-decomposition.

4 COMPARISONS WITH OTHER RELATED
WORK

Parallel Exact Batch-Dynamic Algorithms. The most recent, state-
of-the-art parallel batch-dynamic algorithm by Hua et al. [48] im-
proves upon the previous parallel algorithms of Aridhi et al. [6],
Wang et al. [87], and Jin et al. [51]. Their algorithm relies on the
concept of a joint edge set, whose insertion and removal deter-
mines the core numbers of the vertices. However, their algorithm
could take Q(n) depth as they use a standard depth-first search to
traverse vertices in the joint edge set as well as vertices outside
of the joint edge set. In comparison, our algorithm provably has
O(log? nloglogn) depth w.h.p. Our theoretical improvements also
translate to practical gains since we demonstrate greater scalability
in our experiments.

Another recent work by Gabert et al. [38] provides a scalable ex-
act k-core maintenance algorithm. Both their asymptotic work and
depth is super-polylogarithmic (in fact, in the worst case it could be
as bad as computing from scratch). Unfortunately, the code for their
experiments is proprietary and hence not available for comparison.
However, their reported experimental results overall appear slower
than our results, described in more detail in Section 6.4.

Low Out-Degree Orientations. Many previous works give dy-
namic algorithms for low out-degree orientations with respect to
bounds on the maximum arboricity that ever exists in the graph,
Amax [10, 19, 45, 53, 56, 57, 82]. Noticeably, these sequential, dy-
namic works save a O(log n) factor in the running time compared
to sequential dynamic algorithms that compute the orientation with
respect to the current arboricity [13, 47]. In practice, the arboricity
of real-world graphs may vary as batches of updates are applied,
and in particular, the k-core numbers of each vertex can change
drastically (e.g., many follows and unfollows can occur in a very
short period of time following a viral post). Our work matches the
update time of [13, 47] for maintaining a low out-degree orientation
for the current a. This explains why our work bounds for maxi-
mal matching requires an additional O(log n) factor compared to
previous works [45, 75] that were in terms of @ gx-

Other Graph Problems. Using low out-degree orientations, a num-
ber of works in the past have studied the other dynamic graph prob-
lems we study in this paper, including maximal matching, vertex
coloring, and clique counting [8, 11, 12, 22, 29, 31, 37, 44, 45, 47,
58, 67, 75, 76, 82]. The best update time for these problems in the
sequential settings are summarized in Fig. 3.

In the sequential setting, the best-known algorithm for k-clique

counting uses O(logk2 n) update time in bounded expansion graphs

Figure 3: Previous best-known sequential algorithm results.

Summary of Best-Known Sequential Results

Problem Approx Update Time Adversary
k-core (2+¢) O(log2 n) [47, 83], Lemma 5.12 Adaptive
Orientation (4+¢) O(log® n) [47] Adaptive
Matching Maximal O(max +logn/loglogn) [45,75]  Adaptive
k-clique Exact O(afnzax logk2 n) [31] Adaptive
Coloring O(alogn) O(log2 n) [47] Oblivious
Coloring O (2%) O(log® n) [47] Adaptive

for any k-vertex subgraph [31]. Bounded expansion is a more re-
stricted class of graphs than bounded arboricity.® Their algorithm
crucially requires the fraternal augmentation graph, G’, which is
created from an input directed graph, G = (V, E), by adding an edge
(u, v) (direction chosen arbitrarily) if and only if (w, ) and (w,v)
exist. Provided an out-degree orientation of size o, their algorithm
runs in O(()'k2 logkz n) time; so for bounded arboricity graphs, their
algorithm can find any subgraph of size k with O(ozk2 logk2 n) up-
date time [31]. Our algorithm also gives a better update time in the
sequential setting than [31] for counting cliques (for |B| = 1).

5 BATCH-DYNAMIC k-CORE
DECOMPOSITION

In this section, we describe our parallel, batch-dynamic algorithm
for maintaining an (2 + ¢)-approximate k-core decomposition (for
any constant ¢ > 0) and prove its theoretical efficiency.

5.1 Algorithm Overview

We present a parallel level data structure (PLDS) that maintains
a (2 + ¢)-approximate k-core decomposition that is inspired by
the class of sequential level data structures (LDS) of [13, 47]. Our
algorithm achieves O(log? n) amortized work per update and
O(log? nloglogn) depth w.h.p. We also present a deterministic
version of our algorithm that achieves the same work bound with
O(log® n) depth. Our data structure can also handle batches of
vertex insertions/deletions. Our data structure requires O(log? n)
amortized work, which matches the O(log? n) amortized update
time of [13, 47]. We also present a deterministic version of our
algorithm that achieves the same work bound with O(log® n)
depth in Section 5.8.

In addition to edge updates, our data structure also handles
batches of vertex insertions/deletions, discussed in Section 5.9. As
in [47], our data structure can handle changing arboricity that is
not known a priori. Such adaptivity is necessary to successfully
maintain accurate approximations of coreness values.

The LDS and our PLDS consists of a partition of the vertices into
K = O(log? n) levels.” We provide a very high level overview of
PLDS in this section. The levels are partitioned into equal-sized
groups of consecutive levels. Updates are partitioned into inser-
tions and deletions. Vertices move up and down levels depending
on the type of edge update incident to the vertex. Rules governing
the induced degrees of vertices to neighbors in different levels de-
termine whether a vertex moves. Using information about the level
of a vertex, we obtain a (2 + ¢)-approximation on the coreness of
the vertex.

8Graphs with bounded expansion have bounded arboricity, but not vice versa.
"When m = o(n), we can also show that O(log? m) levels suffice.
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Figure 4: Example of a cascade of vertex movements caused by an
edge deletion on u (shown by the dashed red line).

After every edge update, vertices update their levels depending
on whether they satisfy two invariants. One invariant upper bounds
the induced degree of each vertex v in the subgraph consisting of all
vertices in the same or higher level. Vertices whose degree exceeds
this bound move up one or more levels. We process the levels from
smallest to largest level and move all vertices from the same level
in parallel. The second invariant lower bounds the induced degree
of each vertex v in the subgraph consisting of all vertices in the
level below v, the level of v and all levels higher than the level of
v. Vertices that violate this invariant calculate a desire-level or the
closest level they can move to that satisfies this invariant. Then,
vertices with the same desire-level are moved in parallel to that level.
Finally, the coreness estimates of the vertices are computed based
on the current level of each vertex. We obtain the low out-degree
orientation by orienting edges from lower to higher levels (breaking
ties by vertex index). Fig. 5 shows the invariants maintained by our
algorithm; Figs. 6 and 7 show how our algorithm processes insertion
and deletion updates. Together, they demonstrate an example run
of our algorithm.

5.2 Sequential Level Data Structure (LDS)

The sequential level data structures (LDS) of [13, 47] maintains a
low out-degree orientation under dynamic updates. Within their
LDS, a vertex moves up or down levels one by one, where a vertex
v (incident to an edge update) first checks whether an invariant is
violated, and then may move up or down one level. Then, the vertex
checks the invariants and repeats. Such movements may cause
other vertices to move up or down levels. The LDS combined with
our Section 5.6 directly gives an O(log? n) update time sequential,
dynamic algorithm that outputs (2+¢)-approximate coreness values.

Unfortunately, such a procedure can be slow in practice. Specifi-
cally, a vertex that moves one level could cause a cascade of vertices
to move one level. Then, if the vertex moves again, the same cascade
of movements may occur. An example is shown in Fig. 4. Further-
more, any trivial parallelization of the LDS to support a batch of
updates will run into race conditions and other issues, requiring
the use of locks which blows up the runtime in practice.

Thus, our PLDS solves several challenges posed by the sequential
LDS. Given a batch B of edge updates: (1) our algorithm processes
the levels in a careful order that yields provably low depth for
batches of updates; (2) our insertion algorithm processes vertices
on each level at most once, which is key to the depth bounds—
after vertices move up from level ¢, no future step in the algorithm
moves a vertex up from level ¢; and (3) our deletion algorithm
moves vertices to their final level in one step. In other words, a
vertex moves at most once in a deletion batch.
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Figure 5: Example of invariants maintained by the PLDS for 6 = 0.4
and A = 3. There are ©(log n) groups, each with ©(log n). Each vertex
is in exactly one level of the structure and moves up and down by
some movement rules. For example, vertex x (blue) is on level 3 and
in group 1.

Algorithm 1 Update(8B)

Input: A batch of edge updates B.
1: Let Bjys = all edge insertions in B, and By, = all edge deletions in B.
2: Call Rebalancelnsertions(Bps). [Algorithm 2]
3: Call RebalanceDeletions(B ). [Algorithm 3]

5.3 Detailed PLDS Algorithm

As mentioned previously, the vertices of the input graph G = (V, E)
in our PLDS are partitioned across K levels. For each level ¢ =
0,...,K—1,let V¢ be the set of vertices that are currently assigned to
level £. Let Z; be the set of vertices in levels > £. Provided a constant
& > 0, the levels are partitioned into groups go. .. ., gfiog (vs) 110
where each group contains 4[logy,5) n] consecutive levels. Each

te [i[log(1+5) n],...,(i+ l)|’10g<1+5> nl — 1| is a level in group i.
Our data structure consists of K = O(log? n) total levels. The PLDS
satisfies the following invariants as introduced in [13, 47], which
also govern how the data structure is maintained. The invariants
assume a given constant § > 0 and a constant 1 > 0.

Invariant 1 (Degree Upper Bound). If vertexv € Vp, level £ < K
and ¢t € gj, then v has at most (2 +3/1) (1+ )" neighbors in Z;.

Invariant 2 (Degree Lower Bound). If vertexv € V;, level £ > 0,
and t — 1 € g;, then v has at least (1 + )" neighbors in Zp_1.

Vertices with no neighbors are placed in level 0. An example
partitioning of vertices and maintained invariants is shown in Fig. 5.
Let ¢(v) be the level that v is currently on. We define the group
number, g(v), of a vertex v to be the index i of the group g; where
¢(v) € g;. Similarly, we define gn(¢) = i to be the group number for
level £ where ¢ € g;. We define the up-degree, up(v), of a vertex
v to be the number of its neighbors in Z,(,) (up-neighbors), and
up”-degree, up*(v), to be the number of its neighbors in Z;,)_;
(up*-neighbors). These two notions of induced degree correspond
to the requirements of the two invariants of our data structure.
We define neighbors w of v at levels £(w) < £(v) to be the down-
neighbors of v. Lastly, the desire-level dl(v) of a vertex v is the
closest level to the current level of the vertex that satisfies both In-
variant 1 and Invariant 2.

Definition 5.1 (Desire-level). The desire-level, dI(v), of vertex v is
the level ¢’ that minimizes |€(v) — ¢’|, and where up®(v) > (1 + 57
and up(v) < (2+3/2) (1+6) wheret’ —1 € gy, ' € g;, and i’ < i.
In other words, the desire-level of v is the closest level £’ to the current
level of v, £(v), where both Invariant 1 and Invariant 2 are satisfied.
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Algorithm 2 Rebalancelnsertions(Bjys)

Input: A batch of edge insertions Bijps.
1: Let U contain all up-neighbors of each vertex, keyed by vertex. So U 0]
contains all up-neighbors of v.
2: Let L, contain all neighbors of v in levels [0, ..., f(v) — 1], keyed by
level number.
: parfor each edge insertion e = (u,v) € B;,s do
Insert e into the graph.
: for each level I € [0,...,K — 1] starting with [ = 0 do
parfor each vertex v incident to Bj,s or is marked, where £(0) =
Inup(o) > (2+3/1) (1+8)9"D do
7: Mark and move o to level I + 1 and create L, [!] to store o’s neigh-
bors at level [.

AN A

8:  parfor each w € N(0) of a vertex o that moved to level / + 1 and w
stayed in level I do
9: Ulo] « Ulv] \ {w},Ly[l] « Ly[I] U {w}.
10:  parfor each u € N(v) of a vertex o that moved to level [ + 1 and u
isinlevel [ + 1 do
11: Mark u if up(u) > (2+3/4) (1 + 8)9n(+D)
12: Ulu] « Ulu] U {o}, Ly [1] « Ly[I]\ {o}.
13:  parfor each x € N (v) of a vertex o that moved to level [ + 1 and x
isinlevel £(x) > 1+ 2 do

14: Ly[l] « Ly [1]\ {0}, Ly [L + 1] &« Ly [I+ 1] U {o}.
150 Unmark v if up(v) < (2+3/4)(1 + 8)9n(I+1) Otherwise, leave v
marked.

We show that the invariants are always maintained except for
a period of time when processing a new batch of insertions/dele-
tions. During this period, the data structure undergoes a rebalance
procedure, where the invariants may be violated. The main update
procedure in Algorithm 1 separates the updates into insertions and
deletions (Line 1), and then calls Rebalancelnsertions (Line 2) and
RebalanceDeletions (Line 3). We make two crucial observations:
when processing a batch of insertions, Invariant 2 is never violated;
and, similarly, when processing a batch of deletions, Invariant 1
is never violated. Thus, no vertex needs to move down when pro-
cessing an insertion batch and no vertex needs to move up when
processing a deletion batch. The two procedures are asymmetric,
and so we first describe Rebalancelnsertions (Algorithm 2), and
then describe RebalanceDeletions (Algorithm 3).
Data Structures. Each vertex v keeps track of its set of neighbors
in two structures. U keeps track of the neighbors at v’s level and
above. We denote this set of v’s neighbors by U[v]. L, keeps track
of neighbors of v for every level below ¢(v)—in particular, L, [ ]
contains the neighbors of v at level j < £(v).
Rebalancelnsertions(Bjys). Algorithm 2 shows the pseudocode.
Provided a batch of insertions Bjys, we iterate through the K levels
from the lowest level £ = 0 to the highest level £ = K — 1 (Line 5).
For each level, in parallel we check the vertices incident to edge
insertions in Bjps or is marked to see if they violate Invariant 1
(Line 6). If a vertex v in the current level [ violates Invariant 1, we
move o to level [ + 1 (Line 7). After moving v, we update structures
Ulv], Ly, and the structures of w € N(v) where £(w) € [I,] + 1].
First, we create Ly [[] to store the neighbors of v in level I (Line 7).
If v moved to level I + 1 and w stayed in level [, then we delete
w from U[v] and instead insert w into Ly[l] (Lines 8-9). We do
not need to make any data structure modifications for w since v
stays in U[w]. Similarly, no data structure modifications to v and

w are necessary when both v and w move to level [ + 1. For each
neighbor of v on level [ + 1, we need to check whether it now
violates Invariant 1 (Line 10). If it does, then we mark the vertex
(Line 11). We process any such marked vertices when we process
level I + 1. We also update the U and L arrays of every neighbor of
v on level [ +1 (Line 12). Specifically, let u be one such neighbor, we
add v to U[u] and remove v from Ly, [I]. We conclude by making
appropriate modifications to L for each neighbor on levels > [ + 2
(Lines 13-14). Specifically, let x be one such neighbor, we remove
v from Ly [/] and add o to Ly [l + 1]. All neighbors of vertices that
moved can be checked and processed in parallel. Finally, v becomes
unmarked if it satisfies all invariants; otherwise, it remains marked
and must move again in a future step (Line 15).

Fig. 6 shows an example of our entire insertion procedure de-
scribed in Algorithm 2 for § = 0.4 and A = 3. The red lines in the
example represent the batch of edge insertions. Thus, in (a), the
newly inserted edges are the edges (u,v), (u,x), and (x, w). We
iterate from the bottommost level (level 0) to the topmost level
(level K — 1).

The first level where we encounter vertices that are marked or
are adjacent to an edge insertion is level 2. Since level 2 is part of
group 0, the cutoff for Invariant 1is (2 +3/1)(1+ 6)° = 3 provided
A =3 and § = 0.4. In level 2, only w violates Invariant 1 since
the number of its neighbors on levels > 2 is 4 (x, y, z, and a), so
up(w) = 4 > 3 (shown in (b)). Then, in (c), we move w up to
level 3. We need to update the data structures for neighbors of w at
level 3 and above (as well as w’s own data structures); the vertices
with data structure updates are x, w, y, and z. After the move, x
becomes marked because it now violates Invariant 1 (the cutoff for
level 3 is (2 + 3/3)(1 + 0.4) = 4.2 since level 3 is in group 1); w
becomes unmarked because it no longer violates Invariant 1. In (d),
we move on to process level 3. The only vertex that is marked or
violates Invariant 1 is x. Therefore, we move x up one level (shown
in (e)) and update relevant data structures (of x, v, y, z, and b).
RebalanceDeletions(Bg,). Unlike in LDS, deletions in PLDS are
handled by moving each vertex at most once, directly to its final
level (the vertex does not move again during this procedure). We
show in the analysis that this guarantee is crucial to obtaining low
depth. The pseudocode is shown in Algorithm 3. For each vertex v
incident to an edge deletion, we check whether it violates Invariant 2
(Line 4). On Line 4, gn(£(v) — 1) gives the group number i where
t(v) — 1 € g;. If v violates Invariant 2, we calculate its desire-
level, dl(v), using CalculateDesireLevel (Line 5), described next. We
iterate through the levels from [ = 0 to I = K — 1 (Line 6). Then, in
parallel for each vertex v whose desire-level is I, we move v to level
I (Lines 7-8). We update the data structures of each v that moved
and w € N(v) where £(w) > [ (Lines 9-21). Specifically, we need to
update U[v], U[w], Ly, and L,, if v was originally an up-neighbor of
w and becomes a down-neighbor or vice versa. Finally, we update
the desire-level of neighbors of v that no longer satisfy Invariant 2
(Lines 22-23). We process all vertices that move and their neighbors
in parallel.

Fig. 7 shows an example of Algorithm 3 for6 =1and A =3.In
(a), the newly deleted edges are (x, z) and (y, w). For each vertex
adjacent to an edge deletion, we calculate its desire-level, or the
closest level to its current level that satisfies Invariant 2. In (b),
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Figure 6: Example of RebalanceInsertions described in the text for § = 0.4 and A = 3. The red lines represent the batch of edge insertions.

Algorithm 3 RebalanceDeletions(B )

Algorithm 4 CalculateDesireLevel(v)

Input: A batch of edge deletions By;.
1: Let U contain all up-neighbors of each vertex, keyed by vertex. So U [v]
contains all up-neighbors of v. Let L, contain all neighbors of v in levels
[0,...,2(v) — 1], keyed by level number.

2: parfor each edge deletion e = (1, 0) € By do

3:  Remove e from the graph.

4: parfor each vertex v where up*(v) < (1+ 6)9"({(©)-1) do

5:  Calculate dl(v) using CalculateDesireLevel(v).

6: for eachlevell € [0,...,K — 1] starting with level / = 0 do

7:  parfor each vertex v where dl(v) = do

8: Move o to level 1.

9:  parfor each vertex v where dl(v) = do

10: parfor each neighbor w of v where £(w) > [ do

11: Let p, and p,, be the previous levels of v and w, respectively,
before the move.

12: if £(w) = [ then

13: Luw[po] & Lwlpo] \ {0}, Lo[pw] < Lo[pw] \ {w}

14: Ulw] « U[w] U {0},U[v] « U[v] U {w}.

15: else

16: if p, > £(w) then

17: Ulw] « U[wl\ {o}, Lo [£(w)] « Lo [£(w) ]\ {w}.

18: else if p, = £(w) then

19: Ulw] « U[w]\ {o}.

20: else Ly, [po] < Lyw[po] \ {0}

21: Ly, [l] < L\ [l]U {0}, U[v] <« U[o] U {w}.

22: if up*(w) < (1+8)97(!(W)-1) then

23: Recalculate dI(w) using Algorithm 4.

only x and z violate Invariant 2. The lower bound on the number
of neighbors that must be at or above level 3 for x and level 4 for z
is (1+8)! = 2 since § = 1 and levels 3 and 4 are in group 1. (Recall
that the lower bound is calculated with respect to the level below x
and z.) We calculate that the desire-levels of x and z are both 3. The
desire-levels of y and w are their current levels because they do not
violate the invariant. Then, we iterate from the bottommost level
(starting with level 0) to the topmost level (level K — 1). Level 3 is
the first level where vertices want to move. Then, we move x and z
to level 3 (shown in (c)). We only need to update the data structures
of neighbors at or above x and z so we only update the structures of
x, y, and z. Invariant 2 is no longer violated for x and z. In fact, our
algorithm guarantees that each vertex moves at most once. We check
whether any of x or z’s up-neighbors violate Invariant 2. Indeed, y
now violates the invariant. In (d), we recompute the desire-level of
y and its desire-level is now 4. Then, we move y to level 4 in (e).

CalculateDesireLevel(v). Algorithm 4 shows the procedure for
calculating the desire-level, dl(v), of vertex v, which is used in Al-
gorithm 3. Let gn(¢) be the index i where level £ € g;. We use a
doubling procedure followed by a binary search to calculate the
desire-level. We initialize a variable d to up® (v) (number of neigh-
bors at or above level £(v) — 1). Starting with level £(v) — 2, we add
the number of neighbors in level £(v) — 2 to d (Algorithm 4, Line 3).

Input: A vertex o that needs to move to a level j < £(v).
Output: The desire-level dl(v) of vertex .

1:d—up*(v),p —1i2

2: while d < (1+8)9"(¢(@)=P) and ¢(v) — p > 0 do

3 de d+zj.;1 |Lo[£(0) — j — 1]

if d > (1+68)97((©)-1) then
Binary search within levels [£(v) —i+1,...,¢(v) — p] to find the

closest level to £(v) that satisfies Invariants 1 and 2; return this level.

