2205.04956v3 [cs.DS] 12 Jul 2022

arxiv

Parallel Batch-Dynamic Minimum Spanning Forest and the
Efficiency of Dynamic Agglomerative Graph Clustering®

Tom Tseng Laxman Dhulipala Julian Shun
MIT CSAIL University of Maryland MIT CSAIL
Cambridge, Massachusetts, USA College Park, Maryland, USA Cambridge, Massachusetts, USA
tomtseng@mit.edu laxman@umd.edu jshun@mit.edu

Abstract

Hierarchical agglomerative clustering (HAC) is a popular algorithm
for clustering data, but despite its importance, no dynamic algo-
rithms for HAC with good theoretical guarantees exist. In this
paper, we study dynamic HAC on edge-weighted graphs. As single-
linkage HAC reduces to computing a minimum spanning forest
(MSF), our first result is a parallel batch-dynamic algorithm for
maintaining MSFs. On a batch of k edge insertions or deletions,
our batch-dynamic MSF algorithm runs in O(k log® n) expected
amortized work and O(log* n) span with high probability. It is the
first fully dynamic MSF algorithm handling batches of edge updates
with polylogarithmic work per update and polylogarithmic span.
Using our MSF algorithm, we obtain a parallel batch-dynamic al-
gorithm that can answer queries about single-linkage graph HAC
clusters.

Our second result is that dynamic graph HAC is significantly
harder for other common linkage functions. For example, assum-
ing the strong exponential time hypothesis, dynamic graph HAC
requires Q(n'=°M) work per update or query on a graph with n
vertices for complete linkage, weighted average linkage, and aver-
age linkage. For complete linkage and weighted average linkage,
the bound still holds even for incremental or decremental algo-
rithms and even if we allow poly(n)-approximation. For average
linkage, the bound weakens to Q(n'/2-°() for incremental and
decremental algorithms, and the bounds still hold when allowing
n°() -approximation.

1 Introduction

Clustering is a fundamental technique in data mining and unsuper-
vised learning that organizes data into meaningful groups. In this
paper, we study hierarchical agglomerative clustering (HAC) algo-
rithms. HAC constructs a hierarchy of clusters over a set of points
by starting with each point in a separate cluster and merging the
two most similar clusters until all points are merged. The similarity
between clusters is specified by a linkage function. Popular linkage
functions include single linkage, complete linkage, average linkage,
and weighted average linkage, with average linkage perhaps being
the most widely used. Several popular clustering algorithms are
based on single linkage as well [8, 30]. HAC on n points can be
solved in cubic work in general, and several common linkage func-
tions require only quadratic work [9]. Quadratic work is optimal
in the sense that if the input is an n X n similarity matrix for the n
points, then all matrix entries need to be read to compute HAC.
Because the similarity matrix has lots of negligible entries in
many scenarios, Dhulipala et al. [20] recently studied graph-based

“This is the full version of the paper appearing in the ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2022.

HAC (graph HAC) as opposed to the traditional point-based HAC. In
graph HAC, not all similarities between points need to be specified.
Instead, the input is a graph with edges weighted by the similarity
between their endpoints. Dhulipala et al. develop exact and approx-
imate algorithms for graph HAC with subquadratic work on sparse
graphs and empirically showed that the resulting clusters are of
similar quality to those of point-based HAC.

Modern data sets are large and are often rapidly changing, and
so a natural question is whether we can compute HAC over a
dynamic data set. Even with subquadratic work, it is inefficient to
statically re-compute HAC on every update of a large, dynamically
changing graph. Little research has been done on dynamic HAC.
Graph HAC seems more likely to yield fast dynamic algorithms than
point-based HAC—a graph update can be as granular as updating a
similarity between one pair of vertices, whereas updating points in
point-based HAC incurs Q(n) changes in the similarity matrix. As
such, this paper aims to study whether graph HAC allows efficient
dynamic algorithms under edge insertions and deletions.

The canonical output for HAC is a dendrogram showing the
hierarchical clustering, but there are graphs for which one edge
update can completely change the structure of the dendrogram.
It therefore seems that a dynamic HAC algorithm that explicitly
maintains a dendrogram will have poor worst-case update time.
We hence examine dynamic graph HAC algorithms with more
restricted query outputs, e.g., queries of the form “are query vertices
s and ¢ in the same cluster if we agglomeratively cluster until all
similarities are below query threshold 6

With this form of query, single-linkage graph HAC indeed ad-
mits efficient dynamic algorithms. As single-linkage HAC reduces
to computing a minimum spanning forest (MSF) [26], we can solve
dynamic single-linkage HAC by first applying a dynamic MSF al-
gorithm. The state-of-the-art dynamic sequential MSF algorithm
achieves O(log* n/loglog n) amortized work per edge update to
maintain an MSF [34]. Then, storing the MSF in a dynamic trees
data structure [50] allows us to answer the queries in logarithmic
work. To support a high velocity of updates, however, we may
want a batch-dynamic algorithm that can batch together updates
and exploit parallelism across a batch. Though there are efficient
parallel batch-dynamic algorithms for connectivity and incremen-
tal MSF [2, 7], no such algorithm has been developed for general
dynamic MSF.

This discussion raises two questions: (1) Can we develop a paral-
lel batch-dynamic MSF algorithm, hence giving an parallel batch-
dynamic algorithm for single-linkage graph HAC? (2) Do other
linkage functions also admit dynamic algorithms with polyloga-
rithmic work per update?


https://orcid.org/0000-0002-6422-288X

Problem Work lower bounds

Preprocess Update Query Conjecture

poly(n) nl=¢ nl=¢ SETH
HAC (complete or mltd—¢ md-¢ m2o-¢ Triangle
weighted average) mi/3-¢ ma—¢ me2/3-a—¢ 3SUM

poly(n) ml/2-¢ mi=¢ OMv

= =

#HAC (complete or p01y,(n) n* n : SETH

mitd=e md-¢ m2é-¢ Triangle
weighted average) 12-e e

poly(n) m!/e¢ m'~¢ OMv

poly(n) nl—>e=¢ nl—>e=¢ SETH
HAC (average) poly (n) (10 f6- (ic) /3= OMv
Dec/Inc HAC poly(n) n(=8)/2=e — (I=8¢)/2=¢  GETH
(average)

poly(n) nl—c=¢ nl=c=¢ SETH
#HAC (average) m(l+5)(1—c)—p m(‘)‘(l—n)—r mZ(S(l—c)—p Triangle

poly(n) m(1-0) /2= pyl-c-e OMv
Dec/Inc #HAC poly(n) nl-Zc=¢ nl=2c=¢ SETH
(average)

Table 1: The table states asymptotic work bounds for dynamic graph HAC
such that the listed conjecture (defined in Section 6.1) would be falsified. For
problems listed as “HAC”, queries answer whether two query vertices are in
the same cluster after agglomeratively clustering up to a query similarity
threshold, and in “4HAC”, queries (given a query similarity threshold) an-
swer with the number of clusters. The bounds allow O(n¢)-approximation
for a constant ¢ > 0. In the table, ¢ > 0 is an arbitrarily small constant,
a € [1/6,1/3],and § > 0 is some constant for which triangle detection takes
Q(m!*9°()) work. The same bounds also hold for partially dynamic algo-
rithms except for the average-linkage bounds based on SETH; we list SETH-
based partially dynamic average-linkage bounds separately as “Dec/Inc” The
bounds are amortized for fully dynamic algorithms and worst-case for par-
tially dynamic algorithms.

In this paper, we give a parallel batch-dynamic MSF algorithm
achieving O(k log® n) expected amortized work and O(log® nlog k)
span with high probability (w.h.p.)! for a batch of k edge insertions
or k edge deletions. Moreover, our MSF result is of independent
interest outside the context of clustering. Prior to our algorithm,
there was not even a batch-decremental MSF algorithm with poly-
logarithmic span achieving O(kn) work on edge deletions.

We first give a parallel batch-decremental MSF algorithm achiev-
ing O(log* n) expected amortized work per edge and O(log® nlog k)
span w.h.p. per batch. A key challenge in parallelizing the decre-
mental MSF algorithm is fetching the k lightest edges incident to
a connected component in low span. We solve this approximately
by augmenting an internal data structure with quantile summaries.
Then, we parallelize Holm et al’s reduction of fully dynamic MSF to
decremental MSF [33] to obtain our batch-dynamic MSF algorithm.

On the other hand, even under our restricted query model for
dynamic HAC, we show polynomial conditional lower bounds on
the work of dynamic graph HAC for complete linkage, weighted av-
erage linkage, and average linkage, even with no -approximation
and even when restricted to incremental or decremental algorithms.
Table 1 summarizes our lower bounds. Our bounds build on past
work showing that several dynamic problems have lower bounds
conditional on conjectures like the strong exponential time hypoth-
esis (SETH) [13] via reductions [1, 31].

Our contributions are summarized as follows:

e We parallelize a relative-error quantile summary data struc-
ture (see Appendix A.2) and use it to solve parallel batch-
decremental MSF in O(log® nlog k) span w.h.p. per batch
of k edge deletions and O(log3 nlog(1+n/A)) < O(log4 n)

1We say that an event occurs with high probability (w.h.p.) if it occurs with probability
at least 1 — 1/n€ for any ¢ > 1, where constants inside asymptotic bounds can depend

on poly(c).

Tom Tseng, Laxman Dhulipala, and Julian Shun

expected amortized work per edge where A is the average
batch size across deletion operations (Section 4).

e We use batch-decremental MSF to solve parallel batch-dynamic
MSF (and hence also parallel batch-dynamic single-linkage
graph HAC) in O(klog® n) expected amortized work and
O(log® nlogk) span w.h.p. on a batch of k edge insertions
or edge deletions (Section 5). These are the first decremental
and fully dynamic MSF algorithms achieving polylogarith-
mic work per update and polylogarithmic span per batch.

e We prove polynomial conditional work lower bounds for
dynamic and partially dynamic graph HAC with complete
linkage, weighted average linkage, and average linkage (Sec-
tion 6). For example, assuming the SETH, dynamic HAC
takes Q(n'=°(1)) per update or query for all of these linkage
functions, even with n°(!) -approximation.

2 Related work

Graph HAC. We use the definition of graph HAC by Dhulipala et
al., who give algorithms solving static graph HAC on m edges and n
vertices in O(mlog n) expected work for weighted-average-linkage
HAC, O(nym) work for average-linkage HAC, and O(mlog? n)
work for approximate average-linkage HAC [20]. Older papers have
also studied graph HAC but with weaker theoretical guarantees [22,
37]. Another line of work has developed the theoretical foundations
of HAC by studying the objective function that it optimizes [16, 18,
44].

Dynamic HAC. There is no prior work on dynamic HAC with
good approximation or running time guarantees. Menon et al. give
an online approximate algorithm for point-based dynamic HAC [41].
Their algorithm does not have rigorous bounds on approximation
quality or worst-case running time. Other online clustering algo-
rithms like Perch [38] and Grinch [43] neither compute the same
output as HAC nor approximate HAC in a provably efficient way.

HAC lower bounds. Point-based HAC in Euclidean space is at
least as hard as finding the closest pair of points. Karthik and
Manurangsi show that, assuming the SETH, closest-pair in di-
mension w(polylog(n)) requires Q(n?°(M) work, and (1 + 0(1))-
approximate closest-pair in dimension w(log n) requires Q (n15-0(D))
work. These lower bounds do not apply to graph HAC.

Dynamic MSF. In this paper, we focus on edge insertions and dele-
tions. For sequential dynamic MSF, Holm et al. give an algorithm
with O(log* n) amortized work per edge update, which was later
improved to O(log* n/log log n) amortized work per update [33, 34].
The best worst-case bound is O(n°(})) work per update [15, 45].

For parallel batched edge updates, Anderson et al. give an incre-
mental MSF algorithm that handles k edge insertions in O(k log(1+
n/k)) expected work and O(log? n) span w.h.p. [7]. Other existing
algorithms are deterministic but have much higher work bounds.
Pawagi and Kaiser give an algorithm handling insertions in O(kn)
work and O(log n log k) span and deletions in O(n? (1+log? k/log n))
work and O(logn + log? k) span [47]. Shen and Liang give an
algorithm handling insertions and deletions in O(n?) work and
O(lognlogk) span [49]. Ferragina and Luccio give an algorithm
handling insertions in O(n loglog log nlog(m/n)) work and O(log n)
span and k = O(n) deletions in O(knlogloglognlog(m/n)) work
and O(log nlog(m/n)) span [21].



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

For parallel single edge updates, Kopelowitz et al. give an al-
gorithm running in O(+/nlogn) work and O(logn) span per up-
date [39]. There are also many algorithms for the harder problem
of dynamic vertex updates, all of which cost Q(n) work per update.
We refer the reader to Das and Ferragina’s survey for an overview
of algorithms for vertex updates as well as for edge updates [17].

3 Preliminaries

Graph HAC. We denote a graph by G = (V, E). Graphs are undi-
rected and simple unless noted otherwise. For weighted graphs, we
denote a weight or similarity of an edge {x, y} either by writing
w(x,y) where w : E — R is a weight function or by placing weight
w € Rin a tuple ({u, v}, w). We often denote n = |V| and m = |E|.
In our asymptotic bounds, we assume m = Q(n). We denote the
neighbors of v € V as N(v). We write Cut(X, Y) to denote the set
of edges between two sets of vertices X and Y.

In graph HAC, we are given a weighted undirected graph and a
linkage function specifying the similarities between clusters. Each
vertex starts in its own cluster, and we compute a hierarchical
clustering by repeatedly merging the two most similar clusters, i.e.,
the clusters connected by the highest-weight edge.

In single linkage, the similarity ‘W (X, Y) between two clusters
X and Y is the maximum similarity between two vertices in X and
Y, ie., max(y y)ecut(x,y) W(x. y), whereas complete linkage takes
the minimum similarity. In average linkage (which still applies to

weighted graphs), the similarity is 3% (x, ;) ecut(x,v) W(x, 1)/ (IX]IY]).

In weighted average linkage, if a cluster Z is formed by merging
clusters X and Y, then the similarity between Z and an adjacent
cluster U is (W(X,U) + W(Y,U))/2 if edges (X,U) and (Y,U)
both exist and is otherwise the weight of the existing edge.

Parallel model. We use the work-span model with arbitrary fork-
ing, a closely related model to the classic CRCW PRAM model [10,
36]. Running time bounds are in terms of work and span (depth).
The work of an algorithm is the total number of instructions, and
the span is the length of the longest chain of sequentially dependent
instructions. We assume that concurrent reads and writes are sup-
ported in O(1) work and span. Procedures can fork other procedure
calls to run in parallel and can wait for forked calls to finish.

Parallel primitives. We use several existing parallel primitives in
our algorithms. Unordered sets can be stored in parallel dictionaries
using linear space and handling batch insertions or deletions of
k elements in O(k) work and O(log™ k) span w.h.p. [25]. Lookup
costs O(1) work w.h.p. Ordered sets can be stored in search trees
called P-trees [12, 51]. Finding an element by rank or splitting a P-
tree of n elements takes O(log n) work [52]. Inserting or deleting k
elements takes O(k log(1+n/k)) work and O(log nlog k) span [51].
A semisort, taking an array of n keyed elements and reordering them
so that elements with equal keys are contiguous, can be computed
in O(n) expected work and O(log n) span w.h.p. [29]. A minimum
spanning forest (MSF) is a spanning forest of minimum weight. An
MSF on n vertices and m edges can be statically computed in O(m)
expected work and O(log n) span w.h.p. [48].

4 Parallel decremental MSF

This section will show how to perform parallel batch-decremental
MSF (supporting batches of edge deletions), and Section 5 will
show how to perform parallel batch-dynamic MSF. We accomplish

this by parallelizing the sequential dynamic MSF algorithm by
Holm, De Lichtenberg, and Thorup (HDT) that runs in O(log? n)
amortized work per update [33]. Their MSF algorithm has three
steps: first, they give an algorithm for dynamic connectivity; second,
they modify that algorithm into an algorithm for decremental MSF
(parallelized in this section); and third, they use decremental MSF
to create a fully dynamic MSF algorithm (parallelized in Section 5).
Without loss of generality, when discussing MSF, we assume edge
weights are unique by breaking ties using lexicographic ordering
over edges’ endpoints.

