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Abstract
Hierarchical agglomerative clustering (HAC) is a popular algorithm

for clustering data, but despite its importance, no dynamic algo-

rithms for HAC with good theoretical guarantees exist. In this

paper, we study dynamic HAC on edge-weighted graphs. As single-

linkage HAC reduces to computing a minimum spanning forest

(MSF), our first result is a parallel batch-dynamic algorithm for

maintaining MSFs. On a batch of 𝑘 edge insertions or deletions,

our batch-dynamic MSF algorithm runs in 𝑂 (𝑘 log6 𝑛) expected
amortized work and 𝑂 (log4 𝑛) span with high probability. It is the

first fully dynamic MSF algorithm handling batches of edge updates

with polylogarithmic work per update and polylogarithmic span.

Using our MSF algorithm, we obtain a parallel batch-dynamic al-

gorithm that can answer queries about single-linkage graph HAC

clusters.

Our second result is that dynamic graph HAC is significantly

harder for other common linkage functions. For example, assum-

ing the strong exponential time hypothesis, dynamic graph HAC

requires Ω(𝑛1−𝑜 (1) ) work per update or query on a graph with 𝑛

vertices for complete linkage, weighted average linkage, and aver-

age linkage. For complete linkage and weighted average linkage,

the bound still holds even for incremental or decremental algo-

rithms and even if we allow poly(𝑛)-approximation. For average

linkage, the bound weakens to Ω(𝑛1/2−𝑜 (1) ) for incremental and

decremental algorithms, and the bounds still hold when allowing

𝑛𝑜 (1) -approximation.

1 Introduction
Clustering is a fundamental technique in data mining and unsuper-

vised learning that organizes data into meaningful groups. In this

paper, we study hierarchical agglomerative clustering (HAC) algo-

rithms. HAC constructs a hierarchy of clusters over a set of points

by starting with each point in a separate cluster and merging the

two most similar clusters until all points are merged. The similarity

between clusters is specified by a linkage function. Popular linkage
functions include single linkage, complete linkage, average linkage,

and weighted average linkage, with average linkage perhaps being

the most widely used. Several popular clustering algorithms are

based on single linkage as well [8, 30]. HAC on 𝑛 points can be

solved in cubic work in general, and several common linkage func-

tions require only quadratic work [9]. Quadratic work is optimal

in the sense that if the input is an 𝑛 × 𝑛 similarity matrix for the 𝑛

points, then all matrix entries need to be read to compute HAC.

Because the similarity matrix has lots of negligible entries in

many scenarios, Dhulipala et al. [20] recently studied graph-based
∗
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HAC (graph HAC) as opposed to the traditional point-based HAC. In
graph HAC, not all similarities between points need to be specified.

Instead, the input is a graph with edges weighted by the similarity

between their endpoints. Dhulipala et al. develop exact and approx-

imate algorithms for graph HAC with subquadratic work on sparse

graphs and empirically showed that the resulting clusters are of

similar quality to those of point-based HAC.

Modern data sets are large and are often rapidly changing, and

so a natural question is whether we can compute HAC over a

dynamic data set. Even with subquadratic work, it is inefficient to

statically re-compute HAC on every update of a large, dynamically

changing graph. Little research has been done on dynamic HAC.

GraphHAC seemsmore likely to yield fast dynamic algorithms than

point-based HAC—a graph update can be as granular as updating a

similarity between one pair of vertices, whereas updating points in

point-based HAC incurs Ω(𝑛) changes in the similarity matrix. As

such, this paper aims to study whether graph HAC allows efficient

dynamic algorithms under edge insertions and deletions.

The canonical output for HAC is a dendrogram showing the

hierarchical clustering, but there are graphs for which one edge

update can completely change the structure of the dendrogram.

It therefore seems that a dynamic HAC algorithm that explicitly

maintains a dendrogram will have poor worst-case update time.

We hence examine dynamic graph HAC algorithms with more

restricted query outputs, e.g., queries of the form “are query vertices

𝑠 and 𝑡 in the same cluster if we agglomeratively cluster until all

similarities are below query threshold 𝜃 .”

With this form of query, single-linkage graph HAC indeed ad-

mits efficient dynamic algorithms. As single-linkage HAC reduces

to computing a minimum spanning forest (MSF) [26], we can solve

dynamic single-linkage HAC by first applying a dynamic MSF al-

gorithm. The state-of-the-art dynamic sequential MSF algorithm

achieves 𝑂 (log4 𝑛/log log𝑛) amortized work per edge update to

maintain an MSF [34]. Then, storing the MSF in a dynamic trees

data structure [50] allows us to answer the queries in logarithmic

work. To support a high velocity of updates, however, we may

want a batch-dynamic algorithm that can batch together updates

and exploit parallelism across a batch. Though there are efficient

parallel batch-dynamic algorithms for connectivity and incremen-

tal MSF [2, 7], no such algorithm has been developed for general

dynamic MSF.

This discussion raises two questions: (1) Can we develop a paral-

lel batch-dynamic MSF algorithm, hence giving an parallel batch-

dynamic algorithm for single-linkage graph HAC? (2) Do other

linkage functions also admit dynamic algorithms with polyloga-

rithmic work per update?
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Problem

Work lower bounds

Preprocess Update Query Conjecture

HAC (complete or

weighted average)

poly(𝑛) 𝑛1−𝜀 𝑛1−𝜀
SETH

𝑚1+𝛿−𝜀 𝑚𝛿−𝜀 𝑚2𝛿−𝜀
Triangle

𝑚4/3−𝜀 𝑚𝛼−𝜀 𝑚2/3−𝛼−𝜀
3SUM

poly(𝑛) 𝑚1/2−𝜀 𝑚1−𝜀
OMv

#HAC (complete or

weighted average)

poly(𝑛) 𝑛1−𝜀 𝑛1−𝜀
SETH

𝑚1+𝛿−𝜀 𝑚𝛿−𝜀 𝑚2𝛿−𝜀
Triangle

poly(𝑛) 𝑚1/2−𝜀 𝑚1−𝜀
OMv

HAC (average)

poly(𝑛) 𝑛1−5𝑐−𝜀 𝑛1−5𝑐−𝜀
SETH

poly(𝑛) 𝑛 (1−𝑐 )/6−𝜀 𝑛 (1−𝑐 )/3−𝜀 OMv

Dec/Inc HAC

(average)

poly(𝑛) 𝑛 (1−8𝑐 )/2−𝜀 𝑛 (1−8𝑐 )/2−𝜀 SETH

#HAC (average)

poly(𝑛) 𝑛1−𝑐−𝜀 𝑛1−𝑐−𝜀
SETH

𝑚 (1+𝛿 ) (1−𝑐 )−𝜀 𝑚𝛿 (1−𝑐 )−𝜀 𝑚2𝛿 (1−𝑐 )−𝜀
Triangle

poly(𝑛) 𝑚 (1−𝑐 )/2−𝜀 𝑚1−𝑐−𝜀
OMv

Dec/Inc #HAC

(average)

poly(𝑛) 𝑛1−2𝑐−𝜀 𝑛1−2𝑐−𝜀
SETH

Table 1: The table states asymptotic work bounds for dynamic graph HAC
such that the listed conjecture (defined in Section 6.1) would be falsified. For
problems listed as “HAC”, queries answer whether two query vertices are in
the same cluster after agglomeratively clustering up to a query similarity
threshold, and in “#HAC”, queries (given a query similarity threshold) an-
swer with the number of clusters. The bounds allow 𝑂 (𝑛𝑐 )-approximation
for a constant 𝑐 ≥ 0. In the table, 𝜀 > 0 is an arbitrarily small constant,
𝛼 ∈ [1/6, 1/3], and 𝛿 > 0 is some constant for which triangle detection takes
Ω (𝑚1+𝛿−𝑜 (1) ) work. The same bounds also hold for partially dynamic algo-
rithms except for the average-linkage bounds based on SETH; we list SETH-
based partially dynamic average-linkage bounds separately as “Dec/Inc.” The
bounds are amortized for fully dynamic algorithms and worst-case for par-
tially dynamic algorithms.

In this paper, we give a parallel batch-dynamic MSF algorithm

achieving𝑂 (𝑘 log6 𝑛) expected amortized work and𝑂 (log3 𝑛 log𝑘)
span with high probability (w.h.p.)

1
for a batch of 𝑘 edge insertions

or 𝑘 edge deletions. Moreover, our MSF result is of independent

interest outside the context of clustering. Prior to our algorithm,

there was not even a batch-decremental MSF algorithm with poly-

logarithmic span achieving 𝑂 (𝑘𝑛) work on edge deletions.

We first give a parallel batch-decremental MSF algorithm achiev-

ing𝑂 (log4 𝑛) expected amortizedwork per edge and𝑂 (log3 𝑛 log𝑘)
span w.h.p. per batch. A key challenge in parallelizing the decre-

mental MSF algorithm is fetching the 𝑘 lightest edges incident to

a connected component in low span. We solve this approximately

by augmenting an internal data structure with quantile summaries.

Then, we parallelize Holm et al.’s reduction of fully dynamic MSF to

decremental MSF [33] to obtain our batch-dynamic MSF algorithm.

On the other hand, even under our restricted query model for

dynamic HAC, we show polynomial conditional lower bounds on

the work of dynamic graph HAC for complete linkage, weighted av-

erage linkage, and average linkage, even with 𝑛𝑜 (1) -approximation

and even when restricted to incremental or decremental algorithms.

Table 1 summarizes our lower bounds. Our bounds build on past

work showing that several dynamic problems have lower bounds

conditional on conjectures like the strong exponential time hypoth-

esis (SETH) [13] via reductions [1, 31].

Our contributions are summarized as follows:

• We parallelize a relative-error quantile summary data struc-

ture (see Appendix A.2) and use it to solve parallel batch-

decremental MSF in 𝑂 (log3 𝑛 log𝑘) span w.h.p. per batch

of 𝑘 edge deletions and 𝑂 (log3 𝑛 log(1 + 𝑛/Δ)) ≤ 𝑂 (log4 𝑛)
1
We say that an event occurs with high probability (w.h.p.) if it occurs with probability

at least 1− 1/𝑛𝑐 for any 𝑐 ≥ 1, where constants inside asymptotic bounds can depend

on poly(𝑐) .

expected amortized work per edge where Δ is the average

batch size across deletion operations (Section 4).

• Weuse batch-decrementalMSF to solve parallel batch-dynamic

MSF (and hence also parallel batch-dynamic single-linkage

graph HAC) in 𝑂 (𝑘 log6 𝑛) expected amortized work and

𝑂 (log3 𝑛 log𝑘) span w.h.p. on a batch of 𝑘 edge insertions

or edge deletions (Section 5). These are the first decremental

and fully dynamic MSF algorithms achieving polylogarith-

mic work per update and polylogarithmic span per batch.

• We prove polynomial conditional work lower bounds for

dynamic and partially dynamic graph HAC with complete

linkage, weighted average linkage, and average linkage (Sec-

tion 6). For example, assuming the SETH, dynamic HAC

takes Ω(𝑛1−𝑜 (1) ) per update or query for all of these linkage
functions, even with 𝑛𝑜 (1) -approximation.

2 Related work
Graph HAC. We use the definition of graph HAC by Dhulipala et

al., who give algorithms solving static graph HAC on𝑚 edges and 𝑛

vertices in𝑂 (𝑚 log𝑛) expected work for weighted-average-linkage
HAC, 𝑂̃ (𝑛

√
𝑚) work for average-linkage HAC, and 𝑂 (𝑚 log

2 𝑛)
work for approximate average-linkage HAC [20]. Older papers have

also studied graph HAC but with weaker theoretical guarantees [22,

37]. Another line of work has developed the theoretical foundations

of HAC by studying the objective function that it optimizes [16, 18,

44].

Dynamic HAC. There is no prior work on dynamic HAC with

good approximation or running time guarantees. Menon et al. give

an online approximate algorithm for point-based dynamicHAC [41].

Their algorithm does not have rigorous bounds on approximation

quality or worst-case running time. Other online clustering algo-

rithms like Perch [38] and Grinch [43] neither compute the same

output as HAC nor approximate HAC in a provably efficient way.

HAC lower bounds. Point-based HAC in Euclidean space is at

least as hard as finding the closest pair of points. Karthik and

Manurangsi show that, assuming the SETH, closest-pair in di-

mension 𝜔 (polylog(𝑛)) requires Ω(𝑛2−𝑜 (1) ) work, and (1 + 𝑜 (1))-
approximate closest-pair in dimension𝜔 (log𝑛) requiresΩ(𝑛1.5−𝑜 (1)) )
work. These lower bounds do not apply to graph HAC.

DynamicMSF. In this paper, we focus on edge insertions and dele-
tions. For sequential dynamic MSF, Holm et al. give an algorithm

with 𝑂 (log4 𝑛) amortized work per edge update, which was later

improved to𝑂 (log4 𝑛/log log𝑛) amortized work per update [33, 34].

The best worst-case bound is 𝑂 (𝑛𝑜 (1) ) work per update [15, 45].

For parallel batched edge updates, Anderson et al. give an incre-

mental MSF algorithm that handles 𝑘 edge insertions in𝑂 (𝑘 log(1+
𝑛/𝑘)) expected work and 𝑂 (log2 𝑛) span w.h.p. [7]. Other existing

algorithms are deterministic but have much higher work bounds.

Pawagi and Kaiser give an algorithm handling insertions in 𝑂 (𝑘𝑛)
work and𝑂 (log𝑛 log𝑘) span and deletions in𝑂 (𝑛2 (1+log2 𝑘/log𝑛))
work and 𝑂 (log𝑛 + log

2 𝑘) span [47]. Shen and Liang give an

algorithm handling insertions and deletions in 𝑂 (𝑛2) work and

𝑂 (log𝑛 log𝑘) span [49]. Ferragina and Luccio give an algorithm

handling insertions in𝑂 (𝑛 log log log𝑛 log(𝑚/𝑛))work and𝑂 (log𝑛)
span and 𝑘 = 𝑂 (𝑛) deletions in 𝑂 (𝑘𝑛 log log log𝑛 log(𝑚/𝑛)) work
and 𝑂 (log𝑛 log(𝑚/𝑛)) span [21].
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For parallel single edge updates, Kopelowitz et al. give an al-

gorithm running in 𝑂 (
√
𝑛 log𝑛) work and 𝑂 (log𝑛) span per up-

date [39]. There are also many algorithms for the harder problem

of dynamic vertex updates, all of which cost Ω(𝑛) work per update.