6: p i i min(2-i{(0)).

7: return 0.

This procedure checks whether moving v to £(v) — 1 satisfies Invari-
ant 2 (Line 4). If it passes the check, then we are done and we move
v to £(v) — 1. Otherwise, we iteratively double the number of levels
from which we count neighbors until we find a level where Invari-
ant 2 is satisfied (Line 6). On each iteration, we sum the number
of neighbors (Line 3) in the range of levels using a parallel reduce.
We continue until we find a level where Invariant 2 is satisfied. Let
this level be ¢’ and the previous cutoff be £pyey. Finally, we perform
a binary search within the range [¢/, ..., Lprev] to find the closest
level to £(v) that satisfies Invariant 2 (Line 5).

5.4 Efficiency Analysis

We now analyze the work and depth of our PLDS. First, it is easy
to show that there exists a level where both invariants are satisfied.
This allows our PLDS to assign each vertex to a single level.
Lemma 5.2. If a vertex v violates Invariant 1, then there exists a
level | > £(v) where v satisfies both Invariant 1 and Invariant 2. If a
vertex w violates Invariant 2, then there exists a level | < £(w) where
w satisfies both invariants or | = 0 (it is in the bottommost level).

Proor. First note that no vertex can simultaneously violate
both Invariant 1 and Invariant 2. Thus, suppose first that v vio-
lates Invariant 1. Then, this means that the number of neighbors of
v on levels > £(v) is more than (2 + 3/4) (1 + 6)9(® where g(v) is
the group number of v. If v still violates Invariant 1 on level £(v) +1,
then we keep moving v to the next level.

Otherwise, v does not violate Invariant 1 on level £(v) + 1. Since
we know that v violated Invariant 1 on level £(v), then after we
move v to £(v) + 1, v’s up*-degree is greater than (1 + s)9nt(),
hence, v also does not violate Invariant 2. The very last level of
the K levels has up-degree bound (2 + 3/1) (1 + ) Mog,,s(m1 5 2
when a vertex can be adjacent to at most n—1 vertices. Hence, there
must exist a level at or below the last level where both invariants
are satisfied. A similar argument holds for Invariant 2. O

Then, we make the following two observations that a batch of
insertions never violates Invariant 2 and a batch of deletions never
violates Invariant 1. This is true because deletions can never increase
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Figure 7: Example of RebalanceDeletions described in the text for § = 1 and A = 3. The red dotted lines represent the batch of edge deletions.

the up-degree of any vertex and insertions can never decrease the
up*-degree of any vertex.

Observation 5.3 (Batch Insertions). Given a batch of insertions,
Bins, Invariant 2 is never violated while By is applied.

Proor. The first part of the algorithm inserts the edges into the
data structure. Since no edges are removed from the data structures,
the degrees of all the vertices after the insertion of edges cannot
decrease. Invariant 2 was satisfied before the insertion of the edges,
and hence, it remains satisfied after the insertion of edges because
no vertices lose neighbors. We prove that the lemma holds for the
remaining part of Algorithm 2 via induction on the level i processed
by the procedure. In the base case, when i = 0, all vertices v in the
level which violate Invariant 1 are moved up to a level dl(v) > 0.
By definition of desire-level, v is moved to a level where Invariant 2
is still satisfied, by Lemma 5.2. Vertices from level 0 which move
to levels k > 1 cannot decrease the up*-degree for neighbors in all
levels j where j > 1. Thus, Invariant 2 cannot be violated for these
vertices. Vertices not adjacent to v are not affected by the move.

We assume that Invariant 2 was not violated up to level i and
prove it is not violated while processing vertices on level i + 1. By
our induction hypothesis, no vertices violate Invariant 2 before we
process level i+1. Then, when we process level i+1, no vertices move
down to a lower level than i + 1 by construction of our algorithm
because Invariant 2 is not violated for any vertex on level i + 1 and
if Invariant 1 is violated for any vertex w, w must move up to a
higher level. Any vertex w which moves up to a higher level cannot
decrease the up*-degree of neighbors of w. Hence, no vertex on
levels > i + 1 can violate Invariant 2. The up*-degree of vertices on
levels < i + 1 are not affected by the move. Hence, no vertices on
levels < i + 1 violate Invariant 2. Finally, if a vertex on level i + 1
violates Invariant 1, it will move to a level j > i + 1 where both
invariants are satisfied by Lemma 5.2. O

Observation 5.4 (Batch Deletions). Given a batch of deletions,
Bel, Invariant 1 is never violated while B . is applied.

Proor. Algorithm 3 first applies all the edge deletions in the
batch. Edge deletions cannot make the up-degree of any vertex
greater; thus, no vertex violates Invariant 1 after applying the edge
deletions. We prove that the rest of the algorithm does not vio-
late Invariant 1 via induction over the levels i. Specifically, we use
as our induction hypothesis that after processing the i’th level, no
vertices violate Invariant 1. In the base case, when i = 0, no vertices
violate Invariant 1 at the beginning, and vertices from levels i > 0
move to level 0. This means that during the processing of level i = 0,
vertices only move to level 0 from a higher level. Thus, all such
vertices that move will move to a lower level. Since vertices which
move to lower levels do not increase the up-degree of any other
vertices, no vertex can violate Invariant 1 at the end of processing

level 0. We now prove the case for processing level i + 1. In this
case, we assume by our induction hypothesis that no vertices vio-
late Invariant 1 after we finish processing level i. Thus, all vertices
that want to move to level i + 1 and violate Invariant 2 are at levels
J > i+ 1. Such vertices move down and thus cannot increase the
up-degree of any vertex. This means that after moving all vertices
that want to move to level i + 1, no vertices violate Invariant 1. O

Batch Insertion Depth Bound. Using our observations, the depth
of our batch insertion algorithm (Algorithm 2) depends on the
following lemma which states that once we have processed a level
(after finishing the corresponding iteration of Line 5), no vertex will
want to move from any level lower than that level. This means that
each level is processed exactly once, resulting in at most O(log? n)
levels to be processed sequentially.

Lemma 5.5. After processing level i in Algorithm 2, no vertexv in
levels £(v) < i will violate Invariant 1. Furthermore, no vertex w on
levels £(w) > i will have dl(w) < i.

Proor. We prove this via induction. For the base case i = 0,
all vertices on level 0 are part of each other’s up-degree; then, no
vertices which move up from i = 0 can cause the up-degree of
any vertices remaining in level 0 to increase. We now assume the
induction hypothesis for i — 1 and prove the case for i. Vertices
on level j < i already contain vertices on levels > i in its up-
degree. Such vertices on levels > i when moved to a higher level
are still part of the up-degree of vertices on levels j < i. Hence, no
vertices on levels j < i will violate Invariant 1 due to vertices in
levels > i moving up to a level [ > i. Then, in order for a vertex w
with £(w) > i to have dl(w) < i, some neighbors of w must have
moved to a level < i. By Observation 5.3, no vertices move down
during Algorithm 2, so this is not possible. O

Batch Deletion Depth Bound. For the batch deletion algorithm
(Algorithm 3), we prove that, starting from the lowest level, after all
vertices with dl(w) = i are moved to the i’th level, no vertex v will
have dl(v) < i. This means that each level is processed exactly once,
resulting in at most O(log? n) levels to be processed sequentially.

Lemma 5.6. After processing all vertices that move to level i in Al-
gorithm 3, no vertex v needs to be moved to any level j < i in a future
iteration of Line 6; i.e., no vertex v has dl(v) < i after processing i.

Proor. We prove this via induction. In the base case when i =
0, all vertices with dl(v) = 0 are moved to level 0. All vertices
which have dI(v) = 0 are vertices which have degree 0. Thus, all
vertices that do not have dl(v) = 0 have degree > 1 and have
dl(w) > 1. Hence, after moving all vertices with dl(v) = 0 to level
0, no additional vertices need to be moved to level 0. Assuming our
induction hypothesis, we now show our lemma holds for level i + 1.

All vertices that move to level i + 1 violated Invariant 2 and hence



have up*-degree < (1+ 8)9"U~1 at level j > i + 1 and up*-degree
> (1+8)9"() atlevel i+1. After moving all vertices with dl(v) = i+1
to level i + 1, no vertices on levels k < i + 1 have their up*-degree
decreased by the move. We conclude the proof with vertices at
levels I > i + 1. Suppose for the sake of contradiction that there
exists some vertex w on level [ > i+ 1 which has dl(w) < i+1 after
the move. In order for dl(w) < i+ 1, some neighbor(s) of w must
move below level i, a contradiction. Finally, due to Observation 5.4,
no vertices below level i + 1 will move up. O

We describe the depth of our parallel data structures next. We
provide a set of linear-space data structures in Section 5.8 at the
cost of increased depth.

Lemma 5.7. Algorithm 1 returns a randomized parallel level
data structure that maintains Invariant 1 and Invariant 2 and has
O(log? nloglogn) depth, w.h.p., and O(nlog? n + m) space.

ProoF. By Lemma 5.5 and Lemma 5.6, Algorithm 2 (Line 5)
and Algorithm 3 (Line 6) iterates through O(log? n) levels sequen-
tially. Thus, the depth of algorithms is determined by the depth
of the procedures that are run in each level the algorithm iterates
through.

We maintain the list of neighbors using separate parallel hash
tables for each vertex v. One hash table contains v’s neighbors at
the same or higher levels. Vertex v’s neighbors in levels below ¢(v)
are placed in a separate hash table for each level. Parallel lookups
into the hash tables require O(1) depth w.h.p., and inserting and
deleting elements within the tables require O(log” n) depth w.h.p.
Simultaneously changing the values within the hash table require
O(log™ n) depth w.h.p. Then, the depth per level of the structure is
dominated by Algorithm 4.

The only additional depth we need to consider is the depth in-
curred from Algorithm 4. Both the doubling search and the binary
search require O(log K) = O(loglog n) depth. All other contribu-
tions come from concurrently modifying and accessing dynamic
arrays and hash tables and can be done in O(log* n) depth w.h.p.

Using the above, we successfully prove that the depth of Algo-
rithm 1 is O(log? nlog log n) w.h.p. The extra space in addition to
storing the graph is O(nlog? n) because we must have O(log? n)
size dynamic arrays for each vertex to track their neighbors at
lower levels (i.e., the neighbors in L;). Thus, the total depth of our
randomized algorithm is O(log? nloglog n) w.h.p., and the space
used is O(nlog2 n+m). o

5.5 Potential Argument for Work Bound

Our work bound uses the potential functions presented in Section
4 of [13]. We show that we can analyze our algorithm using these
potential functions and our parallel algorithm serializes to a set of
sequential steps that obey the potential function. We obtain the
following lemma by the potential argument provided in this section.
Lemma 5.8. For a batch of |B| < m updates, Algorithm 1
returns a PLDS that maintains Invariant 1 and Invariant 2 in
O(|8|log? n) amortized work and O(log? nloglogn) depth w.h.p.,
using O(nlog? n + m) space.

5.5.1  Proof of Work Bound. Unlike the algorithm presented in [13,
47], in each round, to handle deletions, we recompute the dl(v) of
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any vertex v that we want to move to a lower level. Specifically,
we compute and move v to the closest level that satisfies both In-
variant 1 and Invariant 2. This is a different algorithm from the
algorithm presented in [13, 47], and so we present for completeness
a work argument for our modified algorithm. The work bound we
present accounts for the work of any one vertex’s movement up
or down levels using the potential function argument of [13]. Note
that this potential function also gives us the amortized work per
edge update of our algorithm since there exists a corresponding
set of sequential updates that cannot do less work than the set of
parallel updates. Although the algorithm is different, the below
potential work bound argument follows closely the work bound
proof presented in Bhattacharya et al. [13]. However, we repeat the
proof again here (with some modifications) for completeness.

Charging the Cost of Moving Levels. The strategy behind our
potential function is to use the increase in our potential function
due to edge updates to pay for the decrease in potential due to
vertices moving up or down levels, which is enough to account
for the work of moving the vertices. We can then charge our costs
to the increase in potential due to edge updates. Below, we bound
the increase in potential due to edge updates and the decrease in
potential due to vertex movements.

We use the following potential function to calculate our potential.
First, recall some notation. Let Z; be the set of vertices in levels
i to K. In other words, Z; = U;(:i Vj. Let N(u, Z;) be the set of
neighbors of u in the induced subgraph given by Z;. Let £(u) be the
current level that u is on. Finally, let gn(¢) be the group number of
level ¢; in other words, £ € ggn(¢). Let f : [n] X [n] — {0,1} be a
function where f(u,v) = 1 when £(u) = £(v) and f(u,v) = 0 when
¢(u) # £(v). Using the potential functions defined in [13], for some
constant A > 0:

= Z ®(0v) + Z ¥ (e) 1)
veV ecE
t(v)—-1
OEY Z max(0, (2 +3/4) (1+8)9"D — |N(v,Z)]) (2)
i=0
¥(u,0) =2 (K —min(£(u),£(v))) + f(u,0) (3)

We first calculate the potential changes for insertions and deletions
of edges.

Insertion. The insertion of an edge (u,v) creates a new edge
with potential ¥(u, v). The new potential has value at most 2K + 1.
With an edge insertion ®(u) and ®(v) cannot increase. Thus, the
potential increases by at most 2K + 1.

Deletion. The deletion of edge (u,v) increases potentials @ (u)
and ®(v) by at most (24 + 3)K and 2K, respectively. It does not
increase any other potential since the potential of edge (u,v) is
eliminated.

First it is easy to see that the potential II is always non-
negative. Thus, we can use the positive gain in potential over edge
insertions and deletions to pay for the decrease in potential caused
by moving vertices to different levels.
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Now we discuss the change in potential given a movement of a
vertex to a higher or lower level. Moving such a vertex decreases
the potential and we show that this decrease in potential is enough
to pay for the cost of moving the vertex to a higher or lower level.

A vertexv moves from level i to level dI(v) < i due to Algorithm 3.
Since vertex v moved down at least one level, this means that prior
to the move, its up*-degree is up*(v) < (1+6)9"(¢(@=1) Tt is moved
to a level dI(v) where its up*-degree is at least (1 + §)9n(di()-1)
and its up-degree is at most (2 + 3/1) (1 +68)9m(dl(®) (or it is moved
to level 0).

The potential before the move is at least

di(v)-1
2 max (o, (2+3/2) (1+6)7D _ [N (o, zi)|)

~

0)—1
+ (A+3)(1+5)9"D

i=dl(0)
since we only move a vertex to a lower level if up*(v) <
(1 + 6)9m@-D and we move it to the closest level dI(v)
where Invariant 2 is no longer violated. To derive the second term,
since we moved vertex v to level dI(v), we know that its degree
IN(v, Zgi(0))| < (1 + §)97(dl(2)) (otherwise, we could have moved
o to level dl(v) + 1). Then, substituting (1 + 8)9"() for all levels

i > dl(v) into ®(v) allows us to obtain zfij)l(j) (A+3)(1+ 89D,
Then, when it reaches its final level, we know that it is at the
highest level it can move to or at level 0. In both cases,
di(v)-1
®(0)=2 Y max (o, (2+3/2) (1+86)9D _ |N(o, zl-)|)
i=0

after the move. In this case, ®(v) decreases by at least Z[(U)_l A+

i=dl(v)
3)(1 + 8)9n (D),

We need to account for two potential increases: the increase in
¥ and the increase in ® from neighbors of . There are less than
(1 +6)9(d1(®) guch neighbors that we need to consider. Namely,
there are less than (1 + §)97(d!(2)) neighbors in levels > dI(v) that
we need to consider for the potential increase. This is due to the
fact that we moved v to the highest level that satisfies the invariants.
If o has > (1 + 6)9"(d1(®) neighbors in Z4i(v), then the desire-
level of v would be dl(v) + 1 since v satisfies Invariant 2 at level
dl(v) + 1 and we can increase its dl(v). Furthermore, we only need
to consider neighbors in levels > dl(v) since only these neighbors
will contribute to the potential increase by Eq. (2) and Eq. (3).

We first consider the increase in ¥. The total potential increase
in ¥(u,v) (Eq. (3)) summed over the increase for every edge (u,v)
where ¢£(u) > dl(v) is at most 2(£(v) — dlI(2))(1 + 8)97(dI(®)) This
is due to the fact that for each edge (u,v), the potential gain from
¥ is upper bounded by 2 for every level in [dI(v), £(v) — 1]. Thus,
in total over < (1 + §)9"(d1®) such neighbors results in a total
potential increase of less than 2(£(v) — dl(v))(1 + 5)9n(di(@)

Now we consider the potential increase in ®. For this potential
increase, we need to account for the increase in potential of every
neighbor whose edge is flipped by the move. Decreasing the degree
of each neighbor by one for each of [N (v, dl(v))] < (1+ §)9n(di(@)
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neighbors results in the total increase in ®. In other words, for

each flipped edge (v, w), N(w, Z;) decreases by 1 for each level

i € [dI(v) +1, £(v)]. The total increase in ® is then at most A(£(v) —

di(0))(1 + §)9n(dl() by Eq. (2) over all flipped edges since there

are less than (1 + §)9™(d(®) gych neighbors in levels > dI(v) + 1

and so the total number of flipped edges is less than (1+8)97(d1(2))
Then, in total, the potential decrease is at least

t(v)-1
D1 431+ |~ 2(¢(0) - di0)) (1 + )9 )
i=dl(0)

—A(£(v) = dI(0))(1 +8)7"4 @) > (£() = dI(0)) (1 + §)97(dI (@)

which is enough to pay for the at most (1+8)9"(41(2)) edge flips
as well as the O(£(v) — dl(v)) work for computing the desire-level.
The total number of edge flips is upper bounded by |N (v, dl(v))].
Since we moved v to dl(v) and not dl(v) + 1, we know that v satis-
fies Invariant 2 at dl(v) and not at dl(v) + 1. Then, this means that
IN(v, dI(0))| < (1 + 8)9(d1(®) Hence, our number of edge flips
is also bounded by (1 + §)9n(di(),

A vertex v moves from level i to level i + 1 due to Algorithm 2. In
order for Algorithm 2 to move a vertex from level i to i + 1, it must
have violated Invariant 1 and that up(v) > (2+3/1)(1 + 5)9n(d)
before the move. Before and after the move, ®(v) = 0, since in these
cases up*(0) > (2+3/2) (1+8)9"0~D and up*(0) > (2+3/1) (1+
8)9"() | respectively. Thus, ®(v) does not change in value. Further-
more, the ®(w) of its neighbors w cannot increase. Then, this leaves
us with the potential change in ¥ (v, w).

Z; is the set of neighbors that v has to iterate through within
its data structures if v goes up a level. The potential decrease for
every neighbor of v on i = £(v) is 1. The potential decrease for
every neighbor on level i + 1 is 1. Finally, the potential decrease for
every neighbor in levels > dl(v) is 2. Then, the potential decrease
for every neighbor in Z; is at least 1 and is enough to pay for the
O(|Z;]) cost of iterating and moving the neighbors of v in its data
structures.

Parallel Amortized Work. The last part of the proof that needs to
be shown is that any set of parallel level data structure operations
that is undertaken by Algorithm 2 or Algorithm 3 has a sequential
set of operations of the form detailed above (i.e., moving v to dl(v)
or moving v from level i to i + 1) that consists of the same or strictly
larger set of operations.

Lemma 5.9. For any set of operations performed in parallel by Al-
gorithm 2 or Algorithm 3, there exists an identical set of sequential
operations to the set of parallel operations.

Proor. In Algorithm 2, the parallel set of operations consists
of moving all vertices that violate Invariant 1 in the same level i
up to level i + 1. Again, suppose we choose an arbitrary order to
move the vertices in level i to level i + 1. Given two neighbors in
the order v and w, if v moves to level i + 1, the up-degree of w still
includes v; since the up-degree of any vertex w is not affected by
the previous vertices that moved to level i + 1, w moves to i + 1 on
its turn. This order provides a sequential set of operations that is
equivalent to the parallel set of operations.



In Algorithm 3, the parallel set of operations consists of moving
a set of vertices down from arbitrary levels to the same level i. We
show that there exists an identical set of sequential operations to
the parallel operations. First, any vertex whose dl(v) = i considered
all vertices in levels > i — 1 in its calculation of dI(v). Thus, any
other vertex w moving from a level j > i to level i is included in
calculating the desire-level of vertex . Suppose we pick an arbitrary
order to move the vertices that have dl(v) = i to level i. Then, the
desire-level of any vertex w whose dl(w) = i does not change after v
is moved to level i. Hence, when it is w’s turn in the order, w moves
to level i. This arbitrary order is a sequential set of operations that
is identical to the parallel set of operations. O

Lemma 5.10. For a batch of |B| < m updates, Algorithm 1 requires
O(|8|log? n) amortized work with high probability. The required
space is O(nlog? n + m) using the randomized data structures.

Proor. Our potential argument handles the cost of moving
neighbors of a vertex v between different levels. Namely, our po-
tential argument shows that such costs of updating neighbor lists
of nodes require O(log? n) amortized work per edge update to the
structure since we showed that the O(log? n) potential increase
from each edge insertion or deletion is enough to pay for the cost
of moving vertices to different levels.