The relevance of dynamic MSF to dynamic graph HAC is that
single-linkage graph HAC can be solved with Kruskal’s algorithm
for computing a MSF after negating all edge weights [26]. A com-
plication is that although the canonical output for HAC is a dendro-
gram, explicitly representing the dendrogram is too expensive for
dynamic HAC since an edge update can drastically change the den-
drogram’s structure (see Appendix C.1 for examples). Instead, we
implicitly represent the dendrogram by dynamically maintaining
the MSF for the clustering. We can then extract information about
the single-linkage clustering from the MSF. For instance, suppose
that we want to answer the following “group-by-cluster” query, a
generalization of the type of query discussed in Section 1: given
a query set of k vertices K C V, we want to partition K by the
cluster that each vertex would be in if agglomerative clustering
were run until all similarities fell below a query similarity threshold
0. We can answer such queries in O(klog(1 + n/k)) expected work
and O(logn) span w.h.p. by storing the MSF in a rake-compress
(RC) tree, computing a compressed path tree P on the MSF relative
to K (Section 5.1 describes RC trees and compressed path trees),
removing all edges with similarities below 0 from P, and computing
connected components on P.

4.1 Background

We first discuss existing algorithms and data structures that our
work builds upon.

Euler tour trees. Euler tour trees (ETTs) are a data structure for
dynamic forests supporting edge insertion, edge deletion, and con-
nectivity queries in O(log n) deterministic work [32, 42]. Tseng et
al. introduce a parallel batch-dynamic ETT that internally repre-
sents each tree in in the forest as a circular skip list containing
the tree’s vertices and edges [53]. The ETT can be augmented by
a combining function f : D X D — D, with D being an arbitrary
domain. After assigning values from D to vertices and edges, we
can maintain the sum of f over each tree (i.e., each connected com-
ponent) in the forest by having each skip list node store the sum of
f over a contiguous subsequence of the sequence represented by
the node’s skip list. Given an augmentation function f that takes
O(W) work and O(S) span to compute, a batch of k insertions, k
deletions, or k updates to assigned values for the augmentation
takes O(Wklog(1+n/k)) expected work and O(S log n) span w.h.p.
on an n-vertex forest. The randomness in the bounds holds against
oblivious adversaries who cannot see heights of skip list elements.

Sequential dynamic connectivity. The HDT connectivity algo-
rithm maintains a graph G of n vertices and supports edge insertion,
edge deletion, and connectivity queries. The algorithm maintains
log n levels. Each edge is assigned a level, and the algorithm main-
tains subgraphs G1 € Gz € ... € Glog, = G, where G; contains all



edges of level at least i and has the invariant that each connected
component has size at most 2¢. The algorithm also maintains span-
ning forests F1 € Fz C ... C Flog . Where Fj is a spanning forest of
G;. Connectivity queries are answered in O(log n) work by storing
Fogpn inan ETT and querying the ETT. An edge insertion is handled
by assigning the edge to level log n and inserting it into Flog ,, if the
edge’s endpoints are not connected by a path.

A deletion of an edge e of level ¢ is handled by deleting it from
Gjforalli > ¢.1f e is not in Fog ,, then we are done. Otherwise, the
deletion of e splits a connected component in Fyg , in two, and we
must search for a replacement edge reconnecting the two compo-
nents. We delete e from F; for i > ¢ and conduct our search starting
on level £. We look at the smaller of the two connected components
formed in F; by the deletion of e. This connected component has
size at most 2!~1, and so pushing this entire component to level
i — 1 would not violate the size invariant. We push all level-i tree
edges in the component to level i — 1. Then, we look at non-tree
edges incident to the component one-by-one. If the non-tree edge
reconnects the two components, then we have found a replacement
edge—we change that edge into a tree edge, and we are done. Oth-
erwise, we amortize the cost of looking at this non-replacement
edge by pushing it to level i — 1. We repeatedly run this search on
increasing values of i until a replacement edge is found.

If each F; is stored in an appropriately augmented ETT, then
insertions and deletions cost O(log2 n) amortized work since each
inserted edge can be pushed down at most log n levels and it costs
O(log n) work to find and push an edge one level using the ETTs.

Parallel batch-dynamic connectivity. Acar et al. developed a par-
allel batch-dynamic version of the HDT algorithm [2]. We describe
the “non-interleaved” version of their algorithm because we will
modify it into a decremental MSF algorithm in Section 4.3. (The
interleaved version has a better span bound, but it seems harder to
adapt for decremental MSF.)

The main difference from the original HDT algorithm to discuss
is how the batch-parallel algorithm finds replacement edges after
deleting a batch of edges. The replacement search begins on the
minimum level among the deleted edges. When searching on a level
i, the algorithm proceeds in O(log n) rounds. For every component
of size at most most 2/~1, we search for a replacement edge out of
that component. To achieve low span, each component performs
a doubling search, looking at 2/ incident level-i non-tree edges
in parallel for increasing j until finding a replacement edge. We
push non-replacement edges to the next level to amortize the cost
of examining them. We then compute a spanning tree over the
replacement edges, keeping only the replacement edges that are in
the spanning tree. We proceed to the next round on each “active”
component, i.e., each component that still has incident edges to
search and that still has size at most 271, After all the rounds, we
repeat at higher levels.

By storing each spanning forest in an ETT with appropriate
augmentations, the algorithm can process a batch of k edge updates
in O(k log? n) expected amortized work and O(log? n) span w.h.p.
We note that the span bound can be tightened to O(log® nlog k).
The bound has a log n term from the O(log n) rounds per level, but
since k deletions creates O(k) active components and the active

Tom Tseng, Laxman Dhulipala, and Julian Shun

component count decreases geometrically each round, there are
only O(log k) rounds per level.

Sequential decremental MSF. The HDT decremental MSF algo-
rithm is initialized with a graph G of n vertices and maintains the
MSF of G while supporting edge deletions. There are only two
changes to the algorithm compared to the sequential HDT connec-
tivity algorithm: we initialize Flog , to be the MSF over G, and when
we perform a replacement search out of a component, we find the
lightest replacement edge by looking at incident non-tree edges in
increasing weight. Deletions still cost O(log? n) amortized work.

For correctness, the lightest replacement edge for a deleted edge
must have the minimum level among all possible replacement edges.
Holm et al. prove that the algorithm maintains a cycle invariant
implying correctness: in every cycle of G, the maximum-weight
edge in the cycle is a non-tree edge and has maximum level in the
cycle. This invariant holds so long as whenever we push an incident
level-i non-tree edge e of a component to level i — 1, e is lighter than
the lightest replacement edge out of the component and we have
already pushed all lighter level-i edges incident to this component.

Relative quantile summaries. Consider a set S that is a subset
of a totally ordered universe U. For an element y € U, define the
rank of y to be the number of elements in S no greater than y:
rank(y;S) = [{x € S| x < y}|. We omit the second argument of
rank(-;-) when it is clear from context.

For ¢ € (0,1) and a set S, an e-approximate relative quantile
summary Q is a compressed form of the set that can compute
queries of the following form: given a rank r € [1,|S|] such that
[r(1 —¢€),r(1+¢)] contains an integer, return an element y such
that rank(y; S) € [r(1—¢),r(1+¢)]. For the remainder of this paper,
we use the deterministic, mergeable relative quantile summaries
described by Zhang and Wang [54]. Appendix A.1 re-derives the
construction of the summaries since Zhang and Wang’s paper omits
several proofs of correctness.

Additionally, we show in Appendix A.2 that we can parallelize
operations on the quantile summaries, which may be of independent
interest. The following lemmas give the relevant operations and
bounds.

Lemma 4.1. Given a set S, if we can look up elements of S by rank in
O(W) work, we can construct an e-approximate summary Q of size
|O] = O(log(¢|S])/€) in O(W log(¢|S|)/e) work and O(W) span.

Lemma 4.2. Given an approximate summary Q on set S, we can an-
swer queries in O(log|Q|) work and can obtain the minimum element
of S in constant work.

Lemma 4.3. Given an integer b > 0 and two e-approximate sum-
maries Q1 and Q2 on non-overlapping sets S1 and Sz, we can create an
(e+1/b)-approximate summary Q over Sy US, of size O(blog(n/b))
in O(|Q1] +1Q2|) work and O(log(|Q1] +[Qz)) span.

We let CoMBINE(Q1, Q2, b) denote the algorithm combining sum-
maries Q1 and Qy with parameter b.

4.2 Finding light replacement edges

Like how the HDT decremental MSF algorithm comes from modi-
fying the HDT dynamic connectivity algorithm, we will obtain a
parallel batch-decremental MSF algorithm by modifying Acar et
al’s batch-dynamic connectivity algorithm to search for batches of
light replacement edge candidates rather than arbitrary candidates.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

The primary challenge is searching for the lightest non-tree edges
incident on a component efficiently in parallel.

As in Acar et al’s connectivity algorithm, for each HDT level
t € [1,logn], we store Fy in an augmented batch-dynamic ETT.
Using quantile summaries, we add an additional augmentation,
described in the proof of the following theorem, that allows fetching
the lightest non-tree edges incident on a component at the cost of
increasing the running time of edge insertions and deletions for
the ETTs. Section 4.2.1 walks through an example of the additional
augmentation.

Theorem 4.4. Let{ € [1,logn], and for each vertexv € V, let Ny
represent the level-f non-tree edges incident to v. Using O(nlog? n)
space w.h.p., we can support the following operations over Fp, with all
work bounds being in expectation and all span bounds being w.h.p.:

e inserting or deleting k edges to Fy in O(klog? nlog(1 + n/k))
work and O(log nloglogn) span,

o inserting or deleting k edges to {stf}uev inO(klog? nlog(1+
n/k)) work and O(log n(loglogn +logk)) span,

e obtaining the k(1 + 1/2) lightest edges in | J,ec No,e of a con-
nected component C of Fp in O(klogn) work and O(log n)
span.

Proor. We store Fy in batch-dynamic ETTs. We will augment
each ETT skip list node with a quantile summary Q and an integer
t > 0, where Q summarizes the weights of non-tree edges incident
on the vertices in the node’s subsequence and ¢ indicates the error
Q has accumulated from COMBINE(:, -, -) operations.

The augmented value for a vertex v is given by constructing a
1/4-approximate quantile summary Q over Ny, and setting t = 0.
Each vertex v stores Ny in an ordered set. A weight-w edge in
Ny, to a neighbor u is stored as a tuple (w, v, u), and ordering is
lexicographic. By Lemma 4.1, using a P-tree to represent the ordered
set, we can construct Q in O(log? n) work and O(log n) span.

Define b(t) = 8(log n + t?/log n) and define the ETT augmenta-
tion function f as

f((Ql> tl)s (QZ’ tz)) = (COMBINE(Q1> QZ’ b(t))’ t)

where t = max{t1, t2} + 1.

For a skip list node in the ETT whose subsequence has vertices S,
its augmented value Q summarizes the weights of | J,cs Ny,¢, and
its t is bounded by the longest search path length from that node to
a node representing some v € S at the bottom level of the skip list.
Since the maximum path length in a skip list is O(log n) w.h.p. [19],
we have t = O(logn) and b(t) = O(log n) for every summary w.h.p.
By Lemma 4.3, the augmentation takes O(log? n) space per skip list
node and runs in O(log? n) work and O(loglog n) span, all w.h.p.

Recall that given an augmentation function that costs O(W)

work and O(S) span, a batch of k updates to an ETT takes O(Wk log(1+

n/k)) expected work and O(S log n) span w.h.p. Therefore, with our
augmentation function, a batch of k edge insertions or deletions to
Fy takes O(k log2 nlog(1+n/k)) expected work and O(log n log log n)
span w.h.p. The cost of insertions or deletions to {vif}veV also
incurs the same cost in updating augmented values, but there is
the additional cost of having to actually update {NZ,,[}U oy and to

rebuild the quantile summaries over {Nv,[}v v

To update {Nv,f}v oy With k edges U, apply a semisort to group
the edges by endpoint: let r be the number of distinct endpoints in
U, and let K = {(v1, E1), ..., (vg, Er)} represent the semisorted up-
dates, where Ny, ¢ should be updated with edges E; for each integer
i € [1,r]. Updating the ordered set for Ny, ; costs O(|E;|log(1 +
|Nvi,[’/|E,~|)) work and O(log nlogk) span. The sum of this work
over all v; is O(k log n). We then rebuild the quantile summary for
each v; from scratch via Lemma 4.1 in O(r log? n) total work and
O(log n) span. Adding the cost of updating augmented values gives
a total expected work is O(k log2 nlog(1+n/k)) and the total span
is O(log n(loglogn +logk)) w.h.p.

The approximation error of a summary Q in the ETT is bounded
above by

1 1 1 1 3 1 e 1 1
:—+—+ﬂ Z —<—+E/ —dt = —.
4 8 8 =

That is, Q is always a 1/2-approximate quantile summary. We can
therefore fetch the k(1 + 1/2) lightest edges of Jyec No,r for a
connected component C by querying the summary of component
C for a weight w whose rank is k. Then, by checking whether the
summaries’ minimum element is less than w, we traverse down the
skip list to efficiently find all vertices v in C such that Ny ¢ has edges
lighter than w in O(klog(1 + n/k)) expected work and O(logn)
span w.h.p. We fetch those edges from each vertex v by splitting the
ordered set for Ny ¢ in O(log n) work and O(log n) span per vertex
for O(k log n) total work. O

4.2.1 Example of augmentation. This subsection gives an example
illustrating the ETT augmentation from Theorem 4.4. Figure 1 dis-
plays an example graph G = (V, E) with one connected component,
a spanning tree for the graph, and a possible skip list internally held
by an ETT representing the tree. For simplicity, every non-tree edge
in the graph has the same HDT level ¢, and we write N, instead of
Ny,¢ to denote the non-tree edges incident on a vertex v.

The skip list contains a sequence given by taking an Euler tour
on the spanning tree after duplicating each edge in both directions
and after adding a self-loop edge on every vertex. At the bottom
level of the skip list, each node representing some vertex v € V (i.e.,
representing the self-loop edge for vertex v) constructs a quantile
summary over v’s incident non-tree edges Ny. For instance, Ny, =
{(5,u, x), (6,u,y)}, and the skip list node for u is augmented with
a 1/4-approximate quantile summary on N,.

The quantile summaries at higher levels of the skip list are com-
puted by calling the augmentation function f to combine quantile
summaries at the level below, ignoring skip list nodes that cor-
respond to edges and hence have no quantile summaries. For in-
stance, the node at the top level of the skip list computes its quantile
summary over N U N, U Nx U Ny, by calling f on the quantile
summaries for N, and N, and then calling f on the result of the
previous call along with the quantile summary for Ny U Ny. Each



Tom Tseng, Laxman Dhulipala, and Julian Shun

Summary of
—|N,UN,UN UN
y
t=2
I
Summary Summary Summary
— ofN, [~ ofN, ofNXUNy
t=0 t=0 t=1
I | I
Summary Summary Summary Summary
(a) Graph and a spanning forest —  ofN of N of N of N
(in bold). Each non-tree edge has Y 0 0 0
the same HDT level ¢. t=0 =0 =0 .
v (v.u) u (wv) (vx) X v) ) y W)

(b) Skip list of the ETT for the graph.