We refer the reader to Das and Ferragina’s survey for an overview

of algorithms for vertex updates as well as for edge updates [17].

3 Preliminaries
Graph HAC. We denote a graph by 𝐺 = (𝑉 , 𝐸). Graphs are undi-

rected and simple unless noted otherwise. For weighted graphs, we

denote a weight or similarity of an edge {𝑥,𝑦} either by writing

𝑤 (𝑥,𝑦) where𝑤 : 𝐸 → R is a weight function or by placing weight

𝑤 ∈ R in a tuple ({𝑢, 𝑣},𝑤). We often denote 𝑛 = |𝑉 | and𝑚 = |𝐸 |.
In our asymptotic bounds, we assume𝑚 = Ω(𝑛). We denote the

neighbors of 𝑣 ∈ 𝑉 as 𝑁 (𝑣). We write Cut(𝑋,𝑌 ) to denote the set
of edges between two sets of vertices 𝑋 and 𝑌 .

In graph HAC, we are given a weighted undirected graph and a

linkage function specifying the similarities between clusters. Each

vertex starts in its own cluster, and we compute a hierarchical

clustering by repeatedly merging the two most similar clusters, i.e.,

the clusters connected by the highest-weight edge.

In single linkage, the similarityW(𝑋,𝑌 ) between two clusters

𝑋 and 𝑌 is the maximum similarity between two vertices in 𝑋 and

𝑌 , i.e., max(𝑥,𝑦) ∈Cut(𝑋,𝑌 ) 𝑤 (𝑥,𝑦), whereas complete linkage takes
the minimum similarity. In average linkage (which still applies to

weighted graphs), the similarity is

∑
(𝑥,𝑦) ∈Cut(𝑋,𝑌 ) 𝑤 (𝑥,𝑦)/(|𝑋 | |𝑌 |).

In weighted average linkage, if a cluster 𝑍 is formed by merging

clusters 𝑋 and 𝑌 , then the similarity between 𝑍 and an adjacent

cluster 𝑈 is (W(𝑋,𝑈 ) + W(𝑌,𝑈 ))/2 if edges (𝑋,𝑈 ) and (𝑌,𝑈 )
both exist and is otherwise the weight of the existing edge.

Parallel model. We use the work-span model with arbitrary fork-

ing, a closely related model to the classic CRCW PRAM model [10,

36]. Running time bounds are in terms of work and span (depth).

The work of an algorithm is the total number of instructions, and

the span is the length of the longest chain of sequentially dependent

instructions. We assume that concurrent reads and writes are sup-

ported in𝑂 (1) work and span. Procedures can fork other procedure

calls to run in parallel and can wait for forked calls to finish.

Parallel primitives. We use several existing parallel primitives in

our algorithms. Unordered sets can be stored in parallel dictionaries

using linear space and handling batch insertions or deletions of

𝑘 elements in 𝑂 (𝑘) work and 𝑂 (log∗ 𝑘) span w.h.p. [25]. Lookup

costs 𝑂 (1) work w.h.p. Ordered sets can be stored in search trees

called P-trees [12, 51]. Finding an element by rank or splitting a P-

tree of 𝑛 elements takes𝑂 (log𝑛) work [52]. Inserting or deleting 𝑘

elements takes𝑂 (𝑘 log(1+𝑛/𝑘)) work and𝑂 (log𝑛 log𝑘) span [51].

A semisort, taking an array of𝑛 keyed elements and reordering them

so that elements with equal keys are contiguous, can be computed

in 𝑂 (𝑛) expected work and 𝑂 (log𝑛) span w.h.p. [29]. A minimum
spanning forest (MSF) is a spanning forest of minimum weight. An

MSF on 𝑛 vertices and𝑚 edges can be statically computed in 𝑂 (𝑚)
expected work and 𝑂 (log𝑛) span w.h.p. [48].

4 Parallel decremental MSF
This section will show how to perform parallel batch-decremental

MSF (supporting batches of edge deletions), and Section 5 will

show how to perform parallel batch-dynamic MSF. We accomplish

this by parallelizing the sequential dynamic MSF algorithm by

Holm, De Lichtenberg, and Thorup (HDT) that runs in 𝑂 (log4 𝑛)
amortized work per update [33]. Their MSF algorithm has three

steps: first, they give an algorithm for dynamic connectivity; second,

they modify that algorithm into an algorithm for decremental MSF

(parallelized in this section); and third, they use decremental MSF

to create a fully dynamic MSF algorithm (parallelized in Section 5).

Without loss of generality, when discussing MSF, we assume edge

weights are unique by breaking ties using lexicographic ordering

over edges’ endpoints.

The relevance of dynamic MSF to dynamic graph HAC is that

single-linkage graph HAC can be solved with Kruskal’s algorithm

for computing a MSF after negating all edge weights [26]. A com-

plication is that although the canonical output for HAC is a dendro-

gram, explicitly representing the dendrogram is too expensive for

dynamic HAC since an edge update can drastically change the den-

drogram’s structure (see Appendix C.1 for examples). Instead, we

implicitly represent the dendrogram by dynamically maintaining

the MSF for the clustering. We can then extract information about

the single-linkage clustering from the MSF. For instance, suppose

that we want to answer the following “group-by-cluster” query, a

generalization of the type of query discussed in Section 1: given

a query set of 𝑘 vertices 𝐾 ⊆ 𝑉 , we want to partition 𝐾 by the

cluster that each vertex would be in if agglomerative clustering

were run until all similarities fell below a query similarity threshold

𝜃 . We can answer such queries in𝑂 (𝑘 log(1 + 𝑛/𝑘)) expected work

and 𝑂 (log𝑛) span w.h.p. by storing the MSF in a rake-compress

(RC) tree, computing a compressed path tree 𝑃 on the MSF relative

to 𝐾 (Section 5.1 describes RC trees and compressed path trees),

removing all edges with similarities below 𝜃 from 𝑃 , and computing

connected components on 𝑃 .

4.1 Background
We first discuss existing algorithms and data structures that our

work builds upon.

Euler tour trees. Euler tour trees (ETTs) are a data structure for
dynamic forests supporting edge insertion, edge deletion, and con-

nectivity queries in 𝑂 (log𝑛) deterministic work [32, 42]. Tseng et

al. introduce a parallel batch-dynamic ETT that internally repre-

sents each tree in in the forest as a circular skip list containing

the tree’s vertices and edges [53]. The ETT can be augmented by

a combining function 𝑓 : 𝐷 × 𝐷 → 𝐷 , with 𝐷 being an arbitrary

domain. After assigning values from 𝐷 to vertices and edges, we

can maintain the sum of 𝑓 over each tree (i.e., each connected com-

ponent) in the forest by having each skip list node store the sum of

𝑓 over a contiguous subsequence of the sequence represented by

the node’s skip list. Given an augmentation function 𝑓 that takes

𝑂 (𝑊 ) work and 𝑂 (𝑆) span to compute, a batch of 𝑘 insertions, 𝑘

deletions, or 𝑘 updates to assigned values for the augmentation

takes𝑂 (𝑊𝑘 log(1+𝑛/𝑘)) expected work and𝑂 (𝑆 log𝑛) span w.h.p.

on an 𝑛-vertex forest. The randomness in the bounds holds against

oblivious adversaries who cannot see heights of skip list elements.

Sequential dynamic connectivity. The HDT connectivity algo-

rithmmaintains a graph𝐺 of 𝑛 vertices and supports edge insertion,

edge deletion, and connectivity queries. The algorithm maintains

log𝑛 levels. Each edge is assigned a level, and the algorithm main-

tains subgraphs𝐺1 ⊆ 𝐺2 ⊆ . . . ⊆ 𝐺log𝑛 = 𝐺 , where𝐺𝑖 contains all
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edges of level at least 𝑖 and has the invariant that each connected

component has size at most 2
𝑖
. The algorithm also maintains span-

ning forests 𝐹1 ⊆ 𝐹2 ⊆ . . . ⊆ 𝐹log𝑛 , where 𝐹𝑖 is a spanning forest of
𝐺𝑖 . Connectivity queries are answered in 𝑂 (log𝑛) work by storing

𝐹
log𝑛 in an ETT and querying the ETT. An edge insertion is handled

by assigning the edge to level log𝑛 and inserting it into 𝐹
log𝑛 if the

edge’s endpoints are not connected by a path.

A deletion of an edge 𝑒 of level ℓ is handled by deleting it from

𝐺𝑖 for all 𝑖 ≥ ℓ . If 𝑒 is not in 𝐹log𝑛 , then we are done. Otherwise, the

deletion of 𝑒 splits a connected component in 𝐹
log𝑛 in two, and we

must search for a replacement edge reconnecting the two compo-

nents. We delete 𝑒 from 𝐹𝑖 for 𝑖 ≥ ℓ and conduct our search starting

on level ℓ . We look at the smaller of the two connected components

formed in 𝐹𝑖 by the deletion of 𝑒 . This connected component has

size at most 2
𝑖−1

, and so pushing this entire component to level

𝑖 − 1 would not violate the size invariant. We push all level-𝑖 tree

edges in the component to level 𝑖 − 1. Then, we look at non-tree

edges incident to the component one-by-one. If the non-tree edge

reconnects the two components, then we have found a replacement

edge—we change that edge into a tree edge, and we are done. Oth-

erwise, we amortize the cost of looking at this non-replacement

edge by pushing it to level 𝑖 − 1. We repeatedly run this search on

increasing values of 𝑖 until a replacement edge is found.

If each 𝐹𝑖 is stored in an appropriately augmented ETT, then

insertions and deletions cost 𝑂 (log2 𝑛) amortized work since each

inserted edge can be pushed down at most log𝑛 levels and it costs

𝑂 (log𝑛) work to find and push an edge one level using the ETTs.

Parallel batch-dynamic connectivity. Acar et al. developed a par-

allel batch-dynamic version of the HDT algorithm [2]. We describe

the “non-interleaved” version of their algorithm because we will

modify it into a decremental MSF algorithm in Section 4.3. (The

interleaved version has a better span bound, but it seems harder to

adapt for decremental MSF.)

The main difference from the original HDT algorithm to discuss

is how the batch-parallel algorithm finds replacement edges after

deleting a batch of edges. The replacement search begins on the

minimum level among the deleted edges. When searching on a level

𝑖 , the algorithm proceeds in𝑂 (log𝑛) rounds. For every component

of size at most most 2
𝑖−1

, we search for a replacement edge out of

that component. To achieve low span, each component performs

a doubling search, looking at 2
𝑗
incident level-𝑖 non-tree edges

in parallel for increasing 𝑗 until finding a replacement edge. We

push non-replacement edges to the next level to amortize the cost

of examining them. We then compute a spanning tree over the

replacement edges, keeping only the replacement edges that are in

the spanning tree. We proceed to the next round on each “active”

component, i.e., each component that still has incident edges to

search and that still has size at most 2
𝑖−1

. After all the rounds, we

repeat at higher levels.

By storing each spanning forest in an ETT with appropriate

augmentations, the algorithm can process a batch of 𝑘 edge updates

in 𝑂 (𝑘 log2 𝑛) expected amortized work and 𝑂 (log4 𝑛) span w.h.p.

We note that the span bound can be tightened to 𝑂 (log3 𝑛 log𝑘).
The bound has a log𝑛 term from the 𝑂 (log𝑛) rounds per level, but
since 𝑘 deletions creates 𝑂 (𝑘) active components and the active

component count decreases geometrically each round, there are

only 𝑂 (log𝑘) rounds per level.
Sequential decremental MSF. The HDT decremental MSF algo-

rithm is initialized with a graph 𝐺 of 𝑛 vertices and maintains the

MSF of 𝐺 while supporting edge deletions. There are only two

changes to the algorithm compared to the sequential HDT connec-

tivity algorithm: we initialize 𝐹
log𝑛 to be the MSF over𝐺 , and when

we perform a replacement search out of a component, we find the

lightest replacement edge by looking at incident non-tree edges in

increasing weight. Deletions still cost 𝑂 (log2 𝑛) amortized work.

For correctness, the lightest replacement edge for a deleted edge

must have the minimum level among all possible replacement edges.

Holm et al. prove that the algorithm maintains a cycle invariant
implying correctness: in every cycle of 𝐺 , the maximum-weight

edge in the cycle is a non-tree edge and has maximum level in the

cycle. This invariant holds so long as whenever we push an incident

level-𝑖 non-tree edge 𝑒 of a component to level 𝑖−1, 𝑒 is lighter than
the lightest replacement edge out of the component and we have

already pushed all lighter level-𝑖 edges incident to this component.

Relative quantile summaries. Consider a set 𝑆 that is a subset

of a totally ordered universe 𝑈 . For an element 𝑦 ∈ 𝑈 , define the
rank of 𝑦 to be the number of elements in 𝑆 no greater than 𝑦:

rank(𝑦; 𝑆) = |{𝑥 ∈ 𝑆 | 𝑥 ≤ 𝑦}|. We omit the second argument of

rank(·; ·) when it is clear from context.

For 𝜀 ∈ (0, 1) and a set 𝑆 , an 𝜀-approximate relative quantile

summary 𝑄 is a compressed form of the set that can compute

queries of the following form: given a rank 𝑟 ∈ [1, |𝑆 |] such that

[𝑟 (1 − 𝜀), 𝑟 (1 + 𝜀)] contains an integer, return an element 𝑦 such

that rank(𝑦; 𝑆) ∈ [𝑟 (1−𝜀), 𝑟 (1+𝜀)]. For the remainder of this paper,

we use the deterministic, mergeable relative quantile summaries

described by Zhang and Wang [54]. Appendix A.1 re-derives the

construction of the summaries since Zhang andWang’s paper omits

several proofs of correctness.