Then, it remains to calculate the amount of work of Algorithm 4.
We can obtain the size of each neighbor list in O(1) work and depth.
If we show that the work of running Algorithm 4 is asymptotically
bounded by the work of calculating the set of neighbor vertices
that need to be moved between neighbor lists for a vertex, then
we can also charge this work to the potential. To compute the first
lower bound on dI(v), we maintain a cumulative sum of the total
number of neighbors for each vertex at or below the current level
£(v). Then, we sequentially double the number of elements we use
to compute the next level. We use O(¢ — dl(v)) work to compute
dl(v).

Finally, we also bound the work of the final binary search. Let R
be the size of the range of values in which we perform our binary
search. The size of the number of possible levels becomes smaller
as we decrease our range of values to search. Whenever we go
right in the binary search, we perform R/2 work. Whenever we
go left in the binary search, we also perform at most R/2 work.
Thus, the total amount of work we perform while doing the binary
search is O(R). And by the argument above, the amount of work is

o (|Zdl(v) \ Zy(0) I)-

The total work of Algorithm 4 is O(|Zgi(o) \ Zp(0)| + (£ — dI(0)))
which we can successfully charge to the potential. We conclude
that the amount of work per update is O(log? n). O

5.6 Estimating the Coreness and Orientation

(2 + ¢)-Approximation of Coreness. The coreness estimate, ]2'(0),
is an estimate of the coreness of a vertex v. We compute a coreness
estimate using only v’s level and the number of levels per group
(which is fixed). We show how to use such information to obtain a
(2+¢)-approximation to the actual coreness of v for any constant ¢ >
0. (We can find an approximation for any fixed ¢ by appropriately
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setting § and A.) To calculate I%(v), we find the largest index i of a
group g;, where £(v) is at least as high as the highest level in g;.

Definition 5.11 (Coreness Estimate). The coreness estimate Iz(v)
of vertex v is (1+ §)™ax(L(t(@)+1)/4[log, 5 n11=1.0) ‘yyhere each group
has 4[log 1,5y ] levels.

To see an example, consider vertex y in Fig. 7 (e). We estimate
k(y) = 1 since the highest level that is the last level of a group and
is equal to or below level £(y) = 4 is level 2. Level 2 is part of group
0, and so our coreness estimate for y is (1 + §)° = 1. This is a 2-
approximation of its actual coreness of 2. Using Definition 5.11, we
prove that our PLDS maintains a (2 + 3/1) (1 + §)-approximation
of the coreness value of each vertex, for any constants A > 0 and
& > 0. Therefore, we obtain the following lemma giving the desired
(2 + ¢)-approximation. Our experimental analysis shows that our
theoretical bounds limit the maximum error of our experiments,
although our average errors are much smaller. To get a maximum
error bound of (2+¢) for any ¢ > 0, we can set § = ¢/3and A = g+3.

By Lemma 5.13, it suffices to return l%(v) as the estimate of the
coreness of v; this proves the approximation factor in Theorem 3.1.

Lemma 5.12. Let I;(v) be the coreness estimate and k(v) be the
coreness of v, respectively. If k(v) > (2+3/4) (1 + 8)9, then k(v) >

’ 9/ A ’
(1+ ). Otherwise, ifk(v) < % then k(v) < (1+ )9

Proor. For simplicity, we assume the number of levels per group
is 4[log .5y m] + 1 (a tighter analysis can accommodate the case
when the number of levels per group is [logy,s5) m]). Let T(g9")
be the topmost level of group ¢’. In the first case, we show that if
k(v) > (2+3/4) (1+ 5)9,, then v would be in a level higher than
T(g’) in our level data structure. This would also imply that l;(v) >
(1+68)9 . Suppose for the sake of contradiction that v is located
at some level £(v) where £(v) < T(g’). This means that up(v) <
2+3/0) (1+ 5)9' at level £(v). Furthermore, by the invariants of
our level data structure, each vertex w at the same or lower level has
up(w) < (2+3/4) (1 + 5)9/. This means that when we remove all
vertices starting at level 0 sequentially up to and including #(v), all
vertices removed have degree < (2+3/1) (1+ 5)9' when removed.
Thus, when we reach £(v), v also has degree < (2+3/1) (1 + 5)9'.
This is a contradiction with k(v) > (2+3/4) (1+ 5)9/. It must then
be the case that v is at a level higher than T'(¢g”) and l;(o) > (1+6)9.
%, then k(0) < (1+8)9.

(1+8)¢
(2+3/0) (1+9)
12(0) > (1+68)9.To prove this case, we consider the following
process, which we call the pruning process. Pruning is done on a
subgraph S C G. We use the notation ds(v) to denote the degree of v
in the subgraph induced by S. For a given subgraph S, we prune S by
(1+8)¢

(2+3/A) (1+6)
Note that in this argument, we need only consider levels from the

same group g’ before we reach a contradiction, so we assume that all
levels are in the group g’. Let j represent the number of levels below
level T(g’). (Recall that because k(v) > (148)9,¢(0) > T(g),if we
consider a level £(v) > T(g’), then the up*-degree cannot decrease
due to Invariant 2 becoming stricter. This only makes our proof
easier, and so for simplicity, we consider £(v) = T(g’).) We prove

Now we prove that if k(v) <

We assume for sake of contradiction that k(v) < and

repeatedly removing all vertices v in S whose dg(v) <
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via induction that the number of vertices pruned from the subgraph
induced by Zr(g)_; must be at least

j—1
(<z+3/12>(1+5>)f ((1+5)g'_

(1+68)9
(2+3/2) (1+6)

mg&%. We first prove the base case

when j = 1. In the base case, we know that dZT(g’)—l (0) > (1+6)7

by Invariant 2. Then, if fewer than (1+68)9 — % neighbors

(1+5)7
2+3/N)(1+5) -

or otherwise, k(v) >

of v are pruned from the graph, then v is part of a >

p
%, a contradiction.

/ g
Thus, at least (1 +6)9 — %

in this case. We now assume the induction hypothesis for j and
prove that this is true for step j + 1. By Invariant 2, each vertex
on level T(g’) — j and above has degree at least (1 + 8)9 in
graph Zg(g)—j—1. Then, in order to prune all X vertices from

core and k(v) >

vertices must be pruned

g/
the previous induction step, we must prune at least W
edges, since each edge decreases the degree of two vertices by 1;
all adjacent edges of a pruned vertex are also pruned/removed.
(1+8)¢
(24+3/2) (1+6)
edges when it is pruned, by definition of our pruning procedure

(148)9
W. Thus, the

minimum number of vertices we must prune in order to prune the
243/2) (1+5) \ /71 / 1+6)9
X=(< )¢ >) ((1+5)g (1+6)

T 2e3/0)(1+5)
previous step is

Each vertex that is pruned can remove at most

since we prune vertices with degree <

vertices from the

# edges that need to be pruned (1+ 5)-‘/X
max # edges pruned per pruned vertex 9 (1+8)9
(2+3/1) (1+6)
_ 2+3/0)(1+ 5)X
2
J , g
_ 2+3/)(1+9) (148)7 - (1+9) .
2 2+3/)(1+9)

Thus, we have proven our argument for the (j + 1)-st induc-
tion step. Note that for j = [l0g(2,3/3)(145)/2(4m + 1)], we have
j < 4[log(145)(m)] + 1. This is because, since we pick 1 to be
a constant greater than 0, 2 + 3/4 > 2 and for large enough m,
log(2+3//1)(1+5)/2(4m + 1) < 4[10g(1+5) (m)] + 1. Then, by our in-
duction, if we substitute 4|'log(1+5) (m)] + 1 for j,

(1+08)

1+ — D (179

(W)“"gw)(mﬂ (
2

>4m- (1/2) = 2m.

This means we must prune at least 2m+1 vertices at this step, which
we cannot because there are at most 2m vertices in a level that is
not level 0. This last step holds because all vertices with degree 0
must be on the first level. Hence, all vertices not on level 0 must be
adjacent to at least one edge, and n < 2m where n is the number
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of vertices on the level that is not level 0. Thus, our assumption is
incorrect and we have proven our desired property. O

We show that Lemma 5.12 implies Lemma 5.13.

Lemma 5.13. The coreness estimate k(v) of a vertex v satisfies

(kz(:?) < IQ(U) < (2+¢)k(v) for any constant ¢ > 0.

PROOF. Suppose k(v) = (1+6)9. Then, by Lemma 5.12, we have

G < k(v) < (2+3/2) (1+6)7*1. Then, substituting

I%(U) = (1 + )9 and solving the above bounds, % <
k(v) < (2+43/1) (1 + 6)k(v). For any constant ¢ > 0, there exists

constants A, 5 > 0 where % < ];(U) < 2(1+¢)k(v). O

For arbitrary batch sizes, getting better than a 2-approximation
for coreness values is P-complete [5], and so there is unlikely to
exist a polylogarithmic-depth algorithm with such guarantees.

Proor oF THEOREM 3.2. The approximation factor for our algo-
rithm is given by Lemma 5.13. The work and depth bounds of our
algorithm is given by Lemma 5.10 and Lemma 5.7. Altogether, we
prove our main theorem. o

5.7 O(a) Out-Degree Orientation

We orient all edges from vertices in lower levels to higher levels,
breaking ties for vertices on the same level by using their indices.
Such an orientation can be maintained dynamically in the same
work and depth as our PLDS via a parallel hash table keyed by
the edges and where the values give the orientation. Specifically,
we require the following data structures for maintaining a low
out-degree orientation. First, we maintain a parallel hash table, H,
containing the edges of the graph. The edge (u,v) is the key in the
hash table where u < v (i.e. the index of u is less than the index of
v). The value for key (u,v) is 0 if the edge is oriented from u to v
and 1 if the edge is oriented from o to u. The pseudocode is shown
in Algorithm 5. Additionally, we make a slight modification to our
update algorithm that keeps track of the edges that were searched
when a vertex moves to a higher or lower level. The pseudocode
for our algorithm is given in Algorithm 5.

PrRoOOF OF COROLLARY 3.3. Let the degeneracy of the graph be d.
As is well-known, the degeneracy of the graph is equal to kpax
where kpqx is the maximum k-core of the graph. Furthermore,
it is well-known that %1 < a < d. By Lemma 5.13, the vertices
in the largest k-core in the graph are in a level with group num-
ber at most log 1,5 ((2+3/1)(1 + 6)d) + 1. This means that the
up-degree of each vertex in that group is at most (2 + 3/1)(1 +
5)1°g(1+5) ((2+3/H) (1+0)d) _ (4+¢)d for any constant ¢ > 0 for appro-
priate settings of A, § > 0. We then also obtain an (8+¢)« out-degree
orientation where « is the arboricity of the graph. O

5.8 Deterministic and Space-Efficient Data
Structures

In addition to the randomized data structures presented in Section

3.4, we present two additional sets of data structures that we can use

to obtain a deterministic and a space-efficient (2 + ¢)-approximate
k-core algorithms.



Algorithm 5 LowOutdegreeOrient(8)

Input: A batch B of updates.

Output: A set of edges F that were flipped after processing the batch of
updates. An edge (u,v) € F represents the orientation of the edge
before the flip. Also returns oriented updates (u, v) € B where for edge
deletions (u, v) is the orientation of the edge before the deletion and for
edge insertions (u, v) is the orientation of the edge after the insertion.

1: F« 0.

2: parfor each searched edge (u, v) for a vertex that moved levels do

3:  if H[(#,0)] = 0 and ((£(u) > £(v) or (£(u) = £(v) and v < u))
then

4: F «— FU (u,v).

5. elseif H[(u,0)] = 1and (¢£(v) > £(u) or (£(u) = £(v) and u < v))
then

6: F «— FU (u,0).

7: J 0.

8: parfor each edge update {u, v} € 8 do

9:  if {u, v} is an insertion then

10: Add to J the orientation of edge after processing 5.

11:  else

12: Add to J the orientation of edge before processing 8.
return F, J.

The work of all of our randomized, deterministic, and space-
efficient algorithms are the same; however, using randomization
allows us to obtain a better depth with slightly less complicated
data structures.

Deterministic Data Structures. We initialize an array U, of size n.
Each vertex is assigned a unique index in U. The entry for the i’th
vertex, U|[i], contains a pointer to a dynamic array that stores the
neighbors of vertex v; at levels > £(v;). Each vertex v; also stores
another dynamic array, Ly,, that contains pointers to a set of dy-
namic arrays storing the neighbors of v; partitioned by their levels j
where j < ¢(v;). Specifically, we maintain a separate dynamic array
for each level from level 0 to level £(v;) — 1 storing the neighbors
of v; at each respective level. We also maintain the current level of
each vertex in an array.

To perform a batch of insertions into a dynamic array, we insert
the elements at the end of the array. The array is resized and doubles
in size if too many elements are inserted into the array (and it
exceeds its current size). For a batch of deletions, the deletions
are initially marked with a “deleted” marker indicating that the
element in the slot has been deleted. A counter is used to maintain
how many slots contain “deleted.” Then, once a constant fraction
of elements (e.g. 1/2) has “deleted” marked in their slots, the array
is cleaned up by reassigning vertices to new slots and resizing the
array.

Lemma 5.14. Algorithm 1 returns a deterministic level data struc-
ture that maintains Invariant 1 and Invariant 2 and has O(log3 n)
worst-case depth and O(nlog?® n + m) space.

Proor. All edge updates can be partitioned into Bj,s and By,;
in parallel in O(log n) depth. Then, it remains to bound the depth
of Algorithm 2 and Algorithm 3.

Algorithm 2 iterates through all K = O(log? n) levels sequen-
tially. By Lemma 5.5, no vertices on levels < i will violate Invariant 1
after processing level i. Thus, by the end of the procedure no ver-
tices violate Invariant 1. By Observation 5.3, Invariant 2 was never
violated during Algorithm 2. Thus, both invariants are maintained
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at the end of the algorithm. Since we iterate through O(log? n)
levels and, in each level, we require checking the neighbors at
one additional level which can be done in parallel in O(1) depth,
the total depth of this procedure is O(log? n). For each level, an
additional depth of O(log n) might be necessary to compute the ele-
ment offsets and then resize the arrays. Then, Algorithm 2 requires
O(log® n) worst-case depth.

Algorithm 3 iterates through all K = O(log? n) levels sequen-
tially. By Observation 5.4 and Lemma 5.6, after processing level i,
no vertices on a level higher than i+ 1 will have dl(v) < i+1and no
vertices on levels < i will violate Invariant 1. Thus, by the end of the
procedure all vertices satisfy Invariant 2. Furthermore, Invariant 1
was never violated due to Observation 5.4. There are O(log2 n)
levels and for each level we require running Algorithm 4 to obtain
the dl(v) of each affected vertex v that should be moved to each
level.

Running Algorithm 4 requires O (log log n) depth to obtain the
first level that satisfies invariants for each affected vertex v and
O (loglog n) depth for the final binary search that determines the
closest level to £(v) that satisfies the invariants. In conclusion, Al-
gorithm 3 requires O(log® n) worst-case depth.

Altogether, Algorithm 1 requires O(log? n) worst-case depth. O

O(m) Total Space Data Structures. Here we describe how to re-
duce the total space usage of our data structures to O(m). All of our
previous data structures use O(nlog? n + m) space, which means
that when m = O(n), we use space that is superlinear in the size
of the graph. To reduce the total space to O(m), we maintain two
structures for L,,. We can use either the deterministic or random-
ized structures for the other structures. Each L, is maintained as
a linked list. The j’th node in the linked list maintains the num-
ber of neighbors of v; at the j’th non-empty level (a non-empty
level is one where v; has neighbors at that level) that is less than
£(v;). The node representing a level is removed from the linked list
when the level becomes empty. Each node in Ly, contains pointers
to vertices at the level represented by the node. Each vertex then
contains pointers to every edge it is adjacent to and every edge
contains pointers to the two nodes in the two linked lists repre-
senting the levels on which the endpoints of the edge reside. Using
either dynamic arrays or hash tables for the lists of neighbors allow
us to maintain these data structures in O(m) space. Since we only
maintain a node in our linked list for every non-empty level, our
linked list contains O(m) nodes.

Using the data structures above, we can prove equivalent results
to Theorem 3.1.

Lemma 5.15. Algorithm 1 returns a deterministic level data struc-
ture that maintains Invariant 1 and Invariant 2 and has O(log4 m)

depth, while using O(m) space.

Proor. The proof is the same as the proof of Lemma 5.14 except
that we replace Algorithm 4 with a linear search in the linked list,
which has size at most the number of levels, which is O(log? n).
The specific data structure we use for each vertex v is a linked list
with each node of the linked list representing a level < ¢(v) — 1
which contains one or more neighbors of v. Then, each node in the
linked list contains a pointer to a dynamic array containing the
neighbors in that level. Thus, the total depth is O(log* n). O
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5.8.1 Overall Work and Depth Bounds. Our deterministic and
space-efficient structures also give the following corollary using
our above depth bound arguments.

Using Lemma 5.14 and Lemma 5.15, we obtain the following two
corollaries.

Corollary 5.16. Fora batch of |B| < m updates, Algorithm 1 returns
a PLDS that maintains Invariant 1 and Invariant 2 in O(|8|log? n)
amortized work and O(log® n) depth, using O(nlog? n + m) space.

Corollary 5.17. Fora batch of |B| < m updates, Algorithm 1 returns
a PLDS that maintains Invariant 1 and Invariant 2 in O(|8|log? n)
amortized work and O(log* m) depth, using O(m) space.

5.9 Handling Vertex Insertions and Deletions

We can handle vertex insertions and deletions by inserting vertices
that have zero degree and considering deletions of vertices to be a
batch of edge deletions of all edges adjacent to the deleted vertex.
When we insert a vertex with zero degree, it automatically gets
added to level 0 and remains in level 0 until edges incident to the
vertex are inserted. For a vertex deletion, we add all edges incident
to the deleted vertex to a batch of edge deletions. Note, first, that
all vertices which have 0 degree will remain in level 0. Thus, there
are at most O(m) vertices which have non-zero degree.

In this setting, we may need to rebuild the PLDS from scratch. In-
stead of maintaining [4log? n] levels, we maintain [8 log? n] levels
in this setting. Doubling the number of levels is a very loose bound
to ensure that we can handle two times the number of vertices
in the graph before we perform a rebuild of our entire structure.
To maintain O(log2 n) levels in our data structure, we rebuild the
data structure once we have made n/2 vertex updates. Rebuilding
the data structure requires O(nlog? n) total work which we can
amortize to the n/2 vertex updates to obtain O(log2 n) amortized
work w.h.p. Running Algorithm 2 and Algorithm 3 on the entire set
of O(n + m) vertices and edges requires O(poly log n) depth w.h.p.
depending on the specific set of data structures we use.

Lastly, in order to obtain a set of vertices which are re-numbered
consecutively (in order to maintain our space bounds), we perform
parallel integer sort or hashing.

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance of our dynamic PLDS
with existing approaches on a set of large real-world graphs. Our
results show that our algorithms consistently achieve speedups, by
up to two orders of magnitude, compared with all of the previous
state-of-the-art dynamic k-core decomposition algorithms.
Evaluated Algorithms. We evaluate two versions of our algo-
rithm: PLDS: an exact implementation of our theoretical algorithm
and PLDSOpt: a version with [log,, s n/50] levels per group. PLDS
maintains the approximation guarantees given by Lemma 5.13,
while PLDSOpt achieves better performance while maintaining
slightly worse approximation bounds.

We compare our algorithms with the following dynamic imple-
mentations: Sun: the sequential, approximate algorithm of Sun et
al. [83], specifically their faster, round-indexing algorithm, which
is publicly available [84]; Hua: the parallel, exact algorithm of Hua
et al. [48], kindly provided by the authors; Zhang: the sequential,
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Table 3: Graph sizes and largest values of k for k-core decomposi-

tion.
Graph Dataset ‘ Num. Vertices ‘ Num. Edges ‘ Largest value of k
dblp 317,080 1,049,866 101
brain 784,262 267,844,669 1200
wiki 1,094,018 2,787,967 124
youtube 1,138,499 2,990,443 51
stackoverflow 2,584,164 28,183,518 163
livejournal 4,846,609 42,851,237 329
orkut 3,072,441 117,185,083 253
ctr 14,081,816 16,933,413 2
usa 23,947,347 28,854,312 3
twitter 41,652,230 1,202,513,046 2484
friendster 65,608,366 | 1,806,067,135 304

exact algorithm of Zhang and Yu [93], kindly provided by the au-
thors; and LDS: our implementation of the sequential, approximate
algorithm of Henzinger et al. [47], but using our coreness approxi-
mation procedure in Section 5.6. All are state-of-the-art algorithms,
outperforming previous algorithms in their respective categories.
We also implemented ApproxKCore, our new static parallel
approximate k-core decomposition algorithm (Theorem 3.8). We
compared it with ExactKCore, the state-of-the-art parallel, static,
exact k-core algorithm of Dhulipala et al. [27].
Setup. We use c2-standard-60 Google Cloud instances (3.1 GHz
Intel Xeon Cascade Lake CPUs with a total of 30 cores with two-way
hyper-threading, and 236 GiB RAM) and m1-megamem-96 Google
Cloud instances (2.0 GHz Intel Xeon Skylake CPUs with a total of
48 cores with two-way hyper-threading, and 1433.6 GB RAM). We
use hyper-threading in our parallel experiments by default. Our
programs are written in C++, use a work-stealing scheduler [15],
and are compiled using g++ (version 7.5.0) with the -03 flag. We
terminate experiments that take over 3 hours. PLDS and PLDSOpt
finished within 3 hours for all experiments.
Datasets. We test our algorithms on 11 real-world undirected
graphs from SNAP [61], the DIMACS Shortest Paths challenge
road networks [26], and the Network Repository [77], namely
dblp, brain, wiki, orkut, friendster, stackoverflow, usa, ctr,
youtube, and livejournal. We also used twitter, a symmetrized
version of the Twitter network [59]. We remove duplicate edges,
zero-degree vertices, and self-loops. Table 3 reflects the graph sizes
after this removal, and gives the largest k-core values. Both stack-
overflow and wiki are temporal networks; for these, we maintain the
edge insertions and deletions in the temporal order from SNAP. usa
and ctr are two high-diameter road networks and brain is a highly
dense human brain network from NeuroData (https://neurodata.io/).
All experiments are run on the c2-standard-60 instances, except
for twitter and friendster, which are run on the m1-megamem-96
instances as they require more memory.
Ins/Del/Mix Experiments. Our experiments are run for three
different types of batched updates, referred to by: (1) Ins: starting
with an empty graph, all edges are inserted in multiple size |B)|
batches of insertion updates, (2) Del: starting with the original
graph, all edges are deleted in multiple size | 8| batches of deletion
updates, and (3) Mix: starting with the initial graph minus a random
set I of |B|/2 edges, a set D of | B|/2 random edges is chosen among
the edges in the graph; then, a single size | 8| mixed batch of updates
with insertions I and deletions D is applied. For the temporal graphs,
stackoverflow and wiki, the order of updates in the batches follows
the order in SNAP [61]. For the rest, updates are generated by



taking two random permutations of the edge list, one for Ins and
one for Del. Batches are generated by taking regular intervals of the
permuted lists. For Mix, [ and D are chosen uniformly at random.