Figure 1: The figure displays a graph and a possible height-3 skip list corresponding to an ETT representing the spanning forest of the graph. The skip list is
circular, so the last node at each skip list level is connected to the first node at the same level. The labels below the skip list nodes at the bottom skip list level
denote the vertex or edge that the node represents. At higher levels, the skip list nodes represent a contiguous subsequence of the overall sequence (e.g., the fourth
node at the middle level represents (x, (x, v), (v, y), y), and the node at the top level represents the whole sequence). Following the augmentation of Theorem 4.4,
each list node is augmented with a quantile summary for the vertices within its subsequence. In the figure, the labels inside each skip list node are the augmented

values for each node. Some nodes contain no label because their subsequence contains no vertices.

quantile summary has an associated ¢ value such that the summary
is (1/4 + Zle 1/b(i))-approximate, where b(-) is defined in the
proof of Theorem 4.4. The Zf.zl 1/b(i) term is accumulated from
CoMBINE calls used to compute f. When taking a union of incident
non-tree edges such as Ny UNy, we may have an edge twice, once in
each direction, e.g., Nx U Ny = {(4,x, 1), (4,4, %), (5, x,u), (6,y,u) }
has the weight-4 edge {x, y} twice. For our use case of decremental
MSEF (Section 4.3), the edge duplication does not affect correctness
or running time complexity.

If there were multiple nodes at the top level of the skip list, we
would also call f to combine all of the quantile summaries at the
top level to obtain a quantile summary for the entire connected
component. At an arbitrary top-level node, we would store a pointer
to that quantile summary so that we can quickly fetch a quantile
summary for this connected component.

As an example of updating non-tree edges, suppose we wanted to
delete an element from Ny,. We perform the deletion on Ny, rebuild
the quantile summary for Ny, entirely from scratch, and then apply
f again to rebuild the quantile summaries for the fourth node at
the middle skip list level and for the node at the top level.

As an example of searching for light non-tree edges, suppose that
we wanted to find the lightest k(1+1/2) non-tree edges incident on
this component for some k. Define the children of a skip list node
with associated subsequence S to be the nodes at the level imme-
diately below whose subsequences constitute S, e.g., the children
of the fourth node at the middle level are the sixth through ninth
(inclusive) nodes at the bottom level. We first query the quantile
summary at the top level of the skip list for a rank-k entry. Suppose
that it returned (4, y, x). Then, we traverse down to the middle level
to inspect the quantile summaries of the node’s children. At every
quantile summary whose minimum element is at most (4, y, x) lex-
icographically, we traverse down to that node’s children. In this
example, only the fourth node at the middle level satisfies this con-
dition. We again check childrens’ quantile summaries’ minimum
elements, and in this case, the sixth and ninth nodes at the bottom
level satisfy the condition. Since we have reached the bottom of the
list, we directly access Ny and Ny and fetch all elements that are at
most (4,y, x).

4.3 Parallel batch-decremental MSF

As with the sequential HDT decremental MSF algorithm, two changes
are needed to change Acar et al’s batch-dynamic connectivity al-
gorithm into a batch-decremental MSF algorithm. First, given an
input graph G, we compute an MSF F over G and set Flog,, = F.
The MSF for the graph will always be Fyg -

Second, when performing a doubling search out of a component
to find a replacement edge, instead of looking for 2/ arbitrary in-
cident non-tree edges on phase j of a doubling search, we use the
ETT augmentation from Theorem 4.4 to search for the 2/ (1 + 1/2)
lightest incident non-tree edges. To maintain the HDT cycle invari-
ant, we do not push any edges on a doubling phase in which we find
a replacement edge. In addition, to reduce span, we defer pushing
edges to the end of the entire replacement search on a level rather
than pushing non-tree edges after every doubling phase.

Theorem 4.5. We can initialize a batch-decremental MSF data struc-
ture in O(log? n) span w.h.p. The data structure supports batches of k
edge deletions in O(log® nlog k) span w.h.p. and uses O(m+nlog> n)
space w.h.p. The total expected work across initialization and all
deletions is O(mlog® nlog(1+ n/A)), ie, O(log® nlog(1+n/A)) <
O(log* n) amortized per edge, where A is the average batch size across
all batch deletions.

Proor. For initialization, computing Flog,, costs O(m) expected
work and O(log n) span w.h.p. Then, by Theorem 4.4, storing Fiyg
in an augmented ETT and updating the ETT with O(m) incident
non-tree edges costs O(m log? n) expected work and O (log? n) span
w.h.p.

The span to delete a batch of k edges remains the same as Acar
et al’s algorithm. Despite the increase in span that our more compli-
cated ETT augmentation incurs for insertions and pushing edges,
the span is still dominated by the doubling search, whose span
remains the same.

On the other hand, the work increases by a factor of O(log2 n)
to a total of O(log* n) expected amortized work per edge due to
the increased work for ETT insertion and pushing. The (1 + 1/2)
uncertainty in searching for incident non-tree edges may increase
the amount of amortized cost to charge to each edge by a constant
factor, but this does not affect the asymptotic bounds. Not pushing
edges found on the last phase of a doubling search also only affects



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

amortized costs by a constant factor. Analysis in Appendix B gives
the tighter O(log® nlog(1 + n/A) work bound.

The maximum space usage is O(nlog? n) w.h.p. for each of the
log n ETTs plus O(m) total space to store the non-tree edges. O

5 Parallel fully dynamic MSF

In this section, we describe a parallel batch-dynamic MSF algo-
rithm supporting both batch insertions and batch deletions of edges
(Section 5.2) and provide an example execution of the algorithm
(Section 5.3).

5.1 Background

Compressed path trees. Like ETTs, rake-compress (RC) trees are a
parallelizable data structure for dynamic forests [3, 4]. Inserting or
deleting k edges from an RC tree takes O(k log(1 + n/k)) expected
work and O(log? n) span w.h.p.

Anderson et al. showed that if a dynamic forest F of n vertices is
stored in an RC tree, then given k vertices in F (“marked” vertices),
we can construct a compressed form of F called a compressed path
tree relative to the vertices in O(k log(1+ n/k)) expected work and
O(log n) span w.h.p. [7]. The compressed path tree is a forest F/ on
O(k) vertices (including all marked vertices) such that the heaviest
edge on the path between any pair of marked vertices has the same
weight in F’ as in F. More specifically, the compressed path tree is
the union of the paths between the marked vertices with all non-
marked vertices of degree below three spliced out. Given k edges
in F, we can also find which compressed edges in F” correspond to
those edges in O(k log(1+ n/k)) expected work and O(log n) span
w.h.p. by traversing up the RC tree that generated F’.

Dynamic MSF. The fully dynamic HDT MSF algorithm supports
both insertions and deletions with O(log? n) amortized work per
update. In describing this algorithm, we follow the presentation of
Holm, Rotenberg, and Wulff-Nilsen [34].

Along with maintaining the MSF F of the graph G (the global
tree and graph), the algorithm maintains 2logn + 1 subgraphs Ay,
A1y, Azlogn € G and MSFs Fy, ..., Fa1o5 , 0f each subgraph (the
local graphs and trees). Each A; has at most 2 non-tree edges A; \ F;
(the edge-count invariant), and each non-tree edge in G is a non-
tree edge of some A; (the non-tree-edge invariant). We maintain
decremental MSF data structures over each local graph.

To insert an edge e = {u, v}, we query for the heaviest edge e’
on the path between u and v in F by storing F in a top tree [6]. We
replace e’ with e in F if e is lighter. Either e or ¢’ now becomes a
new non-tree edge. To make the non-tree-edge invariant hold for
the edge, we call UPDATE, a subroutine that we describe shortly
below, on the edge to insert it as a local non-tree edge.

To delete an edge e, we delete e from all local graphs and obtain
a set of O(log n) local replacement edges R. If e is in F, we delete it
from F and need a global replacement edge. Due to the non-tree-
edge invariant, the lightest edge r in R reconnecting F is the global
replacement edge. We insert that edge into the global tree. Since
edges in R (besides r) are global non-tree edges that might now
violate the non-tree edge invariant, we call UPDATE on R.

The UPDATE subroutine with input U inserts the edges in U as
local non-tree edges. It re-initializes Aj to be FU U U U;<;(A; \
F;), with j being the minimal value such that this reinitialization
respects the edge-count invariant. The new local tree edges for A;

are the edges in F, and the other edges become local non-tree edges.
The subroutine then clears A; for all i < j.

The number of tree edges in each A; may be large, and so we
only store them in compressed form. When initializing A;, we use
a top tree to efficiently compute a structure similar to a compressed
path tree. Initializing and storing A; then takes only O(2!log n)
work and O(2!) space, and initializing a decremental MSF over A;
costs O(2% log? 2!) amortized work.

To analyze the work, in UPDATE, the choice of j means that there
are at least 2/~ non-tree local edges UU Ui<;j(Ai\F;) being pushed
up to A;. These edges pay for the initialization cost of A;. A non-
tree edge costs O(log® n) across its lifetime since it can be pushed up
2log n times and may pay O(log? n) amortized work on each push
to pay for the cost per edge in the newly initialized decremental
MSF data structure. Since each global deletion introduces O(log n)
non-tree local edges, the amortized cost of a deletion in the dynamic
MSF algorithm is O(log? n).

5.2 Parallel batch-dynamic MSF

Our parallel batch-dynamic MSF algorithm comes from parallelizing
the fully dynamic HDT MSF algorithm. The main changes are to
use our decremental MSF algorithm from Section 4.3 and to use
RC trees instead of top trees for compressing local graphs and for
efficient batch insertion.

Algorithm 1 The algorithm that sets global variables to initialize the batch-dynamic
MSF data structure on an n-vertex graph.

1: procedure INITIALIZE(n)

2 F « RC tree on an empty n-vertex graph > The MSF, i.e., the global tree.
3 fori=0,1,2,...,2logn do in parallel

4: A — 0 > Decremental MSF data structure for the i-th local graph.
5 T; < RC tree on an empty n-vertex graph

6 (Bp,i, Br,i) < (2,9)

Algorithm 1 initializes the data structure on an n-vertex graph.
All variables (and only these variables) defined in this algorithm are
globally visible. We assume the input graph begins with no edges
since input edges can be added separately via batch insertion. The
RC tree F maintains the MSF (global tree) (Line 2).

Each A; is a batch-decremental MSF data structure over the
i-th local graph, which is initially empty (Line 4). Whenever we
initialize A;, we will need to compress its tree edges by computing
a compressed path tree on the tree edges relative to A;’s non-tree
edges’ endpoints. The RC tree used to compute the compressed
path tree should remain unmodified until A;’s next initialization
so that when deleting edges, we can use the RC tree to look up the
compressed representations of the edges in A;. The RC tree T; serves
this purpose for A; (Line 5). Its value matches A;’s (uncompressed)
tree edges at A;’s latest initialization, or equivalently, the value
of F at A;’s latest initialization. To update T; to match F at A;’s
next initialization, we keep buffers Bp ; and By ; representing the
difference between T; and F (Line 6). In particular, (T;\ Bp ;) UBy; =
F. Section 5.3 illustrates an example of how A; and T; changes over
several edge updates.

Before discussing batch insertion, we describe the helper func-
tion UPDATE (Algorithm 2) that takes non-tree edges U and inserts
them in a local graph to satisfy the HDT non-tree-edge invariant.
We iterate through each local graph A; sequentially to find some
Aj to re-initialize with U such that the HDT edge-count invariant
still holds (Line 2). As we iterate through increasing i, we collapse



Tom Tseng, Laxman Dhulipala, and Julian Shun

Algorithm 2 A helper algorithm for restoring the HDT non-tree-edge invariant.

Algorithm 4 The algorithm for deleting a batch of edges.

1: procedure UppATE(U = {({ug, 01}, w1), ..., ({uk, vk }, w) })
2 fori=0,1,2,...,2logn do

3: U « U U (NoNTREEEDGES (A;) \ F)
4: A0
5: if |U| < 2! then
6: T; . DELETE(BpD ;)
7: T;.INSerT(Br ;)
8: (Bp,i, Bri) < (2,2)
>Given an RC tree T representing a forest,
T.ComPRESSEDPATHTREE(-) takes a list of vertices L and
returns a compressed path tree for the forest relative to L.
9: P« T;.ComPRESSEDPATHTREE (U ({u,0},w)ev {1 0})
10: A; < Batch-decremental MSF on P U U
11: break

the non-tree edges of A; into U (Lines 3 to 4) since pushing them
up to level j will pay for the re-initialization cost of A;. We discard
the tree edges of A; since they are irrelevant to the non-tree-edge
invariant. Once we find the level j (Line 5), we update the RC tree
Tj to match the global tree F using buffers Bp ; and By j and clear
the buffers (Lines 6 to 8). Then, we use T; to compress F into a
compressed path tree P relative to U so that O(|P|) = O(2/), and
we set Aj to be a newly initialized decremental MSF data structure
over P U U (Lines 9 to 10). (The compressed local graphs may be
non-simple because between a pair of vertices, there can be both
one compressed tree edge and one non-tree edge. The decremental
MSF algorithm still works in this setting.)

Algorithm 3 The algorithm for inserting a batch of edges.

1: procedure BaTcHINSERT(U = {({u1, 01}, w1), ..., ({ug, o}, wi) })
2 P« F.COMPRESSEDPATI—ITREE(Uf:1 {ui, v;i})

3 M« MSF(PUU)

& (D)« (P\M,UNM)

5: F.DeLeTE(D)

6: F.Insert(I)

7 fori=0,1,2,...,2logn do in parallel

8 (Bp,is Br,i) < (Bp,; U (D \ Br;), (Br; \ D) UI)

9 Uppate(D U (U \ M))

Algorithm 3 gives pseudocode for batch insertion. We start by
compressing the global tree F into a compressed path tree P rela-
tive to inserted edges U (Line 2). Each compressed edge e in the
compressed path tree also stores a pointer to the heaviest edge
in the path that e represents in F. In this way we can, for brevity,
refer to edges from the compressed path tree and the corresponding
heavy edges in the uncompressed tree F interchangeably in the
pseudocode. We compute an MSF M over P U U (Line 3). Using M,
we can determine which edges I from U to insert into the global
tree F and which edges D from F get replaced by I (Line 4). We
delete D from F, insert I into F, and update the buffers for every
local graph A; (Lines 5 to 8). Finally, we call UPDATE on edges
D U (U \ M) since they are new global non-tree edges that may
violate the non-tree-edge invariant (Line 9).

Algorithm 4 describes batch deletion. First, we delete the input
edges U from the global tree F and update the buffers for every
local graph A; accordingly (Lines 2 to 5). In parallel over every
A;, we want to delete U from A;, though this requires some effort
since A; is in compressed form. To map each edge e in U to its
representation in A; (Line 6), there are three cases: e appears in
compressed form in A; (because it was a tree edge in A; when A;
was last initialized), e appears in uncompressed form in A;, or it
does not exist in A;. To handle the first case, we try looking up e

1: procedure BATCHDELETE(U = {{u1, 01 },..., {ur, 0k }})
2 D—FnU
3 F.DeLETE(D)
4: fori=0,1,2,...,2logn do in parallel
5 (Bp,i»Br,i) < (Bp,i VU (D \ Bri),Bri \ D)
6 U’ « Representation of U in compressed A;
> A; DELETE(-) takes a list of edges, deletes them from A;, and returns
the replacement edges used to reconnect A;.
7: R; « A;.DeLeTe(U’)
8: BATCHINSERT( ?:lggn R;)

in T; to get a compressed edge and then try looking that up in A;.
Simultaneously, we try looking up e directly in A; to handle the
second case. If the two cases fail, then we are in the third case and
ignore the edge.

Now we can delete U from A; and extract the local replacement
edges R; that the decremental MSF data structure uses to replace
U (Line 7). Finally, we insert the replacement edges into the global
tree by calling BATCHINSERT (Line 8). Although these replacement
edges are already global edges, calling BATCHINSERT has the correct
behavior of reconnecting F and calling UPDATE.

Theorem 5.1. Our dynamic MSF algorithm maintains an MSF in
O(k log® n) expected amortized work for a batch of k edge insertions
ork edge deletions. Insertions take O(log? n) span w.h.p., and deletions
take O(log® nlog k) span w.h.p. The maximum amount of space the
data structure uses is O(m + min{m, nlog n} log® n) w.h.p., where m
is the maximum number of edges in the graph.

ProOF. Work: We first analyze the work for UpDATE (Algorithm 2).
We will give (2logn — i) - O(log? n) amortization credits to non-
tree edges in local graph A; and get O(k log® n) expected amortized
work for UPDATE as a consequence.