Additionally, we show in Appendix A.2 that we can parallelize

operations on the quantile summaries, whichmay be of independent

interest. The following lemmas give the relevant operations and

bounds.

Lemma 4.1. Given a set 𝑆 , if we can look up elements of 𝑆 by rank in
𝑂 (𝑊 ) work, we can construct an 𝜀-approximate summary 𝑄 of size
|𝑄 | = 𝑂 (log(𝜀 |𝑆 |)/𝜀) in 𝑂 (𝑊 log(𝜀 |𝑆 |)/𝜀) work and 𝑂 (𝑊 ) span.
Lemma 4.2. Given an approximate summary𝑄 on set 𝑆 , we can an-
swer queries in𝑂 (log|𝑄 |) work and can obtain the minimum element
of 𝑆 in constant work.

Lemma 4.3. Given an integer 𝑏 > 0 and two 𝜀-approximate sum-
maries𝑄1 and𝑄2 on non-overlapping sets 𝑆1 and 𝑆2, we can create an
(𝜀 +1/𝑏)-approximate summary𝑄 over 𝑆1∪𝑆2 of size𝑂 (𝑏 log(𝑛/𝑏))
in 𝑂 ( |𝑄1 | + |𝑄2 |) work and 𝑂 (log( |𝑄1 | + |𝑄2 |)) span.

We letCombine(𝑄1, 𝑄2, 𝑏) denote the algorithm combining sum-

maries 𝑄1 and 𝑄2 with parameter 𝑏.

4.2 Finding light replacement edges
Like how the HDT decremental MSF algorithm comes from modi-

fying the HDT dynamic connectivity algorithm, we will obtain a

parallel batch-decremental MSF algorithm by modifying Acar et

al.’s batch-dynamic connectivity algorithm to search for batches of

light replacement edge candidates rather than arbitrary candidates.
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The primary challenge is searching for the lightest non-tree edges

incident on a component efficiently in parallel.

As in Acar et al’s connectivity algorithm, for each HDT level

ℓ ∈ [1, log𝑛], we store 𝐹ℓ in an augmented batch-dynamic ETT.

Using quantile summaries, we add an additional augmentation,

described in the proof of the following theorem, that allows fetching

the lightest non-tree edges incident on a component at the cost of

increasing the running time of edge insertions and deletions for

the ETTs. Section 4.2.1 walks through an example of the additional

augmentation.

Theorem 4.4. Let ℓ ∈ [1, log𝑛], and for each vertex 𝑣 ∈ 𝑉 , let 𝑁𝑣,ℓ

represent the level-ℓ non-tree edges incident to 𝑣 . Using 𝑂 (𝑛 log2 𝑛)
space w.h.p., we can support the following operations over 𝐹ℓ , with all
work bounds being in expectation and all span bounds being w.h.p.:

• inserting or deleting 𝑘 edges to 𝐹ℓ in 𝑂 (𝑘 log2 𝑛 log(1 + 𝑛/𝑘))
work and 𝑂 (log𝑛 log log𝑛) span,
• inserting or deleting𝑘 edges to

{
𝑁𝑣,ℓ

}
𝑣∈𝑉 in𝑂 (𝑘 log2 𝑛 log(1+

𝑛/𝑘)) work and 𝑂 (log𝑛(log log𝑛 + log𝑘)) span,
• obtaining the 𝑘 (1 ± 1/2) lightest edges in ⋃

𝑣∈𝐶 𝑁𝑣,ℓ of a con-
nected component 𝐶 of 𝐹ℓ in 𝑂 (𝑘 log𝑛) work and 𝑂 (log𝑛)
span.

Proof. We store 𝐹ℓ in batch-dynamic ETTs. We will augment

each ETT skip list node with a quantile summary 𝑄 and an integer

𝑡 ≥ 0, where 𝑄 summarizes the weights of non-tree edges incident

on the vertices in the node’s subsequence and 𝑡 indicates the error

𝑄 has accumulated from Combine(·, ·, ·) operations.
The augmented value for a vertex 𝑣 is given by constructing a

1/4-approximate quantile summary 𝑄 over 𝑁𝑣,ℓ and setting 𝑡 = 0.

Each vertex 𝑣 stores 𝑁𝑣,ℓ in an ordered set. A weight-𝑤 edge in

𝑁𝑣,ℓ to a neighbor 𝑢 is stored as a tuple (𝑤, 𝑣,𝑢), and ordering is

lexicographic. By Lemma 4.1, using a P-tree to represent the ordered

set, we can construct 𝑄 in 𝑂 (log2 𝑛) work and 𝑂 (log𝑛) span.
Define 𝑏 (𝑡) = 8(log𝑛 + 𝑡2/log𝑛) and define the ETT augmenta-

tion function 𝑓 as

𝑓 ((𝑄1, 𝑡1), (𝑄2, 𝑡2)) = (Combine(𝑄1, 𝑄2, 𝑏 (𝑡)), 𝑡)
where 𝑡 = max{𝑡1, 𝑡2} + 1.

For a skip list node in the ETT whose subsequence has vertices 𝑆 ,

its augmented value 𝑄 summarizes the weights of

⋃
𝑣∈𝑆 𝑁𝑣,ℓ , and

its 𝑡 is bounded by the longest search path length from that node to

a node representing some 𝑣 ∈ 𝑆 at the bottom level of the skip list.

Since the maximum path length in a skip list is𝑂 (log𝑛) w.h.p. [19],
we have 𝑡 = 𝑂 (log𝑛) and 𝑏 (𝑡) = 𝑂 (log𝑛) for every summary w.h.p.

By Lemma 4.3, the augmentation takes𝑂 (log2 𝑛) space per skip list
node and runs in 𝑂 (log2 𝑛) work and 𝑂 (log log𝑛) span, all w.h.p.

Recall that given an augmentation function that costs 𝑂 (𝑊 )
work and𝑂 (𝑆) span, a batch of𝑘 updates to an ETT takes𝑂 (𝑊𝑘 log(1+
𝑛/𝑘)) expected work and𝑂 (𝑆 log𝑛) span w.h.p. Therefore, with our
augmentation function, a batch of 𝑘 edge insertions or deletions to

𝐹ℓ takes𝑂 (𝑘 log2 𝑛 log(1+𝑛/𝑘)) expectedwork and𝑂 (log𝑛 log log𝑛)
span w.h.p. The cost of insertions or deletions to

{
𝑁𝑣,ℓ

}
𝑣∈𝑉 also

incurs the same cost in updating augmented values, but there is

the additional cost of having to actually update

{
𝑁𝑣,ℓ

}
𝑣∈𝑉 and to

rebuild the quantile summaries over

{
𝑁𝑣,ℓ

}
𝑣∈𝑉 .

To update

{
𝑁𝑣,ℓ

}
𝑣∈𝑉 with 𝑘 edges 𝑈 , apply a semisort to group

the edges by endpoint: let 𝑟 be the number of distinct endpoints in

𝑈 , and let 𝐾 = {(𝑣1, 𝐸1), . . . , (𝑣𝑘 , 𝐸𝑟 )} represent the semisorted up-

dates, where 𝑁𝑣𝑖 ,ℓ should be updated with edges 𝐸𝑖 for each integer

𝑖 ∈ [1, 𝑟 ]. Updating the ordered set for 𝑁𝑣𝑖 ,ℓ costs 𝑂 ( |𝐸𝑖 | log(1 +��𝑁𝑣𝑖 ,ℓ

��/|𝐸𝑖 |)) work and 𝑂 (log𝑛 log𝑘) span. The sum of this work

over all 𝑣𝑖 is 𝑂 (𝑘 log𝑛). We then rebuild the quantile summary for

each 𝑣𝑖 from scratch via Lemma 4.1 in 𝑂 (𝑟 log2 𝑛) total work and

𝑂 (log𝑛) span. Adding the cost of updating augmented values gives

a total expected work is𝑂 (𝑘 log2 𝑛 log(1 +𝑛/𝑘)) and the total span
is 𝑂 (log𝑛(log log𝑛 + log𝑘)) w.h.p.

The approximation error of a summary𝑄 in the ETT is bounded

above by

1

4

+
∞∑︁
𝑡=1

1

𝑏 (𝑡) =
1

4

+
log𝑛∑︁
𝑡=1

1

𝑏 (𝑡) +
∞∑︁

𝑡=log𝑛+1

1

𝑏 (𝑡)

<
1

4

+
log𝑛∑︁
𝑡=1

1

8 log𝑛
+

∞∑︁
𝑡=log𝑛+1

1

8𝑡2/log𝑛

=
1

4

+ 1

8

+ log𝑛

8

∞∑︁
𝑡=log𝑛+1

1

𝑡2
<

3

8

+ log𝑛

8

∫ ∞

𝑡=log𝑛

1

𝑡2
𝑑𝑡 =

1

2

.

That is, 𝑄 is always a 1/2-approximate quantile summary. We can

therefore fetch the 𝑘 (1 ± 1/2) lightest edges of ⋃𝑣∈𝐶 𝑁𝑣,ℓ for a

connected component 𝐶 by querying the summary of component

𝐶 for a weight𝑤 whose rank is 𝑘 . Then, by checking whether the

summaries’ minimum element is less than𝑤 , we traverse down the

skip list to efficiently find all vertices 𝑣 in𝐶 such that 𝑁𝑣,ℓ has edges

lighter than 𝑤 in 𝑂 (𝑘 log(1 + 𝑛/𝑘)) expected work and 𝑂 (log𝑛)
span w.h.p. We fetch those edges from each vertex 𝑣 by splitting the

ordered set for 𝑁𝑣,ℓ in 𝑂 (log𝑛) work and 𝑂 (log𝑛) span per vertex

for 𝑂 (𝑘 log𝑛) total work. □

4.2.1 Example of augmentation. This subsection gives an example

illustrating the ETT augmentation from Theorem 4.4. Figure 1 dis-

plays an example graph𝐺 = (𝑉 , 𝐸) with one connected component,

a spanning tree for the graph, and a possible skip list internally held

by an ETT representing the tree. For simplicity, every non-tree edge

in the graph has the same HDT level ℓ , and we write 𝑁𝑣 instead of

𝑁𝑣,ℓ to denote the non-tree edges incident on a vertex 𝑣 .

The skip list contains a sequence given by taking an Euler tour

on the spanning tree after duplicating each edge in both directions

and after adding a self-loop edge on every vertex. At the bottom

level of the skip list, each node representing some vertex 𝑣 ∈ 𝑉 (i.e.,

representing the self-loop edge for vertex 𝑣) constructs a quantile

summary over 𝑣 ’s incident non-tree edges 𝑁𝑣 . For instance, 𝑁𝑢 =

{(5, 𝑢, 𝑥), (6, 𝑢,𝑦)}, and the skip list node for 𝑢 is augmented with

a 1/4-approximate quantile summary on 𝑁𝑢 .

The quantile summaries at higher levels of the skip list are com-

puted by calling the augmentation function 𝑓 to combine quantile

summaries at the level below, ignoring skip list nodes that cor-

respond to edges and hence have no quantile summaries. For in-

stance, the node at the top level of the skip list computes its quantile

summary over 𝑁𝑣 ∪ 𝑁𝑢 ∪ 𝑁𝑥 ∪ 𝑁𝑦 by calling 𝑓 on the quantile

summaries for 𝑁𝑣 and 𝑁𝑢 and then calling 𝑓 on the result of the

previous call along with the quantile summary for 𝑁𝑥 ∪ 𝑁𝑦 . Each
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(a) Graph and a spanning forest
(in bold). Each non-tree edge has
the same HDT level ℓ .

(b) Skip list of the ETT for the graph.
Figure 1: The figure displays a graph and a possible height-3 skip list corresponding to an ETT representing the spanning forest of the graph. The skip list is
circular, so the last node at each skip list level is connected to the first node at the same level. The labels below the skip list nodes at the bottom skip list level
denote the vertex or edge that the node represents. At higher levels, the skip list nodes represent a contiguous subsequence of the overall sequence (e.g., the fourth
node at the middle level represents (𝑥, (𝑥, 𝑣), (𝑣, 𝑦), 𝑦) , and the node at the top level represents the whole sequence). Following the augmentation of Theorem 4.4,
each list node is augmented with a quantile summary for the vertices within its subsequence. In the figure, the labels inside each skip list node are the augmented
values for each node. Some nodes contain no label because their subsequence contains no vertices.

quantile summary has an associated 𝑡 value such that the summary

is (1/4 + ∑𝑡
𝑖=1 1/𝑏 (𝑖))-approximate, where 𝑏 (·) is defined in the

proof of Theorem 4.4. The

∑𝑡
𝑖=1 1/𝑏 (𝑖) term is accumulated from

Combine calls used to compute 𝑓 . When taking a union of incident

non-tree edges such as𝑁𝑥∪𝑁𝑦 , we may have an edge twice, once in

each direction, e.g., 𝑁𝑥 ∪ 𝑁𝑦 = {(4, 𝑥,𝑦), (4, 𝑦, 𝑥), (5, 𝑥,𝑢), (6, 𝑦,𝑢)}
has the weight-4 edge {𝑥,𝑦} twice. For our use case of decremental

MSF (Section 4.3), the edge duplication does not affect correctness

or running time complexity.

If there were multiple nodes at the top level of the skip list, we

would also call 𝑓 to combine all of the quantile summaries at the

top level to obtain a quantile summary for the entire connected

component. At an arbitrary top-level node, we would store a pointer

to that quantile summary so that we can quickly fetch a quantile

summary for this connected component.

As an example of updating non-tree edges, suppose wewanted to

delete an element from 𝑁𝑦 . We perform the deletion on 𝑁𝑦 , rebuild

the quantile summary for 𝑁𝑦 entirely from scratch, and then apply

𝑓 again to rebuild the quantile summaries for the fourth node at

the middle skip list level and for the node at the top level.