Some past works only ran experiments in the Mix setting [48, 93],
while others [83] also consider Ins and Del. In this paper, we run
experiments in all three settings. For Ins and Del, we consider the
average running time across all batches as a good indicator of how
well the algorithm performs. For Mix, we test each algorithm and
dataset 3 rounds each and take the average.

We use the original timing functions provided by Hua, Sun,
Zhang, and ExactKCore. We use the original code of Hua and Zhang
for Mix and modify their code to perform Ins and Del. We note
that Hua’s timing function does not include the time to process
the graph and maintain their data structures; we include all such
times in our code. All other benchmarks also include this time. If
we include this time in their implementation, their running times
increase by up to 8x for some experiments. This explains some
of Hua’s experimental performance improvements over the other
benchmarks.

The static algorithms, ExactKCore and ApproxKCore, are re-
run on the entire graph after each batch of updates in Ins and
Del. For the Mix batch, we order all insertions in the batch before
all deletions. Then, we generate two static graphs per batch, one
following all insertions, and the other following all deletions. We re-
run the static algorithms on each static graph and take the average
of the times to obtain comparable per-batch running times. We do
this because some of the deletion updates may cancel the insertion
updates in the batch.

6.1 PLDS Implementation Details

We implemented our algorithms using the primitives from the
Graph Based Benchmark Suite [28]. We implemented the PLDS
with work, depth, and space bounds given in Theorem 3.1. One
can choose to instead implement our space-efficient version of our
data structure in exchange for additional poly(log n) factors in the
theoretical depth.

Our data structure uses concurrent hash tables with linear prob-
ing [81], which support x concurrent insertions, deletions, or finds
in O(x) amortized work and O(log* x) depth w.h.p. [42]. For dele-
tions, we used the folklore tombstone method: when an element is
deleted, we mark the slot in the table as a tombstone, which can
be reused, or cleared during a table resize. We also use dynamic
arrays, which support adding or deleting x elements from the end
in O(x) amortized work and O(1) depth.

We first assign each vertex a unique ID in [n]. Then, we maintain
an array U of size n keyed by vertex ID that returns a parallel hash
table containing neighbors of v on levels > £(v). For each vertex v,
we maintain a dynamic array L, keyed by indices i € [0, £(v) — 1].
The i’th entry of the array contains a pointer to a parallel hash table
containing the neighbors of v in level i. Appropriate pointers exist
that allow O(1) work to access elements in structures. Furthermore,
we maintain a hash table which contains pointers to vertices v
where dl(v) # £(v), partitioned by their levels. This allows us to
quickly determine which vertices to move up (in Algorithm 2) or
move down (in Algorithm 3).
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We make one modification in our parallel implementation of our
insertion procedure from our theoretical algorithm which is instead
of moving vertices up level-by-level, we perform a parallel filter
and sort that calculates the desire-level of vertices we move up.
This results in more work theoretically, but we find that, practically,
it results in faster runtimes. Also, notably, in practice, we optimized

It
the performance of our PLDS by considering [W

per group instead of [log(;,5) m]. We also implemented a version
of our structure that exactly follows our theoretical algorithm and
compared the performance of both structures. We see that even such
a simple optimization resulted in significant gains in performance,
up to 23.89X%.

1 levels

6.2 Accuracy vs. Running Time

We start by evaluating the empirical error ratio of the per-vertex
core estimates given by our implementations (PLDSOpt, PLDS,
LDS) and Sun on dblp and livejournal, using batches of size 10> and
108, respectively. Fig. 8 shows the average batch time (in seconds)
against the average and maximum per-vertex core estimate error

ratio. This error ratio is computed as max @, k() for each
k(0)” k(v)

vertex v (where l%(v) is the core estimate and k(v) is the exact core
value). The average is the error ratio averaged across all vertices
and the maximum is the maximum error. If the exact core number
is 0, we ignore the vertex in our error ratio since our algorithm
guarantees an estimate of 0; for vertices of non-zero degree, the
lowest estimated core number is 1 for all implementations.

The parameters we use for PLDSOpt, PLDS, and LDS are all
combinations of § = {0.2,0.4,0.8,1.6,3.2,6.4} and A = {3,6,12, 24,
48,96}. We call these theoretically-efficient parameters, since they
maintain the work-efficiency of our algorithms. For Sun, we use
all combinations of their parameters egyn = Agyn = {0.2,0.4,0.8, 1.6,
3.2}, and asyn = {2(1 + 3e4n) }. We also tested agyn = {1.1,2,3.2},
as done in Sun et al’s work [83]. When a = 1.1, the theoretical
efficiency bounds by Sun et al. [83] no longer hold, but they yield
better estimates empirically. We compare this heuristic setting to
a similar one in our algorithms, where we replace (2 + 3/1) with
1.1 in our code (where our efficiency bounds no longer hold) for
6 =1{0.4,0.8,1.6,3.2}. We refer to these as the heuristic parameters.

Fig. 8 shows that, using theoretically-efficient parameters, our
PLDSOpt, PLDS, and LDS implementations are faster than Sun,
Zhang, and Hua, for parameters that give similar average and max-
imum per-vertex core estimate error ratios. Furthermore, besides
PLDS, PLDSOpt outperforms all other algorithms, regardless of ap-
proximation factor and error. This set of experiments demonstrates
the flexibility of our algorithm; one can achieve smaller error at
the cost of slightly increased runtime. However, as the experiments
demonstrate, PLDSOpt still outperforms all other algorithms even
when the parameters are tuned to give small error; this perfor-
mance gain is maintained for Ins, Del, and Mix. Greater speedups
are achieved on livejournal compared to dblp. Such a result is ex-
pected since larger batches allow for greater parallelism.

Concretely, compared with Zhang, PLDSOpt achieves 7.19—
147.59%, 19.70-58.41%, and 9.75-142.79x speedups on Ins, Del,
and Mix batches, respectively. Compared with Hua, PLDSOpt
achieves 2.49-33.95X, 6.81-24.51%, and 2.94-21.77X speedups.
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Figure 8: Comparison of the average per-batch time versus the average (top row) and maximum (bottom row) per-vertex core estimate error
ratio of PLDSOpt, PLDS, Sun, and LDS, using varying parameters, on the dblp and livejournal graphs, with batch sizes 10° and 10°, respectively.
Experiments were run for Ins, Del, and Mix. The data uses theoretically-efficient parameters as well as the heuristic parameters where (2 +
3/A) = dsun = 1.1. Runtimes for Hua and Zhang are shown as horizontal lines.

Against PLDS, PLDSOpt obtains 2.98-47.8X, 1.03-25.58%, and
1.5-76.94% speedups for Ins, Del, and Mix, respectively, on
parameters that give similar approximations. Compared with
Sun, on parameters that give similar theoretical guarantees and
smaller empirical average error, PLDSOpt achieves 21.34-544.22X,
25.49-128.65%, and 19.04-248.36% speedups for Ins, Del, and Mix,
respectively. Neither Zhang nor Hua guarantee polylogarithmic
work. The peeling-based algorithm of Sun can have large depth
and they do not provide a concrete bound on their amortized
work for their faster, round-indexing implementation. Thus, the
speedups we obtain over the benchmarks are due to the greater
theoretical efficiency and because our algorithms are parallel.
Finally, PLDSOpt achieves average error in the ranges 1.26-2.13,
1.47-4.20, and 1.28-2.33 for Ins, Del, and Mix, respectively. PLDS
gives comparable average errors in the ranges 1.27-4.22, 1.33-3.39,
and 1.63-5.73, for Ins, Del, and Mix, respectively, while running
slower than PLDSOpt for all parameters, despite the guarantee
that the maximum error of PLDS is bounded by (1 + 6)(2 + 3/1)
(Lemma 5.13). Thus, our optimized version allows us to obtain good
error bounds empirically while drastically improving performance.

For all of the remaining experiments, set § = 0.4 and A = 3.

6.3 Batch Size vs. Running Time

Fig. 9 shows the average per-batch running times for Ins, Del,
and Mix on varying batch sizes for PLDSOpt, PLDS, Hua, LDS,
and Zhang on dblp and livejournal. We do not run this experiment
on Sun since their implementation does not have batching. Our
experiments show that PLDSOpt is faster for all batch sizes except
for the smallest Del and Mix batches.

Against PLDS, PLDSOpt achieves a speedup over all batches from
10.85-21.25X, 2.81-5.65X, and 10.42-29.28X for Ins, Del, and Mix,
respectively, on dblp and 8.47-16.9%, 1.99-7.18%, and 1.9-15.26X
for Ins, Del, and Mix, respectively, on livejournal for all but the
batch of size 100 for Del. On the batch size of 100 , PLDS performs
better than PLDSOpt by a 1.79x factor. Compared with Hua, PLD-
SOpt achieves speedups over all batches from 5.17-16.43%, 3.39—
44.58%, and 2.53-13.05x for Ins, Del, and Mix, respectively, on dblp
and 15.97-114.52%, 1.71-45.01X, and 9.10-19.82X for Ins, Del, and
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Mix, respectively, on livejournal. Compared with Zhang, PLDSOpt
achieves speedups of 2.49-22.74X%, 2.00-29.92X%, and 2.95-21.57X for
Ins, Del, and Mix, respectively, on dblp, and 31.53-95.33x%, 1.25-
73.19% and 4.26-87.05% for Ins, Del, and Mix, respectively, on
livejournal on all but the smallest batches for Del and Mix. For Del
with a batch size of 100, Zhang is the fastest with speedups of 1.46x
and 6.86x over PLDSOpt on dblp and livejournal, respectively. For
Mix with batch size 100, LDS is the fastest with speedups of 3.19%
over PLDSOpt on livejournal. For small batch sizes, sequential algo-
rithms perform better than parallel algorithms since the runtimes
of parallel algorithms are dominated by parallel overheads.

6.4 Thread Count vs. Running Time

Fig. 10 shows the scalability of PLDSOpt, PLDS, and Hua with
respect to their single-thread running times on dblp and livejournal
using a batch size of 10%. LDS, Sun, and Zhang are represented
as horizontal lines since they are sequential. For Ins, Del, and
Mix batches, PLDSOpt and PLDS achieve up to 30.28%, 32.02X,
and 33.02X, and 26.46X, 25.33X, and 21.15X, self-relative speedup,
respectively. Hua achieves up to a 3.6X self-relative speedup. We
see that our PLDS algorithms achieve greater self-relative speedups
than Hua. Also, with just 4 threads (available on a standard laptop),
PLDSOpt already outperforms all other algorithms. Hua’s algorithm
performs DFS/BFS, which could lead to linear depth, potentially
explaining the bottleneck to their scalability with more cores.

Gabert et al. [38] present a parallel batch-dynamic k-core de-
composition algorithm but their code is proprietary. However, their
algorithm appears slower and less scalable based on their paper’s
stated results. For example, their algorithm on 10° edges using 32
threads for the livejournal graph requires 4 seconds, while our al-
gorithm on a batch of 10° edges using 30 threads (more edges and
fewer threads) requires a maximum of 0.35 seconds. Also, they ap-
pear to exhibit a maximum of 8x self-relative speedup on livejournal
while we exhibit 21.2x self-relative speedup on livejournal.

6.5 Results on Large Graphs

Fig. 11 shows the runtimes of PLDSOpt, PLDS, Hua, Sun, and Zhang
compared with the static algorithms ExactKCore and ApproxKCore
on additional graphs, using Ins, Del, and Mix batches, all of size 10°.
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Figure 11: Average per-batch running times for PLDSOpt, Hua,
PLDS, Sun, Zhang, ApproxKCore, and ExactKCore, on dblp, youtube,
wiki, ctr, usa, stackoverflow, livejournal, orkut, brain, twitter, and
friendster with batches of size 10° (and approximation settings & =
0.4 and A = 3 for PLDSOpt and PLDS). All benchmarks (except PLD-
SOpt and PLDS) timed out (T.0.) at 3 hours for twitter and friendster
for Ins and Del. Hua and Sun timed out on twitter and friendster
for Mix. The top graph shows insertion-only, middle graph shows
deletion-only, and bottom graph shows mixed batch runtimes.

ExactKCore and ApproxKCore are run from scratch over the entire
graph after every batch since they do not handle batch updates.
PLDSOpt and PLDS finished for all graphs and experiments while all
other algorithms timed out on Ins and Del batches for twitter and
friendster. Zhang was able to finish on Mix because their indexing
algorithm (used to create their data structures provided the initial
graph without the mixed batch) was able to finish; since only one
mixed batch is used to update the graph, the sum of the time needed
for indexing plus the update time of one batch fell under the timeout.
The same is true for ExactKCore and ApproxKCore. However, these
algorithms were not able to finish for Ins and Del because the sum
of the update times across all batches is too high.
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PLDSOpt is faster than all other dynamic algorithms on all types
of batches, except for PLDS on ctr and usa. We report concrete
speedups for experiments which finished within the timeout. For
Ins, it gets 10.01-229.71X speedups over Zhang, 6.20-58.66X
speedups over Hua, 26.02-119.77X speedups over Sun, and 1.45-
23.89% speedups over PLDS. For Del, it gets 30-176.48x speedups
over Zhang, 15.79-52.36X speedups over Hua, 41.02-100.34%
speedups over Sun, and 2.51-23.45% speedups over PLDS (except
on ctr and usa). For Mix, it gets 17.54-723.72X speedups over
Zhang, 11.34-91.95X% over Hua, 6.95-35.59X speedups over Sun,
and 2.81-18.68X% speedups over PLDS (except on ctr and usa).
These massive speedups over previous work demonstrate the
utility of PLDSOpt not only on large graphs but also on smaller
graphs. Notably, our PLDSOpt and PLDS algorithms perform not
only well on dense networks but also on very sparse road networks.
For ctr and usa, PLDS performs better than PLDSOpt, achieving up
to a 1.09% speedup on Del and 1.12X speedup on Mix.

Compared to the static algorithms, PLDSOpt achieves speedups
for all but the smallest graphs, dblp, wiki, and youtube. For these
graphs, the batch of size 10° accounts for more than 1/3 of the
edges, and so even if the static algorithm reprocesses the entire
graph per batch, it does not process many more edges past the
batch size. Thus, it is expected that the parallel static algorithms
perform better on small graphs and large batches. For all but the
smallest graphs, PLDSOpt obtains 2.22-13.09X, 5.56-19.64x, and
4.4-121.76X speedups over the fastest static algorithm for each
graph for Ins, Del, and Mix, respectively. ExactKCore and Ap-
proxKCore both timeout for Ins and Del on twitter and friendster;
otherwise, we expect to see the large improvements that we see for
Mix on these experiments.

6.6 Accuracy of Approximation Algorithms

We also computed the average and maximum errors of all of our
approximation algorithms for our experiments shown in Fig. 11.
According to our theoretical proofs, the maximum error (for PLDS)
should be (2+3/3)(140.4) = 4.2. We confirm that the maximum em-
pirical error for PLDS falls under this constraint. PLDSOpt achieves
an average error of 1.24-2.37 compared to errors of 1.26-3.48 for
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PLDS, 1.01-4.17 for ApproxKCore, and 1.03-3.23 for Sun. PLDSOpt
gets a maximum error of 3-6 compared to 2-4.19 for PLDS, 3-5
for ApproxKCore, and 3-5.99 for Sun. We conclude that our error
bounds match those of the current best-known algorithms and are
sufficiently small to be of use for many applications.

6.7 Sensitivity of PLDS and PLDSOpt to § and A

In Fig. 12, we provide a sensitivity analysis for the parameters  and
A on the maximum error of our PLDS and PLDSOpt algorithms since
our theoretical guarantees are for the maximum error and as we
showed in Section 6.2, the average error does not vary significantly
for our chosen set of parameters. The first three graphs of Fig. 12
shows the effect of fixing § while varying A and the last three show
the opposite.

We see that for both PLDSOpt and PLDS, different A values do
not affect either the error by much (each line is essentially a cluster
of points). This matches what we expect theoretically. Recall our
bound on error, (1 + 6)(2 + 3/A); suppose we set § = 0.4 and A = 3
as in our experiments. This leads to an upper bound of 4.2. If we
increase A to 6, this only decreases the error to 3.5. On the other
hand, if § is increased to 0.8, then the error increases to 5.4, resulting
in greater sensitivity to J.

However, increasing 6 leads to a drastic decrease in running time
(each line is a decreasing curve) at the expense of a large increase
in error. Again, this matches what we expect theoretically, since §
affects the number of levels in PLDS and PLDSOpt (recall that in
our algorithm, the number of levels per group is [log(,s) (m)]). A
larger number of levels leads to larger running time and we see this
in our results. We do not see as large an increase for PLDSOpt since
we divide the number of levels by 50. This means that for livejournal
the number of levels per group is [log<1+5) (42851237) /507 = 1 for
all § < 0.42. We see this in our experiments as the curves for
PLDSOpt are flat for § € [0.8,6.4].

For the rest of the experiments, we fix § = 0.4 and A = 3 based on
our sensitivity analysis; these parameters offer a reasonable tradeoff
between approximation error and speed, as shown in Fig. 8 and
Fig. 12. For Sun, we choose the parameters e = A = 2 and « = 2 since
we observe these parameters give similar approximation errors to
the parameters that we chose for our algorithms.

6.8 Space Usage

For each program, we implemented functions that measured the
space usage of the data structures used in the algorithms (specifi-
cally, the private and public variables maintained in their data struc-
ture classes); for all of the algorithms, we do not count ephemeral
space usage needed by auxiliary structures that are not maintained
as either private or public variables of their data structure class. For
this set of experiments, we only test on Ins and Del since maximum
space is used when the entire graph is present in memory.

Fig. 13 shows the results of our space-bound experiments. Al-
though PLDS uses more memory than most other implementations,
our PLDSOpt uses less memory than Hua and Zhang in most set-
tings (up to 1.34X factor less memory than the minimum space
used by either) for dblp and up to 1.08x additional space in a few
cases; for livejournal, it uses up to 1.72x additional space compared
to the minimum space used by Hua and Zhang. Sun uses more
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Algorithm 6 Static Approximate k-core Decomposition

Input: An undirected graph G(V, E).
Output: An array of (2+¢’)-approximate coreness values for any constant
g >0.
1: Yo eV,letClv] = |[N(0)|.
2: finished < 0, « 0, «— @,5 — %
3: Let M be a bucketing structure formed by initially assigning eachv € V
to the [log,,, C[0]]th bucket.

4: while (finished < |V|) do
5. (I, bkt) « Vertex IDs and bucket ID of next (peeled) bucket in M.
6: t < bkt.
7. for iteration j € [[log;,s(n)]] do
8: R« {(v,ry) |lv e N(I),rp = |[{(w,0) €E|uel}|}.
9: U « Array of length |R|.
10: parfor R[i] = (v,1p), i € [0, |R]) do
11: inducedDeg = C[v] — 1y
12: C[v] = max(inducedDeg, [ (1+)'~])
13: newbkt = max(|—logl+g C[vﬂ 1)
14: Uli] = (v, newbkt)
15: Update M for each (u, newbkt) in U.
16: next-bkt < bucket ID of the next smallest bucket in M.
17: if (1+¢)"extPkt < (24 £)(1+¢)! then
18: (I, next-bkt) « Vertex IDs of the next (peeled) bucket in M.
19: else
20: break

21: return C.

space than PLDSOpt for most cases; although for a few parameters
for deletions in dblp, it uses up to 1.9% less space. Since we have
a O(log? n) factor in our space usage bound, we expect a slight
increase in our space usage compared to algorithms with linear
space; however, as we demonstrated, empirically our space usage is
not much greater, and we believe that this small extra space usage
is a small price to pay for the large improvement in performance
obtained by our algorithms. We provide theoretical space-efficient
implementations of our PLDS which may also prove to be more
space-efficient in practice.