Suppose we call UpDATE (Algorithm 2) with k input edges. Let
U be the original input to UpDATE, and let U; indicate the value
of U after the i-th iteration of Line 3. We give O(log® n) credits to
each edge in U. Let j be the value of i that satisfies the condition
on Line 5. The work done by insertions to U (Line 3) across all
iterations sums to O(|U| + 2/). Updating T;j on Lines 6 to 7 costs
O((IBp,j| + |Br,j|) log n) expected work, which we charge to the
BaTcHINSERT and BATCHDELETE calls that inserted these elements
into Bp ; and By, ;. Computing the compressed path tree (Line 9)
costs O(|Uj| log n) expected work, and initializing the decremental
MSF data structure (Line 10) costs O(|Uj| log* n) expected amor-
tized work. We know that |U;| < 2/ and |Uj-1] > 2/71 due to the
choice of j. We pay for the O(2/ + |Uj| log* n) = 0(27 log* n) work
of UpDATE by charging O(log* n) credits to the elements in |Uj-1]
that we have pushed up to local graph A;. The remaining expected
amortized work is O(k log® n) from the credits we gave to U.

Batch insertion (Algorithm 3) also costs O(k log5 n) amortized
expected work due to its work being dominated by UpDATE (Line 9).
For instance, RC tree operations and computing an MSF takes only
O(klog(1+ n/k)) expected work on Lines 2 to 6. Updating buffers
B;.. on Line 8 costs only O(k log? n) amortized total work, where
one log n factor comes from summing over i and the other logn
factor pays for the cost of updating T; with B; » in UPDATE.

Batch deletion (Algorithm 4) costs O(klog® n) amortized ex-
pected work. Like with batch insertions, the expected work of RC
tree operations and dictionary operations is O(k log? n) on Lines 2



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

to 6. We charge the cost of deleting k edges from each A; (Line 7) to
2logn

=0 Ri

(Line 8) where |R;| < k for O(k log® n) expected amortized work.

Span: The span of UpDATE (Algorithm 2) is O(log? n) w.h.p. Col-
lapsing A; into U on Line 3 summed over all O(log n) iterations
takes O(log nlog* n) span w.h.p. using a parallel dictionary. Then
the operations on T; and A; in Lines 6 to 10 all take O(log? n) span
w.h.p. and are only performed on one value of i.

The span of INSERT (Algorithm 3) is also O(log? n) w.h.p. The
span is dominated by the RC tree updates (Lines 5 to 6) and Up-
pATE (Line 9), each of which take O(log? n) span w.h.p. The span
of DELETE (Algorithm 4) is O(log® nlog k) w.h.p. The span is dom-
inated by deleting up to k edges from A; for each i (Line 7) for a
cost of O(log® nlog k) span w.h.p. according to Theorem 4.5.

Space: The global tree F and each local RC tree T; takes O(n)
space w.h.p., and each pair of local buffers (Bp ;, By;) takes O(n)
space since they store the symmetric difference between the trees
F and T;. Each A; has O(min{2/, n}) vertices and O(2’) edges, and
the initialization strategy for the local graphs in UPDATE leaves
A; empty for i > log m. Applying Theorem 4.5 on each A; gives

the initialization of A;. Finally, we call BATCHINSERT on | J

a total space usage of Zliiglm o2 + min{Zi, n} log®n) = O(m +
min{m, nlogn}log> n). ]
5.3 Example

Table 2 displays an example of how the local graphs change as the
global graph G changes. Though the algorithm does not actually
store the non-tree edges of G or the uncompressed forms of the
local graphs Ag and A1, they are displayed in the table for clarity.

In the first row of the table, we initialize a graph with four
vertices u, v, x, and y.

In the second row of the table, we call BATCHINSERT on the five
edges ({u,0},4), ({1.x}.2), ({.y},3), ({w,y}.5). and ({0,x},6).
BATCHINSERT then invokes UPDATE on the two non-tree edges
{u,y} and {v, x}. Placing these edges in Ay would violate the edge-
count invariant that Ag has at most 2° = 1 local non-tree edges,
but we can place them in A; because it can have 2! = 2 non-tree
edges. The UPDATE call hence initializes A1 on the non-tree edges
along with the current global tree. In this case, the compressed form
of A; is the same as the uncompressed form—every vertex has an
incident level-1 non-tree edge and cannot be compressed out.

In the third row of the table, we call BATCHINSERT on the edge
({x,y},1). The edge {u, v} becomes a non-tree edge, and UPDATE
is invoked on it. This time, the edge can be placed in Ay without
violating the edge-count invariant. The UpPDATE call initializes Ag
on the non-tree edge along with the current global tree. The com-
pressed form of Ay keeps the vertices u and v since they are non-tree
edge endpoints and splices out vertices x and y, replacing the path
u-x-y-v with a compressed edge {u, v} that has the same weight
as the heaviest weight in the path.

In the fourth row of the table, we call BATCHDELETE on edges
{u,x} and {v,y}. We first delete them from local graphs A¢ and
Aj. Local graph Ay returns local replacement edge {u, v}, and A;
returns local replacement edges {u, y} and {0, x}. (Deleting {u, x}
and {o, y}, or even just deleting either of these edges individually,
in the compressed form of Ay means deleting the entire compressed

edge representing the path u—x-y—-v. This triggers the correct be-
havior of searching for a local replacement edge that reconnects
u’s connected component and v’s connected component.)

Finally, BATCHDELETE invokes BATCHINSERT to re-insert all of
the local replacement edges into the global graph. Edges {u, v} and
{u,y} are global replacement edges that are inserted as tree edges,
whereas edge {v,x} remains a global non-tree edge. We invoke
UPDATE on {v, x}, which re-initializes Ay with the non-tree edge.

6 Dynamic graph HAC lower bounds

In this section, we show lower bounds on dynamic graph HAC
under edge insertions and deletions. Queries take two vertices s
and t and a similarity threshold 8, and answer whether s and ¢
are in the same cluster if we run agglomerative clustering until
all cluster similarities are strictly below 6. Such queries provide
limited information, but we will show that answering such queries
is still difficult for complete linkage, weighted average linkage, and
average linkage. We also consider a different type of query that
asks how many clusters there are if we run HAC until a threshold
0—we refer to this problem as #HAC. All of our lower bounds hold
for the special case where s, t, and 0 are fixed across all queries.

Our bounds hold even for an approximate form of graph HAC.
We use the approximation notion given by Lattanzi et al. [40]. In
A-approximate graph HAC with A > 1, at an agglomeration step
where the maximum similarity is Whax, the clustering process may
merge any clusters with similarity at least Wiax/A. We assume
A < poly(n) so that poly(A) fits in a constant number of words.

6.1 Background: other dynamic lower bounds
Abboud and Vassilevska Williams as well as Henzinger et al. showed
lower bounds on several dynamic problems conditional on well-
known conjectures [1, 31]. The conjectures include the strong ex-
ponential time hypothesis (SETH) [13], triangle detection requiring
greater than linear work, 3SUM requiring quadratic work [24, 46],
and online Boolean matrix-vector multiplication (OMv) requiring
cubic work [31].

The studied dynamic problems include Chan’s subset union
problem (SubUnion) [14], subgraph connectivity (SubConn), and
connected subgraph (ConnSub). In SubUnion, given a collection of
sets X = {X3,...,X;} and U := |J; X;, we maintain a subcollection
S € X under insertions and deletions to S while answering whether
Ux, es Xi = U.InSubConn, given an undirected graph, we maintain
a subset of vertices S under insertions and deletions to S with
queries answering whether query vertices s and t are connected
in the subgraph induced by S [23]. ConnSub is SubConn with the
query instead being whether the subgraph is connected.

Table 3 lists the lower bounds for these problems. The SubUnion
bounds hold for the special case where |X| = O(log|U|), and the
SubConn bounds hold for the special case of st-SubConn where s
and t are fixed across all queries.

6.2 Statement of HAC lower bounds

The following theorem reduces SubConn to HAC and ConnSub to
#HAC. It implies that the existing conditional lower bounds for st-
SubConn apply directly to HAC under complete linkage or weighted
average linkage. Similarly, the SETH gives the same lower bounds
to #HAC as it does to ConnSub. We note that existing constructions
reducing from triangle detection [1] and OMv [31] to SubConn



Tom Tseng, Laxman Dhulipala, and Julian Shun

Operation G Ay uncompressed Ay compressed %? ’00 Aj uncompressed T %? ’11
® © ®@® o ©@O GO
Initialize (empty) @ @ a @ @ @ @ a
i 0 4 ° 0
1st insert {{u, 0}, 2 3
{uwx), {o.y)) ONO B
ONO 0 (o))
2nd insert
{{x. y}}

2 3
{}
OnO

Delete (before
insertion
subroutine call)

Delete (after
insertion
subroutine call)

{{ux}, {0, y}}

4 u,ouf,
0'0 {u, i{} {u,} v}
0 S

ORO

{{x.y}}

00 0 {u,i{}’,"{’:ﬁm
3 {} {{u, 0},
° 1 ° {u,yf{;,y}}

Table 2: This table walks through an example of the batch-dynamic MSF algorithm. The global graph G has four vertices. We first insert five edges into it, then
insert one edge, and finally delete two edges. The bolded edges in G form the MSF (the global tree) F. The local graphs are Ay and A;, and the bolded edges within
are the local tree edges. For i € {0, 1}, the tree T; is the RC tree for A;. The buffers Bp ; and By represent the difference between T; and F, i.e., (T; \ Bp;) UBy; = F.
For brevity, we omit listing the weights of edges in the buffers. The compressed form of A; is the same as its uncompressed form throughout this example (except
at initialization when the compressed form of A; is completely empty), and so we omit illustrating it. If a cell in the table is blank, that means it is the same as

the cell in the row above.

Work lower bounds

Problem Preprocess  Update  Query Conjecture
SubUnion with poly(|U|) |U|I"F |U*® SETH
1X] = O(og|U])
mito=¢ e m?0-¢ Triangle
st-SubConn m*/3 me¢ m?3-a=¢  35UM
poly(n) ml/2-e  ml-e OMv
ConnSub poly(n) nl=¢ nl=¢ SETH

Table 3: The table states conditional asymptotic work lower bounds for some
dynamic problems [1, 31]. The values of ¢, §, and « follow the definitions
in Table 1. The bounds hold for partially dynamic algorithms as well. The
bounds are amortized in the fully dynamic case and are worst-case in the
partially dynamic case.

also work when reducing to ConnSub, and so the conditional lower
bounds for HAC based on triangle detection and OMv hardness
apply to #HAC too.

Theorem 6.1. Suppose for some constant ¢ > 0 that we can solve
dynamic / incremental / decremental O(n®)-approximate HAC under
complete linkage or weighted average linkage in p(m, n) preprocessing
work, u(m, n) update work, and q(m,n) query work. Then we can
solve dynamic / decremental / incremental SubConn with O(m) +
p(é(m),é(n)) processing work, u(O(m), O(n)) update work, and
q(é(m), O(n)) query work. The same relationship is also true between
#HAC and ConnSub.

In Lemma D.2, we also give a reduction from SubConn to average-
linkage HAC. Due to the large size of the HAC instance resulting
from the reduction, however, the only lower bound the reduction
gives is Q(n!/67°(1)) update work and Q(n!/3-°(1)) query work
conditional on OMv hardness. Meanwhile, #HAC has Q(ml/ 2_"(1))

update work and Q (mt=o(D) query work conditional on OMv hard-

ness (Theorem D.4) and also has lower bounds conditional on tri-

angle detection hardness (Theorem D.5).

Finally, the following theorem states Q(n!~°(1)) dynamic HAC
lower bounds conditional on SETH. The lower bounds for complete-
linkage and weighted-average-linkage #HAC come from Theo-
rem 6.1. The remaining bounds come from reducing SubUnion
to HAC and applying existing lower bounds on SubUnion.
Theorem 6.2. Suppose that for some ¢ > 0 we can solve one of the
following problems with poly(n) preprocessing work:

e for some constant ¢, fully dynamic O(n°)-approximate HAC or
O(n®)-approximate #HAC under complete linkage or weighted
average linkage with O(n'~¢) amortized update and query work,

o the above problem in an incremental or decremental setting with
O(n'~¢) worst-case update and query work,

e for somec € [0,1/5), fully dynamic O(n€)-approximate average-
linkage HAC with O(n'=>¢~¢) amortized update and query work,

e forsomec € [0, 1/8), incremental or decremental O(n€)-approximate
average-linkage HAC with 0(n1789)/2-¢) \yorst-case update and
query work,

e for somec € [0, 1), fully dynamic O(n¢)-approximate average-
linkage #HAC with O(n'=¢~¢) amortized update and query work,

o forsomec € [0, 1/2), incremental or decremental O(n€)-approximate
average-linkage #HAC with O(n'=2~¢) worst-case update and
query work.

Then the SETH is false.

6.3 Proof of bounds

As examples, we will show two reductions that generate some of our
lower bounds. We defer the remaining reductions to Appendix D.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

(a) A vertex v with two
neighbors in an Sub-

Conn instance (b) The corresponding HAC instance adds a star
instance.

graph with center ¢ and several leaves.
Figure 2: The figure displays the extra vertices added for a particular vertex v
in Lemma 6.3’s reduction from SubConn to weighted-average-linkage HAC.

Our first example reduces SubConn to weighted-average-linkage
HAC. Lemma D.1 gives a similar reduction for complete linkage.

Lemma 6.3. [Part of Theorem 6.1] Let A € [1,poly(n)]. Suppose
we can solve dynamic / incremental / decremental A-approximate
weighted-average-linkage HAC in p(m, n) preprocessing work, u(m, n)
update work, and g(m, n) query work. Then, letting m’ = m(1+log A)
and n’ = n(1 + log ), we can solve dynamic / decremental / in-
cremental SubConn with O(m”) + p(O(m’), O(n’)) processing work,
u(0O(m’),0(n’)) update work, and q(O(m’), O(n’)) query work. The
same relationship is also true between #HAC and ConnSub.

PRrROOF. Suppose we are given an unweighted graph G = (V, E)
and we want to solve SubConn or ConnSub, maintaining some
dynamic subset of vertices S. Set 6 = 2. Define ¢ = [log(24)] =
O(1+logA)and A’ = A +1.

Preprocessing: Construct a new, weighted graph G’ by copying
G and giving every edge a weight of 2. For every v € V, add a star
graph to G’ consisting of a center vertex v’ and ¢ leaves vy, ..., 0p
with weight-21"2 edges. For each v;, create weight-1 edges to each
vertex in N (v). Connect v to o’ with weight 24’3 if v ¢ S. Figure 2
illustrates this construction. The graph G’ has O(n(1 + log(4)))
vertices and O(m(1 + log(X))) edges. Initialize dynamic HAC on
G’ with 0 = 2.

Update: Simulate adding or removing a vertex v in S by removing
or adding the weight-21"* edge {v,0’}.

Query: If we are reducing SubConn to HAC, return whether s
and t are in the same cluster given similarity threshold 0. If we are
reducing ConnSub to #HAC, then return whether the number of
clustersis [V \ S| + 1.

Correctness: Consider running HAC until similarity threshold
0 = 2A. Due to the preprocessing and the update strategy, every
v € V'\ S has a weight-21"> edge to o”. These edges merge first, and
then all of the weight-21"? edges merge. This puts eachv € V' \ S
in a cluster {v,v”, 01,0z, ...,0¢}, where the incident edges connect
to N(v) with weight 1+ (21 — 1)27¢ < 2. To see why the weight
is 1+ (24 — 1)27¢, consider v € V \ S and suppose without loss
of generality that the weight-21"? edges for o’ merge in the order
01,02, . ..,0¢. Inductively, for i = 0,1,..., ¢, the incident edges on
0”’s cluster have weight 1+ (21 — 1)277 after v; merges with v”’s
cluster, where vy = v. The base case is prior to merging, where the
weight is 1+ (21 — 1)2° = 21, which is correct by construction.