As an example of searching for light non-tree edges, suppose that

we wanted to find the lightest 𝑘 (1±1/2) non-tree edges incident on
this component for some 𝑘 . Define the children of a skip list node

with associated subsequence 𝑆 to be the nodes at the level imme-

diately below whose subsequences constitute 𝑆 , e.g., the children

of the fourth node at the middle level are the sixth through ninth

(inclusive) nodes at the bottom level. We first query the quantile

summary at the top level of the skip list for a rank-𝑘 entry. Suppose

that it returned (4, 𝑦, 𝑥). Then, we traverse down to the middle level

to inspect the quantile summaries of the node’s children. At every

quantile summary whose minimum element is at most (4, 𝑦, 𝑥) lex-
icographically, we traverse down to that node’s children. In this

example, only the fourth node at the middle level satisfies this con-

dition. We again check childrens’ quantile summaries’ minimum

elements, and in this case, the sixth and ninth nodes at the bottom

level satisfy the condition. Since we have reached the bottom of the

list, we directly access 𝑁𝑥 and 𝑁𝑦 and fetch all elements that are at

most (4, 𝑦, 𝑥).

4.3 Parallel batch-decremental MSF
Aswith the sequential HDT decrementalMSF algorithm, two changes

are needed to change Acar et al.’s batch-dynamic connectivity al-

gorithm into a batch-decremental MSF algorithm. First, given an

input graph 𝐺 , we compute an MSF 𝐹 over 𝐺 and set 𝐹
log𝑛 = 𝐹 .

The MSF for the graph will always be 𝐹
log𝑛 .

Second, when performing a doubling search out of a component

to find a replacement edge, instead of looking for 2
𝑗
arbitrary in-

cident non-tree edges on phase 𝑗 of a doubling search, we use the

ETT augmentation from Theorem 4.4 to search for the 2
𝑗 (1 ± 1/2)

lightest incident non-tree edges. To maintain the HDT cycle invari-

ant, we do not push any edges on a doubling phase in which we find

a replacement edge. In addition, to reduce span, we defer pushing

edges to the end of the entire replacement search on a level rather

than pushing non-tree edges after every doubling phase.

Theorem 4.5. We can initialize a batch-decremental MSF data struc-
ture in𝑂 (log2 𝑛) span w.h.p. The data structure supports batches of 𝑘
edge deletions in𝑂 (log3 𝑛 log𝑘) span w.h.p. and uses𝑂 (𝑚+𝑛 log3 𝑛)
space w.h.p. The total expected work across initialization and all
deletions is𝑂 (𝑚 log

3 𝑛 log(1 + 𝑛/Δ)), i.e., 𝑂 (log3 𝑛 log(1 + 𝑛/Δ)) ≤
𝑂 (log4 𝑛) amortized per edge, where Δ is the average batch size across
all batch deletions.

Proof. For initialization, computing 𝐹
log𝑛 costs 𝑂 (𝑚) expected

work and𝑂 (log𝑛) span w.h.p. Then, by Theorem 4.4, storing 𝐹
log𝑛

in an augmented ETT and updating the ETT with 𝑂 (𝑚) incident
non-tree edges costs𝑂 (𝑚 log

2 𝑛) expected work and𝑂 (log2 𝑛) span
w.h.p.

The span to delete a batch of 𝑘 edges remains the same as Acar

et al.’s algorithm. Despite the increase in span that our more compli-

cated ETT augmentation incurs for insertions and pushing edges,

the span is still dominated by the doubling search, whose span

remains the same.

On the other hand, the work increases by a factor of 𝑂 (log2 𝑛)
to a total of 𝑂 (log4 𝑛) expected amortized work per edge due to

the increased work for ETT insertion and pushing. The (1 ± 1/2)
uncertainty in searching for incident non-tree edges may increase

the amount of amortized cost to charge to each edge by a constant

factor, but this does not affect the asymptotic bounds. Not pushing

edges found on the last phase of a doubling search also only affects
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amortized costs by a constant factor. Analysis in Appendix B gives

the tighter 𝑂 (log3 𝑛 log(1 + 𝑛/Δ) work bound.

The maximum space usage is 𝑂 (𝑛 log2 𝑛) w.h.p. for each of the

log𝑛 ETTs plus 𝑂 (𝑚) total space to store the non-tree edges. □

5 Parallel fully dynamic MSF
In this section, we describe a parallel batch-dynamic MSF algo-

rithm supporting both batch insertions and batch deletions of edges

(Section 5.2) and provide an example execution of the algorithm

(Section 5.3).

5.1 Background
Compressed path trees. Like ETTs, rake-compress (RC) trees are a

parallelizable data structure for dynamic forests [3, 4]. Inserting or

deleting 𝑘 edges from an RC tree takes 𝑂 (𝑘 log(1 + 𝑛/𝑘)) expected
work and 𝑂 (log2 𝑛) span w.h.p.

Anderson et al. showed that if a dynamic forest 𝐹 of 𝑛 vertices is

stored in an RC tree, then given 𝑘 vertices in 𝐹 (“marked” vertices),

we can construct a compressed form of 𝐹 called a compressed path
tree relative to the vertices in𝑂 (𝑘 log(1 +𝑛/𝑘)) expected work and

𝑂 (log𝑛) span w.h.p. [7]. The compressed path tree is a forest 𝐹 ′ on
𝑂 (𝑘) vertices (including all marked vertices) such that the heaviest

edge on the path between any pair of marked vertices has the same

weight in 𝐹 ′ as in 𝐹 . More specifically, the compressed path tree is

the union of the paths between the marked vertices with all non-

marked vertices of degree below three spliced out. Given 𝑘 edges

in 𝐹 , we can also find which compressed edges in 𝐹 ′ correspond to

those edges in𝑂 (𝑘 log(1 + 𝑛/𝑘)) expected work and𝑂 (log𝑛) span
w.h.p. by traversing up the RC tree that generated 𝐹 ′.

Dynamic MSF. The fully dynamic HDT MSF algorithm supports

both insertions and deletions with 𝑂 (log4 𝑛) amortized work per

update. In describing this algorithm, we follow the presentation of

Holm, Rotenberg, and Wulff–Nilsen [34].

Along with maintaining the MSF 𝐹 of the graph 𝐺 (the global
tree and graph), the algorithm maintains 2 log𝑛 + 1 subgraphs 𝐴0,

𝐴1, . . . , 𝐴2 log𝑛 ⊆ 𝐺 and MSFs 𝐹0, . . . , 𝐹2 log𝑛 of each subgraph (the

local graphs and trees). Each𝐴𝑖 has at most 2
𝑖
non-tree edges𝐴𝑖 \𝐹𝑖

(the edge-count invariant), and each non-tree edge in 𝐺 is a non-

tree edge of some 𝐴𝑖 (the non-tree-edge invariant). We maintain

decremental MSF data structures over each local graph.

To insert an edge 𝑒 = {𝑢, 𝑣}, we query for the heaviest edge 𝑒 ′

on the path between 𝑢 and 𝑣 in 𝐹 by storing 𝐹 in a top tree [6]. We

replace 𝑒 ′ with 𝑒 in 𝐹 if 𝑒 is lighter. Either 𝑒 or 𝑒 ′ now becomes a

new non-tree edge. To make the non-tree-edge invariant hold for

the edge, we call Update, a subroutine that we describe shortly

below, on the edge to insert it as a local non-tree edge.

To delete an edge 𝑒 , we delete 𝑒 from all local graphs and obtain

a set of 𝑂 (log𝑛) local replacement edges 𝑅. If 𝑒 is in 𝐹 , we delete it

from 𝐹 and need a global replacement edge. Due to the non-tree-

edge invariant, the lightest edge 𝑟 in 𝑅 reconnecting 𝐹 is the global

replacement edge. We insert that edge into the global tree. Since

edges in 𝑅 (besides 𝑟 ) are global non-tree edges that might now

violate the non-tree edge invariant, we call Update on 𝑅.

The Update subroutine with input𝑈 inserts the edges in𝑈 as

local non-tree edges. It re-initializes 𝐴 𝑗 to be 𝐹 ∪𝑈 ∪⋃
𝑖≤ 𝑗 (𝐴𝑖 \

𝐹𝑖 ), with 𝑗 being the minimal value such that this reinitialization

respects the edge-count invariant. The new local tree edges for 𝐴 𝑗

are the edges in 𝐹 , and the other edges become local non-tree edges.

The subroutine then clears 𝐴𝑖 for all 𝑖 < 𝑗 .

The number of tree edges in each 𝐴𝑖 may be large, and so we

only store them in compressed form. When initializing 𝐴𝑖 , we use

a top tree to efficiently compute a structure similar to a compressed

path tree. Initializing and storing 𝐴𝑖 then takes only 𝑂 (2𝑖 log𝑛)
work and 𝑂 (2𝑖 ) space, and initializing a decremental MSF over 𝐴𝑖
costs 𝑂 (2𝑖 log2 2𝑖 ) amortized work.

To analyze the work, in Update, the choice of 𝑗 means that there

are at least 2
𝑗−1

non-tree local edges𝑈 ∪⋃𝑖< 𝑗 (𝐴𝑖 \𝐹𝑖 ) being pushed
up to 𝐴 𝑗 . These edges pay for the initialization cost of 𝐴 𝑗 . A non-

tree edge costs𝑂 (log3 𝑛) across its lifetime since it can be pushed up

2 log𝑛 times and may pay 𝑂 (log2 𝑛) amortized work on each push

to pay for the cost per edge in the newly initialized decremental

MSF data structure. Since each global deletion introduces 𝑂 (log𝑛)
non-tree local edges, the amortized cost of a deletion in the dynamic

MSF algorithm is 𝑂 (log4 𝑛).
5.2 Parallel batch-dynamic MSF
Our parallel batch-dynamicMSF algorithm comes from parallelizing

the fully dynamic HDT MSF algorithm. The main changes are to

use our decremental MSF algorithm from Section 4.3 and to use

RC trees instead of top trees for compressing local graphs and for

efficient batch insertion.

Algorithm 1 The algorithm that sets global variables to initialize the batch-dynamic

MSF data structure on an 𝑛-vertex graph.

1: procedure Initialize(𝑛)
2: 𝐹 ← RC tree on an empty 𝑛-vertex graph ⊲ The MSF, i.e., the global tree.

3: for 𝑖 = 0, 1, 2, . . . , 2 log𝑛 do in parallel
4: 𝐴𝑖 ← ∅ ⊲ Decremental MSF data structure for the 𝑖-th local graph.

5: 𝑇𝑖 ← RC tree on an empty 𝑛-vertex graph

6: (𝐵𝐷,𝑖 , 𝐵𝐼 ,𝑖 ) ← (∅,∅)

Algorithm 1 initializes the data structure on an 𝑛-vertex graph.

All variables (and only these variables) defined in this algorithm are

globally visible. We assume the input graph begins with no edges

since input edges can be added separately via batch insertion. The

RC tree 𝐹 maintains the MSF (global tree) (Line 2).

Each 𝐴𝑖 is a batch-decremental MSF data structure over the

𝑖-th local graph, which is initially empty (Line 4). Whenever we

initialize 𝐴𝑖 , we will need to compress its tree edges by computing

a compressed path tree on the tree edges relative to 𝐴𝑖 ’s non-tree

edges’ endpoints. The RC tree used to compute the compressed

path tree should remain unmodified until 𝐴𝑖 ’s next initialization

so that when deleting edges, we can use the RC tree to look up the

compressed representations of the edges in𝐴𝑖 . The RC tree𝑇𝑖 serves

this purpose for 𝐴𝑖 (Line 5). Its value matches 𝐴𝑖 ’s (uncompressed)

tree edges at 𝐴𝑖 ’s latest initialization, or equivalently, the value

of 𝐹 at 𝐴𝑖 ’s latest initialization. To update 𝑇𝑖 to match 𝐹 at 𝐴𝑖 ’s

next initialization, we keep buffers 𝐵𝐷,𝑖 and 𝐵𝐼 ,𝑖 representing the

difference between𝑇𝑖 and 𝐹 (Line 6). In particular, (𝑇𝑖 \𝐵𝐷,𝑖 )∪𝐵𝐼 ,𝑖 =
𝐹 . Section 5.3 illustrates an example of how 𝐴𝑖 and 𝑇𝑖 changes over

several edge updates.

Before discussing batch insertion, we describe the helper func-

tion Update (Algorithm 2) that takes non-tree edges 𝑈 and inserts

them in a local graph to satisfy the HDT non-tree-edge invariant.

We iterate through each local graph 𝐴𝑖 sequentially to find some

𝐴 𝑗 to re-initialize with𝑈 such that the HDT edge-count invariant

still holds (Line 2). As we iterate through increasing 𝑖 , we collapse
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Algorithm 2 A helper algorithm for restoring the HDT non-tree-edge invariant.