7 STATIC (2 + ¢)- APPROXIMATE k-CORE

Due to the P-completeness of k-core decomposition for k > 3 [5],
all known static exact k-core algorithms do not achieve polylog-
arithmic depth. We introduce a linear work and polylogarithmic
depth (2 + ¢’)-approximate k-core decomposition algorithm (with
only one-sided error) based on the parallel bucketing-based peeling
algorithm for static exact k-core decomposition of Dhulipala et
al. [27]. The algorithm maintains a mapping M from v € V to a
set of buckets, with the bucket for a vertex M(v) changing over
the course of the algorithm. The algorithm starts at k = 0, peels
all vertices with degree at most (2 + ¢)(1 + &)k where « is set to

V4e'+9-3
2

The approximate core value of v is (1 + €)k~1 where we use the
value of k when v is peeled. We observe that the dynamic algorithm
in this paper can be combined with a peeling algorithm like the
above to yield a linear-work approximate k-core algorithm with
polylogarithmic depth.

Algorithm 6 shows pseudocode for our approximate k-core algo-
rithm, which computes an approximate coreness value for each ver-
tex. The algorithm sets the initial coreness estimates, C[v], of each

, increments k, and repeats until the graph becomes empty.
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Example 7.1. Fig. 14 shows a run of Algorithm 6 on an example
graph. Given the parameters ¢ = § = 1, the two buckets that the
vertices of the input graph (shown in (a)) are partitioned into are
bucket index 1 (green vertices) and bucket index 2 (purple vertices).
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The peeling loop (Line 4-Line 20) first extracts the lowest non-
empty bucket from M (Line 18), which consists of I, a set of vertex
IDs of vertices that are being peeled, and the bucket number bkt. If
more than log;, s(n) rounds of peeling have occurred at the thresh-
old (2+¢)(1 + ¢)! (where we set § = %), the algorithm increments
t (Line 6). Next, the algorithm computes in parallel an array R of
pairs (v,ry), where v is a neighbor of some vertex in I and ry is
the number of neighbors of v in I (Line 8). Finally, the algorithm
computes in parallel the new buckets for the affected neighbors v
(Line 10-Line 14). The coreness estimate is updated to the maxi-
mum of the peeling threshold of the previous level and the current
induced degree of v after r;, of its neighbors are removed. Finally,
the algorithm updates the buckets using the new coreness estimates
for the updated vertices (Line 15), which can be done in parallel
using our bucketing data structure.
We provide an example of this algorithm below.
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buckeféjnﬁl ZEQM ?%’1551; all vertices lﬂJﬂfxﬁ)}?lﬁi}%f zapaeﬁ;c}mate of

(1+¢) (shown in (c)). In this example, the estimates produced
are 3-approximations of the real coreness values.

We prove below that Algorithm 6 finds an (2 + ¢)-approximate

k-core decomposition in O(m) expected work and O(log® m) depth
w.h.p., using O(m) space, as stated in Theorem 3.8. We give the
approximation guarantees of our algorithm using lemmas from [40],
and use an efficient parallel semisort implementation [43] for our
work bounds.
Theorem 7.2. For a graph with m edges,'® for any constant ¢ >
0, there is an algorithm that finds an (2 + ¢)-approximate k-core
decomposition in O(m) expected work and O(log® m) depth with
high probability, using O(m) space.

Proor. Our approximation guarantee is given by Observation
4 of [40]. Using Observation 4, the number of vertices with core

0ur bounds in this paper assume m = Q(n) for simplicity, although our algorithms
work even if m = o(n).

100
LJ Max Er
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number (1 + ¢)? after one round of peeling in Algorithm 6 shrinks
by a factor of zsz Let V< (14¢)t be the number of vertices with core
number at most (1 + ¢)?. After removing all vertices with degree
at most (2 + ¢)(1 + ¢)?, the number of vertices with core number
(1 + ¢)! and with degree greater than (2 + £)(1 + €)? is at most
2(148) Veuet | _ 2Veaeyt |
(2+e)(1+e)t 2+¢
number of rounds needed to peel all vertices with core number

at most (1 +¢)? is log(2+g)/2(n). By induction on ¢ (Line 6), after

- Since [V¢(144)¢| < n, the maximum

log(2+g)/2(n) rounds, all vertices with core number at most (1 +¢)*
are removed. Hence, in round ¢ + 1, all vertices have core number
greater than (1+¢)* and have core number at most (2+¢) (1+¢)*!;
hence, we obtain a (2 + ¢)(1 + ¢) = 2 + ¢/ approximation (for any
constant ¢’ > 0 and appropriate setting of £) when we give coreness
approximations of (1 +¢)? to all vertices peeled for ¢ + 1.

Our algorithm uses a number of data structures that we use to
obtain our work, depth, and space bounds. Our parallel bucketing
data structure (Line 3) can be maintained via a sparse set (hash
map), or by using the bucketing data structure from [27]. The outer
loop iterates for O(log n) times (Line 4). Within each iteration of
the outer loop, we iterate for O(log(1+§) n) = O(logn) rounds
for constant § = % After obtaining a set of vertices, we update
the buckets using semisort in O(log n) depth w.h.p. [27]. Thus the
overall depth of the algorithm is O(log® m) for any constant § > 0.

The work of the algorithm can be bounded as follows. We charge
the work for moving a vertex from its current bucket to a lower
bucket within a given round to one of the edges that was peeled
from the vertex in the round. Thus the total number of bucket
moves done by the algorithm is O(m). Each round of the algorithm
also peels a number of edges and aggregates, for each vertex that
has a neighbor in the current bucket, the number of edges incident
to this vertex that are peeled (the r, variable in the algorithm). We
implement this step using a randomized semisort [43]. Since 2m
edges are peeled in total, the overall work is O(m) in expectation.

Lastly, we bound the space used by the algorithm. There are a
total of O(log; ., n) = O(log n) buckets for any constant ¢ > 0. Each
vertex appears in exactly one bucket, and thus the overall space of
the bucketing structure is O(n). The algorithm also semisorts the
edges peeled from the graph in each step. Since all m edges could
be peeled and removed within a single step, and thus semisorted
the overall space used by the algorithm is O(m). O

The approximation guarantees provided by our algorithm are
essentially the best possible, under widely believed conjectures.
Specifically, Anderson and Mayr [5] show that the optimization
version of the High-Degree Subgraph problem, namely to compute
the largest core number, or degeneracy of a graph cannot be done
better than a factor of 2. Thus, obtaining a polynomial work and
polylogarithmic depth (2 — ¢)-approximation to the coreness value
of each vertex would yield a (2 — ¢)-approximation to the opti-
mization version of the High-Degree Subgraph problem, and show
that P = NC, contradicting a widely-believed conjecture in parallel
complexity theory.

Inrecent years, several results have given parallel algorithms that
obtain a (1 + ¢)-approximation to the coreness values in distributed
models of computation such as the Massively Parallel Computa-
tion model [33, 40]. These results work by performing a random
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Algorithm 7 GraphProblemUpdate(G, B)

Input: A graph G = (V, E) and a batch 8 of unique and valid updates.
Output: A solution to the relevant graph problem.

1: Update(8) [Algorithm 1].

2: A « LowOutdegreeOrient(35).

3: Perform parallel filter on B to obtain a batch of insertions, Bijns, and a

batch of deletions, B 4.

4: BatchFlips(A, Bins, Bel)-

5: BatchDelete(Bye;).

6: Batchlnsert(Bips).

sparsification of the graph into a subgraph that approximately pre-
serves the coreness values. They then send this subgraph to a single
machine, which runs the sequential peeling algorithm on the sub-
graph to find approximate coreness values. Crucially, this second
peeling step on a single machine can have ©(n) depth, and thus,
this approach does not yield a polylogarithmic depth algorithm in
the work-depth model of computation.

8 FRAMEWORK FOR BATCH-DYNAMIC
GRAPH ALGORITHMS FROM LOW
OUT-DEGREE ORIENTATIONS

In this section, we introduce a framework that we will use in all of
our batch-dynamic algorithms that use our batch-dynamic low out-
degree orientation algorithm (Section 5.6). Our framework assumes
three different methods for each of the problems (maximal matching,
k-clique counting, and vertex coloring) that we solve. Specifically,
these three methods handle batches of insertions and deletions
separately; let BatchFlips, Batchlnsert, and BatchDelete denote
these three methods.

We assume for simplicity that all updates in the batch B are
unique, which means that no edge deletion occurs on an inserted
edge in the batch and vice versa. Furthermore, we assume that the
updates are valid, meaning that if an edge insertion (u,v) is in B,
then (u,v) does not exist in the graph, and if an edge deletion (w, x)
is in B, then edge (w, x) exists in the graph. Such assumptions are
only simplifying assumptions because it is easy to perform prepro-
cessing on B in O(|B|logn) work and O(logn) depth to ensure
that these assumptions are satisfied. In fact, our implementations
in Section 6 do perform this preprocessing on the input batches. To
find all unique updates, we perform a parallel sort in O(|8B|logn)
work and O(log n) depth [17, 28, 50]; we first sort on the edge and
then the timestamp of the update. Then, we perform a parallel filter
in O(|8B]) work and O(1) depth [17, 28, 50] where we keep each
edge with the latest timestamp. Then, we perform another parallel
filter to keep only edge insertions of nonexistent edges and edge
deletions of edges that exist in the graph. This preprocessing en-
sures B follows our simplifying assumptions and do not exceed the
complexity bounds of our PLDS, and hence, we assume all input
batches contain unique and valid updates. The work and depth for
preprocessing are subsumed by the bounds for the algorithms.

Detailed Framework. The pseudocode for our framework is
shown in Algorithm 7. We first update the PLDS by calling the
update procedure (Algorithm 1) on the batch of updates in Line 1.
Afterwards, we call our low out-degree orientation algorithm
to obtain the set of edges that were flipped, placed in set A
(Line 2). Then, we take the batch of updates B and split the batch



into a batch of insertions, Bijps, and a batch of deletions, B
(Line 3). We call BatchFlips (Line 4) on the set of flipped edges
A, which processes the edge flips accordingly for each problem.
Finally, we call the problem specific functions BatchDelete and
Batchlnsert (Lines 5 and 6) on B,; and By, respectively; we first
call BatchDelete and then BatchlInsert.

Analysis. By Corollary 3.3, our low out-degree orienta-
tion algorithm gives a O(a) out-degree orientation. Further-
more, the amortized work of the algorithm indicates that
O(|8B|log? n) amortized flips occur with each batch 8. Suppose
that BatchFlips(A) takes O(|A|Wpps(a)) work and O(Dfips)
depth; Batchlnsert(Bi,s) takes O (|Bins|Wins(ar)) work and
O (Dins) depth, and BatchDelete (Bg;) takes O (|Bye1|Waei(a))
work and O (Dgy,) depth; and the update methods require O(S)
space in total. Then, we show the following theorem about our
framework.

Theorem 8.1. Algorithm 7 takes
O (IB1Wiips(@) log? n + |B|Wing(@) +18[Wyei (@)
amortized work and
0 (log2 nloglogn + Dy + Dins + Ddel)
depth w.h.p., in O(nlog? n + m+S) space.

Proor. Theorem 3.2 states that updating the PLDS and
getting the flipped edges require O(|B|log? n) amortized work,
O(log? nloglogn) depth, and O(nlog? n +m) space. Since the calls
to the procedures are independent and sequential, the total work,
depth and space equal the sum of the work, depth, and space of
our PLDS algorithm and BatchFlips, BatchDelete and Batchlnsert.

Then, the only additional information we need are the sizes of
Bins and By,. By our algorithm, |Bins|, |Bger| < |B]| since Bips U
Bel = B. By Theorem 3.2, A has O(| 8] log? n) amortized flips; thus,
the amortized work of BatchFlips is O(|8|Wyps(@) log? n). Finally,
the PLDS uses O(n log? n +m) space; thus, with the additional O(S)
space, the total space used is O(nlog? n +m+S). O

In addition, we assume that the algorithms Batchlnsert and
BatchDelete correctly maintain the desired properties required
by each specific problem after processing Bins and By, respec-
tively. Such an assumption ensures the correctness of the solutions
produced by our framework. We show in Sections 9 to 11 that this
is true for all of our procedures. Additionally, we can get rid of the
O(nlog? n) term in space at the expense of an extra O(log? n) factor
in depth by using our space-efficient structures from Section 5.8.

Using this framework (with the PLDS guarantees given in The-
orem 3.1), we present batch-dynamic algorithms for a number of
problems in Sections 9 to 11 for maximal matching, k-clique count-
ing, and vertex coloring.

9 MAXIMAL MATCHING

A maximal matching in a graph G = (V,E) is a set of edges M in
the graph such that no vertex is adjacent to two edges in M. Fur-
thermore, no additional edges can be added to M without causing
a vertex to be adjacent to two edges in M.
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We provide the following parallel batch-dynamic algorithm for
maximal matching using our framework given in Section 8. We
instantiate Batchlnsert and BatchDelete for the maximal matching
problem in this section. We use the simple algorithm of Neiman
and Solomon [75] as a starting point, although we will see that the
batch-dynamic setting introduces several non-trivial challenges.

Sequential Algorithm of Neiman and Solomon [75]. The sequential
algorithm of Neiman and Solomon [75] uses the dynamic orienta-
tion algorithm of Brodal and Fagerberg [19], which gives an O(D)
out-degree orientation for any D > 2ap4x. Given an edge insertion,
they check whether both endpoints are in the maximal matching. If
not, they match the endpoints to each other. For each vertex u € V,
they maintain the set of unmatched in-neighbors, F(u), in a data
structure consisting of an array augmented with a linked list. On an
edge deletion (u, v) where (u, v) is in the matching, they check F(u)
(resp. F(v)) to see if any in-neighbors, u” (resp. v”) are unmatched.
If so, they match u to u’ (resp. v to v”). If no in-neighbors are un-
matched, they check whether any of their out-neighbors, u”" (resp.
0v’’") are unmatched. If so, u (resp. v) matches with u’’ (resp. v”’). On
an edge deletion (u,v) (where the edge is oriented from u to v), if
u is unmatched, it removes itself from F(v). On an edge insertion,
(u, v), if u is unmatched, it adds itself to F(v), and if u is matched we
do not do anything. Finally, for an edge flip from (u,v) to (v,u), if u
is unmatched, it removes itself from F(v); if v is free, it adds itself to
F(u). Again if u is matched, we do not do anything. Maintaining the

maximal matching and updating all data structures can be done in

0 ( log n
log((logn)/ctmax)

For amax = Q(logn), they obtain O(amqax) amortized time.

Unfortunately, the batch-dynamic setting introduces several chal-
lenges, the most important of which is: edge deletions may unmatch
many different vertices simultaneously, which need to be matched
to potentially the same set of in-neighbors. Thus, we can no longer
arbitrarily pick in-neighbors to match unmatched vertices since
many vertices may be matched to the same in-neighbor. But we also
cannot afford to look at all of the in-neighbors of an unmatched
vertex since the in-degree is potentially w(«). Even for edge in-
sertions, we cannot choose to add every edge insertion between
two unmatched vertices to the maximal matching since many edge
insertions may occur on the same unmatched vertex.

+ max | amortized time for amqx = o(logn).

Batch-Dynamic Algorithm. Edge insertions are easier to handle;
for each edge insertion, in parallel, we check whether both end-
points adjacent to the insertion are unmatched. If so, we run a
static, parallel algorithm over all such vertices adjacent to an edge
insertion but is unmatched; this finds a maximal matching among
all vertices that want to be matched due to edge insertions. If not,
we do nothing for these vertices.

Deletions are trickier to handle. For each vertex incident to an
edge deletion, we check whether it is still matched or if it can be
matched with any of its neighbors. However, such an operation
could be expensive because although a vertex has bounded number
of out-neighbors, it may have many in-neighbors. To find a new
matching for unmatched vertices due to edge deletions, we make
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Algorithm 8 MaximalMatchingBatchFlips(A, Bins, Bger)

Algorithm 9 MaximalMatchingBatchlnsert(Biys)

Input: A set of edge flips A.
Output: Updated data structures.
1: parfor each flipped edge (u,v) € A do
(u, v) to (v, u) and stored as (u, v) in A.
2:  if (u,v) is in the matching then
3: Remove u from I,.
4: Add v to I,.

> The edge is flipped from

use of the best-known low-depth, parallel, static maximal match-
ing algorithm which takes O(m + n) work'! and O(log? n) depth
w.h.p. [14, 16, 36] combined with a scheme where we progressively
double the number of in-neighbors we attempt to match. Details
about these procedures are provided in the next subsections.

Data Structure. We maintain the following data structures in our
algorithm. For each vertex v, we maintain a parallel hash table, I, of
in-neighbors which are unmatched. Each time a vertex v becomes
unmatched, we inform all out-neighbors of v that v is unmatched.
Similarly, when v becomes matched, we inform all out-neighbors
that it is matched. Then, each vertex that has been informed that v
has been unmatched adds o to its hash table of unmatched incoming
neighbors, in parallel. We assume that the out-neighbors of every
vertex u are also maintained in a parallel hash table X;,, that is kept
up to date by the edge orientation algorithm. These data structures
require O(m) in total space usage. Sequential versions of I, and X,
are maintained by Neiman and Solomon [75].

9.1 Maximal Matching BatchFlips

The pseudocode for this procedure is given in Algorithm 8. To
implement BatchFlips for maximal matching, we update the data
structures I, to accurately account for unmatched in-neighbors
of vertices (which are stored in the I, structures for each vertex
v). To do this in parallel, for each flipped edge from (u,v) to (v, u)
(Line 1), we remove u from I, (Line 3) and add v to I, (Line 4).

9.2 Maximal Matching Batchlnsert

The pseudocode for this procedure is given in Algorithm 9. To im-
plement Batchlnsert for maximal matching, we need to check, in
parallel, whether both endpoints of the inserted edge are unmatched
(Line 3). If so, we know that they can potentially be matched to
each other. However, there could be multiple edge insertions inci-
dent to the same unmatched vertex; thus, we cannot simply add
every inserted edge between unmatched vertices to the maximal
matching. Instead, we keep track of all edge insertions between
two unmatched vertices in a dynamic array S (Line 1) and run a
static, parallel maximal matching algorithm on the induced sub-
graph given by S (Line 5). We specifically use the work-efficient
parallel, static maximal matching algorithm of Blelloch et al. [16]
which was shown to have a better depth than previously stated
in the analysis provided by Fischer and Noever [35]. Finally, each
newly matched vertex from Line 5 updates its out-neighbors that
it is now matched. For each such newly matched vertex v, each
out-neighbors w of v removes v from I,.

1 The work of the parallel static matching algorithm given in [16] can be shown to

be O(m + n) w.h.p. when using the high probability analysis of parallel bucket sort
given by Bercea and Even [9].
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Input: A batch B, of unique and valid insertion updates.
Output: A maximal matching.
¢ S 0. > S contains matching candidate edges.
. parfor each edge {u, v} € Bjns do
if u and o are unmatched then
S—SuU{{uo}}.
: Run StaticMaximalMatching(G(S)).
: parfor each newly matched vertex v do
parfor each out-neighbor w of v do
Remove o from I,,.

N A W N =

Algorithm 10 MaximalMatchingBatchDelete(B ;)

Input: A batch B, of unique and valid deletion updates.
Output: A maximal matching.
U« 0. > U contains newly unmatched vertices.
T« 0. > Contains the out-neighbors of unmatched vertices.
: parfor each edge {u, v} € By do
if {u, v} is in the matching then
U« UU{u,v}.
T—TUX, UXy.
: Run StaticMaximalMatching(G(U U T)).
: parfor each newly matched vertex vin G(U UT) do
parfor each out-neighbor w of v do
Remove o from I,,.
U«U\{v}
: ¢ < 1. » c is the number of incoming unmatched neighbors picked to
run the static maximal matching algorithm.
13: while U # 0 do
14:  parfor each vertex u € U do

O 0N U W e

=
[ SR, )

15: Pick ¢ incoming unmatched neighbors arbitrarily.
16: if I, = 0 then
17: U—U\{u}

18:  Let G’ be the induced subgraph consisting of all vertices in U and
the picked incoming unmatched neighbors.

19:  Run StaticMaximalMatching(G’).

20:  parfor each newly matched vertex v in G’ do

21: parfor each out-neighbor w of v do
22: Remove o from I,,,.
23: U« U\ {v}.

24:  Setc«2-c.

25: parfor each v € U do

26:  if v remains unmatched then

27: parfor each out-neighbor w of v do
28: Add v to I,,.

The correctness of our procedure follows from the fact that only
new edge insertions may be added to the matching. Because our
algorithm always maintains a maximal matching, any previous edge
that existed in the graph is either in the matching or is incident to a
matched vertex. Thus, our procedure only needs to consider newly
inserted edges and such edges can be determined using a parallel,
static maximal matching algorithm [16].

9.3 Maximal Matching BatchDelete

The pseudocode for this algorithm is given in Algorithm 10. For any
edge (u, v) that is part of the matching that has been removed by an
edge deletion, we create an induced subgraph consisting of the set
of such vertices and their out-neighbors (Lines 1, 2, 5 and 6). Given
| B 4e1| such deletion updates, the induced subgraph of each vertex v



affected by the deletions and its out-neighbors has size O(|Bg,|).
We use the parallel, static algorithm of Blelloch et al. [16] to find a
matching in this induced graph (Line 7).