Therefore, the clusters for each v € V' \ S do not participate in
any more merges when clustering until threshold 6. The remaining
vertices cluster into their connected components in the subgraph
induced by S, and a HAC query answers SubConn correctly. A
#HAC query will give the number of connected components in the
subgraph plus |V \ S| (one cluster for eachv € V'\ S). O

reduction from SubUnion to average-linkage HAC. The SubUnion instance in
this example has X = {X; = {u1,uz}, Xz = {u1,us }, X3 = {uz, us, us } } and cur-
rently has S = {X, X3 }. We reduce the number of stars’ leaves (gray vertices)
displayed for cleanliness (e.g., x should actually have dozens of leaves).

Our second example reduces SubUnion to average linkage HAC.
Lemmata D.7 to D.9 give similar reductions to complete linkage
HAC, weighted average linkage HAC, and average linkage #HAC.

Lemma 6.4 (Part of Theorem 6.2). Let A € [1, poly(n)]. Suppose we
can solve dynamic A-approximate average-linkage HAC in p(m, n)
preprocessing work, u(m, n) update work, and q(m,n) query work.
Then we can solve dynamic SubUnion with with p(m’,n’) processing
work, u(m’, n’) update work, and q(m’, n") query work where m’ and
n’ are O(A|U||X]| + A2|X%).

If we can solve incremental / decremental A-approximate average-
linkage HAC, then then the bounds hold for decremental / incremental
SubUnion with m’ and n’ being O(A3|U|?|X| + °|U||X|? + 22|X]?).

PRrOOF. Suppose we are given a SubUnion instance (X, U) with
subset S € X. We focus on the case where we have a fully dynamic
algorithm and defer the partially dynamic case to Appendix D.
Define 6 = 1 as well as the following constants:

wr = (A+ 1)1 =0(1?),

ty = Aw|U| = 0(2*|U]),

L= A+ 1)2A(ty +1+|X| + A|U|) = 0(A°|U| + A*|X]),

te = IXIL/A = O [UNIX] + A% |X ),
wy = (b + X)L+ 1=0°|U|* + 2°|U||X| + *|X|%),
wx = Al + X)L +1 = OA2|UP|X| + A°|U||X)? + A°1X]?).

Preprocessing: Figure 3 illustrates the graph that we will construct.
Create a graph G with a vertex representing each X; € X, a vertex
representing each u € U, and a weight-L edge {Xj,u} for each
u € X; for each X; € X. Make each u € U a center of a star graph
with A — 1 leaves connected with weight wy. Add a star graph with
center y and £, leaves connected to the center with weight w,. Add
a weight-wy edge from y to each X; € S. Add another star graph
with center x and ¢x leaves connected to the center with weight
wy. Add a weight-wy edge from x to each each X; € X \ S. Add
two more vertices s and ¢ with a weight-1 edge {s,t}, and add a
weight-w; edge {t, u} for each u € U. This graph has O(#x) vertices
and edges. Initialize HAC on this graph.

Update: Simulate adding X; to S by adding a weight-w, edge
from X; to y and removing the weight-wy from X to x. Similarly,
simulate removing X; from S by removing edge {X;, y} and adding
edge {X;, x}.



Query: Query whether s and t are in the same cluster when
performing HAC until to threshold 8 = 1. If yes, then return that S
covers U; otherwise, return that S does not cover U.

Correctness: Consider running HAC until threshold 8. The weights
wy and wy are so large that all weight-wy and weight-w, edges
merge before any weight-L edges. Let Cy denote x’s cluster (con-
taining X \ S) and Cy denote y’s cluster (containing S). From this
point onwards, the similarity between Cyx to another cluster C is
bounded above by considering the worst case where every X; in
Cx has a weight-L edge to every u € U contained in C:

X\ S|ICNUIL < |X\SIL |X|L:1

Gl 7 Gkl A

where the first inequality used the fact that A|C N U| < |C| due to
eachu € U being in a star of size A. Hence, Cx does not participate in
any more merges until near the end of the agglomeration process,
at which point those merges will not affect correctness. On the
other hand, consider C ys which has weight-L edges connecting it
to every u € U covered by S. Each u € U, until it merges with Cy,
is in a size-A cluster consisting only of the star centered on u. The
similarity between Cy and some u € U covered by S and not yet
merged with Cy is always at least

L
(by + 1+ [X| + A|UA

= (1+1)% (1)

In comparison, the similarity between t and another adjacent cluster
Cis 1if C = {s} and is otherwise at most

thc al U| We

T < 7 =1+1 (2)
where the first inequality again uses the inequality A|C N U| < |C|.
Comparing Equation (1) to Equation (2) shows that Cy merges with
all u € U covered by S before t merges with anything.

Now consider what ¢ merges with. In the case where S does not
cover all of U, inequality (2) is tight for every cluster C representing
an uncovered u € U. In particular, the similarity between t and
such a cluster is A times greater than the similarity between ¢ and
s or between Cx and any cluster. Therefore, ¢t merges with some
uncovered u’s star rather than merging with s and is in a cluster of
size A + 1. The similarity between ¢’s cluster and s falls to 1/(1 + 1),
and t and s never merge. Hence a query returns the correct result
in this case.

In the case where S covers all of U, the only adjacent clusters to
t are {s} and Cy,. The similarity between t and Cy is

w|U| wi|U|
£y +1+|S[+A|U| ty

=1/

which is A times less than the similarity between ¢ and s. Hence
t and s merge, and a query returns the correct result in this case
too. O

To turn Lemma 6.4 (and Lemma D.9) into the lower bounds in
Theorem 6.2, we need the following lemma.

Lemma 6.5. Let a and b be constants. Let P be some dynamic
problem. Suppose that given a dynamic / incremental / decremental
SubUnion instance with |X| = O(log|U|), for any value of A > 1, we
can solve the instance by efficiently converting it to an instance of
A-approximate P of sizen’ = o|ub). Assuming the SETH holds,

Tom Tseng, Laxman Dhulipala, and Julian Shun

for any ¢ < 1/a, the update or query work of an O(n®)-approximate
P algorithm with poly(n) preprocessing work is Q(n(1-ac)/b=0(1))
amortized / worst-case / worst-case.

Proor. Set A = O(|U|P¢/(1749)) 5o that n’ = OA|U|®) =
O~(|U|abc/(1—ac) |U|b) — é(|U|abc/(l—ac) |U|(b—abc)/(1—ac))
O(|U|P/(1=a9)y and A > n’®. Solve the SubUnion instance by gen-
erating a A-approximate instance of P of size n’ and running an
O(n’¢)-approximate algorithm for . The update and query time for
the algorithm cannot both be O(n'(1-a0)[b=Q(1)y = G(|y|1-2(D)
because such a work bound for SubUnion is impossible if the SETH
holds. 0

For example, Lemma 6.4 shows that SubUnion with | X| = O(log|U]|)
can be solved by running dynamic A-approximate average-linkage
HAC on a graph with O(A°|U|) vertices and edges. Setting (a,b) =
(5,1) in the lemma above gives the conditional lower bound on
fully dynamic average-linkage HAC stated in Theorem 6.2.

7 Conclusion

In this paper, we gave a fully dynamic MSF algorithm that processes
a batch of k updates in O(k log® n) expected amortized work and
O(log® nlog k) span w.h.p. This gives a batch-dynamic algorithm
that can answer queries about single-linkage graph HAC clusters.
We also showed that graph HAC requires polynomial query or
update time for other common linkage functions unless we can
break long-standing computational complexity conjectures. This
suggests that future work on dynamic HAC algorithms for these
linkage functions may wish to avoid targeting worst-case inputs.
For future work, it would be desirable to reduce the running time
of the MSF algorithm further. Can we match the O(k log* n) work
of the sequential HDT MSF algorithm? Can we match the O(log® n)
span of of Acar et al’s best dynamic connectivity bounds? It would
also be interesting to design practical implementations of our MSF
algorithm. Finally, it would be interesting to find restricted input
classes on which we can break the lower bounds shown in this

paper.
Acknowledgments

We thank the reviewers for their helpful feedback. This research was
supported by DOE Early Career Award #DE-SC0018947, NSF CA-
REER Award #CCF-1845763, NSF Award #CCF-2103483, Google
Faculty Research Award, Google Research Scholar Award, Fin-
Tech@CSAIL Initiative, DARPA SDH Award #HR0011-18-3-0007,
and Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.

References

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply
strong lower bounds for dynamic problems. In Proceedings of the 55th Annual
Symposium on Foundations of Computer Science. 434-443.

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019.
Parallel Batch-Dynamic Graph Connectivity. In Proceedings of the 31st ACM
Symposium on Parallelism in Algorithms and Architectures. 381-392.

[3] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam
Westrick. 2020. Parallel Batch-Dynamic Trees via Change Propagation. In 28th
Annual European Symposium on Algorithms, Vol. 173. 2:1-2:23.

[4] Umit A Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Mav-
erick Woo. 2004. Dynamizing Static Algorithms, with Applications to Dynamic
Trees and History Independence. In Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Vol. 531. 540.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

[5] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and Counting Given

6

[7

=

—

Length Cycles. Algorithmica 17, 3 (1997), 209-223.

Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 1997.
Minimizing Diameters of Dynamic Trees. In International Colloquium on Au-
tomata, Languages, and Programming. 270-280.

Daniel Anderson, Guy E. Blelloch, and Kanat Tangwongsan. 2020. Work-efficient
Batch-Incremental Minimum Spanning Trees with Applications to the Sliding
Window Model. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures. 51-61.

MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-
Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. 2017.
Affinity Clustering: Hierarchical Clustering at Scale. In Advances in Neural Infor-
mation Processing Systems. 6864-6874.

[9] J.-P. Benzécri. 1982. Construction d’une classification ascendante hiérarchique

[10
(1

[12

[13

[14

(15

[16

[17
[18

[19

[21

[22

[23
[24

[25

[26

[27

[28

[29

[30

(31

]
]
]

]

]

]

]

]

]
]
]

]

]

]

]

par la recherche en chaine des voisins réciproques. Cahiers de I’analyse des
données 7, 2 (1982), 209-218.

Guy E Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3
(1996), 85-97.

Guy E Blelloch and Laxman Dhulipala. 2018. Introduction to Parallel Algorithms.
http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf.

Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for Parallel Or-
dered sets. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures. 253-264.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The Com-
plexity of Satisfiability of Small Depth Circuits. In International Workshop on
Parameterized and Exact Computation. Springer, 75-85.

Timothy M Chan. 2006. Dynamic subgraph connectivity with geometric applica-
tions. SIAM J. Comput. 36, 3 (2006), 681-694.

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2020. A Deterministic Algorithm for Balanced Cut
with Applications to Dynamic Connectivity, Flows, and Beyond. In Proceedings
of the 61st Annual Symposium on Foundations of Computer Science. 1158-1167.
Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-trenn, and Claire
Mathieu. 2019. Hierarchical Clustering: Objective Functions and Algorithms. 7.
ACM 66, 4 (2019).

Sajal K Das and Paolo Ferragina. 1995. Parallel Dynamic Algorithms for Minimum
Spanning Trees. (1995).

Sanjoy Dasgupta. 2016. A Cost Function for Similarity-Based Hierarchical Clus-
tering. In ACM Symposium on Theory of Computing (STOC). 118-127.

Erik Demaine. 2004. Lecture Notes on Skip Lists. https://courses.csail. mit.edu/6.
046/spring04/handouts/skiplists.pdf. [Online; accessed 08-January-2022].
Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica Shi.
2021. Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time. In
International Conference on Machine Learning. 2676-2686.

Paolo Ferragina and Fabrizio Luccio. 1994. Batch dynamic algorithms for two
graph problems. In International Conference on Parallel Architectures and Lan-
guages Europe. 713-724.

Pasi Franti, Olli Virmajoki, and Ville Hautamaki. 2006. Fast Agglomerative
Clustering Using a k-nearest Neighbor Graph. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 11 (2006), 1875-1881.

Daniele Frigioni and Giuseppe F Italiano. 2000. Dynamically Switching Vertices
in Planar Graphs. Algorithmica 28, 1 (2000), 76-103.

Anka Gajentaan and Mark H Overmars. 1995. On a class of O(n?) problems in
computational geometry. Computational geometry 5, 3 (1995), 165-185.

Joseph Gil, Yossi Matias, and Uzi Vishkin. 1991. Towards a Theory of Nearly
Constant Time Parallel Algorithms. In Proceedings of the 32nd Annual Symposium
on Foundations of Computer Science. 698-710.

John C Gower and Gavin JS Ross. 1969. Minimum Spanning Trees and Single
Linkage Cluster Analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54-64.

Michael Greenwald and Sanjeev Khanna. 2001. Space-Efficient Online Computa-
tion of Quantile Summaries. ACM SIGMOD Record 30, 2 (2001), 58-66.

Michael B Greenwald and Sanjeev Khanna. 2004. Power-conserving computation
of order-statistics over sensor networks. In Proceedings of the Twenty-Third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 275-285.
Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures. 24-34.

Timothy C Havens, James C Bezdek, James M Keller, Mihail Popescu, and Ja-
calyn M Huband. 2009. Is VAT really single linkage in disguise? Annals of
Mathematics and Artificial Intelligence 55, 3 (2009), 237-251.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing. 21-30.

[32] Monika Rauch Henzinger and Valerie King. 1995. Randomized Dynamic Graph Al-
gorithms with Polylogarithmic Time per Operation. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing. 519-527.

[33] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-Logarithmic
Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning
Tree, 2-Edge, and Biconnectivity. 7. ACM 48, 4 (2001), 723-760.

[34] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. 2015. Faster fully-

dynamic minimum spanning forest. In 23rd Annual European Symposium on

Algorithms. 742-753.

Alon Itai and Michael Rodeh. 1978. Finding a minimum circuit in a graph. SIAM

3. Comput. 7, 4 (1978), 413-423.

[36] Joseph JaJa. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.

[37] George Karypis, Eui-Hong Han, and Vipin Kumar. 1999. Chameleon: Hierarchical
Clustering using Dynamic Modeling. Computer 32, 8 (1999), 68-75.

[38] Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum.

2017. A Hierarchical Algorithm for Extreme Clustering. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining.

255-264.

Tsvi Kopelowitz, Ely Porat, and Yair Rosenmutter. 2018. Improved Worst-Case

Deterministic Parallel Dynamic Minimum Spanning Forest. In Proceedings of the

30th on Symposium on Parallelism in Algorithms and Architectures. 333-341.

Silvio Lattanzi, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. 2019. A

Framework for Parallelizing Hierarchical Clustering Methods. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases. 73-89.

Aditya Krishna Menon, Anand Rajagopalan, Baris Sumengen, Gui Citovsky, Qin

Cao, and Sanjiv Kumar. 2019. Online hierarchical clustering approximations.

arXiv preprint arXiv:1909.09667 (2019).

Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamas-

sia. 1994. Complexity models for incremental computation. Theoretical Computer

Science 130, 1 (1994), 203-236.

Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, Michael R Glass, and

Andrew McCallum. 2019. Scalable Hierarchical Clustering with Tree Grafting.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 1438-1448.

Benjamin Moseley and Joshua R. Wang. 2017. Approximation Bounds for Hier-

archical Clustering: Average Linkage, Bisecting K-means, and Local Search. In

Advances in Neural Information Processing Systems. 3094-3103.

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.

Dynamic minimum spanning forest with subpolynomial worst-case update time.

In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science. 950—

961.

Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems.

In Proceedings of the Forty-Second ACM Symposium on Theory of Computing.

603-610.

Shaunak Pawagi and Owen Kaser. 1993. Optimal parallel algorithms for multiple

updates of minimum spanning trees. Algorithmica 9, 4 (1993), 357-381.

Seth Pettie and Vijaya Ramachandran. 2002. A randomized time-work optimal

parallel algorithm for finding a minimum spanning forest. SIAM J. Comput. 31, 6

(2002), 1879-1895.