1: procedure Update(𝑈 = {( {𝑢1, 𝑣1 }, 𝑤1), . . . , ( {𝑢𝑘 , 𝑣𝑘 }, 𝑤𝑘 ) })
2: for 𝑖 = 0, 1, 2, . . . , 2 log𝑛 do
3: 𝑈 ← 𝑈 ∪ (NontreeEdges(𝐴𝑖 ) \ 𝐹 )
4: 𝐴𝑖 ← ∅
5: if |𝑈 | ≤ 2

𝑖 then
6: 𝑇𝑖 .Delete(𝐵𝐷,𝑖 )
7: 𝑇𝑖 .Insert(𝐵𝐼 ,𝑖 )
8: (𝐵𝐷,𝑖 , 𝐵𝐼 ,𝑖 ) ← (∅,∅)

⊲ Given an RC tree 𝑇 representing a forest,

𝑇 .CompressedPathTree( ·) takes a list of vertices 𝐿 and

returns a compressed path tree for the forest relative to 𝐿.
9: 𝑃 ← 𝑇𝑖 .CompressedPathTree(

⋃
({𝑢,𝑣},𝑤)∈𝑈 {𝑢, 𝑣 })

10: 𝐴𝑖 ← Batch-decremental MSF on 𝑃 ∪𝑈
11: break

the non-tree edges of 𝐴𝑖 into𝑈 (Lines 3 to 4) since pushing them

up to level 𝑗 will pay for the re-initialization cost of 𝐴 𝑗 . We discard

the tree edges of 𝐴𝑖 since they are irrelevant to the non-tree-edge

invariant. Once we find the level 𝑗 (Line 5), we update the RC tree

𝑇𝑗 to match the global tree 𝐹 using buffers 𝐵𝐷,𝑗 and 𝐵𝐼 , 𝑗 and clear

the buffers (Lines 6 to 8). Then, we use 𝑇𝑗 to compress 𝐹 into a

compressed path tree 𝑃 relative to 𝑈 so that 𝑂 ( |𝑃 |) = 𝑂 (2𝑗 ), and
we set 𝐴 𝑗 to be a newly initialized decremental MSF data structure

over 𝑃 ∪𝑈 (Lines 9 to 10). (The compressed local graphs may be

non-simple because between a pair of vertices, there can be both

one compressed tree edge and one non-tree edge. The decremental

MSF algorithm still works in this setting.)

Algorithm 3 The algorithm for inserting a batch of edges.

1: procedure BatchInsert(𝑈 = {( {𝑢1, 𝑣1 }, 𝑤1), . . . , ( {𝑢𝑘 , 𝑣𝑘 }, 𝑤𝑘 ) })
2: 𝑃 ← 𝐹 .CompressedPathTree(⋃𝑘

𝑖=1 {𝑢𝑖 , 𝑣𝑖 })
3: 𝑀 ← MSF(𝑃 ∪𝑈 )
4: (𝐷, 𝐼 ) ← (𝑃 \𝑀,𝑈 ∩𝑀)
5: 𝐹 .Delete(𝐷)
6: 𝐹 .Insert(𝐼 )
7: for 𝑖 = 0, 1, 2, . . . , 2 log𝑛 do in parallel
8: (𝐵𝐷,𝑖 , 𝐵𝐼 ,𝑖 ) ← (𝐵𝐷,𝑖 ∪ (𝐷 \ 𝐵𝐼 ,𝑖 ), (𝐵𝐼 ,𝑖 \𝐷) ∪ 𝐼 )
9: Update(𝐷 ∪ (𝑈 \𝑀))

Algorithm 3 gives pseudocode for batch insertion. We start by

compressing the global tree 𝐹 into a compressed path tree 𝑃 rela-

tive to inserted edges 𝑈 (Line 2). Each compressed edge 𝑒 in the

compressed path tree also stores a pointer to the heaviest edge

in the path that 𝑒 represents in 𝐹 . In this way we can, for brevity,

refer to edges from the compressed path tree and the corresponding

heavy edges in the uncompressed tree 𝐹 interchangeably in the

pseudocode. We compute an MSF𝑀 over 𝑃 ∪𝑈 (Line 3). Using𝑀 ,

we can determine which edges 𝐼 from 𝑈 to insert into the global

tree 𝐹 and which edges 𝐷 from 𝐹 get replaced by 𝐼 (Line 4). We

delete 𝐷 from 𝐹 , insert 𝐼 into 𝐹 , and update the buffers for every

local graph 𝐴𝑖 (Lines 5 to 8). Finally, we call Update on edges

𝐷 ∪ (𝑈 \ 𝑀) since they are new global non-tree edges that may

violate the non-tree-edge invariant (Line 9).

Algorithm 4 describes batch deletion. First, we delete the input

edges 𝑈 from the global tree 𝐹 and update the buffers for every

local graph 𝐴𝑖 accordingly (Lines 2 to 5). In parallel over every

𝐴𝑖 , we want to delete𝑈 from 𝐴𝑖 , though this requires some effort

since 𝐴𝑖 is in compressed form. To map each edge 𝑒 in 𝑈 to its

representation in 𝐴𝑖 (Line 6), there are three cases: 𝑒 appears in

compressed form in 𝐴𝑖 (because it was a tree edge in 𝐴𝑖 when 𝐴𝑖
was last initialized), 𝑒 appears in uncompressed form in 𝐴𝑖 , or it

does not exist in 𝐴𝑖 . To handle the first case, we try looking up 𝑒

Algorithm 4 The algorithm for deleting a batch of edges.

1: procedure BatchDelete(𝑈 = {{𝑢1, 𝑣1 }, . . . , {𝑢𝑘 , 𝑣𝑘 }})
2: 𝐷 ← 𝐹 ∩𝑈
3: 𝐹 .Delete(𝐷)
4: for 𝑖 = 0, 1, 2, . . . , 2 log𝑛 do in parallel
5: (𝐵𝐷,𝑖 , 𝐵𝐼 ,𝑖 ) ← (𝐵𝐷,𝑖 ∪ (𝐷 \ 𝐵𝐼 ,𝑖 ), 𝐵𝐼 ,𝑖 \𝐷)
6: 𝑈 ′ ← Representation of𝑈 in compressed𝐴𝑖

⊲ 𝐴𝑖 .Delete( ·) takes a list of edges, deletes them from𝐴𝑖 , and returns

the replacement edges used to reconnect𝐴𝑖 .

7: 𝑅𝑖 ← 𝐴𝑖 .Delete(𝑈 ′)
8: BatchInsert(

⋃2 log𝑛

𝑖=0
𝑅𝑖 )

in 𝑇𝑖 to get a compressed edge and then try looking that up in 𝐴𝑖 .

Simultaneously, we try looking up 𝑒 directly in 𝐴𝑖 to handle the

second case. If the two cases fail, then we are in the third case and

ignore the edge.

Now we can delete𝑈 from 𝐴𝑖 and extract the local replacement

edges 𝑅𝑖 that the decremental MSF data structure uses to replace

𝑈 (Line 7). Finally, we insert the replacement edges into the global

tree by calling BatchInsert (Line 8). Although these replacement

edges are already global edges, calling BatchInsert has the correct

behavior of reconnecting 𝐹 and calling Update.

Theorem 5.1. Our dynamic MSF algorithm maintains an MSF in
𝑂 (𝑘 log6 𝑛) expected amortized work for a batch of 𝑘 edge insertions
or𝑘 edge deletions. Insertions take𝑂 (log2 𝑛) span w.h.p., and deletions
take 𝑂 (log3 𝑛 log𝑘) span w.h.p. The maximum amount of space the
data structure uses is 𝑂 (𝑚 +min{𝑚,𝑛 log𝑛} log3 𝑛) w.h.p., where𝑚
is the maximum number of edges in the graph.

Proof. Work:We first analyze thework forUpdate (Algorithm 2).

We will give (2 log𝑛 − 𝑖) · 𝑂 (log4 𝑛) amortization credits to non-

tree edges in local graph𝐴𝑖 and get𝑂 (𝑘 log5 𝑛) expected amortized

work for Update as a consequence.

Suppose we call Update (Algorithm 2) with 𝑘 input edges. Let

𝑈 be the original input to Update, and let 𝑈𝑖 indicate the value

of𝑈 after the 𝑖-th iteration of Line 3. We give 𝑂 (log5 𝑛) credits to
each edge in 𝑈 . Let 𝑗 be the value of 𝑖 that satisfies the condition

on Line 5. The work done by insertions to 𝑈 (Line 3) across all

iterations sums to 𝑂 ( |𝑈 | + 2𝑗 ). Updating 𝑇𝑗 on Lines 6 to 7 costs

𝑂 (( |𝐵𝐷,𝑗 | + |𝐵𝐼 , 𝑗 |) log𝑛) expected work, which we charge to the

BatchInsert and BatchDelete calls that inserted these elements

into 𝐵𝐷,𝑗 and 𝐵𝐼 , 𝑗 . Computing the compressed path tree (Line 9)

costs 𝑂 ( |𝑈 𝑗 | log𝑛) expected work, and initializing the decremental

MSF data structure (Line 10) costs 𝑂 ( |𝑈 𝑗 | log4 𝑛) expected amor-

tized work. We know that |𝑈 𝑗 | ≤ 2
𝑗
and |𝑈 𝑗−1 | > 2

𝑗−1
due to the

choice of 𝑗 . We pay for the𝑂 (2𝑗 + |𝑈 𝑗 | log4 𝑛) = 𝑂 (2𝑗 log4 𝑛) work
of Update by charging 𝑂 (log4 𝑛) credits to the elements in |𝑈 𝑗−1 |
that we have pushed up to local graph 𝐴 𝑗 . The remaining expected

amortized work is 𝑂 (𝑘 log5 𝑛) from the credits we gave to 𝑈 .

Batch insertion (Algorithm 3) also costs 𝑂 (𝑘 log5 𝑛) amortized

expected work due to its work being dominated by Update (Line 9).

For instance, RC tree operations and computing an MSF takes only

𝑂 (𝑘 log(1 + 𝑛/𝑘)) expected work on Lines 2 to 6. Updating buffers

𝐵𝑖,∗ on Line 8 costs only 𝑂 (𝑘 log2 𝑛) amortized total work, where

one log𝑛 factor comes from summing over 𝑖 and the other log𝑛

factor pays for the cost of updating 𝑇𝑖 with 𝐵𝑖,∗ in Update.

Batch deletion (Algorithm 4) costs 𝑂 (𝑘 log6 𝑛) amortized ex-

pected work. Like with batch insertions, the expected work of RC

tree operations and dictionary operations is 𝑂 (𝑘 log2 𝑛) on Lines 2
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to 6. We charge the cost of deleting 𝑘 edges from each𝐴𝑖 (Line 7) to

the initialization of 𝐴𝑖 . Finally, we call BatchInsert on

⋃2 log𝑛

𝑖=0
𝑅𝑖

(Line 8) where |𝑅𝑖 | ≤ 𝑘 for 𝑂 (𝑘 log6 𝑛) expected amortized work.

Span: The span of Update (Algorithm 2) is 𝑂 (log2 𝑛) w.h.p. Col-
lapsing 𝐴𝑖 into 𝑈 on Line 3 summed over all 𝑂 (log𝑛) iterations
takes 𝑂 (log𝑛 log∗ 𝑛) span w.h.p. using a parallel dictionary. Then

the operations on 𝑇𝑖 and 𝐴𝑖 in Lines 6 to 10 all take 𝑂 (log2 𝑛) span
w.h.p. and are only performed on one value of 𝑖 .

The span of Insert (Algorithm 3) is also 𝑂 (log2 𝑛) w.h.p. The
span is dominated by the RC tree updates (Lines 5 to 6) and Up-

date (Line 9), each of which take 𝑂 (log2 𝑛) span w.h.p. The span

of Delete (Algorithm 4) is 𝑂 (log3 𝑛 log𝑘) w.h.p. The span is dom-

inated by deleting up to 𝑘 edges from 𝐴𝑖 for each 𝑖 (Line 7) for a

cost of 𝑂 (log3 𝑛 log𝑘) span w.h.p. according to Theorem 4.5.

Space: The global tree 𝐹 and each local RC tree 𝑇𝑖 takes 𝑂 (𝑛)
space w.h.p., and each pair of local buffers (𝐵𝐷,𝑖 , 𝐵𝐼 ,𝑖 ) takes 𝑂 (𝑛)
space since they store the symmetric difference between the trees

𝐹 and 𝑇𝑖 . Each 𝐴𝑖 has 𝑂 (min{2𝑖 , 𝑛}) vertices and 𝑂 (2𝑖 ) edges, and
the initialization strategy for the local graphs in Update leaves

𝐴𝑖 empty for 𝑖 > log𝑚. Applying Theorem 4.5 on each 𝐴𝑖 gives

a total space usage of

∑log𝑚

𝑖=1
𝑂 (2𝑖 + min

{
2
𝑖 , 𝑛

}
log

3 𝑛) = 𝑂 (𝑚 +
min{𝑚,𝑛 log𝑛} log3 𝑛). □

5.3 Example
Table 2 displays an example of how the local graphs change as the

global graph 𝐺 changes. Though the algorithm does not actually

store the non-tree edges of 𝐺 or the uncompressed forms of the

local graphs 𝐴0 and 𝐴1, they are displayed in the table for clarity.

In the first row of the table, we initialize a graph with four

vertices 𝑢, 𝑣 , 𝑥 , and 𝑦.

In the second row of the table, we call BatchInsert on the five

edges ({𝑢, 𝑣}, 4), ({𝑢, 𝑥}, 2), ({𝑣,𝑦}, 3), ({𝑢,𝑦}, 5), and ({𝑣, 𝑥}, 6).
BatchInsert then invokes Update on the two non-tree edges

{𝑢,𝑦} and {𝑣, 𝑥}. Placing these edges in 𝐴0 would violate the edge-

count invariant that 𝐴0 has at most 2
0 = 1 local non-tree edges,

but we can place them in 𝐴1 because it can have 2
1 = 2 non-tree

edges. The Update call hence initializes 𝐴1 on the non-tree edges

along with the current global tree. In this case, the compressed form

of 𝐴1 is the same as the uncompressed form—every vertex has an

incident level-1 non-tree edge and cannot be compressed out.

In the third row of the table, we call BatchInsert on the edge

({𝑥,𝑦}, 1). The edge {𝑢, 𝑣} becomes a non-tree edge, and Update

is invoked on it. This time, the edge can be placed in 𝐴0 without

violating the edge-count invariant. The Update call initializes 𝐴0

on the non-tree edge along with the current global tree. The com-

pressed form of𝐴0 keeps the vertices𝑢 and 𝑣 since they are non-tree

edge endpoints and splices out vertices 𝑥 and 𝑦, replacing the path

𝑢–𝑥–𝑦–𝑣 with a compressed edge {𝑢, 𝑣} that has the same weight

as the heaviest weight in the path.