For vertices that remain unmatched after the above procedure
is run, we must now attempt to match these vertices with the set
of incoming unmatched neighbors. To do this, we run the parallel,
static maximal matching algorithm on some induced subgraphs of
the remaining unmatched vertices and a subset of incoming vertices.
Specifically, starting from ¢ = 1 (Line 12), each vertex remaining
in U queries exactly ¢ of its in-neighbors (the in-neighbors can
be chosen arbitrarily) (Line 15). Suppose that G’ is the induced
subgraph consisting of all vertices in U and the picked incoming
unmatched neighbors of the vertices in U. We run [16] on G’ to
obtain matchings (Line 19). The matched vertices consists of vertices
in U and (some) of their in-neighbors. For each newly matched
vertex v, we remove it from the I,, of each of its out-neighbors w
(Line 22). Then, for each vertex in U that becomes matched, we
remove it from U (Line 23). We double ¢ and proceed with this
entire process again if there remains unmatched vertices u in U
(Line 13) and I, is not empty (Line 17).

The correctness of Algorithm 10 follows immediately from our
procedures. Our algorithm always maintains a maximal matching
after processing a batch of updates. A vertex becomes unmatched
(if it was previously matched) if and only if it is incident to an
edge deletion and the edge deletion deletes a matched edge. An
unmatched vertex can be matched to one of its in-neighbors or
out-neighbors. We check both sets of neighbors in our procedure
in order to match all unmatched vertices adjacent to edge updates.

9.4 Work and Depth Analysis

Here we show the work and depth analysis of our maximal match-
ing algorithms (Algorithms 8 to 10).

Lemma 9.1. The depth of Algorithms 8 to 10 is O(log? n(log A +
loglogn)) w.h.p.

Proor. We first prove the depth of each algorithm separately
and use Theorem 8.1 to find the total depth.

In Algorithm 8, we can process all flipped edges in parallel
(Line 1). Adding and removing vertices from the hash tables I, re-
quires O(log* n) depth w.h.p. to perform in parallel (Lines 3 and 4).

In Algorithm 9, finding all edges in By, that are between two
unmatched vertices can be done in parallel in O(1) depth (Lines 2
to 4). Then, by the analysis in [16, 35], the parallel, static algorithm
we use in Line 5 runs in O(log? n) depth w.h.p. Finally, updating the
I,, of each out-neighbor w of a newly matched vertex v can be done
in parallel in O(log" n) depth w.h.p. (Lines 6 to 8). Thus, Algorithm 9
can be done in O(log? n) depth w.h.p.

In Algorithm 10, finding all newly unmatched vertices and mak-
ing the induced subgraph consisting of the these vertices and their
out-neighbors can be done in O(log n) depth (Lines 3 to 4 and 6) us-
ing a parallel filter. As before, running the parallel, static algorithm
takes O(log? n) depth w.h.p. (Line 7). Then, removing each newly
matched vertex v from the I,, of each out-neighbor w of v takes
O(log™ n) depth (Lines 8 to 10). Removing the matched vertices v
from U can also be done in parallel in O(log* n) depth (Line 11) if U
is maintained as a parallel hash table. The depth of the outer while
loop (Line 13) is O(log A) since the while loop iterates to a value of
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c that is at most ¢ = O(A). When ¢ = A, all incoming neighbors of
every vertex would be included in the induced subgraph G’ and,
hence, a maximal matching is guaranteed in this final case. Because
the value of c is doubled each time, the total number of iterations
of the while loop is O(log A). The depth of the static matching
procedure is O(log? n) w.h.p., and so the total depth of Lines 12
to 24 is O(log Alog? n) w.h.p. Finally, the last step of adding each
remaining unmatched vertex from I,, of each of its out-neighbors w
takes O(log™ n) depth. Note that the matched vertices have already
been removed from I,, in the previous lines (Lines 10 and 22). Thus,
Algorithm 10 takes O(log Alog® n) depth w.h.p.

By Theorem 8.1, the total depth of Algorithms 8 to 10 is
O(log? n(log A + loglog n)) w.h.p. o

Lemma 9.2. Algorithms 8 to 10 require O(|B|(a+log? n)) amortized
work w.h.p.

PROOF. As in the depth proof, we first prove the work of each
of the individual algorithms and then use Theorem 8.1 to show the
final work bound.

By Theorem 3.2, the number of edge flips is O(|8B| log? n) amor-
tized. Thus, in Algorithm 8, the number of edge flips we process
in total is O(|8B|log? n) (Line 1). For each edge flip, we spend O(1)
work to add and remove, respectively, from I, and I, (Lines 3 and 4).
Then, the total work of Algorithm 8 is O(| 8| log2 n) amortized.

In Algorithm 9, there are at most | 8| insertions and checking
whether the endpoints of the edges are unmatched requires O(|B|)
work. This procedure produces at most O(|8|) unmatched vertices
in S since each edge is incident to two vertices. Then, running the
parallel, static work-efficient maximal matching algorithm of [16]
on the induced subgraph of the unmatched vertices requires O(|8B|)
work w.h.p. Then, removing the matched vertices from the I,, of
each out-neighbor requires O(|8]) work. Thus, Algorithm 2 takes
O(|8|) work w.h.p..

The remainder of the proof focuses on proving the work for Al-
gorithm 10. First, we note that each vertex that becomes matched
is either a vertex in u € U (Line 4) or is an unmatched incoming
neighbor of u. There can be at most 4|U| unmatched vertices that
may become matched since each deletion update can unmatch at
most two vertices. Thus, the work of informing all out-neighbors
throughout the procedure is O(|8|a) since by Theorem 3.2, we
maintain an O(a) out-degree orientation and there are O(|B|) dele-
tion updates. Running the static algorithm (Line 7) on the induced
subgraph of U and its out-neighbors requires O(|8|a) work w.h.p.
Then, the remaining work comes from the work of looking at ¢
incoming neighbors of each node u € U of the set of vertices U that
have not been matched and have at least one unmatched neighbor.
This requires O(c|U|) work to find a maximal matching in the in-
duced subgraph of U and c incoming vertices of each vertex in U.
We perform the following charging argument to calculate the work
over all attempted c values.

The key to the charging argument is that we charge the cost
of attempted matchings of a vertex to when it or its in-neighbors
are matched. More specifically, let a query be an instance when an
in-neighbor of a vertex is chosen in Line 15 and the static algorithm
is run on the induced subgraph of the selected in-neighbors and the
vertices remaining in U. When an in-neighbor becomes matched,
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we charge to it the cost of each previous vertex that queried the
matched in-neighbor. Since each matched in-neighbor has at most
O(a) out-degree, each such matched in-neighbor will be queried
at most O(«) times. The static algorithm we run in Line 19 takes
work that is linear in the size of the induced subgraph G’; thus,
this is O(1) amortized per vertex in U and its chosen in-neighbors.
Furthermore, as we stated before, there can be at most O(|U|)
matched in-neighbors. Thus, the total charged cost to each matched
in-neighbor is O(a|U|). We now need to account for the cost of the
in-neighbors that were queried but not matched.

To bound the number of such vertices, for each vertex v € U, con-
sider the last run of the static algorithm where v remains unmatched
after the run. During this previous run, all queried in-neighbors of v
were matched to some vertices in U;; if there exists an in-neighbors
that is unmatched, it would have been matched to v. In the final
run of the static algorithm for v, we query at most two times the
number of in-neighbors queried in the previous round. Thus, the
remaining unmatched, queried in-neighbors in the final run for v
can be charged to the previous run where all queried in-neighbors
were matched. This results in an additional cost of O(1) that is
charged to each matched in-neighbor.

In total, our charging argument shows that finding the maximal
matching in each subgraph takes O(«|U|) work. |U| = O(|8B]), and
so the total work of Algorithm 10 is O(«|B]).

By Theorem 8.1, the total work of our batch-dynamic maximal
matching algorithm is O(|8B|(log? n + )) amortized, w.h.p. O

Theorem 9.3. Our maximal matching algorithm takes O(|B|(« +
log? n)) amortized work and O(log? n(log A+loglog n)) depth w.h.p.,
and uses O(nlog? n + m) space.

Proor. The work and depth follow from Lemma 9.1
and Lemma 9.2. The algorithm uses space equal to the space
required by the k-core decomposition algorithm since it only
stores the additional I, data structures which in total takes O(m)
additional space. Thus, the space required by our algorithm is
O(nlog2n+m). o

10 CLIQUE COUNTING

A k-clique is a set of k vertices where edges exist between all pairs of
vertices in the set. Specifically, using our framework (Algorithm 7)
and our problem specific methods, we obtain a k-clique counting
algorithm (for constant k) that runs in O(a*2|8| log? n) work and
O(log? n) depth w.h.p., using O(ma*~2 + nlog n) space.

10.1 Algorithm Overview

Due to the complexity of our algorithm, we first provide some intu-
ition behind the core ideas before we give the specific details. First,
we make the simple observation that any clique in a directed acyclic
graph has a vertex where all edges in the clique that are adjacent to
the vertex are directed out from the vertex. For a particular clique
C, we call this vertex the source of C.

Observation 10.1. Provided a directed acyclic orientation of a graph
G = (V,E), for any clique C € G, there exists a unique vertexv € C
where all edges from v to all other vertices w € C are directed from v
tow.
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Proor. First, it is easy to see that the source is unique. This
is because for any two vertices u and v in the clique, the edge
{u, v} must be directed either in the (u, v) direction or in the (v, u)
direction, one of which makes v (resp. u) no longer the source.

Then, a simple proof by contradiction shows that the source
exists. Suppose for contradiction that all vertices in C have at least
one out-neighbor and one in-neighbor. We start with vertex v. Sup-
pose that v’s out-neighbor is w and o’s in-neighbor is u. By our
assumption, w must have at least one out-neighbor, x. x # u, oth-
erwise, there exists a 3-cycle in the graph. (x # v also since we’re
only considering simple graphs.) By the same argument, x must
have at least one out-neighbor, y. y ¢ {x, u, v, w}, otherwise, by the
same argument, there would exist a cycle and we only consider
simple graphs. Making the same argument for the k-th unique out-
neighbor, we require a (k +1)-st unique vertex in order to not create
a cycle. This contradicts the fact that C is a k-clique. O

We begin our description with an explanation of how to find
the newly created cliques resulting from edge insertions. Using Ob-
servation 10.1, we make the second observation that for any edge
update (u, v), we can count the number of k-cliques (for constant k)
incident to (u,v) and where u is the source vertex of the clique in
O(a*2) work and O(1) depth, provided an O(«) acyclic low out-
degree orientation. This is because u and v must be in the clique and,
thus, there are ( kcflz) = O(ak_z) additional vertices to choose from
among u’s out-neighbors (for some constant ¢ hidden in the O(«)).
This observation also means that we do not have to worry about
finding a clique until after all edges adjacent to its source vertices are
added. The clique will be found by the last of these source edges
when it is added. Thus, the main challenge of our algorithm is how
to find the cliques resulting from edge updates to other vertices
aside from those adjacent to the source vertex.

This leads to our third and final observation: a k-clique can be
formed from a (k — 1)-clique by attaching a source vertex where
all edges from the source vertex are directed into the vertices of
the (k — 1)-clique. The last crucial observation allows us to count
k-cliques inductively by counting (k — 1)-cliques, which are in
turn counted using (k — 2)-cliques, and so on. This means that for
any k-clique C, by Observation 10.1, there exists a set of unique
source vertices responsible for the set of smaller cliques within C.
Specifically, for every clique C; € C of size i € [2,...,k], there
exists a source for this clique. For every edge insertion, we first
determine the possible sets of k vertices which can be completed
by future edge insertions to form k-cliques. Potential cliques are
determined using the above observation by assuming for each edge
insertion (u, v), u is the source of the clique. Suppose C is one such
set. We assign the responsibility of counting the potential k-clique
C to the largest incomplete clique, C; C C, without a source. This
can occur when C; does not yet have enough edges to determine
the source (see (1) in Fig. 15 where {a,b,d, e} does not yet have
a source). The base case, the smallest possible largest incomplete
clique without a source, is an edge; once this edge is inserted, the
source of the edge counts the clique. The concept of the largest
incomplete clique without a source is fundamental to our algorithm.

Given a batch of edge insertions, if a set of edges completes the
largest incomplete clique without a source, C;, of C, then the new
source of this clique is responsible for counting C in the clique count.



a a

g
b E/ d b d b d
c e C
(1) ) 3)

Figure 15: Example of incomplete cliques in our counting algorithm
for counting k = 5 cliques. In (1), c is the source of a potential 5-
clique. {a,b,c,d, e} represents a potential 5-clique. We do not yet
know the source of the 4-clique consisting of {a, b, d, e} (the purple
edges represent potential edges), and so we store {a,b,d, e} in ta-
ble L. (2) shows a set of edge insertions (indicated by the red edges)
which determines a source (e) for the 4-clique. Thus, we insert
{a, b, d} in table I5. Suppose that this is the only clique that would be
counted when edges are inserted between all pairs in {a, b, d}. Thus,
we associate with this key, a count of 1 in table I5. Finally, (3) shows
two edge insertions which completes the triangle; hence, we count
the clique using the key {a, b,d} and increment the k-clique count
using the count associated with it (in this example, the count is 1)
in table I5.

Crucially, C cannot be counted until C; is completed; furthermore,
for any set of k vertices C with a source, but is not a clique, there
exists a C; that can count C. If the batch does not complete the
clique but a source has been found for C;, then, we determine the
new largest incomplete clique without a source, C; (where j < i),
that will be responsible for counting C. In Fig. 15, (2) shows a set of
insertions that determines that e is the source of {a, b, d, e}. Then,
the new largest incomplete clique without a source is {a, b, d}.

This naturally leads to an algorithm for counting k-cliques. We
create k — 2 parallel hash tables, where for each potential k-clique
C, we store the indices of the vertices comprising the largest in-
complete cliques, C;, without a source, for i € [2,k — 1], in table ;.
The values stored in these hash tables are the numbers of k-cliques
C that would be completed if C; in table I; is completed. Storing
the indices of all vertices allows us to determine the source when
the appropriate edges have been inserted. (More details are given
in our detailed algorithm below.) Given this set of structures, we
increase the k-clique count when a clique from table I; is completed
by a batch of insertions; to increase the k-clique count, we use the
value stored for the clique. If there remains any incomplete cliques,
we use each table I; for j > 2 to update tables I; for i < j if any
incomplete cliques in j have found sources. We give an example
illustration of this part of the algorithm in Fig. 15.

Data Structures. We maintain the following data structures in our
algorithm. We maintain k — 2 parallel hash tables, I; fori € [2,k—1].
For each I;, the keys are ordered sets of vertices of size i, and the
values are counts. The counts represent the number of k-cliques
that would form if all edges among the vertices in the keys exist.
To prevent over-counting, one edge update incident to the new
source of any newly completed clique stored in I; is responsible for
increasing the count by the stored value.
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Algorithm 11 CliqueCountingBatchFlips(A, Bins, Bger)

Input: A set of edge flips A.

Output: Updates Bips, Bel-
1: parfor each flipped edge (u,v) € A do
(u,v) to (v,u) and stored as (u, v) in A.

2: Bel — Baer U (u,0).

3: Bins — Bins U (v,u).

> The edge is flipped from

Algorithm 12 CliqueCountingBatchlnsert(Bins)

Input: A batch B, of unique and valid insertion updates.
Output: An updated k-clique count and updated data structures.
1: Let count be the current count of the number of k-cliques in the graph.
2: Insert the edges in By into the graph in the orientation specified by
Bins. Mark all edges in By in the graph.
3: Let R be the order of the edges in Biy;.
4: parfor each edge (u,v) € Bins do » The edge is oriented from u to v.
5: foriel,....,k—2]do
6 parfor each subset T of i out-neighbors of u (excluding v) do
7: Let T’ be the ordered set of T U {u, v} sorted by vertex index.
8 if u is the source of T’ and (u, v) is the earliest in R out of all
marked edges from u to w € T’ then

9: if all edges between each pair x, y € T” exists then
10: je2
11: else
12: Find largest incomplete clique without a source, C’, in T”.
13: Let j be the size of C’.
14: Teup < T'.
15: for/=i+1tojdo
16: Find s the source of Ty,p.
17: Tsub < Tsup \ s.
18: if |Tsup| = k — 1 then
19: if | ==i+1and T isa (i + 2)-size clique then
20: count < count + 1.
21 I Tsup] < I Tsup] + 1.
22: else if T’ € I;;, then
23: if I==i+1and T’ is a (i + 2)-size clique then
24: count « count + I;42[T’].
25: I [Toup] & I Tsup ] + L2 [T'].

26: Unmark all marked edges in the graph.

10.2 BatchFlips Implementation

Our algorithm uses the framework given in Section 8. We first in-
stantiate the algorithm for BatchFlips(A, Bins, Bger), which creates
a set of edge insertions and deletions from the flipped edges in A
and appends these edges to Bins and By,;. The pseudocode is given
in Algorithm 11. In parallel, for each edge that is flipped from (u, v)
to (v,u) (Line 1), we add (u,v) to By (Line 2) and add (v, u) to
Bins (Line 3).

10.3 Batchlnsert Implementation

We now instantiate Batchlnsert for k-clique counting. The main
basis of our Batchlnsert and BatchDelete subroutines is to main-
tain our parallel hash tables throughout edge insertions and dele-
tions. We first describe CliqueCountingBatchlnsert, given in Al-
gorithm 12. CliqueCountingBatchDelete is symmetric and is dis-
cussed in Section 10.4.

Before we dive into the details of the implementation of Algo-
rithm 12, we first provide some intuition for how our algorithm
implements our intuitive approach in Section 10.1. The key piece
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of information that our algorithm maintains after all updates is
how many sets of k vertices, C, can be a k-clique if a subset of
2 < i < k — 1 vertices, C; C C, has edges between all pairs of
vertices in the set. Table i keeps all C; sets of vertices (as keys). In
other words, the entry I;[C;] precisely counts the number of unique
sets of k distinct vertices, C, where the following two properties
hold:

(1) C; cC.

(2) For every v € C\ Cj, the directed edge from v to w, (v, w),

exists in G for every w € C;.

The bulk of Algorithm 12 is concerned with updating all of the
tables I; for i € [2,...,k — 1] such that the above counts hold for
every entry. Using these counts, we can find the number of new k-
cliques created by inserting Bins by checking for each C, whether its
largest incomplete clique without a source is completed. We can do
this efficiently because (1) we do not need to check this individually
for every C since our tables I; already maintain these counts; and
(2) if a largest incomplete clique without a source C; is completed,
then it must be incident to an edge update (u,0) € Biys, where
u is the new source of C; and v € C;. Knowing (2), we can afford
to enumerate sets of out-neighbors of C; to determine whether C;
is a clique. If C; is a clique, then we count all C that has it as its
largest incomplete clique without a source by adding I;[C;] to the
cumulative count. The remaining parts of Algorithm 12 ensure that
we do not over-count newly formed cliques.

We now describe Algorithm 12 in detail. For each edge inser-
tion (u,v) where the edge is oriented from u to v (Line 4), we
iterate through all possible subsets of i out-neighbors of u (ex-
cluding v, since we know v must be included in the clique) where
i €[1,...,k—2] (Lines 5 and 6). We iterate throughi € [1,...,k-2]
because u and v necessarily need to be included in the clique. This
is to account for all possible largest incomplete cliques without a
source that are currently in our hash tables. In order to find whether
Bins completes any of these cliques, we must find these cliques by
performing this enumeration. Let T be the subset of out-neighbors
picked. We consider all cliques of size i + 2 consisting of the vertices
in T’ =T U {u,0}. Then, Line 7 provides a canonical order for the
vertices in T’ so that we can search for T’ in I;. Note that we need
to avoid duplicate counting. To avoid duplication, we use the order
of the edge insertions in Batchlnsert (Line 3) and assign the task of
updating the clique count to the first insertion in this order, (u, w),
where w € T’. Hence, the if statement in Line 8 checks that all
of these above conditions are satisfied. The if statement in Line 9
checks whether the newly inserted edges create a new clique, and
if not (Line 11), the algorithm then finds the largest incomplete
clique without a source, C’, that contains a subset of the vertices
in T’ (Line 12). The algorithm then sets a parameter j to be the
size of C’ (Line 13). If T’ is a completed clique, it passes the check
on Line 9 and we assign j = 2 (Line 11). Now, we consider two
possible scenarios.

First, (u,v) along with the other edge insertions in Bj,s could
complete a largest incomplete clique without a source. In this case,
we should increase the k-clique count if u is also the new source
of the clique. Furthermore, Lines 19 and 23 check if the clique is
completed. If u is a new source, the clique for which it is the source is
completed, and T’ € I;42, then we increment the clique count with
the value I;42[T’] (Lines 22 and 23). The value stored in I;42[T’] is
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the number of new cliques that are created if T’ is completed. Note
that Line 24 is only called if |T’| < k since I < k — 1 and Line 18
handles the case when |T’| = k. This is because we do not store
size-k sets of vertices in any of the tables; we do not need to store
their values because we can enumerate them directly by checking
all (k — 1)-size subsets of out-neighbors of every u in every edge
insertion (u,v). We denote the ordered set of vertices that gives
the key in table I; by Ty, (initially setting Ty,,;, < T’ (Line 14)). If
T’ ¢ Ii+p and the size of Ty, is k — 1 (implying the size of T’ is k),
then we directly increment the clique count by 1 (Lines 18 to 20).
As before, in this case, we directly enumerate the new clique for the
edge insertion (u,v) without needing to check the tables. This also
means that u is the source of the newly created k-clique consisting
of the vertices in T”.