Xiaojun Shen and Weifa Liang. 1993. A parallel algorithm for multiple edge

updates of minimum spanning trees. In Proceedings of the Seventh International

Parallel Processing Symposium. 310-317.

Daniel D Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic

trees. Journal of computer and system sciences 26, 3 (1983), 362-391.

[51] Yihan Sun. 2019. Join-based Parallel Balanced Binary Trees. Ph.D. Dissertation.

Carngie Mellon University.

Yihan Sun, Daniel Ferizovic, and Guy E Belloch. 2018. PAM: Parallel Augmented

Maps. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming. 290-304.

Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019. Batch-Parallel

Euler Tour Trees. In Proceedings of the Meeting on Algorithm Engineering and

Experiments. 92-106.

Qi Zhang and Wei Wang. 2007. An efficient algorithm for approximate biased

quantile computation in data streams. In Proceedings of the 16th ACM International

Conference on Information and Knowledge Management. 1023-1026.

'®
i

[39

[40

[41

[42

[43

[44

[45

=
&

[47

[48

[49

[50

[52

[53

(54

A Relative quantile summaries

A.1 Description
In this section, we describe Zhang and Wang’s mergeable relative
quantile summary and give proofs of correctness since Zhang and
Wang’s paper omits several proofs [54]. Some details are changed
in the quantile summaries to make our proofs work.

The quantile summaries discussed here are all of a particular
form. Each summary Q = {ql,qg, . .,q|Q|} of a set S is a sorted


http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf

subset of S with g1 = min(S) and q|g| = max(S). The subset is
simply stored as a length-|Q| array. For each g € Q, we maintain
two integers rmin(q; Q) and rmax(q; Q) bounding the rank of g in
S, i.e., rank(q;S) € [rmin(q; Q), rmax(q; Q)]. (We omit the second
argument of rmin(+; -) and rmax(+; -) when it is clear from context.)
We always maintain the minimum and maximum ranks exactly:
rmin and rmax are 1 for q; and are || for g|g|. We can assume that
rmin and rmax are each strictly increasing with respect to their first
arguments—it is easy to adjust them to be strictly increasing if not.
The elements of Q, the values rmin(+; Q), and the values rmax(+; Q)
are each stored in a length-|Q| array.

The following lemma shows that if consecutive elements in Q
are close together, then Q can answer the approximate quantile
queries described in Section 4.1.

Lemma A.1. Given a summary Q of the above form, suppose that
forallie {1,2,...,|Q| — 1} that

®)

2e rmin(q;) .
1-¢ )

rmax(qj+1) — rmin(q;) < max{
Then Q is a e-approximate relative quantile summary where queries
can be answered in O(log|Q|) work.

We will refer to quantile summaries satisfying Equation (3) as
ZW summaries. To prove that Lemma A.1 is true, we need to give an
algorithm for answering queries on ZW summaries. The algorithm
is given in Algorithm 5, and we discuss its correctness in the proof
of Lemma A.1 that immediately follows.

Algorithm 5 The algorithm for answering query for rank r on an e-approximate ZW
summary Q.

1: procedure QUERY(Q, r)
2: return Largest ¢ € Q such that rmax(q; Q) <r(1+¢) > Binary search

Proor oF LEMMA A.1. The proof is similar to the proof for a
similar lemma for uniform quantile summaries by Greenwald and
Khanna [27].

Suppose we are given a query rank r € [1,|S|] where S is the
set that Q represents. Assuming that [r(1 — ¢),r(1 + ¢)] contains
an integer, we want to return some element y such that rank(y) €
[r(1—¢),r(1+¢)]. The strategy will be to find some g; € Q such that
[rmin(g;), rmax(q;)] C [r(1—¢),r(1+¢)]. Then we will be able to
return g; as the answer since rank(q;) € [rmin(q;), rmax(q;)].

We run Algorithm 5, which binary searches in rmax(+; Q) for
the largest index i such that rmax(g;) < r(1 + ¢) and returns g;.
Such an index always exists since rmax(q;) =1 < r < r(1+¢).
To achieve [rmin(q;), rmax(q;)] € [r(1—¢),r(1+¢)] as desired, it
only remains to prove that r(1 — ¢) < rmin(q;).

If i = |Q|, then rmin(q;) = |S| = r > r(1 — ¢). Then we are
done. If i < |Q|, by choice of i, we know that rmax(gj+1) > r(1+¢).

Assume for contradiction that r(1 — ¢) > rmin(qg;). Then

2 in( g

rmas(gis) ~ rmin(gi) > r(1+ ) — r(1 ) = 2er > 0]
-

4
Comparing this against Equation (3), we must be in the case where
rmax(qi+1) — rmin(g;) < 1. Then

rmin(g;) <r(1—¢) <r(l1+e¢) < rmax(qi+1) < rmin(q;) + 1.

This is impossible since it shows that there is no integer between
r(1 —¢) and r(1 + ¢). Hence we have a contradiction—we indeed

Tom Tseng, Laxman Dhulipala, and Julian Shun

have [rmin(q;), rmax(q;)] € [r(1—¢€),r(1+¢)] and can return g;
as our answer. O

PrROOF OF LEMMA 4.2. Queries are answered by binary search
(Algorithm 5) in O(log|Q|) work. Fetching min(S) takes O(1) time
because the first element of Q is always min(S) by construction. O

Lemma A.2. Given a set S of n elements, we can construct an -
approximate ZW summary Q that summarizes S and consists of
O(log(en)/e) elements from S.

Proor. For simplicity, assume 1/¢ is an integer. Put all elements
from S of rank less than 1/¢ into Q. Then consider the intervals
[2i=1/¢,2F[e) fori € {1,2,...,log(en)}. For interval [271 /¢, 2! /¢),
put the elements of rank 2/~1/¢ + 2/=1; into Q for each j € {0,
1,2,...,1/e — 1}. Finally, put the maximum of S into Q. For each
element g in Q, set rmin(q) and rmax(q) to be the rank of g. The
size of Q is (log(en) + 1) /e.

To see that this summary is indeed e-approximate, we want to
show that it satisfies Equation (3). Consider consecutive elements
qk and gg4q in Q. If rank(gy) < 1/e thenrank(qg,1) = rank(qg)+1,
so rmax(qg+1) —rmin(gg) < 1. Otherwise, the rank of gy is in some
interval [2/71/¢, 2! /¢), and the rank of gy, is rank(g)+2~1. Then

rmax(ggs1) — rmin(g) = rank(gs;) - rank(gy) = 2/
2¢ rmin(qpg)
1-¢
In either case we have satisfied Equation (3). O

< erank(qg) <

To combine two ZW summaries Q; and Q over non-overlapping
sets S1 and Sz into a new summary over S; U Sy, we can merge Q1
and Q. Then, if we need to shrink the space usage of the resulting
summary, we can prune it.

Lemma A.3 ([54]). Given e-approximate ZW summaries Q1 and
Q> representing sets S1 and Sy, we can merge the summaries into an
e-approximate ZW summary Q of size |Q1| + |Q2| that represents set
S1USs.

ProoF. As described by Zhang and Wang, we construct Q by
merging Q1 and Q in sorted order [54]. To set rmin(q; Q) and
rmax(q; Q) for some g € Q, suppose that g € Q1 (the other case is
symmetric). Let s be the largest element of Q, smaller than g and
let ¢ be the smallest element of Qy larger than g. Then set

in(q: Q) rmin(g; Q1) + rmin(s; Q2) if s exists,
rmin(q; Q) =
1 rmin(g; Q1) otherwise,
(.0) rmax(q; Q1) + rmax(t; Q) — 1 if ¢ exists,
rmax(q; Q) =
1 rmax(q; Q1) + rmax(s; Q2) otherwise.

This algorithm is the same as the merge algorithm Greenwald
and Khanna described for uniform approximate quantile summaries,
and the analysis showing that this algorithm satisfies Equation (3)
is essentially the same as Greenwald and Khanna’s proof of cor-
rectness [28]. O

Lemma A.4. Given a positive integer B > 0 and an e-approximate
ZW summary Q” over a set of n elements, we can prune it to construct
a new (& + 1/B)-approximate ZW summary Q of size O(Blog(n/B))
over the same set.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

Proor. First, consider the ranks [B, n] by partitioning it into the
intervals [2°7'B, 2!B) for each i € {1,2,...,log(n/B)}. In interval
[271B, 2!B), query for rank 2:~1(B+j) in Q for j € {0,1,...,B — 1}.
The query algorithm (Algorithm 5) guarantees non-decreasing el-
ements over the calls. Place each unique element in Q, and place
max(Q’) into Q as well if it has not already been inserted.

Now consider the result of querying for B, giving the smallest
element b in Q so far. Take all elements of Q” less than b and place
them in the front of Q. Since the rank of b is at most B(1 + ¢), there
are at most B(1 + ¢) = O(B) such elements.

Finally, for each ¢ € Q, set rmin(q;Q) := rmin(gq; Q") and

rmax(q; Q) := rmax(q; Q”). This summary Q has size O(Blog(n/B)).

We want to show that Q satisfies Equation (3) with error ¢+ 1/B.
The elements g € Q such that g < b are a prefix of Q’ that satisfy
Equation (3) with error ¢, so they certainly also satisfy the con-
straint with error ¢ + 1/B. For elements greater than b, consider
a pair of consecutive elements x and y in Q. There is some r and
integer i such that r € [2/71B, 2!B), that querying r resulted in x,
and that querying r + 27! resulted in y. The query implementa-
tion guarantees that [rmin(x), rmax(x)] C [r(1—¢€),r(1+¢)] and
[rmin(y), rmax(y)] € [(r + 271 (1 = &), (r + 271 (1 + £)]. Then

rmax(y) — rmin(x) < (r+ 25D (1+¢) —r(1-¢)
=2er+27 (1 +¢) < 2er + (r/B)(1 +¢€) < 2er +2r/B
2(¢e+1/B)rmin(x)  2(e+ 1/B) rmin(x)
1-¢ 1-(¢+1/B)
satisfying the constraint with error ¢ + 1/B. Hence Q is a ZW sum-
mary with error £ + 1/B. ]

=2(¢+1/B)r <

5

A.2 Parallel algorithms

This section describes parallel algorithms for ZW summaries. As
subroutines, we use parallel algorithms for merging sorted arrays,
computing prefix sums, and filtering, all of which can be done in
O(m) work and O(log m) span over length-m arrays [11].

ProOF OF LEMMA 4.1. The proof of Lemma A.2 shows that con-
structing a ZW summary just consists of finding O(log(en)/e) ele-
ments by rank. O

Lemma A.5. Given two ZW summaries with a total size of m, merg-
ing them as described in Lemma A.3 can be done in O(m) work and
O(log m) span.

Proor. Let Q; and Q3 be the summaries to be merged. Follow-
ing the algorithm given in the proof of Lemma A.3, use a parallel
algorithm for merging sorted arrays to combine Q; and Q5 into an
output Q. When merging, keep track of whether each element is
from Qp or Qz.

To compute rmin(-; Q) values, each element in Q1 must deter-
mine its predecessor in Q3. Create an array A of size |Q|. For each
indexi € {1,2,...,|Q|}, set A[i] to 1 if the i-th element of Q is from
Q2 and to 0 otherwise. Then compute a prefix sum over A to obtain
a list of sums S. Now for any i, if the i-th element g; of Q is from
Q1, then the S[i]-th entry of Q3 is the predecessor of g;. As a result,
we can now compute rmin(g; Q) for all g in Q;. Similar logic allows
us to compute the rest of rmin(+; Q) and rmax(+; Q).

All of this takes O(]|Q1] + |Qz2|) work and O(log(|Q1| + |Q21))
span. |

Lemma A.6. Given a ZW summary of size m, pruning it as described
in Lemma A.4 can be done in O(m) work and O(log m) span.

Proor. Given an e-approximate summary Q of size m and a pa-
rameter B, the core part of pruning is to compute k = O(Blog(n/B))
rank queries in parallel efficiently. If k > m then we should just
return Q as it is already small enough.

Otherwise, consider the set of rank queries {ry, ..., } that we
want to compute. A query for rank r; consists of binary searching for
the location of r; (1+¢) in rmax(+; Q) to get the largest element q(i) €
Q such that rmax(q(i)) < ri(1+¢) (Algorithm 5). We can batch all
the searches together by creating a k-length array A containing
query value r;(1 + ¢) for all i and performing a parallel merge of A
with rmax(-; Q) to get an output array M. Then for each r;(1+¢) €
M, its predecessor in M will either be q(i) orberi—1(1+¢). Ifitis
q(i), then we can complete the corresponding query, and otherwise
the query can be discarded since it will have the same result as
the query on rank r;j_;. The results of the queries can be written
into a new array C, and filtering all successful queries from C gives
the output summary. Merging and filtering takes O(m) work and
O(log m) span. o

ProoF oF LEMMA 4.3. Merge Q; and Q; in parallel into an e-
approximate summary using Lemma A.5. Then, apply Lemma A.6
to prune the result to size O(b log(n/b) at the cost of 1/b additional
error using Lemma A.6. m]

B Tighter batch-decremental MSF work bound

This section describes how to get the bound of O(log® nlog(1 +
n/A)) expected amortized work per edge for the batch-decremental
MSF algorithm in Theorem 4.5, where A denotes the average dele-
tion batch size.

We use two lemmas given by Acar et al. [2]:

Lemma B.1. For any non-negative integersn andr,

Z 2 log(1+ 1) = 0(2 og(1+ 1))

Lemma B.2. For anyn > 1, the function xlog(1 + n/x) is strictly
increasing with respect to x forx > 1.

Now we analyze the cost of searching for replacement edges in
the batch-decremental MSF algorithm.

Lemma B.3. The expected work of searching for replacement edges
on one HDT level for the batch-decremental MSF algorithm is

2 n 2 n
O(klog nlog(1+k)+plog nlog(1+p))

where k is the batch size and p is the number of edges pushed down
to the next HDT level during the search.

ProoF. Let ¢ be the HDT level that we are searching. The work
of the replacement edge search process is dominated by inserting
found replacement edges into the level-£ ETT and by updating the
level-(¢ — 1) ETT when pushing edges. By deferring pushing edges
to the end of the replacement search at level £ when we have found
all p edges that should be pushed, we update the level-(£ — 1) ETT
with one operation that costs O(p log? n(1 + n/p)) expected work.



Inserting edges into the level-£ ETT, on the other hand, occurs on
each round within the replacement search on this level. There are
O(log k) rounds, and in each round, we search for a replacement
edge out of every “active” component, i.e., each component that still
has incident edges to search and that has size at most 2°~1. At most
half as many components will be active on each subsequent round
because the worst case is when the replacement edges discovered
in a round pair the components off. The number of edges inserted
in a round is bounded by the number of active components, and on
the first round, there are at most 2k active components. Therefore,
on round i, the number of edges k; inserted into the ETT is at most
k; < 4k27. The work of insertions across all O(log k) rounds is
then proportional to

O(logk) .
Z k; log? nlog(l + —)
; ki
i=1
O(logk) .
< 4k2 " log? nlog(1 + .
; og“n og( 4k2")

= O(4klog2 nlog(l + &)) = O(klog2 nlog(l + %)),

where Lemma B.2 provides the inequality and Lemma B.1 provides
the first equality.

The expected work from inserting replacement edges and push-
ing edges is then O(k log? nlog(1+n/k)+plog? nlog(1+n/p)). O

Similar to the above lemma minus a multiplicative factor of
O(log? n), Acar et al. [2] prove in Lemma 4.5 of their paper that
the expected work of searching for replacement edges on one HDT
level for their “interleaved” connectivity algorithm is O(k log(1 +
n/k) + plog(1+ n/p)) where k is the batch size and p is the num-
ber of pushed edges. Acar et al. then use their lemma to show in
Theorem 4.7 of their paper that their interleaved connectivity al-
gorithm achieves O(lognlog(1 + n/A)) expected amortized work
per edge by summing the work of replacement searches across all
HDT levels and all batches of deletions. We can apply the same
analysis as Acar et al’s Theorem 4.7 to get the same work plus a
multiplicative factor of O(log? n) for our batch-decremental MSF
algorithm, i.e., O(log® nlog(1+n/A)) expected amortized work per
edge, as desired.