In the fourth row of the table, we call BatchDelete on edges

{𝑢, 𝑥} and {𝑣,𝑦}. We first delete them from local graphs 𝐴0 and

𝐴1. Local graph 𝐴0 returns local replacement edge {𝑢, 𝑣}, and 𝐴1

returns local replacement edges {𝑢,𝑦} and {𝑣, 𝑥}. (Deleting {𝑢, 𝑥}
and {𝑣,𝑦}, or even just deleting either of these edges individually,

in the compressed form of𝐴0 means deleting the entire compressed

edge representing the path 𝑢–𝑥–𝑦–𝑣 . This triggers the correct be-

havior of searching for a local replacement edge that reconnects

𝑢’s connected component and 𝑣 ’s connected component.)

Finally, BatchDelete invokes BatchInsert to re-insert all of

the local replacement edges into the global graph. Edges {𝑢, 𝑣} and
{𝑢,𝑦} are global replacement edges that are inserted as tree edges,

whereas edge {𝑣, 𝑥} remains a global non-tree edge. We invoke

Update on {𝑣, 𝑥}, which re-initializes 𝐴0 with the non-tree edge.

6 Dynamic graph HAC lower bounds
In this section, we show lower bounds on dynamic graph HAC

under edge insertions and deletions. Queries take two vertices 𝑠

and 𝑡 and a similarity threshold 𝜃 , and answer whether 𝑠 and 𝑡

are in the same cluster if we run agglomerative clustering until

all cluster similarities are strictly below 𝜃 . Such queries provide

limited information, but we will show that answering such queries

is still difficult for complete linkage, weighted average linkage, and

average linkage. We also consider a different type of query that

asks how many clusters there are if we run HAC until a threshold

𝜃—we refer to this problem as #HAC. All of our lower bounds hold

for the special case where 𝑠 , 𝑡 , and 𝜃 are fixed across all queries.

Our bounds hold even for an approximate form of graph HAC.

We use the approximation notion given by Lattanzi et al. [40]. In

𝜆-approximate graph HAC with 𝜆 ≥ 1, at an agglomeration step

where the maximum similarity isWmax, the clustering process may

merge any clusters with similarity at leastWmax/𝜆. We assume

𝜆 ≤ poly(𝑛) so that poly(𝜆) fits in a constant number of words.

6.1 Background: other dynamic lower bounds
Abboud and VassilevskaWilliams as well as Henzinger et al. showed

lower bounds on several dynamic problems conditional on well-

known conjectures [1, 31]. The conjectures include the strong ex-

ponential time hypothesis (SETH) [13], triangle detection requiring

greater than linear work, 3SUM requiring quadratic work [24, 46],

and online Boolean matrix-vector multiplication (OMv) requiring

cubic work [31].

The studied dynamic problems include Chan’s subset union

problem (SubUnion) [14], subgraph connectivity (SubConn), and

connected subgraph (ConnSub). In SubUnion, given a collection of

sets 𝑋 = {𝑋1, . . . , 𝑋𝑡 } and𝑈 :=
⋃

𝑖 𝑋𝑖 , we maintain a subcollection

𝑆 ⊆ 𝑋 under insertions and deletions to 𝑆 while answering whether⋃
𝑋𝑖 ∈𝑆 𝑋𝑖 = 𝑈 . In SubConn, given an undirected graph, wemaintain

a subset of vertices 𝑆 under insertions and deletions to 𝑆 with

queries answering whether query vertices 𝑠 and 𝑡 are connected

in the subgraph induced by 𝑆 [23]. ConnSub is SubConn with the

query instead being whether the subgraph is connected.

Table 3 lists the lower bounds for these problems. The SubUnion

bounds hold for the special case where |𝑋 | = 𝑂 (log|𝑈 |), and the

SubConn bounds hold for the special case of 𝑠𝑡-SubConn where 𝑠

and 𝑡 are fixed across all queries.

6.2 Statement of HAC lower bounds
The following theorem reduces SubConn to HAC and ConnSub to

#HAC. It implies that the existing conditional lower bounds for 𝑠𝑡-

SubConn apply directly to HAC under complete linkage or weighted

average linkage. Similarly, the SETH gives the same lower bounds

to #HAC as it does to ConnSub. We note that existing constructions

reducing from triangle detection [1] and OMv [31] to SubConn
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Operation 𝐺 𝐴0 uncompressed 𝐴0 compressed 𝑇0
𝐵𝐷,0

𝐵𝐼 ,0
𝐴1 uncompressed 𝑇1

𝐵𝐷,1

𝐵𝐼 ,1

Initialize (empty)

{}

{}

{}

{}

1st insert

{}

{{𝑢, 𝑣 },
{𝑢, 𝑥 }, {𝑣, 𝑦 }}

{}

{}

2nd insert

{}

{}

{{𝑢, 𝑣 }}

{{𝑥, 𝑦 }}

Delete (before

insertion

subroutine call)

{{𝑢, 𝑥 }, {𝑣, 𝑦 }}

{}

{{𝑢, 𝑣 },
{𝑢, 𝑥 }, {𝑣, 𝑦 }}

{{𝑥, 𝑦 }}

Delete (after

insertion

subroutine call)

{}

{}

{{𝑢, 𝑣 },
{𝑢, 𝑥 }, {𝑣, 𝑦 }}

{{𝑢, 𝑣 },
{𝑢, 𝑦 }{𝑥, 𝑦 }}

Table 2: This table walks through an example of the batch-dynamic MSF algorithm. The global graph 𝐺 has four vertices. We first insert five edges into it, then
insert one edge, and finally delete two edges. The bolded edges in𝐺 form the MSF (the global tree) 𝐹 . The local graphs are𝐴0 and𝐴1, and the bolded edges within
are the local tree edges. For 𝑖 ∈ {0, 1}, the tree𝑇𝑖 is the RC tree for𝐴𝑖 . The buffers 𝐵𝐷,𝑖 and 𝐵𝐼 ,1 represent the difference between𝑇𝑖 and 𝐹 , i.e., (𝑇𝑖 \𝐵𝐷,𝑖 ) ∪𝐵𝐼 ,𝑖 = 𝐹 .
For brevity, we omit listing the weights of edges in the buffers. The compressed form of𝐴1 is the same as its uncompressed form throughout this example (except
at initialization when the compressed form of 𝐴1 is completely empty), and so we omit illustrating it. If a cell in the table is blank, that means it is the same as
the cell in the row above.

Problem

Work lower bounds

Preprocess Update Query Conjecture

SubUnion with

|𝑋 | = 𝑂 (log |𝑈 |)
poly( |𝑈 |) |𝑈 |1−𝜀 |𝑈 |1−𝜀 SETH

𝑠𝑡 -SubConn

𝑚1+𝛿−𝜀 𝑚𝛿−𝜀 𝑚2𝛿−𝜀
Triangle

𝑚4/3 𝑚𝛼−𝜀 𝑚2/3−𝛼−𝜀
3SUM

poly(𝑛) 𝑚1/2−𝜀 𝑚1−𝜀
OMv

ConnSub poly(𝑛) 𝑛1−𝜀 𝑛1−𝜀
SETH

Table 3: The table states conditional asymptotic work lower bounds for some
dynamic problems [1, 31]. The values of 𝜀, 𝛿 , and 𝛼 follow the definitions
in Table 1. The bounds hold for partially dynamic algorithms as well. The
bounds are amortized in the fully dynamic case and are worst-case in the
partially dynamic case.

also work when reducing to ConnSub, and so the conditional lower

bounds for HAC based on triangle detection and OMv hardness

apply to #HAC too.

Theorem 6.1. Suppose for some constant 𝑐 > 0 that we can solve
dynamic / incremental / decremental 𝑂 (𝑛𝑐 )-approximate HAC under
complete linkage or weighted average linkage in 𝑝 (𝑚,𝑛) preprocessing
work, 𝑢 (𝑚,𝑛) update work, and 𝑞(𝑚,𝑛) query work. Then we can
solve dynamic / decremental / incremental SubConn with 𝑂̃ (𝑚) +
𝑝 (𝑂̃ (𝑚), 𝑂̃ (𝑛)) processing work, 𝑢 (𝑂̃ (𝑚), 𝑂̃ (𝑛)) update work, and
𝑞(𝑂̃ (𝑚), 𝑂̃ (𝑛)) query work. The same relationship is also true between
#HAC and ConnSub.

In LemmaD.2, we also give a reduction from SubConn to average-

linkage HAC. Due to the large size of the HAC instance resulting

from the reduction, however, the only lower bound the reduction

gives is Ω(𝑛1/6−𝑜 (1) ) update work and Ω(𝑛1/3−𝑜 (1) ) query work

conditional on OMv hardness. Meanwhile, #HAC has Ω(𝑚1/2−𝑜 (1) )

update work and Ω(𝑚1−𝑜 (1) ) query work conditional on OMv hard-

ness (Theorem D.4) and also has lower bounds conditional on tri-

angle detection hardness (Theorem D.5).

Finally, the following theorem states Ω(𝑛1−𝑜 (1) ) dynamic HAC

lower bounds conditional on SETH. The lower bounds for complete-

linkage and weighted-average-linkage #HAC come from Theo-

rem 6.1. The remaining bounds come from reducing SubUnion

to HAC and applying existing lower bounds on SubUnion.

Theorem 6.2. Suppose that for some 𝜀 > 0 we can solve one of the
following problems with poly(𝑛) preprocessing work:
• for some constant 𝑐 , fully dynamic 𝑂 (𝑛𝑐 )-approximate HAC or
𝑂 (𝑛𝑐 )-approximate #HAC under complete linkage or weighted
average linkage with 𝑂 (𝑛1−𝜀 ) amortized update and query work,
• the above problem in an incremental or decremental setting with
𝑂 (𝑛1−𝜀 ) worst-case update and query work,
• for some 𝑐 ∈ [0, 1/5), fully dynamic 𝑂 (𝑛𝑐 )-approximate average-
linkage HAC with 𝑂 (𝑛1−5𝑐−𝜀 ) amortized update and query work,
• for some 𝑐 ∈ [0, 1/8), incremental or decremental𝑂 (𝑛𝑐 )-approximate
average-linkage HAC with 𝑂 (𝑛 (1−8𝑐)/2−𝜀 ) worst-case update and
query work,
• for some 𝑐 ∈ [0, 1), fully dynamic 𝑂 (𝑛𝑐 )-approximate average-
linkage #HAC with 𝑂 (𝑛1−𝑐−𝜀 ) amortized update and query work,
• for some 𝑐 ∈ [0, 1/2), incremental or decremental𝑂 (𝑛𝑐 )-approximate
average-linkage #HAC with 𝑂 (𝑛1−2𝑐−𝜀 ) worst-case update and
query work.

Then the SETH is false.

6.3 Proof of bounds
As examples, wewill show two reductions that generate some of our

lower bounds. We defer the remaining reductions to Appendix D.
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(a) A vertex 𝑣 with two
neighbors in an Sub-
Conn instance.

(b) The corresponding HAC instance adds a star
graph with center 𝑣′ and several leaves.

Figure 2: The figure displays the extra vertices added for a particular vertex 𝑣

in Lemma 6.3’s reduction from SubConn to weighted-average-linkage HAC.

Our first example reduces SubConn to weighted-average-linkage

HAC. Lemma D.1 gives a similar reduction for complete linkage.

Lemma 6.3. [Part of Theorem 6.1] Let 𝜆 ∈ [1, poly(𝑛)]. Suppose
we can solve dynamic / incremental / decremental 𝜆-approximate
weighted-average-linkage HAC in 𝑝 (𝑚,𝑛) preprocessingwork,𝑢 (𝑚,𝑛)
update work, and 𝑞(𝑚,𝑛) query work. Then, letting𝑚′ =𝑚(1+ log 𝜆)
and 𝑛′ = 𝑛(1 + log 𝜆), we can solve dynamic / decremental / in-
cremental SubConn with 𝑂 (𝑚′) + 𝑝 (𝑂 (𝑚′),𝑂 (𝑛′)) processing work,
𝑢 (𝑂 (𝑚′),𝑂 (𝑛′)) update work, and 𝑞(𝑂 (𝑚′),𝑂 (𝑛′)) query work. The
same relationship is also true between #HAC and ConnSub.

Proof. Suppose we are given an unweighted graph 𝐺 = (𝑉 , 𝐸)
and we want to solve SubConn or ConnSub, maintaining some

dynamic subset of vertices 𝑆 . Set 𝜃 = 2𝜆. Define ℓ = ⌈log(2𝜆)⌉ =
𝑂 (1 + log 𝜆) and 𝜆′ = 𝜆 + 1.

Preprocessing: Construct a new, weighted graph 𝐺 ′ by copying

𝐺 and giving every edge a weight of 2𝜆. For every 𝑣 ∈ 𝑉 , add a star

graph to 𝐺 ′ consisting of a center vertex 𝑣 ′ and ℓ leaves 𝑣1, . . . , 𝑣ℓ
with weight-2𝜆′2 edges. For each 𝑣𝑖 , create weight-1 edges to each

vertex in 𝑁 (𝑣). Connect 𝑣 to 𝑣 ′ with weight 2𝜆′3 if 𝑣 ∉ 𝑆 . Figure 2
illustrates this construction. The graph 𝐺 ′ has 𝑂 (𝑛(1 + log(𝜆)))
vertices and 𝑂 (𝑚(1 + log(𝜆))) edges. Initialize dynamic HAC on

𝐺 ′ with 𝜃 = 2𝜆.