After we update the k-clique count, we must then update the
I;[C;i] counts for each C; C T’. We need to update these counts
because now T’ contains a vertex v € T” \ C; where there exists an
edge (v, w) for every w € C; (this vertex did not exist previously).
Thus, the count for C; must be incremented by [+ [T'] if i+2 < k-1,
and 1ifi+2 = k. This is because, as previously discussed, intuitively,
Ii2[T’] stores the number of k-cliques that would be created if T’
were completed, so we must similarly maintain the number of k-
cliques created now that each C; is completed. We prove this more
concretely in Section 10.5. When T’ is a clique, there exists a C;
for every 2 < i < |T’| whose entry I;[C;] needs to be updated. So,
Line 15 loops through each of these possible sizes and the entries
are updated by Line 21 or Line 25 depending on whether |T’| = k.

The second scenario is that (u,v) and the other edge insertions
in Bins do not complete a clique but create a new source among the
vertices in T”. The means that we need to find a new largest incom-
plete clique without a source within T”. Again, to avoid duplication,
we assign the task to the earliest edge update that is incident to u.
Similar to the case when T’ is a clique, the algorithm also needs
to update tables I;+1 to I; in this case (Line 15). However, we do
not update all of the tables since T’ still has a largest incomplete
clique without a source (Line 12). Let [ € [j, i + 1], the table I; is
updated with the number of cliques that would be counted by it
if it were the largest incomplete clique without a source. We need
to update all of these tables (instead of just table I;) in order to be
able to handle deletions. This is due to the fact that when a smaller
clique becomes incomplete due to a batch of deletions, it may cause
a larger k-clique to become incomplete. We cannot afford to find
all such affected k-cliques; thus, we must store this information in
the tables.

To compute the key for table I;, we need to remove the source of
Tsyup from T,y (Lines 16 and 17). Then, there are two cases we must
consider (Line 18 and Line 22). In the first case, when |T’| = k, u is
a newly created source for a new potential k-clique (Line 18); thus,
no entries in the tables have counted T’ yet and we increment the
count of I _; [Ty,p] by 1 (Lines 18 and 21) so that T’ will be counted
when Ty,,;, is completed as the largest incomplete clique without a
source. In the second case (Line 22), T’ is already an entry in table
Ii12; this means that it already counts the a number of k-cliques
that exist if T’ is a clique. In this case, we increase the value for
I;[Tyup] by Tis2[T’] since by definition of the values we store in
I [Tyl if Tyyp is a clique, then all the k-cliques that are counted



Algorithm 13 CliqueCountingBatchDelete(B ;)

Input: A batch By, of unique and valid deletion updates.
Output: An updated k-clique count and updated data structures.
1: Let count be the current count of the number of k-cliques in the graph.
2: Insert all edges in By, into the graph in the orientation specified by
Bel- Mark all edges in By, in the graph.

3: Let R be the order of the edges in By.

4: parfor each edge (u,v) € By, do > The edge is oriented from u to v.

50 forielk—-2,...,0] do

6: parfor each subset T of i out-neighbors of u do

7 Let T’ be the ordered set of T U {u, v} sorted by vertex index.

8: if u is the source of T’ and (u, v) is the earliest in R out of all
marked edges from u to w € T’ then

9: if all edges between each pair x, y € T’ exists then

10: J e 2.

11: else

12: Find largest incomplete clique without a source, C’, in T".

13: Let j be the size of C’.

14: Tsup < T'.

15: forl=i+1tojdo

16: Find s the source of Tg,p.

17: Tsub < Tsub \ -

18: if |Tyup| = k — 1 then

19: if I ==i+1and T’ is a clique then

20: count « count —1.

21 I Tsup] « [ Tsup] —1.

22: else if T’ € I;;, then

23: if /| ==i+1and T’ is a clique then

24: count « count —I2[T'].

25: O Tsup] < O Tsup] —liva [T,]~

26: Delete all marked edges in the graph.

when T’ is a clique will now be counted when Ty,,;, is completed as
the largest incomplete clique without a source (Line 25).

10.4 BatchDelete Implementation

Our CliqueCountingBatchDelete algorithm is nearly identical to
our CliqueCountingBatchlnsert algorithm; in places where we as-
sign clique counts in the insertion algorithm, we instead remove
clique counts in the deletion algorithm. Such changes are expected
since deletions of edges remove cliques from the count and also
remove assignments of cliques to largest incomplete cliques with-
out a source. The pseudocode is provided in Algorithm 13. The few
changes to the algorithm are highlighted in blue.

10.5 Correctness

To prove the correctness of our algorithm, we first show that Algo-
rithm 12 and Algorithm 13 accurately store the counts associated
with the largest incomplete cliques without sources. For simplicity,
we provide separate lemmas for Algorithm 12 and Algorithm 13,
although fundamentally, the proof techniques are the same for both
algorithms.

We use the following notation in Lemma 10.2 and Lemma 10.3.
Let cy, be the number of sets of k vertices in the graph which do
not form a clique, contains a source, and whose largest incomplete
cliques without sources is the set of vertices in L after processing
the current, input batch of updates. We show that after running Al-
gorithm 12 or Algorithm 13, Ij7|[L] = cr. In fact, we show an even
stronger lemma; suppose that J is a set of vertices in the graph
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where 2 < |J| < k — 1. If we remove all edges between pairs of
vertices in J, let cj be the number of sets of k vertices that do not
form a clique, contains a source, and whose largest incomplete
cliques without sources is the set of vertices in J. We show that
Ij71[J] = ¢j. This stronger form of the lemma is not necessary if
we only consider insertion updates; however, under deletion up-
dates, we require this stronger lemma in order to prove correctness.
It is sufficient to assume that all data structures are maintained
corrected at the beginning of Algorithm 12 and Algorithm 13 and
they remain correct at the end of the algorithms (since by induc-
tion, this would prove that the data structures are always correctly
maintained).

Lemma 10.2. After running Algorithm 12 on Bins, |5/ [J] = ¢y for
everycy where2 < |J| <k - 1.

ProoF. We prove this lemma via induction on the table index i,
starting with i = k — 1. We first prove our base case for i = k — 1.
In Algorithm 12, the value stored in Ir_{[J] is only ever incre-
mented in Line 21 since this is the only time when table I _; can be
modified (the condition in Line 22 is never satisfied for any entries
in table Ix_). By the condition given in Line 8, I _; [ J] is only incre-
mented when T’ has a source s where J = T’ \ {s}. Furthermore, the
condition that I _;[J] is incremented by the earliest edge update
incident to s ensures that it is incremented at most once by each T”.
The number of sets cj of vertices T’ where J € I_; is the largest
incomplete clique without a source (if all edges in J are removed) is
precisely the number of vertices s in the graph with edges directed
into all vertices in J. Our argument above shows that I;_;[]] is
incremented exactly once for each such vertex s; furthermore, it
is incremented only if s is adjacent to an edge update (s, x) € Bips
and x € J. This proves our base case.

We assume for our induction step that I;;[J] = ¢; for all tables
Ij for j € [k —1,...,k — ] and prove the lemma holds for table
Ir_j_1. The value I;_;_;[J] is increased in Line 25. Every T’ with k
vertices increases the value of I _;_1 [ J] by 1 if its largest incomplete
clique without a source has size < |J|. This is easy to see since if all
edges from J are removed, then J would be the largest incomplete
clique without a source for T’. By our induction hypothesis, the
counts of these T’s are correctly stored in tables I; for j € [k —
1,...,k—1]. Line 8 ensures that only one edge update is responsible
for incrementing I _;_;[J] for each T’; furthermore, it ensures that
Ix—j—1[J] is incremented with the value stored in Ic|[C] where
C C T’ is the previous largest incomplete clique without a source
before the current batch By, of insertions. ] C C by definition,
and ] is guaranteed to be the largest incomplete clique without a
source (after the edge insertions in B;y;) by our argument above. In
addition, each T’ is counted in at most one C € T’ in each table I;
where j € [k—1,...,k—1]. This is true by our induction hypothesis
since each T’ has one unique C where |C| = j which is the largest
incomplete clique without a source (if the edges in C are removed).

The last step we need to prove in order to prove our induction
hypothesis is that I _;_; [J] is incremented by 1 for T” with exactly
one I;c|[C] where C C T’. We prove this via contradiction. Suppose
there are two subsets C’ ¢ C c T’ which are used to increment
I_;—1[J]. Let s’ € C’ be the source of C’ and s € C be the source
of C. This means that in order to satisfy Line 8, s and s” must be
incident to some update (s, x) € By, (resp. (s, x") € Bgyer) where
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x,x" € T’. This means that C was the previous largest incomplete
clique without a source for T” and so C’ would not contain a count
for T’ by our induction hypothesis. Since, we process the tables
in Line 5 starting with table I, in increasing order of table index,
Ii_j—1[J] cannot be incremented with the count for T’ from C’,
a contradiction. Thus, I Il [C] correctly counts all T” and hence,
Ir_;_1[J] is incremented exactly once for each T’ and we have
proven our inductive step. O

The proof of the property for Algorithm 13 is almost identical
to Lemma 10.2 except to account for the few changes shown in
blue in Algorithm 13. For simplicity, we present only the parts of
the proof that requires more effort than replacing decrement for all
mentions of increment in the proof of Lemma 10.2.

Lemma 10.3. After running Algorithm 13 on By, Ij5[J] = ¢y for
everycy where2 < |J| <k —1.

Proor. We prove this lemma via induction on the table index
i, starting with i = k — 1. The proof of our base case fori =k — 1
directly follows from the proof of the base case in Lemma 10.2 when
we replace instances of increment with decrement.

We assume for our induction step that I;7|[J] = ¢; for all tables
Ij for j € [k —1,...,k —I] and prove the lemma holds for table
Ii_j_1- The value Ij._;_; [ J] is increased in Line 25. The proof of the
inductive step follows from the proof of the inductive step in the
proof of Lemma 10.2 by replacing instances of increase by decrease,
except for the last step which we prove below.

The last step we need to prove in order to prove our induction
hypothesis is that I;_;_; [J] is decremented by 1 for T” with exactly
one I|c|[C] where C C T’. We prove this via contradiction. The
initial setup is the same as the setup in the proof of Lemma 10.2.
Suppose there are two subsets C’ ¢ C c T’ which are used to
decrement Ij._;_;[J]. Let s’ € C’ be the source of C’ and s € C be
the source of C. This means that in order to satisfy Line 8, s and s’
must be incident to some update (s, x) € Bins (resp. (s’,x") € Bins)
where x,x’ € T’.

This means that C is now the largest incomplete clique without
a source for T’ after processing the deletions in By,;. Thus, because
we process the tables in decreasing order by table index, starting with
table I, (Line 5), C satisfies the conditions in Line 8 and by Line 25,
C would have deleted the count of T’ from I/|C”. Thus, C" would
not contain a count for T” and I;_;_; [J] cannot be incremented
with the count for T’ from C’, a contradiction. Ijc|[C] correctly
counts all T’ by our induction hypothesis and hence, I _;_{[]] is
decremented exactly once for each T’ and we have proven our
inductive step. o

We are now ready to prove that our algorithms correctly return
the k-clique count provided batches of updates.

Theorem 10.4. Our algorithms, Algorithm 12 and Algorithm 13,
correctly returns the number of k-cliques in a given input graph,
G = (V, E), provided batches of updates Bins and B, respectively.

Proor. Provided Lemma 10.2 and Lemma 10.3, we only need
to show the following: given Bins, each k-clique C completed by
Bins (i.e. contains at least one edge in Bjy;), is counted exactly once,
and by exactly one update edge incident to the source of its largest
incomplete clique without a source (prior to the insertions); given
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Bins, each k-clique C destroyed by By, (i.e. contains at least one
edge in B ), is subtracted exactly once, and by exactly one update
edge incident to the source of its largest incomplete clique without
a source (after the deletions).

We first prove the above is true for insertions. The if statement in
Line 8 ensures at most one update edge for a set of vertices C C T’,
where T’ is a newly formed clique, increments the clique count.
Now, we prove that at most one subset of vertices increments the
clique count for T’. Suppose for contradiction two sets of vertices
C’ c C c T’ increments the total clique count by 1 for T’. Then, in
order to pass the if statement in Line 8, the sources of both C” and
C must be adjacent to updates in Bj,s that point to vertices in C’
and C. Since C’ C C, C was the previous largest incomplete clique
without a source for T’. By Lemma 10.2, C’ does not contain the
count for T” and thus, only C increments the total clique count by
1 for T’, a contradiction.

To prove that at least one subset of vertices increments the clique
count for T’, suppose that C was the previous largest incomplete
clique without a source for T’ but C does not increment the clique
count. Since T’ is a new clique, it must be incident to at least one
edge update in Bijys. Since C does not increment the clique count, it
must not have found a source (and cannot satisfy Line 9). (It must
satisfy Line 19 or Line 23 since T’ is a clique and we iterate through
all possible i). Since C does not have a source, by Observation 10.1,
it must be missing at least one edge. Then, T’ is not a clique, a
contradiction.

The proof follows symmetrically for Lemma 10.3 except that
instead of the previous largest incomplete clique without a source,
we care about the largest incomplete clique without a source after
processing By,;. Suppose for contradiction two sets of vertices
C’ c C c T’ decrement the clique count. Then, their sources must
both be incident to edge updates. Since, C’ c C, C is processed
first by Line 5 using Lines 15, 21 and 25. This means that the count
of T’ would have been subtracted from ited [C’] and it cannot
decrement the clique count by 1 for T’, a contradiction. Suppose
instead, that C is the largest incomplete clique without a source
for T’ after processing By, and it does not decrement the clique
count. Either one of two scenarios can occur: either I;c|[C] no
longer has the count for T’ or the source s of C is not incident to
any updates. No C"” where C C C”" can decrement I|¢|[C] for T’
since by our assumption, the source of C”’ is not incident to any
updates directed into vertices in C””. Thus the first scenario cannot
occur and we consider the second scenario where the source s must
not be incident to an edge update directed into the vertices in C.
Then, s still has all its directed edges to the vertices in C and so is
the source of C. This means that C has a source and cannot be the
largest incomplete clique without a source, a contradiction. O

Together with the proof of correctness of our framework, Sec-
tion 8, our algorithm correctly provides the k-clique count provided
a batch of updates, 8.

10.6 Work and Depth Analysis

We note for the following result that « is defined as max(ay, aq)
where ay, is the arboricity before the current batch of updates is
processed and «j is the arboricity after the current batch of updates
is processed.



Theorem 10.5. We obtain a batch-dynamic k-clique count-
ing algorithm that takes O(a|B|log?n) amortized work and
O(log® nloglogn) depth w.h.p., using O(ma*=2 + nlog? n) space.

Proor. We first show the work, depth, and space of our algo-
rithms, Algorithms 11 to 13, and then use Theorem 8.1 to show the
bounds for our algorithm. Note that the increments and decrements
to the global k-clique count can be performed in O(log n) depth in
parallel by writing each update to an array, and then using parallel
reductions at the end to update the global k-clique count. We use
the same strategy for updating the hash table counts. Furthermore,
our parallel hash table primitives allow us to concurrently modify
elements in parallel in O(log n) depth w.h.p.

In Algorithm 11, the batches B;,s and By, can be obtained in
o(|8| log2 n) work and O(log n) depth. Note that by construction,
|Binsh, |Bgerl = O8] + |A]) = O(|B|log? n). All edges can be
checked in parallel (Line 1) and inserted into parallel dynamic
arrays; we can also use a simple parallel filter. For the remainder of
this proof, we discuss the work and depth complexity for a batch
Bins of edge insertions in Algorithm 12; the deletion algorithm
(Algorithm 13) has the same work, depth, and space complexity.

All edge insertions are processed in parallel using a parallel loop
(Line 4). We then run a sequential for loop of depth O(k) (Line 5).
Let i be the current index of the sequential for loop. In order to
process edge insertions (u,v), where u is a source, we iterate in
parallel over all sets T of i + 1 out-neighbors of u including v. Since
there are at most O(«) out-neighbors of u, and since v is necessarily
included, we have () = O(a?) possible sets T (assuming constant
k). For constant k, we perform a constant number of parallel hash
table operations and checks for the existence of edges per set T
(Lines 9, 10 and 12 to 14). We make O(k) iterations of the for loop
in Line 15; updating the hash tables (Lines 21 and 25) require O(k)
total work per edge update. Checking for the source of Ty,,;, over
all Ty, requires O(k?) work per edge update (Line 16). Thus, per
edge insertion (u,v), for constant k, we incur O(a’) work and
O(logn) depth w.h.p. Over all i € [0,...,k — 2], this results in
Zf:_oz O(a') = O(aF~2) total work over all i, w.h.p. The depth is
O(log™ n) w.h.p. due to the hash table operations and updating the
table values by writing to an array and using a parallel reduction
for each entry results in O(log n) depth.

Lastly, we update the global k-clique count by writing each
update to an array and using a parallel reduction at the end, which
maintains the same work and depth bound.

Processing the entire batch of insertions in parallel, we have
O(a*2|8 log? n) amortized work and O(log n) depth w.h.p. Thus,
in total, our k-clique counting algorithm takes O(a*~2|8|log? n)
amortized work and O(log? n) depth w.h.p. by Theorem 8.1.

Our space usage is proportional to the space required to store
the contents of the parallel hash tables I; for i € [2,...,k — 1].
By construction, for each edge insertion (u,v), we create at most
Z];;g O(a/~2) = O(a*~2) hash table entries across all I;. This fol-
lows directly from our work analysis. Thus, in total, we use space
proportional to O(mak~2). O
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10.7 Comparison with Previous Work

The best-known batch-dynamic algorithm for k-clique counting for
graphs with low arboricity is given by Dhulipala et al. [29]. They
give a O(|B|mak—%) expected work and O(logki2 n) depth w.h.p.
algorithm using O(m + |8B]) space. Our algorithm improves upon
the work of this previous result when m = w(a? log? n). Note that
a < \/m [22]. Furthermore, in real-world graphs, often a < \/m,
since real-world graphs tend to have small arboricity.

Our algorithm achieves better depth for all k > 4. For 4-cliques,
our depth matches the previous algorithm while for larger cliques,
we achieve a better depth. Finally, we obtain these gains with an
increase in space of O(ak2 + log? n) multiplicative factor, but for
bounded arboricity graphs, this increase in space is small.

11 COLORING ALGORITHMS

The vertex coloring problem looks to assign colors to assign col-
ors to vertices such that no two adjacent vertices are assigned the
same color. A c-vertex coloring uses at most ¢ colors to color all
vertices in the graph. In this section, we present two batch-dynamic
algorithms. Although our algorithms are based heavily on the se-
quential algorithms by Henzinger et al. [47], we present them as
an example of using our framework. One maintains an (explicit)
coloring over the vertices and one maintains an implicit coloring.
In the explicit setting, a valid coloring is always maintained in
the graph among all vertices. In the implicit setting, the algorithm
maintains a set of data structures and on queries of one or more
vertices, returns a coloring that is valid on the induced subgraph
of the queried vertices. Thus, in the implicit setting, both updates
and queries could take Q(1) work to process. Below, we give our
vertex coloring algorithms.

11.1 Explicit O(alogn)-Coloring

In this section, we present a parallel batch-dynamic, randomized
O(a log n)-coloring algorithm that is robust against an oblivious ad-
versary and uses O (log? n) amortized work, matching the amortized
running time in the sequential setting. Notably, « is the current ar-
boricity of the graph, after processing the current batch of updates.
This algorithm is inspired by the coloring algorithm of Henzinger
et al. [47], and directly uses the PLDS.

Sequential Explicit Coloring Algorithm of Henzinger et al. [47].
The explicit vertex coloring algorithm of Henzinger et al. [47] uses
a separate palette of colors for each level in the LDS. When a vertex
moves to a new level, it chooses a color uniformly at random from
among the free colors in the palette at its level; specifically, the free
colors are colors that are not occupied by its neighbors. If an edge
insertion occurs between two vertices with the same color, then an
arbitrary endpoint chooses a new color uniformly at random from
the free colors in its palette.

Since the sequential algorithm processes one vertex at a time,
it does not have to deal with color conflicts when more than one
vertex chooses a free color from the same palette. However, in the
batch-dynamic case, this is an issue since more than one vertex
on the same level may need to choose a free color. We show that
allowing such vertices to keep choosing colors is sufficient to ensure
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Algorithm 14 ExplicitColoringBatchFlips(A, Bins, Byel)

Input: A set of edge flips A.

Output: A list of vertices which changed levels.
1: S« 0.

2: parfor each edge (u,0) € AU Bjys U By do

3:  if u (resp. v) changed levels then

4

5

S — SU {u} (resp. {v}).

: return S.

Algorithm 15 ExplicitColoringBatchDelete(B ;)

Input: A batch By, of unique and valid insertion updates.
Output: A valid O(alogn)-coloring.
1: parfor each edge {u, v} € By, do
2:  if u € S (resp. v € S) then
3 S «— S\ {u} (resp. {0}).
4: while u (resp. v) has a neighbor with the same color do
5 Recolor u (resp. v) with a free color from Py, (resp. Py(y))
picked uniformly at random.

Algorithm 16 ExplicitColoringBatchlnsert(Biys)

Input: A batch 8,5 of unique and valid insertion updates.
Output: A valid O(« log n)-coloring.

1: parfor each edge {u, v} € Bjns do

2:  if ¢(u) = c¢(v) then

3: while u has a neighbor with the same color do

4: Recolor u with a free color from Py, picked uniformly at
random.