C Dynamic HAC dendrogram
counterexamples

The canonical output for HAC is a dendrogram representing the
hierarchy of clusters. A natural question for dynamic graph HAC
is whether we can maintain the dendrogram dynamically. In this
section, we show examples where an edge update causes Q(n)
changes in the dendrogram. Explicitly maintaining the dendrogram
dynamically therefore seems inefficient in the worst case. Here we
assume a dendrogram is represented a binary tree (for each con-
nected component of the graph) with labeled leaves, and changes
in a dendrogram mean changes in the parent or child pointers of a
dendrogram node.

Tom Tseng, Laxman Dhulipala, and Julian Shun

1 2
OO,
3 4
(a) Graph
0 1 2 3 4 5 0 1 2 3 4 5

(b) Dendrogram without edge {2,3} (c) Dendrogram with edge {2,3}
Figure 4: Example of a graph whose single-linkage HAC dendrogram changes
a lot if an edge is added.

(a) Graph

50 2 1 4 3 5 0 2 4 1 3

(b) Dendrogram without edge {0,5}
Figure 5: Example of a graph whose HAC dendrogram under complete link-
age or weighted average linkage changes a lot if an edge is added.

(c) Dendrogram with edge {0,5}

C.1 Single linkage
Let n € N be even. Consider a graph consisting of two star graphs
of n/2 vertices. In one star, the edge weights are 1,3,5,...,n - 3,
and in the other star, the edge weights are 2,4,6,...,n — 2.
Adding an edge of weight n — 1 between the centers of the two
stars causes ©(n) changes to the dendrogram. Figure 4 shows this
graph with n = 6 along with its dendrograms. Without the weight-
(n—1) edge, the dendrogram consists of two binary trees with long
spines. In one of the stars, consider any vertex v whose incident
edge’s weight is w < n — 3, and let u be the vertex whose incident
edge’s weight is w + 2, e.g., we could pick v = 0 and u = 11in
Figure 4. In the dendrogram, v’s parent’s other child is the parent
of u. With the weight-(n — 1) edge added, however, the two binary
trees “interleave”, and v’s parent’s other child is no longer the parent
of u. Therefore, either v’s parent changed, u’s parent changed, or
v’s parent’s child changed. This is true for any of the ©(n) choices
of v. Moreover, no two vertices share parents, so changes to one
vertex’s parent’s child do not overlap with changes to another
vertex’s parent’s child. This shows that the number of changes in
the dendrogram caused by the addition of the weight-(n — 1) edge
is indeed ©(n).
C.2 Complete and weighted average linkage
Let k € N. Create a graph on n = 2k+2 vertices. Fori € {1,2,...,k},
add edge {0, i} with weight 3k +i, edge {i, k + i} with weight 2k +1,
and edge {i,n — 1} with weight 1.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

—

Figure 6: Example of a graph whose average-linkage HAC dendrogram an
edge is added.

(a) A vertex v with two
neighbors in an Sub-

. (b) The corresponding HAC instance adds a vertex
Conn instance.

v,
Figure 7: The figure displays the extra vertex and edges added for a particular
vertex v in Lemma D.1’s reduction from SubConn to complete-linkage HAC.

Adding an edge of weight 4k + 1 between vertices 0 and n — 1
produces ©(n) changes in the dendrogram. With the weight-(4k+1)
edge, foralli € {1,2,...,k}, vertices i and k + i directly merge with
each other. Therefore, vertices i and k + i have the same parent in
the dendrogram. Without the edge, each vertex successively merges
as a singleton cluster with vertex 0’s cluster. Then no vertices have
the same parent in the dendrogram besides vertices 0 and n — 1.

C.3 Average linkage

The construction is similar to the graph given for complete and
weighted average linkage in Appendix C.2. Let k € N. Create a
graph on n = 4k + 1 vertices. For i € {1,2,...,k}, add edge {0, i}
with weight 2k? + i and edge {i, k + i} with weight k + i. For i €
{2k + 1,2k + 2,2k +3,...,4k — 1}, add edge {i,n — 1} with weight
8k>.

Adding an edge of weight 8k> between vertices 0 and n — 1
produces ©(n) changes to the dendrogram. Figure 6 shows the
graph with k = 2. As in Appendix C.2, with the extra edge, vertices
1 through 2k merge as pairs, whereas without the extra edge, those
vertices merge as singleton clusters with vertex 0.

D HAC lower bounds

This section contains deferred proofs of the lower bounds stated in
Section 6.3.

To complete the proof of Theorem 6.1, we give a reduction from
SubConn to complete-linkage HAC.

Lemma D.1. [Part of Theorem 6.1] Let A € [1, poly(n)]. Suppose
we can solve dynamic / incremental / decremental A-approximate
complete-linkage HAC p(m, n) preprocessing work, u(m, n) update
work, and q(m, n) query work. Then we can solve dynamic/ decremen-
tal / incremental SubConn with O(m) + p(O(m), O(n)) processing
work, u(O(m), O(n)) update work, and q(O(m), O(n)) query work.
The same relationship is also true between #HAC and ConnSub.

PROOF. Suppose we are given an unweighted graph G = (V, E)
and we want to solve SubConn, maintaining some subset of vertices
S, using HAC. Define A’ = A+ 1 and set 0 = A'.

Preprocessing: Construct a new, weighted graph G’ by copying
G and giving every edge a weight of A’. For every v € V, create
a vertex v’ and add it to G’. Create weight-1 edges by from v’ to
each neighbor in N (v), and then connect v to o’ with weight 1’2 if

v € V'\ S. Figure 7 illustrates this construction. The new graph G’
has 2n vertices and at most 2m + n edges. Initialize dynamic HAC
on graph G’ with 6 = A’

Update: Simulate inserting a vertex v into S by removing edge
{0,0’}, and simulate deletion by adding edge {v, v’} with weight
A2,

Query: If we are reducing SubConn to HAC, return whether s
and t are in the same cluster given similarity threshold 0. If we are
reducing ConnSub to #HAC, then return whether the number of
clustersis [V \ S| + 1.

Correctness: Consider running HAC until similarity threshold
6. First, all the weight-1"? edges merge, leaving each v € V' \ S in
a cluster {v,0’} that only has incident edges of weight 1. These
clusters do not participate in any more merges. The remaining
vertices v € S cluster into their connected components in the
subgraph induced by S. O

We can similarly reduce SubConn to average-linkage HAC, albeit
with worse bounds:

Lemma D.2. Let A € [1,poly(n)]. Suppose we can solve dynamic
/ incremental / decremental A-approximate average-linkage HAC
p(m, n) preprocessing work, u(m, n) update work, and q(m, n) query
work. Then, with m’ and n’ being O(An®), we can solve dynamic /
decremental / incremental SubConn with O(m’) + p(O(m’), O(n’))
preprocessing work, u(O(m’), O(n’)) update work, and g(O(m”), O(n"))
query work. The same relationship is also true between #HAC and
ConnSub.

ProOF. Preprocessing: Construct a new, weighted graph G’ by
copying G and giving every edge a weight of 1. Add a star graph
to G’ consisting of a new center vertex x and An® — 1 leaves with
weight-242n3 edges. Add a weight-2A%n3 edge from x to each v €
V'\ S. Initialize dynamic HAC on G’ with 6 = 4/n?.

Update and query: Simulate inserting or removing a vertex v in
S by removing or adding the weight-2A%n3 edge {x, v}. Querying
is the same as Lemma D.1 with 6 = 4/n?.

Correctness: The weight-242n% edges have such high weight
that they merge before any weight-1 edge. After that, x’s cluster
Cy contains V' \ S and has size |V \ S|+ An3. The similarity between
x’s cluster Cy and another cluster C is at most

v\ SliCl n 10
_ < = < =
(V\S[+nd)|C] ~ 2An® ~ 2An2 2

with the numerator on the left-hand side representing the worst
case where every vertex of V \ S has an edge to every vertex of
C. Therefore, Cx experiences no more merges when clustering
until threshold 6. The smallest similarity between any two adjacent
clusters in the subgraph induced by S, on the other hand, is at least
4/n? = 6 (achieved by having two clusters of n/2 vertices each and
only one edge e € E crossing their cut), so adjacent clusters will
merge. The subgraph induced by S hence merges into its connected
components. a

The cubic preprocessing work in Lemma D.2 is too high to
achieve lower bounds conditional on triangle detection hardness
or 3SUM hardness, but it does allow lower bounds conditional on
online Boolean matrix-vector multiplication (OMv) hardness.



In the OMv problem, we are given an n-by-n Boolean matrix
M and n column vectors vy, ..., v, € {0,1}" one-by-one. For each
i € {1,...,n}, we must output Mo; over the Boolean semiring, and
we cannot see v; for any j > i until we output Mo;. The OMv
hardness conjecture is that solving OMv with an error probability
of at most 1/3 requires Q(n*°M) work [31].

Theorem D.3. Suppose for ¢ > 0 and c € [0, 1) that we can solve
dynamic / partially dynamic O(n®)-approximate average-linkage
HAC with poly(n) preprocessing work, O(n1=9/=¢) amortized /
worst-case update work, and 0O(n(1-0)/3-¢) query work. Then the
OMv hardness conjecture is false.

Proor. Fix arbitrary ¢ € [0,1) and suppose we had an n’¢-
approximate (on inputs with n’ vertices) HAC algorithm matching
the work bounds described in the theorem. Then if we were given
an st-SubConn instance with n vertices and m edges, we can apply
the construction from Lemma D.2 with 1 = ©(n3¢/(179)) to get
a A-approximate average-linkage HAC instance over a graph G’
with m” and n’ being O(An®) = O(n3/(1=9)) and A > n’®. Then we
can solve the instance with our n’®-approximate HAC algorithm
with poly(n) preprocessing work, O(n!/22(1)) ypdate work, and
o(n!~2(M) query work. Henzinger et al. show that such a fast
algorithm for st-SubConn is impossible conditional on OMv hard-
ness [31]. o

Lemma D.2 also implies a lower bound on average-linkage #HAC
conditional on OMv hardness since Henzinger et al’s [31] construc-
tion that reduces OMv to st-SubConn also works for ConnSub,
but we can get a stronger lower bound by a different reduction.
Henzinger et al. prove the hardness of st-SubConn conditional on
OMyv hardness by proving that it suffices to reduce a related prob-
lem called 1-uMv to st-SubConn. In the reduction, Henzinger et
al. construct a bipartite graph G and use st-SubConn to solve the
following problem: “activate” several vertices of G on demand and
determine whether there is any edge connecting activated vertices.
Instead of st-SubConn, we can use average-linkage #HAC to solve
this bipartite graph problem and hence get a #HAC lower bound
conditional on OMv.

Similarly, Abboud and Vassilevska Williams prove the hardness
of st-SubConn conditional on triangle detection hardness by con-
structing a bipartite graph and solving the same problem of deter-
mining whether an edge in the bipartite graph connects activated
vertices [1]. We can then also get an average-linkage #HAC lower
bound conditional on triangle detection hardness.

The following theorem states the average-linkage #HAC lower
bound conditional on OMv.

Theorem D.4. Suppose for e > 0 and c € [0, 1) that we can solve
dynamic / partially dynamic O(m€)-approximate average-linkage
#HAC with poly(n) preprocessing work, O(m1=9/2=¢) amortized /
worst-case update work, and O(m'=¢~€) query work. Then the OMv
hardness conjecture is false.

Proor. As discussed in the text above, we construct a bipartite
graph following Henzinger et al’s reduction from 1-uMv to st-
SubConn. Then we want to use #HAC determine whether there is
any edge connecting activated vertices in the bipartite graph. We
omit the remainder of this proof because it is similar to the proofs

Tom Tseng, Laxman Dhulipala, and Julian Shun

(a) Triangle detection
instance

RRRR

(b) The corresponding HAC instance
Figure 8: On the left is an example graph, and on the right is the result of ap-
plying to the example graph the reduction from triangle detection to average-
linkage #HAC given by Lemma D.6.
of Theorem D.5 and Lemma D.6 for reducing triangle detection to
#HAC. O

We state the average-linkage #HAC lower bound conditional on
triangle detection hardness next. The triangle detection hardness
conjecture is that there is a constant § > 0 such that any word-
RAM algorithm detecting whether an m-edge graph has a triangle
requires Q(m1+5_"(1) ) expected work [1]. (The best existing trian-
gle detection algorithms take O(min{mz“’/ (@+1)] n®}) work where
0O(n®) is the work to multiply n-by-n matrices [5, 35].)

Theorem D.5. Suppose for § > 0, e > 0, and ¢ € [0,1) that we can

solve one of the following problems with O(m(1+9)(1=0)=¢) prepro-

cessing work, O(md(1-c)—¢) update work, and O(m?20(1-c)—¢) query

work:

o fully dynamic O(m®)-approximate average-linkage #HAC with
the work bounds being amortized,

e incremental (on dense graphs) or decremental O(m®)-approximate
average-linkage #HAC with the work bounds being worst-case.
Then the triangle detection hardness conjecture is false for this value

of 8.

We prove the above theorem by directly reducing triangle detec-

tion to average-linkage #HAC in the following lemma.

Lemma D.6. Let A € [1,poly(n)]. Suppose that we can solve dy-
namic / decremental A-approximate average-linkage #HAC with pre-
processing work p(m, n), update work u(m, n), and query work q(m, n)
amortized / worst-case. Let m’ = O(An + m) and n’ = O(An). Then
triangle detection can be solved in O(m - u(m’,n’) + n- q(m’,n’) +
p(m’,n")) work. If we have an incremental algorithm instead with
worst-case work bounds, then triangle detection can be solved in
o(n?-u(m’,n") +n-q(m’,n’) + p(m’,n’)) work.

PROOF. Suppose we are given an unweighted graph G = (V,E)
on which we want to detect a triangle. Following the construction
in Abboud and Vassilevska Williams’s reduction from triangle de-
tection to st-SubConn [1], we construct an (initially unweighted)
bipartite graph G’ = (V’/ = AU B, E’) with partitions A and B such
that for each v € V we create v4 € A and vg € B. For every edge
{u,v} € E, create edges {ua,vp} and {va, ug}. Abboud and Vas-
silevska Williams remark that given an arbitrary vertex v € V, if we
“activate” u4 and up for every neighbor u of v, then v participates
in a triangle if there is an edge connecting two activated vertices.
Therefore, to detect whether the graph G has a triangle, we can
iterate through each v € V, activate v’s neighbors, check for an
edge between activated vertices, and deactivate v’s neighbors.



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

We focus on the case of fully dynamic #HAC. To solve this
bipartite graph problem using #HAC, we give every existing edge in
E’ aweight of 1. For eachv € AUB, add a star graph to G’ consisting
of a center vertex v’ and A — 1 leaves with weight-(4 + 1)? edges.
Add a weight-(A + 1)2 edge {v,0’} as well. Initialize #HAC on G’
with threshold 6 = 1. We can “activate” a vertex v by deleting edge
{0,v’} and “deactivate” it by re-inserting the edge. The graph G’ has
m’ = O(An + m) edges and n” = O(An) vertices. Figure 8 illustrates
this construction with G being Figure 8a and G’ being Figure 8b.

To determine whether there is an edge between activated ver-
tices, query for the number of clusters if we cluster until threshold
0. If the number of clusters is |A| + | B, then there is no such edge,
otherwise there is such an edge. This is true because all deacti-
vated vertices merge with their corresponding star, and then their
incident edges fall below weight 1/ and hence are no longer con-
sidered when clustering until threshold 6 = 1. If there are no edges
between two active vertices, then no more merges occur and we are
left with |A| + | B| clusters. If there is an edge between two active
vertices, at least one of them will merge and we will be left with
fewer clusters.

The number of #HAC queries is O(n) (once for each vertex in V),
and the number of #HAC updates is O(m) (once for each neighbor
of each vertex in V, i.e., twice for each edge of E). The total work is
then O(m - u(m’,n’) +n-q(m’,n’) + p(m’,n")).