Update: Simulate adding or removing a vertex 𝑣 in 𝑆 by removing

or adding the weight-2𝜆′3 edge {𝑣, 𝑣 ′}.
Query: If we are reducing SubConn to HAC, return whether 𝑠

and 𝑡 are in the same cluster given similarity threshold 𝜃 . If we are

reducing ConnSub to #HAC, then return whether the number of

clusters is |𝑉 \ 𝑆 | + 1.
Correctness: Consider running HAC until similarity threshold

𝜃 = 2𝜆. Due to the preprocessing and the update strategy, every

𝑣 ∈ 𝑉 \ 𝑆 has a weight-2𝜆′3 edge to 𝑣 ′. These edges merge first, and

then all of the weight-2𝜆′2 edges merge. This puts each 𝑣 ∈ 𝑉 \ 𝑆
in a cluster {𝑣, 𝑣 ′, 𝑣1, 𝑣2, . . . , 𝑣ℓ }, where the incident edges connect
to 𝑁 (𝑣) with weight 1 + (2𝜆 − 1)2−ℓ < 2. To see why the weight

is 1 + (2𝜆 − 1)2−ℓ , consider 𝑣 ∈ 𝑉 \ 𝑆 and suppose without loss

of generality that the weight-2𝜆′2 edges for 𝑣 ′ merge in the order

𝑣1, 𝑣2, . . . , 𝑣ℓ . Inductively, for 𝑖 = 0, 1, . . . , ℓ , the incident edges on

𝑣 ′’s cluster have weight 1 + (2𝜆 − 1)2−𝑖 after 𝑣𝑖 merges with 𝑣 ′’s
cluster, where 𝑣0 = 𝑣 . The base case is prior to merging, where the

weight is 1 + (2𝜆 − 1)20 = 2𝜆, which is correct by construction.

Therefore, the clusters for each 𝑣 ∈ 𝑉 \ 𝑆 do not participate in

any more merges when clustering until threshold 𝜃 . The remaining

vertices cluster into their connected components in the subgraph

induced by 𝑆 , and a HAC query answers SubConn correctly. A

#HAC query will give the number of connected components in the

subgraph plus |𝑉 \ 𝑆 | (one cluster for each 𝑣 ∈ 𝑉 \ 𝑆). □

Figure 3: The figure illustrates the HAC instance constructed in Lemma 6.4’s
reduction from SubUnion to average-linkageHAC. The SubUnion instance in
this example has𝑋 = {𝑋1 = {𝑢1,𝑢2 }, 𝑋2 = {𝑢1,𝑢3 }, 𝑋3 = {𝑢2,𝑢3,𝑢4 }} and cur-
rently has 𝑆 = {𝑋2, 𝑋3 }. We reduce the number of stars’ leaves (gray vertices)
displayed for cleanliness (e.g., 𝑥 should actually have dozens of leaves).

Our second example reduces SubUnion to average linkage HAC.

Lemmata D.7 to D.9 give similar reductions to complete linkage

HAC, weighted average linkage HAC, and average linkage #HAC.

Lemma 6.4 (Part of Theorem 6.2). Let 𝜆 ∈ [1, poly(𝑛)]. Suppose we
can solve dynamic 𝜆-approximate average-linkage HAC in 𝑝 (𝑚,𝑛)
preprocessing work, 𝑢 (𝑚,𝑛) update work, and 𝑞(𝑚,𝑛) query work.
Then we can solve dynamic SubUnion with with 𝑝 (𝑚′, 𝑛′) processing
work,𝑢 (𝑚′, 𝑛′) update work, and 𝑞(𝑚′, 𝑛′) query work where𝑚′ and
𝑛′ are 𝑂 (𝜆5 |𝑈 | |𝑋 | + 𝜆2 |𝑋 |2).

If we can solve incremental / decremental 𝜆-approximate average-
linkage HAC, then then the bounds hold for decremental / incremental
SubUnion with𝑚′ and 𝑛′ being 𝑂 (𝜆8 |𝑈 |2 |𝑋 | + 𝜆5 |𝑈 | |𝑋 |2 + 𝜆2 |𝑋 |3).

Proof. Suppose we are given a SubUnion instance (𝑋,𝑈 ) with
subset 𝑆 ⊆ 𝑋 . We focus on the case where we have a fully dynamic

algorithm and defer the partially dynamic case to Appendix D.

Define 𝜃 = 1 as well as the following constants:

𝑤𝑡 = (𝜆 + 1)𝜆 = 𝑂 (𝜆2),
ℓ𝑦 = 𝜆𝑤𝑡 |𝑈 | = 𝑂 (𝜆3 |𝑈 |),
𝐿 = (𝜆 + 1)2𝜆(ℓ𝑦 + 1 + |𝑋 | + 𝜆 |𝑈 |) = 𝑂 (𝜆6 |𝑈 | + 𝜆3 |𝑋 |),
ℓ𝑥 = |𝑋 |𝐿/𝜆 = 𝑂 (𝜆5 |𝑈 | |𝑋 | + 𝜆2 |𝑋 |2),
𝑤𝑦 = (ℓ𝑦 + |𝑋 |)𝐿 + 1 = 𝑂 (𝜆9 |𝑈 |2 + 𝜆6 |𝑈 | |𝑋 | + 𝜆3 |𝑋 |2),
𝑤𝑥 = 𝜆(ℓ𝑥 + |𝑋 |)𝐿 + 1 = 𝑂 (𝜆12 |𝑈 |2 |𝑋 | + 𝜆9 |𝑈 | |𝑋 |2 + 𝜆6 |𝑋 |3).

Preprocessing: Figure 3 illustrates the graph that wewill construct.
Create a graph 𝐺 with a vertex representing each 𝑋𝑖 ∈ 𝑋 , a vertex
representing each 𝑢 ∈ 𝑈 , and a weight-𝐿 edge {𝑋𝑖 , 𝑢} for each
𝑢 ∈ 𝑋𝑖 for each 𝑋𝑖 ∈ 𝑋 . Make each 𝑢 ∈ 𝑈 a center of a star graph

with 𝜆 − 1 leaves connected with weight𝑤𝑥 . Add a star graph with

center 𝑦 and ℓ𝑦 leaves connected to the center with weight𝑤𝑦 . Add

a weight-𝑤𝑦 edge from 𝑦 to each 𝑋𝑖 ∈ 𝑆 . Add another star graph

with center 𝑥 and ℓ𝑥 leaves connected to the center with weight

𝑤𝑥 . Add a weight-𝑤𝑥 edge from 𝑥 to each each 𝑋𝑖 ∈ 𝑋 \ 𝑆 . Add
two more vertices 𝑠 and 𝑡 with a weight-1 edge {𝑠, 𝑡}, and add a

weight-𝑤𝑡 edge {𝑡,𝑢} for each𝑢 ∈ 𝑈 . This graph has𝑂 (ℓ𝑥 ) vertices
and edges. Initialize HAC on this graph.

Update: Simulate adding 𝑋𝑖 to 𝑆 by adding a weight-𝑤𝑦 edge

from 𝑋𝑖 to 𝑦 and removing the weight-𝑤𝑥 from 𝑋𝑖 to 𝑥 . Similarly,

simulate removing 𝑋𝑖 from 𝑆 by removing edge {𝑋𝑖 , 𝑦} and adding

edge {𝑋𝑖 , 𝑥}.
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Query: Query whether 𝑠 and 𝑡 are in the same cluster when

performing HAC until to threshold 𝜃 = 1. If yes, then return that 𝑆

covers𝑈 ; otherwise, return that 𝑆 does not cover𝑈 .

Correctness: Consider runningHACuntil threshold𝜃 . Theweights

𝑤𝑥 and 𝑤𝑦 are so large that all weight-𝑤𝑥 and weight-𝑤𝑦 edges

merge before any weight-𝐿 edges. Let 𝐶𝑥 denote 𝑥 ’s cluster (con-

taining 𝑋 \ 𝑆) and 𝐶𝑦 denote 𝑦’s cluster (containing 𝑆). From this

point onwards, the similarity between 𝐶𝑥 to another cluster 𝐶 is

bounded above by considering the worst case where every 𝑋𝑖 in

𝐶𝑥 has a weight-𝐿 edge to every 𝑢 ∈ 𝑈 contained in 𝐶:

|𝑋 \ 𝑆 | |𝐶 ∩𝑈 |𝐿
|𝐶𝑥 | |𝐶 |

≤ |𝑋 \ 𝑆 |𝐿|𝐶𝑥 |𝜆
<
|𝑋 |𝐿
ℓ𝑥𝜆

= 1,

where the first inequality used the fact that 𝜆 |𝐶 ∩𝑈 | ≤ |𝐶 | due to
each𝑢 ∈ 𝑈 being in a star of size 𝜆. Hence,𝐶𝑥 does not participate in

any more merges until near the end of the agglomeration process,

at which point those merges will not affect correctness. On the

other hand, consider 𝐶𝑦 , which has weight-𝐿 edges connecting it

to every 𝑢 ∈ 𝑈 covered by 𝑆 . Each 𝑢 ∈ 𝑈 , until it merges with 𝐶𝑦 ,

is in a size-𝜆 cluster consisting only of the star centered on 𝑢. The

similarity between 𝐶𝑦 and some 𝑢 ∈ 𝑈 covered by 𝑆 and not yet

merged with 𝐶𝑦 is always at least

𝐿

(ℓ𝑦 + 1 + |𝑋 | + 𝜆 |𝑈 |)𝜆
= (𝜆 + 1)2 . (1)

In comparison, the similarity between 𝑡 and another adjacent cluster

𝐶 is 1 if 𝐶 = {𝑠} and is otherwise at most

𝑤𝑡 |𝐶 ∩𝑈 |
|𝐶 | ≤ 𝑤𝑡

𝜆
= 𝜆 + 1 (2)

where the first inequality again uses the inequality 𝜆 |𝐶 ∩𝑈 | ≤ |𝐶 |.
Comparing Equation (1) to Equation (2) shows that𝐶𝑦 merges with

all 𝑢 ∈ 𝑈 covered by 𝑆 before 𝑡 merges with anything.

Now consider what 𝑡 merges with. In the case where 𝑆 does not

cover all of𝑈 , inequality (2) is tight for every cluster𝐶 representing

an uncovered 𝑢 ∈ 𝑈 . In particular, the similarity between 𝑡 and

such a cluster is 𝜆 times greater than the similarity between 𝑡 and

𝑠 or between 𝐶𝑥 and any cluster. Therefore, 𝑡 merges with some

uncovered 𝑢’s star rather than merging with 𝑠 and is in a cluster of

size 𝜆 + 1. The similarity between 𝑡 ’s cluster and 𝑠 falls to 1/(𝜆 + 1),
and 𝑡 and 𝑠 never merge. Hence a query returns the correct result

in this case.

In the case where 𝑆 covers all of 𝑈 , the only adjacent clusters to

𝑡 are {𝑠} and 𝐶𝑦 . The similarity between 𝑡 and 𝐶𝑦 is

𝑤𝑡 |𝑈 |
ℓ𝑦 + 1 + |𝑆 | + 𝜆 |𝑈 |

<
𝑤𝑡 |𝑈 |
ℓ𝑦

= 1/𝜆,

which is 𝜆 times less than the similarity between 𝑡 and 𝑠 . Hence

𝑡 and 𝑠 merge, and a query returns the correct result in this case

too. □

To turn Lemma 6.4 (and Lemma D.9) into the lower bounds in

Theorem 6.2, we need the following lemma.

Lemma 6.5. Let 𝑎 and 𝑏 be constants. Let P be some dynamic
problem. Suppose that given a dynamic / incremental / decremental
SubUnion instance with |𝑋 | = 𝑂 (log|𝑈 |), for any value of 𝜆 ≥ 1, we
can solve the instance by efficiently converting it to an instance of
𝜆-approximate P of size 𝑛′ = 𝑂̃ (𝜆𝑎 |𝑈 |𝑏 ). Assuming the SETH holds,

for any 𝑐 < 1/𝑎, the update or query work of an 𝑂 (𝑛𝑐 )-approximate
P algorithm with poly(𝑛) preprocessing work is Ω(𝑛 (1−𝑎𝑐)/𝑏−𝑜 (1) )
amortized / worst-case / worst-case.

Proof. Set 𝜆 = Θ̃( |𝑈 |𝑏𝑐/(1−𝑎𝑐) ) so that 𝑛′ = 𝑂̃ (𝜆𝑎 |𝑈 |𝑏 ) =

𝑂̃ ( |𝑈 |𝑎𝑏𝑐/(1−𝑎𝑐) |𝑈 |𝑏 ) = 𝑂̃ ( |𝑈 |𝑎𝑏𝑐/(1−𝑎𝑐) |𝑈 | (𝑏−𝑎𝑏𝑐)/(1−𝑎𝑐) ) =

𝑂̃ ( |𝑈 |𝑏/(1−𝑎𝑐) ) and 𝜆 ≥ 𝑛′𝑐 . Solve the SubUnion instance by gen-

erating a 𝜆-approximate instance of P of size 𝑛′ and running an

𝑂 (𝑛′𝑐 )-approximate algorithm forP. The update and query time for

the algorithm cannot both be 𝑂 (𝑛′(1−𝑎𝑐)/𝑏−Ω (1) ) = 𝑂̃ ( |𝑈 |1−Ω (1) )
because such a work bound for SubUnion is impossible if the SETH

holds. □

For example, Lemma 6.4 shows that SubUnionwith |𝑋 | = 𝑂 (log|𝑈 |)
can be solved by running dynamic 𝜆-approximate average-linkage

HAC on a graph with 𝑂̃ (𝜆5 |𝑈 |) vertices and edges. Setting (𝑎, 𝑏) =
(5, 1) in the lemma above gives the conditional lower bound on

fully dynamic average-linkage HAC stated in Theorem 6.2.

7 Conclusion
In this paper, we gave a fully dynamic MSF algorithm that processes

a batch of 𝑘 updates in 𝑂 (𝑘 log6 𝑛) expected amortized work and

𝑂 (log3 𝑛 log𝑘) span w.h.p. This gives a batch-dynamic algorithm

that can answer queries about single-linkage graph HAC clusters.

We also showed that graph HAC requires polynomial query or

update time for other common linkage functions unless we can

break long-standing computational complexity conjectures. This

suggests that future work on dynamic HAC algorithms for these

linkage functions may wish to avoid targeting worst-case inputs.