5 S« S\ {u}.

6: parfor each remaining vertex v € S do

7:  while o has a neighbor with the same color do

8 Recolor v with a free color from Py (,) picked uniformly at random.

both work-efficiency and low depth, w.h.p., provided we give a large
enough palette.

Batch-Dynamic O(a log n)-Vertex Coloring. As in the previous
sections, we use our framework given in Section 8 for our color-
ing algorithms. The pseudocode for our implementations of the
methods are given in Algorithms 14 to 16. Given that Algorithm 16
and Algorithm 15 are very similar to each other, we explain all
three algorithms here.

First, Algorithm 14 determines the set of vertices which changed
levels after processing the batches of insertions and deletions. We
can find these vertices in parallel (Line 2). The vertices which
changed edges are added to the set S (Line 4 which can be accessed
by Algorithm 16 and Algorithm 15.

Each level ¢ € g; is initialized with a unique palette with 2 - (2 +
3/A)(1 + ¢€)! colors. Vertices on level ¢ will be colored only with
colors from the palette on level £. Py denotes the palette for level ¢.
A free color for a vertex v is a color from Pp(y) that is not occupied
by any neighbors of v.

When a vertex moves up or down one or more levels, it recolors
itself using the palette of the new level £ € g;.1? In Algorithm 15,
because deletions cannot cause two neighboring vertices to have
the same color, we only need to recolor the vertices which changed
levels (Line 2). To pick a free color (Algorithm 16 Line 4, Algo-
rithm 15 Line 5), the vertex v looks at the colors occupied by all
its up-neighbors and picks a color that does not collide with the

12This step is necessary to maintain our bound in terms of the current arboricity, «,
for the number of colors used in the coloring.
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colors of any of its up-neighbors. We only need to check the up-
neighbors because the palettes are distinct across levels. In fact, a
vertex can only conflict with the neighbors in its own level, but
since we keep all up-neighbors in a single data structure, we check
all up-neighbors.

In addition to checking the vertices which changed levels, given
a batch of insertions, Bips, in Algorithm 16, we iterate over all
insertions in parallel (Line 1) and check whether any insertions
are between two vertices with the same color (Line 2). Then, for
each edge insertion {u,0} between two vertices with the same
color, we arbitrarily select one vertex, u, to recolor itself (Line 4). v
selects a free color uniformly at random from its palette (Line 4). If
v still conflicts with any of its up-neighbors (Line 3), it recomputes
its palette of free colors again by looking at the colors of its up-
neighbors and picks a color uniformly at random. This process
repeats until no vertices conflict with their up-neighbors in color.
Finally, the remaining vertices which changed levels choose colors
from their respective palettes (Lines 6 to 8).

Analysis. Since each level has a unique palette and at most (2 +
3/A)(1 + ¢) neighbors of a vertex v can be on the same level as v
if £(v) € gi, v has at least (2 + 3/A)(1 + ¢) free colors that it can
choose from its palette of size 2 - (2 + 3/1)(1 + ¢)’. We first show
that this strategy only requires O(«a log n) colors. Part of the proofs
of Lemmas 11.1 and 11.2 follow the analysis provided in [47] but
we present it for completeness.

Lemma 11.1. At most O(alogn) colors are required in our algo-
rithm.

ProoF. Eachlevel £ € g; has O((1+¢)?) colors (assuming A is con-
stant). We showed in Lemma 5.13 that our coreness estimate is upper
bounded by (2 + ¢)k(v). This means that the largest group index
where a vertex is on a level in the group is log(lﬂ) ((2+¢e)k(v))+1.

Hence, i = max, (log(HE) (k(v)) + log (1) (2+¢)+ 1). Since each

group contains O(log n) levels, the number of colors used is

log(Hg) (maxv(k(v)))+log(1+£) (2+¢)+1
2(2+3/M)(1+¢)logn
i=0
= O(max(k(v))logn) = O(alogn).
[

O

We now show that our procedure requires O(8 log? m) amor-
tized work using PLDS.

Lemma 11.2. For a batch B, under the oblivious adversary assump-
tion,'® our coloring algorithm requires O(|B|log? n) amortized work,
in expectation.'*

Proor. For a vertex that moves to a different level, the work to
recolor it can be charged to the work of the PLDS update procedure.
The bulk of this proof is devoted to proving this fact.

13 An oblivious adversary cannot see our algorithms outputs (i.e., they cannot see our
coloring) before determine the set of updates.

4We can show the work to be O(|8]log® n) amortized w.h.p. somewhat tediously
using the Chernoff bound. However, the bound requires an additional O (log n) factor
of work compared to the O(|8|log? n) amortized work bound in expectation.



First, we show that the oblivious adversary cannot cause re-
colorings too often via adversarial edge insertions between two
vertices with the same color. The proof for this part is similar to
the proof of Lemma 8 in [47]. To show this, we crucially rely on the
fact that the adversary cannot see the colors of the vertices before
they pick the updates. For an edge insertion (u,v) between two
vertices, u and v, that are on the same level £ € g; and causes a
conflict, u and v have at most (2 + 3/1)(1 + &)’ neighbors (at the
same level, using the same palette) but 2 - (2 + 3/1)(1 + ¢)! total
colors in its palette. The algorithm arbitrarily picks one of the two
endpoints, without loss of generality u, to recolor itself. u has at
least (2+3/1)(1+¢)’ free colors and it picks each color uniformly at
random from these (2 +3/1)(1 + ¢) free colors.!® This means that
u picks any particular color ¢ in its palette with probability at most
m. The same argument holds for a vertex that moved
to a new level and needs to be recolored. Since the adversary is
oblivious, they have to guess which color u picked. Even assuming
the much stronger assumption that the adversary knows the colors
of all vertices except u (it does not in actuality), the adversary still
only has at most a W chance of picking ¢ (u’s color) and
creating an edge insertion between u and a vertex with color c.
Thus in, expectation, the adversary must create (2 + 3/1)(1 + ¢)’
edge insertions incident to u before they pick one that conflicts
with u’s color. The O((2 +3/A)(1 +¢)*) cost of finding a color for u
can be amortized over these edge insertions.

For the vertices that were recolored due to level movements, we
can charge their cost to the cost of moving levels. In expectation, the
vertex tries at most two times (by what we showed above) before it
is successfully recolored, resulting in O(1) total cost, in expectation.
Thus, the amortized update time is equal to the number of conflicts
and vertices that moved to a different level. This takes O(|8B| log? n)
work in expectation since there are O(|8|log? n) edge flips and
updates and is the same as the PLDS update time.

In addition to the cost of recoloring due to adversarial insertions,
recall that our batch-dynamic algorithm also requires multiple
vertices to keep picking colors uniformly at random until they pick
unique colors not occupied by their neighbors (Algorithm 15-Line 5,
Algorithm 16-Line 4). We need to show that this procedure does
not add too much additional cost to the cost of recoloring due to
adversarial updates. In fact, next we show that additionally picking
random colors until all vertices pick a non-conflicting color does
not add additional work, asymptotically, w.h.p. It is easy to show
that this running time also holds with high probability. Given a
set X of vertices in level ¢ € g; that randomly picked the same
color or that moved to a different level, in expectation, after a
round of recoloring, the number of vertices in X that again result
X| IX] X|

\ X1 o .
2370 (142)? < @377 < . Since each vertex is

independently picking a color, we can show via the Chernoff bound
that with probability at most exp(£2|X|/6), more than (1 +¢) - %
vertices need to pick colors again. Thus, when |X| > clogn, for
large enough constant ¢ > 0, with high probability, the number of
vertices that need to re-pick their colors decreases by a factor of
2. Then, each time we recolor, the number of vertices that obtain

their final color decreases by a constant fraction w.h.p., and we can

in conflicts is

154 may pick a random color multiple times, and we consider the palette that is last
used by u to pick its final color.
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charge the cost of all subsequent recolorings to the first time we
recolor the vertices.

When |X| < clogn, the probability that any clogn consecu-
tive trials results in a vertex v € X picking the same color is
(%)CIOg" < n—lc By the union bound over the |8| updates, the
total probability that any two vertices conflict is lﬁl . We can pick
¢ > 3 to obtain with high probability that each insertion results
in O(log n) conflicts. Thus, the amortized update time is O(log n),
w.h.p., since each edge gets charged O(logn) for up to two end-
points. The total amortized work is O(|8]log? n) which can be
charged to the time necessary to perform the orientation algorithm.
By Theorem 8.1, we obtain that the total work of our algorithm is

O(|8|log? n), in expectation, O(|B|log® n) w.h.p. O

Lemma 11.3. Our coloring algorithm requires O(log? nloglog n)
depth per batch, with high probability.

Proor. All vertices that need to change colors pick their new
colors independently in parallel, and picking a new color takes
O(1) depth. All vertices, first, in parallel, record the colors of their
up-neighbors. Then, vertices, in parallel, pick colors not occupied
by their up-neighbors.

In the remainder of the proof, we prove that we need O(log n)
depth w.h.p. to resolve the conflicts resulting from multiple neigh-
boring vertices picking the same color. The probability that a vertex
conflicts with a neighbor is at most

(2+3/)L1)(1+e)i s (2+;//1) <3
The probability that we still have conflicts after clogn tries, for
some constant ¢ > 0, is then at most (%)Clog" < # Picking ¢ > 2
and applying a union bound over all vertices gives a polynomially
small probability that conflicts occur after clogn tries. Thus, we
need to randomly choose colors O(log n) times, w.h.p..

Since the depth of picking a color for each vertex is O(1), the total
depth for picking colors is O(log n) w.h.p. This depth is additive
to the depth of our orientation algorithm because we first use our
PLDS to move vertices to their final levels and then recolor the
vertices. By Theorem 8.1, the overall depth is O(log2 nloglogn)
w.h.p.. O

Theorem 11.4. Our batch-dynamic O(a log n)-vertex coloring al-
gorithm requires O(|B|log? n) amortized work, O(log? nloglog n)
depth, w.h.p., using O(m + nlog? n + alogn) space.

Proor. Our work and depth bounds hold by Lemma 11.2
and Lemma 11.3, respectively. Finally, our coloring algorithm uses
an additional space equal to the total number of colors used by the
algorithm to maintain the palettes. Thus, the algorithm requires
an additional O(alogn) space; by Theorem 8.1, this results in
O(m + nlog? n + alogn) space. O

11.2 Implicit O(2%)-Coloring
In this section, we present an implicit O(2%)-coloring algorithm,
where « is the current arboricity of the graph, after processing the
most recent batch of updates. As defined previously, an implicit
coloring is maintained by a set of data structures whereby on queries
of one or more vertices, the data structures return a valid coloring
in the induced subgraph of the queried vertices.

To do this, we maintain a batch-dynamic version of the arboric-
ity forest decomposition structure of Henzinger et al. [47]. We
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construct these forests using the batch-dynamic Euler tour data
structure of Tseng et al. [85]. As in previous sections, we use the
framework provided in Section 8. The sequential, dynamic algo-
rithm of Henzinger et al. [47] turns out to be somewhat tricky to
parallelize. Specifically, Henzinger et al. [47] prevents cycles in the
forests they create by sequentially inserting edges into one of two
possible trees. In the batch-dynamic setting, since we are inserting
multiple edges simultaneously, we need to run a cycle-breaking
algorithm to split the cycles among the trees; such an algorithm is
somewhat cumbersome to implement. Instead, we present a simpler
version of their algorithm below that is much easier to parallelize,
provided an acyclic low out-degree orientation; our simpler algo-
rithm provides the same guarantees.

Our Simplified Dynamic Arboricity Forest Decomposition Structure.
We first provide a simplified version of the arboricity forest decom-
position structure of [47] here. We are able to simplify the structure
since we assume an acyclic orientation algorithm, while the arboric-
ity decomposition structure in [47] can use any orientation algo-
rithm, not necessarily only acyclic ones. We also present some new
proofs that our simplified structure still solves the O(2%)-coloring
problem in the same work bounds as the structure presented in [47].
Then, we build on this simplified structure to design our parallel
batch-dynamic algorithm.

Provided an o out-degree orientation, the key idea behind the
arboricity forest decomposition structure of [47] is to create 2¢
undirected forests. However, we show here that o undirected forests
is sufficient for this problem if the out-degree orientation is also
acyclic. Below, we present a simpler version of the algorithm using
only o undirected forests via a simple lemma (Lemma 11.5) we
prove.

They use two different types of data structures to maintain the
forests: the top tree data structures of [2] and an array for each node
maintaining which trees contain an outgoing edge of that node. We
denote the array for node v by A,. Furthermore, we denote the ith
forest by F;. The forests maintain the following invariants:

(1) There exists a unique root for each tree in each forest.

(2) For each I € {0,...,0 — 1} and each v € V, no forest F;

contains two or more outgoing edges of v.

(3) No forest where j > [N*(v)| contains an outgoing edge of v.

(4) Apli] =1 (fori € [o]) if and only if F; contains an outgoing
edge of v. Otherwise, Ay [i] = 0.

The forests support the following two operations:

(1) Insert oriented edge: A new directed edge (u, v) is inserted
into the structure in O(logn) time. Let d(u) = |[N*(u)|
(where N*(u) is the out-degree of u before the new edge
insertion). This is done by inserting the edge into Fy(,) and
setting A, [i] = 1. The top tree allows this operation to be
done in O(log n) time. The out-degree of v is now d(v) + 1
and all invariants remain satisfied.

(2) Delete oriented edge: A directed edge (u, v) is deleted from
the structure in O(log n) time. We first find the location of the
edge in the forests. This can be done by maintaining pointers
from edges to their respective locations in the forests. Let F;
be the forest that contains (u, v). Delete (u,v) from F;. The
top tree allows this operation to be done in O(log n) time.
Then, we find the tree with the largest index that contains
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an outgoing edge of u. (By our invariants, this should be
Fg(u)-1 where d(u) is the out-degree of u before the edge
deletion.) Let e be the outgoing edge of u in Fy(,)_1. Then,
delete e from Fy(,,)—; and insert e into F;. The top tree allows
us to perform both operations in O(log n) time.

Any edge flips from (u, v) to (v, u) in our orientation algorithm
can be handled by first performing an edge deletion of (u, v) fol-
lowed by an edge insertion of (v, u) using the algorithms above.

We now prove the correctness of the simplified structure for
acyclic orientation algorithms.

Lemma 11.5. Let o be the maximum out-degree of our acyclic ori-
entation algorithm. Then, Fy, . .., Fs—1 provides an arboricity decom-
position of the graph.

Proor. This proof relies on proving two parts of the simplified
algorithm. First, we need to show that the union of all forests in
Fo, ..., Fs_1 gives all of the edges in the input graph. To show this
first property, we need only show that no outgoing edge of any
vertex v € V is in any forest F; where j > d(v) and d(v) is the
out-degree of vertex v. This directly follows from the invariants.
Furthermore, each inserted edge is inserted into at least one of the
forests.

Then, we need to show that no cycles exists in any of the forests
(i.e., each F; is properly a forest). To do this, it is sufficient to show
that no cycles exist in any F;. We prove this via contradiction.
Suppose that a cycle exists in F;. By our invariant, this means that
no vertex v incident to two edges, (v, w) and (v, u), in the cycle has
both (v, w) and (v, u) oriented outwards from v. Otherwise, this
would violate the invariant that at most one outgoing edge of v is in
any forest. Thus, for every vertex in the cycle, one of the incident
edges must be directed out and one directed in, in the orientation
produced by the orientation algorithm. This is a contradiction to
the acyclicity of the orientation algorithm. O

Batch-Dynamic Algorithm. We implement the batch-dynamic
algorithm in the following way. We implement the trees using the
batch-dynamic Euler tour trees of Tseng et al. [85]. These trees allow
inserts/deletes and distance-to-root operations in O(| 8| log n) work
and O(log n) depth w.h.p.'® Furthermore, we maintain a parallel
hash table, T, which contains the edges as keys and pointers to the
tree containing each edge as the values.

In this algorithm, let our batch of edges to insert into our forests
be the set of edge insertions, deletions, and edge flips. To implement
BatchFlips, we create two sets of updates per flipped edge: an edge
deletion and an edge insertion. Then, following the framework
in Section 8, we first process the deletions and then the insertions.

For each oriented deleted edge, we check, in parallel, in the hash
table T for the location of each edge (which tree each edge is in).
Then, we perform, in parallel, deletions of the edges in the respective
parallel Euler tour trees. All of this can be done in O(|8B| log3 n)
amortized work and O(log n) depth w.h.p. The work results from
performing Euler tree operations on the set of edges in Bj,s and
Ber- There are O(|B|log? n) updates in these batches and each
Euler tree operation requires O(log n) work; thus, our total work
is O(|8]log® n). We can perform all updates to our Euler trees in

16The high probability bound directly follows from the high probability bounds of
parallel skip-lists.



parallel, hence, the total depth is the depth of performing these
updates, O(logn) w.h.p.

For each vertex, we maintain the number of edges deleted from
its trees as well as the trees from which edges are deleted. This
can be done in O(|8|log? n) amortized work and O(log n) depth
w.h.p. Finally, we find, in parallel, the X; outgoing edges of v; in
the last X; trees that contain an outgoing edge of v;, where X; is
the number of edges that were deleted from v;’s trees. In parallel,
we arbitrarily pick a unique slot for each edge and assign it to to its
respective empty slots in the trees. This last step can also be done
in O(|8|log® n) amortized work and O(log n) depth w.h.p.

For the insertion edges, we first sort the edges by their outgoing
endpoint. Then, we determine how many edges we are inserting in
each v;’s trees by doing a parallel count. Then, finally, in parallel,
we insert each v;’s edge into the next X; empty trees where X; is
the number of edge inserts that are oriented out from v;. All of this
requires O(|8B|log® n) amortized work and O(log n) depth.

The correctness of our procedure follows from Lemma 11.5. Al-
together, we obtain the following theorem of our batch-dynamic
algorithm implicit O (2%)-coloring, using Theorem 8.1.

Theorem 11.6. For a batch B, our batch-dynamic implicit color-
ing algorithm provides a O (2%)-coloring in O(|B|log® n) amortized
work and O(log? n) depth w.h.p. for updates, and O(Qa log n) work
and O(log n) depth, w.h.p., for Q queries, using O(nlog? n+m) space.

Proor. The work and depth follow from our above arguments
and Theorem 8.1. For queries, we parallelize the algorithm of [47].
For a set of Q vertices, for each vertex, we find the set of forests
[1,...,d(v)] where d(v) = O(a), containing each of the outgoing
edges of v. As in [47], we let p, (i) be the parity of the distance for
the i-th Euler tree. Then, in parallel, we determine the distance of v
from the root of the Euler tree in each of these forests. If the distance
is odd, we assign p, (i) = 1 and p, (i) = 0 otherwise. The color given
to v is then (py(1), ..., ps(d(0))) € {0, 1}0(@) Querying the Euler
trees require O(log n) work per tree query. We have O(Qa) total
queries, resulting in O(Qa log n) total work. Then, processing all
queries simultaneously requires O(log n) depth w.h.p.

Finally, the extra space required is the space to store the extra
Euler trees and the hash table T. T uses O(m) space. All of the
Euler trees store O(m) edges; thus, the total additional space used
is O(m). O

12 CONCLUSION

We design the first shared-memory, multi-core parallel batch-
dynamic level data structure that returns a (2 + ¢)-approximation
for the k-core decomposition problem, drawing inspiration
from the sequential level data structures of Bhattacharya et
al. [13] and Henzinger et al. [47] which were used for dynamic
densest subgraphs and dynamic low out-degree orientation,
respectively. Our algorithm achieves O(log? m) amortized work
and has O(log? mloglogm) depth. We also present a proof of
the (2 + ¢)-factor of approximation for our data structure, a new
proof that is also applicable (with a simple change) to the original
sequential level data structures of Bhattacharya et al. [13] and
Henzinger et al. [47].
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In addition to our batch-dynamic k-core decomposition results,
we also give a batch-dynamic algorithm for maintaining an O(«)
out-degree orientation, where « is the current arboricity of the
graph. We demonstrate the usefulness of our low out-degree ori-
entation algorithm by presenting a new framework to formally
study batch-dynamic algorithms in bounded-arboricity graphs. Our
framework obtains new provably-efficient parallel batch-dynamic
algorithms for maximal matching, clique counting, and vertex col-
oring.

We perform extensive experimentation of our parallel batch-
dynamic k-core decomposition algorithm on large real-world data
sets that show that our PLDS is not only theoretically but also prac-
tically efficient. Our experiments tested error vs. runtime, batch
size vs. runtime, number of hyper-threads vs. runtime, and space vs.
error. We also tested the sensitivity of our implementation to the
various tunable parameters of our algorithm. Finally, we tested our
algorithm against six other benchmarks on 11 real-world graphs, in-
cluding graphs orders of magnitude larger than previously studied
by other dynamic algorithms. We see an improvement in perfor-
mance against all other benchmarks in our experiments. Specifically,
we achieve speedups of up to 114.52X against the best parallel imple-
mentation, up to 544.22x against the best approximate sequential
algorithm, and up to 723.72X against the best exact sequential algo-
rithm. Such speed-ups exceed the expected speed-up gained from
parallelism alone (since we only use 60 hyper-threads) and are also
due to the theoretical improvements of our algorithm as well as
our choice of heuristic optimizations.

An interesting open problem is to design a parallel batch-
dynamic algorithm that is space-efficient (uses linear space),
without incurring additional costs in depth.
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