As Abboud and Vassilevska Williams note for the partially dy-
namic case, we cannot deactivate vertices by inserting edges if we
are considering decremental #HAC. Instead, we roll back the state
of the #HAC algorithm until the vertices are no longer activated.
This rolling back means that we can only analyze worst-case work
and not amortized work. For incremental #HHAC, we initialize the
graph G’ to not have the edges of the form {v,v"} (i.e., all vertices
are activated). When we are iterating over v € V, instead of activat-
ing v’s neighbors, we deactivate its non-neighbors. This increases
the number of #HAC updates from O(m) to O(n?). o

Proor or THEOREM D.5. Fix arbitrary ¢ € [0, 1) and suppose we
had an m’®-approximate (on inputs with m’ edges) #HAC algorithm
matching the work bounds described in the theorem. Then given
a graph G on n vertices and m > n edges upon which we want
to solve triangle detection, we can apply the construction from
Lemma D.6 with 1 = ©(m¢/(17¢)) to get a A-approximate average-
linkage #HAC instance over a graph G’ with m’ = O(m¢/(1=9)n +
m) < O(m/ 1= m) = O(m'/(1=9)) and with A = m’®. We apply a
m’¢-approximate #HAC algorithm to solve triangle detection via
Lemma D.6 in O(m-u(m’,n’) +n-q(m’,n’) + p(m’,n’)) work (for
fully dynamic and decremental #HAC; the analysis for incremental
#HAC swaps the m factor with n? and hence only gives bounds on
dense graphs). Substituting in the bounds of the #HHAC algorithm
and substituting m’ = 0(m'/(1=9)) shows that we’ve solved tri-
angle detection in O(m!*9=2() 4 pm26-2()) work. Abboud and
Vassilevska Williams provide a lemma showing that such a fast tri-
angle detection algorithm gives an O(m!*9-9() work algorithm
for triangle detection [1]. O

Next, we move on to reductions from SubUnion. We finish the
proof of Lemma 6.4 by reducing partially dynamic SubUnion to
partially dynamic average-linkage HAC.

Figure 9: The figure illustrates the HAC instance constructed in Lemma D.7’s
reduction from SubUnion to complete-linkage HAC. For cleanliness, we do
not draw all the weight-1 edges from x to each u € U and from ¢ to each
X; € X.

CONTINUED PROOF OF LEMMA 6.4. If we want to reduce incre-
mental/decremental SubUnion to decremental/incremental average-
linkage HAC, the update strategy in the proof of Lemma 6.4 for
the fully dynamic case is invalid since we cannot add a weight-wy
edge and delete a weight-wy edge (or vice versa).

Instead, we construct the same HAC instance as in the fully
dynamic case except that we make y have edges to every X; €
X rather than only X; € S. When processing updates, we skip
modifying edges incident on y and only add or remove the edges
incident on x. Then we need to increase £y so that Cyx and Cy do
not merge with each other too early; we increase the constants as
follows:

b = 2X|wy/(A+1) = OP|UPIX| + P|UIIX[* + A%|X ),
wx = Al + [ X[)wy + 1.
The weight wy is chosen to be so large that all of the weight-wy

edges merge before any weight-wy, edge. After the weight-wy edges
merge, the similarity between Cx and Cy is bounded above by

X\ S[(wy +|CyNnUIL)  [X[(wy+|CyNUIL)

<
|Cx[|Cyl L |Cyl
X|w X||C, NU|L X|w X|L 2| X |w
_ Ky XICyNUIL Xy | XIL_ 2wy
[x|cy| [xlcy| Oy Oy Oy

where the numerator of the first term comes from having a weight-
wy edge from Cy, to each X; in Cy and from potentially having a
weight-L edge from every X; € Cx to every u € U contained in Cy,.
Comparing Equation (1) to this upper bound, we find that all of the
weight-L edges incident on u € U covered by S merge before Cy
and Cy merge. Regardless of whether or not Cx and Cy merge, it is
still true that t either merges with an uncovered u € U if it exists
or merges with s, and hence queries return the correct answer. O

Finally, we give reductions from SubUnion to complete-linkage
HAC, weighted-average-linkage HAC, and average-linkage #HAC.

Lemma D.7 (Part of Theorem 6.2). Let A € [1, poly(n)]. Suppose
we can solve dynamic / incremental / decremental A-approximate
complete-linkage HAC with p(m, n) preprocessing work, u(m, n) up-
date work, and q(m,n) query work. Then we can solve dynamic /
decremental / incremental SubUnion with with p(m’,n") process-
ing work, u(m’,n") update work, and q(m’,n’") query work where
m’ = O(%;|Xi]) andn” = O(|U| + IX]).



Figure 10: The figure illustrates the HAC instance constructed in Lemma D.8’s
reduction from SubUnion to weighted-average-linkage HAC. In this example,
the number of leaves (gray vertices) ¢ per star is 2. Many weight-1 edges (the
thinly drawn edges) from leaves to other vertices are omitted for cleanliness.

PROOF. Suppose we are given a SubUnion instance (X, U) with
subset S C X. Define A’ = A + 1 and set the clustering threshold to
be 6 =X

Preprocessing: Figure 9 illustrates the graph we will construct.
Given a SubUnion instance (X, U) with subset S C X, create a graph
with a vertex representing each X; € X, a vertex representing each
u € U,and a weight—/l’3 edge {Xj,u} for each u € X; for each
X; € X. Add three extra vertices x, s, and t. Add a weight-1 edge
{x,u} for each u € U. Add a weight-1"* edge {x,X;} for each
X; € X\ S. Add a weight-A’ edge {s, t}. Add a weight-1 edge {s, u}
and a weight-1"2 edge {t,u} for each u € U. Add a weight-1 edge
{t, X;} for each X; € X. The resulting graph G has n = O(|X| +|U|)
vertices and m = O(2};|X;|) edges. Initialize dynamic HAC on G
with 6 = .

Update: To simulate adding X; into S in the SubUnion instance,
delete edge x, X; in G. To remove X; from S, insert the weight—/l’4
edge {x, X;}.

Query: Query if vertices s and t are in the same cluster if we clus-
ter up to similarity 6. If yes, then return that S covers U, otherwise
return that S does not cover U.

Correctness: All the weight-1"* merge first, putting x and all
X; € X\S in the same cluster. Then all edges incident on this cluster
have weight-1, so they don’t participate in any more merges when
clustering with threshold 6. Then the weight-1"* edges incident
on X; € S merge, causing the subgraph induced by taking X; € S
and all u € U to merge into its connected components. Connected
components containing some X; will have a weight-1 edge to t,
whereas the other connected components consisting of a singleton
u € U will have a weight 1’2 edge with t.

Consider the case where S covers U. In this case, all edges from
t to some u € U have weight 1, and the next edge to merge is the
weight-A" between s and t. Hence s and ¢ are in the same cluster,
and a query will return the correct answer. In the case where S does
not cover U, the next edge to merge is a weight-1"? edge between ¢
and some u € U. After that, ’s cluster has a weight-1 edge with s,
so t does not merge with s when clustering until threshold 6. Hence
a query will return the correct answer in this case too. O

Lemma D.8 (Part of Theorem 6.2). Let A € [1, poly(n)]. Suppose
we can solve dynamic / incremental / decremental A-approximate

weighted-average-linkage HAC with p(m, n) preprocessing work, u(m, n)

Tom Tseng, Laxman Dhulipala, and Julian Shun

update work, and q(m, n) query work. Then we can solve dynamic
/ decremental / incremental SubUnion with with p(m’,n") process-
ing work, u(m’,n’) update work, and q(m’,n’) query work where
m’ = O0(|U|log A+ X;|1Xi|) andn’ = O(|U| + |X| + log A).

PROOF. Suppose we are given a SubUnion instance (X, U) with
subset S C X. Define A’ = 1+ 1, define £ = [log(ZA”)], and fix the
clustering threshold to be 6 = 2.

Preprocessing: Figure 10 illustrates the graph we will construct.
Create a graph G with a vertex representing each X; € X, a vertex
representing each u € U, and a weight-21"7 edge {X;, u} for each
u € X; for each X; € X. Add extra vertices s and t. Add a weight-21
edge {s,t},and add a weight—2).’4 edge {t,u} for each u € U. We’ll
want to construct this graph so that s and t end up in the same
cluster when clustering until threshold 8 = 21 if and only if S covers
U.

We’ll add three star graphs to G with centers x, y, and z, each
with ¢ leaves. The purpose of the star centered on x is to merge
with X; € X \ S and stop them from merging from with anything
else. The purpose of star z is that in the case where S does not cover
U, t will merge with some uncovered u € U, then merge with z,
and finally the star will stop ¢ from merging with s. The purpose of
star y is to lower the weight from u to ¢t for all u € U covered by S
so that if S covers u, then ¢ will not merge with z.

For the star graph with center x and leaves x1, . . ., x,, make the
edge from x to x; have weight 21’8 for each x;. Connect x to X; for
each X; € X \ S with weight 219 For each leaf x;, connect x; to
y with weight 1, and connect x; to u € U with weight 1 for each
u € U. For the star graph with center y and leaves yy, . .., yp, make
the edge from y to y; have weight 21”> for each y;. Connect y to
X; for each X; € X with weight 2A°. For each leaf y;, add edges
{yi, t} and {y;, z} with weight 1. For star graph with center z and
leaves z1, . . ., zp, make the edge from z to z; have weight 212 for
each z;, and connect each z; to s with weight 1. Connect z to u for
each u € U with weight 2173

Update and query: Like in Lemma D.7, simulate adding or re-
moving X; in S by deleting or adding the weight-21"° weight edge
{x,Xj} in G. Answer queries about whether S covers U by return-
ing whether s and t are in the same cluster if we run HAC until
similarity 6.

Correctness: Consider what happens when we run HAC up to
similarity threshold @ = 2. First, the weight-21"° edges merge so
that each X; € X \ S is in a cluster with x. Then the weight-21"3
edges merge the leaves of x’s star with x so that the cluster’s remain-
ing incident edges fall below weight 2 (using the same inductive
rationale as in the proof of Lemma 6.3). Hence each X; € X \ S
no longer participates in any more merges. Then the weight-24"7
edges incident on X; € S merge, causing the subgraph induced by
taking X; € Sand all u € U to merge into its connected components.
Each connected component containing an X; then merges with y
via its weight-24’® edge. The weight-21"> edges merge the leaves
of y’s star with y so that other edges incident on those connected
components fall below 2 and don’t participate in any more merges.

In the case where S covers U, the weight-21% edges merge, and
then the weight-21 edge merges, placing s and ¢ in the same cluster.
Hence a query will return the correct answer. In the case where
S does not cover U, t merges with each uncovered u € U via the



Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

reduction from SubUnion to average-linkage #HAC. For cleanliness, we re-
duce the number of leaves (gray vertices) displayed attached to vertex x.

weight-2A"4 edges, then merges with z via a weight-21"3 edge. The
weight-21"? edges merge the leaves of z’s star with z, decreasing
the weight between t and s to below 2. Hence t and s do not merge,
and a query again returns the correct answer. O

Lemma D.9 (Part of Theorem 6.2). Let A € [1, poly(n)]. Suppose we
can solve dynamic A-approximate average-linkage #HAC in p(m, n)
preprocessing work, u(m, n) update work, and q(m,n) query work.
Then we can solve dynamic SubUnion with with p(m’,n”) processing
work, u(m’, n’") update work, and q(m’, n") query work wherem’ and
n’ are O(A(|X| + |[UD|X])).

If we can solve incremental / decremental A-approximate average-
linkage #HAC, then then the bounds hold for solve decremental /
incremental SubUnion with m’ and n’ being O(A%(|X| + |U])|X|?).

PRrOOF. Suppose we are given a SubUnion instance (X, U) with
subset S C X. We start by describing the case where we have a
fully dynamic algorithm rather than a partially dynamic algorithm.
Define the following constants:

0 =1/(1X]+ U,
wy = AIX| +1= 0(AX]),
& = AX|/0 = O(A(IX] + |UDIX]),
wx = A(be + |X|) + 1 = O(A*(IX] + [U])|X]).

Preprocessing: Figure 11 illustrates the graph we will construct.
Create a graph G with a vertex representing each X; € X, a vertex
representing each u € U, and a weight-1 edge {Xj,u} for each
u € X; for each X; € X. Add an extra vertex y, and add a weight-w,
edge from y to X; for each X; € S. Add a star graph with center
x and ¢ leaves connected to the center with weight wy. Add a
weight-wy edge from x to X; for each X; € X \ S. This graph has
O(#y) vertices and edges. Initialize #HAC on this graph.

Update: Simulate adding X; to S by adding a weight-w, edge
from X; to y and removing the weight-w, from Xj to x. Similarly,
simulate removing X; from S by removing edge {X;, y} and adding
edge {X;, x}.

Query: Query whether there are exactly two clusters when per-
forming HAC up to threshold 6. If yes, then return that S covers U,
otherwise return that S does not cover U.

Correctness: The weights wy and wy are chosen to be large
enough that all the edges of weight wy and w; merge before any
weight-1 edge. Let Cx denote x’s cluster (containing X \ S) and
Cy denote y’s cluster (containing S). From this point onwards, the

similarity between Cx to another cluster C is always at most
IX\slicnul _ IX\sl_Ix] _ @

ICellCl 7 G e A
so Cx experiences no more merges. On the other hand, consider C ys
which has edges connecting it to every u € U covered by S. Each
u € U is a singleton cluster until it merges with Cy. The similarity
between Cy, and some u € U covered by S and not yet merged with

Cy is always at least

l -_—
IX]+ U]
so every u € U covered by S merges with Cy, when clustering until
threshold 6.

After all the merges, in the case where S covers U, we return
the correct answer to a query since the only two clusters are Cx
and Cy. Otherwise, if S does not cover U, then there will be more
than two clusters since each uncovered u € U will be in a singleton
cluster. Hence we answer queries correctly in both cases.

Partially dynamic: The update strategy is invalid if we want to re-
duce incremental/decremental SubUnion to decremental/incremental
#HAC. Instead, construct the graph so that y has edges to every
X; € X rather than only X; € S. When processing updates, we skip
modifying edges incident on y and only add or remove the edges
incident on x. Then we need to increase #x so that Cx and Cy do
not merge with each other; we adjust the constants as follows:

b = 2A1X|wy /0 = 02 (IX| + [UDIX ),
wy = Al + [Xwy + 1= 0 (IX] + [UDIXP).

>

The weight wy is chosen to be so large that all the weight-wy
edges merge before the weight-w, edges. The last change in the
correctness analysis to make sure that Cy and Cx never merge from
this point onwards. The weight between Cx and Cy is bounded
above by

X\ S|(wy +Cy N U |X](wy +Cy N U

<
ICxlICy] 4|Cyl
_ [X|wy |X[|Cy N U |X|wy+@< 2|X|wy:§
[x|cy| fx|cy| Ox Ox Ox r
so indeed Cy and Cy do not merge. O

Existing lower bounds conditional on SETH for SubUnion apply
directly to complete-linkage HAC and weighted-average-linkage
HAC, whereas to turn Lemma D.9 into the lower bounds in Theo-
rem 6.2, we apply Lemma 6.5.



	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Parallel decremental MSF
	4.1 Background
	4.2 Finding light replacement edges
	4.3 Parallel batch-decremental MSF

	5 Parallel fully dynamic MSF
	5.1 Background
	5.2 Parallel batch-dynamic MSF
	5.3 Example

	6 Dynamic graph HAC lower bounds
	6.1 Background: other dynamic lower bounds
	6.2 Statement of HAC lower bounds
	6.3 Proof of bounds

	7 Conclusion
	Acknowledgments
	References
	A Relative quantile summaries
	A.1 Description
	A.2 Parallel algorithms

	B Tighter batch-decremental MSF work bound
	C Dynamic HAC dendrogram counterexamples
	C.1 Single linkage
	C.2 Complete and weighted average linkage
	C.3 Average linkage

	D HAC lower bounds