For future work, it would be desirable to reduce the running time

of the MSF algorithm further. Can we match the 𝑂 (𝑘 log4 𝑛) work
of the sequential HDTMSF algorithm? Can we match the𝑂 (log3 𝑛)
span of of Acar et al.’s best dynamic connectivity bounds? It would

also be interesting to design practical implementations of our MSF

algorithm. Finally, it would be interesting to find restricted input

classes on which we can break the lower bounds shown in this

paper.
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A Relative quantile summaries
A.1 Description
In this section, we describe Zhang and Wang’s mergeable relative

quantile summary and give proofs of correctness since Zhang and

Wang’s paper omits several proofs [54]. Some details are changed

in the quantile summaries to make our proofs work.

The quantile summaries discussed here are all of a particular

form. Each summary 𝑄 =
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subset of 𝑆 with 𝑞1 = min(𝑆) and 𝑞 |𝑄 | = max(𝑆). The subset is

simply stored as a length-|𝑄 | array. For each 𝑞 ∈ 𝑄 , we maintain

two integers rmin(𝑞;𝑄) and rmax(𝑞;𝑄) bounding the rank of 𝑞 in

𝑆 , i.e., rank(𝑞; 𝑆) ∈ [rmin(𝑞;𝑄), rmax(𝑞;𝑄)]. (We omit the second

argument of rmin(·; ·) and rmax(·; ·) when it is clear from context.)

We always maintain the minimum and maximum ranks exactly:

rmin and rmax are 1 for 𝑞1 and are |𝑆 | for 𝑞 |𝑄 | . We can assume that

rmin and rmax are each strictly increasing with respect to their first

arguments—it is easy to adjust them to be strictly increasing if not.

The elements of𝑄 , the values rmin(·;𝑄), and the values rmax(·;𝑄)
are each stored in a length-|𝑄 | array.

The following lemma shows that if consecutive elements in 𝑄

are close together, then 𝑄 can answer the approximate quantile

queries described in Section 4.1.

Lemma A.1. Given a summary 𝑄 of the above form, suppose that
for all 𝑖 ∈ {1, 2, . . . , |𝑄 | − 1} that

rmax(𝑞𝑖+1) − rmin(𝑞𝑖 ) ≤ max

{
2𝜀 rmin(𝑞𝑖 )

1 − 𝜀 , 1

}
. (3)

Then 𝑄 is a 𝜀-approximate relative quantile summary where queries
can be answered in 𝑂 (log|𝑄 |) work.

We will refer to quantile summaries satisfying Equation (3) as

ZW summaries. To prove that Lemma A.1 is true, we need to give an

algorithm for answering queries on ZW summaries. The algorithm

is given in Algorithm 5, and we discuss its correctness in the proof

of Lemma A.1 that immediately follows.

Algorithm 5 The algorithm for answering query for rank 𝑟 on an 𝜀-approximate ZW

summary𝑄 .

1: procedureQuery(𝑄, 𝑟 )

2: return Largest 𝑞 ∈ 𝑄 such that rmax(𝑞;𝑄) ≤ 𝑟 (1 + 𝜀) ⊲ Binary search

Proof of Lemma A.1. The proof is similar to the proof for a

similar lemma for uniform quantile summaries by Greenwald and

Khanna [27].

Suppose we are given a query rank 𝑟 ∈ [1, |𝑆 |] where 𝑆 is the

set that 𝑄 represents. Assuming that [𝑟 (1 − 𝜀), 𝑟 (1 + 𝜀)] contains
an integer, we want to return some element 𝑦 such that rank(𝑦) ∈
[𝑟 (1−𝜀), 𝑟 (1+𝜀)]. The strategy will be to find some 𝑞𝑖 ∈ 𝑄 such that

[rmin(𝑞𝑖 ), rmax(𝑞𝑖 )] ⊆ [𝑟 (1− 𝜀), 𝑟 (1 + 𝜀)]. Then we will be able to

return 𝑞𝑖 as the answer since rank(𝑞𝑖 ) ∈ [rmin(𝑞𝑖 ), rmax(𝑞𝑖 )].
We run Algorithm 5, which binary searches in rmax(·;𝑄) for

the largest index 𝑖 such that rmax(𝑞𝑖 ) ≤ 𝑟 (1 + 𝜀) and returns 𝑞𝑖 .

Such an index always exists since rmax(𝑞1) = 1 ≤ 𝑟 < 𝑟 (1 + 𝜀).
To achieve [rmin(𝑞𝑖 ), rmax(𝑞𝑖 )] ⊆ [𝑟 (1 − 𝜀), 𝑟 (1 + 𝜀)] as desired, it
only remains to prove that 𝑟 (1 − 𝜀) ≤ rmin(𝑞𝑖 ).

If 𝑖 = |𝑄 |, then rmin(𝑞𝑖 ) = |𝑆 | ≥ 𝑟 > 𝑟 (1 − 𝜀). Then we are

done. If 𝑖 < |𝑄 |, by choice of 𝑖 , we know that rmax(𝑞𝑖+1) > 𝑟 (1+ 𝜀).
Assume for contradiction that 𝑟 (1 − 𝜀) > rmin(𝑞𝑖 ). Then

rmax(𝑞𝑖+1) − rmin(𝑞𝑖 ) > 𝑟 (1 + 𝜀) − 𝑟 (1 − 𝜀) = 2𝜀𝑟 >
2𝜀 rmin(𝑞𝑖 )

1 − 𝜀 .

(4)

Comparing this against Equation (3), we must be in the case where

rmax(𝑞𝑖+1) − rmin(𝑞𝑖 ) ≤ 1. Then

rmin(𝑞𝑖 ) < 𝑟 (1 − 𝜀) < 𝑟 (1 + 𝜀) < rmax(𝑞𝑖+1) ≤ rmin(𝑞𝑖 ) + 1.
This is impossible since it shows that there is no integer between

𝑟 (1 − 𝜀) and 𝑟 (1 + 𝜀). Hence we have a contradiction—we indeed

have [rmin(𝑞𝑖 ), rmax(𝑞𝑖 )] ⊆ [𝑟 (1 − 𝜀), 𝑟 (1 + 𝜀)] and can return 𝑞𝑖
as our answer. □

Proof of Lemma 4.2. Queries are answered by binary search

(Algorithm 5) in 𝑂 (log|𝑄 |) work. Fetching min(𝑆) takes 𝑂 (1) time

because the first element of𝑄 is alwaysmin(𝑆) by construction. □

Lemma A.2. Given a set 𝑆 of 𝑛 elements, we can construct an 𝜀-
approximate ZW summary 𝑄 that summarizes 𝑆 and consists of
𝑂 (log(𝜀𝑛)/𝜀) elements from 𝑆 .

Proof. For simplicity, assume 1/𝜀 is an integer. Put all elements

from 𝑆 of rank less than 1/𝜀 into 𝑄 . Then consider the intervals

[2𝑖−1/𝜀, 2𝑖/𝜀) for 𝑖 ∈ {1, 2, . . . , log(𝜀𝑛)}. For interval [2𝑖−1/𝜀, 2𝑖/𝜀),
put the elements of rank 2

𝑖−1/𝜀 + 2𝑖−1 𝑗 into 𝑄 for each 𝑗 ∈ {0,
1, 2, . . . , 1/𝜀 − 1}. Finally, put the maximum of 𝑆 into 𝑄 . For each

element 𝑞 in 𝑄 , set rmin(𝑞) and rmax(𝑞) to be the rank of 𝑞. The

size of 𝑄 is (log(𝜀𝑛) + 1)/𝜀.
To see that this summary is indeed 𝜀-approximate, we want to

show that it satisfies Equation (3). Consider consecutive elements

𝑞𝑘 and 𝑞𝑘+1 in𝑄 . If rank(𝑞𝑘 ) < 1/𝜀 then rank(𝑞𝑘+1) = rank(𝑞𝑘 )+1,
so rmax(𝑞𝑘+1) −rmin(𝑞𝑘 ) ≤ 1. Otherwise, the rank of 𝑞𝑘 is in some

interval [2𝑖−1/𝜀, 2𝑖/𝜀), and the rank of 𝑞𝑘+1 is rank(𝑞𝑘 ) +2𝑖−1. Then
rmax(𝑞𝑘+1) − rmin(𝑞𝑘 ) = rank(𝑞𝑘+1) − rank(𝑞𝑘 ) = 2

𝑖−1

≤ 𝜀 rank(𝑞𝑘 ) <
2𝜀 rmin(𝑞𝑘 )

1 − 𝜀 .

In either case we have satisfied Equation (3). □

To combine two ZW summaries𝑄1 and𝑄2 over non-overlapping

sets 𝑆1 and 𝑆2 into a new summary over 𝑆1 ∪ 𝑆2, we can merge 𝑄1

and 𝑄2. Then, if we need to shrink the space usage of the resulting

summary, we can prune it.

Lemma A.3 ([54]). Given 𝜀-approximate ZW summaries 𝑄1 and
𝑄2 representing sets 𝑆1 and 𝑆2, we can merge the summaries into an
𝜀-approximate ZW summary 𝑄 of size |𝑄1 | + |𝑄2 | that represents set
𝑆1 ∪ 𝑆2.

Proof. As described by Zhang and Wang, we construct 𝑄 by

merging 𝑄1 and 𝑄2 in sorted order [54]. To set rmin(𝑞;𝑄) and
rmax(𝑞;𝑄) for some 𝑞 ∈ 𝑄 , suppose that 𝑞 ∈ 𝑄1 (the other case is

symmetric). Let 𝑠 be the largest element of 𝑄2 smaller than 𝑞 and

let 𝑡 be the smallest element of 𝑄2 larger than 𝑞. Then set

rmin(𝑞;𝑄) =
{
rmin(𝑞;𝑄1) + rmin(𝑠;𝑄2) if 𝑠 exists,

rmin(𝑞;𝑄1) otherwise,

rmax(𝑞;𝑄) =
{
rmax(𝑞;𝑄1) + rmax(𝑡 ;𝑄2) − 1 if 𝑡 exists,

rmax(𝑞;𝑄1) + rmax(𝑠;𝑄2) otherwise.

This algorithm is the same as the merge algorithm Greenwald

and Khanna described for uniform approximate quantile summaries,

and the analysis showing that this algorithm satisfies Equation (3)

is essentially the same as Greenwald and Khanna’s proof of cor-

rectness [28]. □

Lemma A.4. Given a positive integer 𝐵 > 0 and an 𝜀-approximate
ZW summary𝑄 ′ over a set of 𝑛 elements, we can prune it to construct
a new (𝜀 + 1/𝐵)-approximate ZW summary𝑄 of size𝑂 (𝐵 log(𝑛/𝐵))
over the same set.
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Proof. First, consider the ranks [𝐵, 𝑛] by partitioning it into the
intervals [2𝑖−1𝐵, 2𝑖𝐵) for each 𝑖 ∈ {1, 2, . . . , log(𝑛/𝐵)}. In interval

[2𝑖−1𝐵, 2𝑖𝐵), query for rank 2𝑖−1 (𝐵+ 𝑗) in𝑄 ′ for 𝑗 ∈ {0, 1, . . . , 𝐵 − 1}.
The query algorithm (Algorithm 5) guarantees non-decreasing el-

ements over the calls. Place each unique element in 𝑄 , and place

max(𝑄 ′) into 𝑄 as well if it has not already been inserted.

Now consider the result of querying for 𝐵, giving the smallest

element 𝑏 in 𝑄 so far. Take all elements of 𝑄 ′ less than 𝑏 and place

them in the front of𝑄 . Since the rank of 𝑏 is at most 𝐵(1 + 𝜀), there
are at most 𝐵(1 + 𝜀) = 𝑂 (𝐵) such elements.

Finally, for each 𝑞 ∈ 𝑄 , set rmin(𝑞;𝑄) := rmin(𝑞;𝑄 ′) and
rmax(𝑞;𝑄) := rmax(𝑞;𝑄 ′). This summary𝑄 has size𝑂 (𝐵 log(𝑛/𝐵)).

We want to show that𝑄 satisfies Equation (3) with error 𝜀 + 1/𝐵.
The elements 𝑞 ∈ 𝑄 such that 𝑞 ≤ 𝑏 are a prefix of 𝑄 ′ that satisfy
Equation (3) with error 𝜀, so they certainly also satisfy the con-

straint with error 𝜀 + 1/𝐵. For elements greater than 𝑏, consider

a pair of consecutive elements 𝑥 and 𝑦 in 𝑄 . There is some 𝑟 and

integer 𝑖 such that 𝑟 ∈ [2𝑖−1𝐵, 2𝑖𝐵), that querying 𝑟 resulted in 𝑥 ,

and that querying 𝑟 + 2𝑖−1 resulted in 𝑦. The query implementa-

tion guarantees that [rmin(𝑥), rmax(𝑥)] ⊆ [𝑟 (1 − 𝜀), 𝑟 (1 + 𝜀)] and
[rmin(𝑦), rmax(𝑦)] ⊆ [(𝑟 + 2𝑖−1) (1 − 𝜀), (𝑟 + 2𝑖−1) (1 + 𝜀)]. Then

rmax(𝑦) − rmin(𝑥) ≤ (𝑟 + 2𝑖−1) (1 + 𝜀) − 𝑟 (1 − 𝜀)
= 2𝜀𝑟 + 2𝑖−1 (1 + 𝜀) ≤ 2𝜀𝑟 + (𝑟/𝐵) (1 + 𝜀) < 2𝜀𝑟 + 2𝑟/𝐵

= 2(𝜀 + 1/𝐵)𝑟 ≤ 2(𝜀 + 1/𝐵) rmin(𝑥)
1 − 𝜀 <

2(𝜀 + 1/𝐵) rmin(𝑥)
1 − (𝜀 + 1/𝐵) ,

satisfying the constraint with error 𝜀 + 1/𝐵. Hence 𝑄 is a ZW sum-

mary with error 𝜀 + 1/𝐵. □

A.2 Parallel algorithms
This section describes parallel algorithms for ZW summaries. As

subroutines, we use parallel algorithms for merging sorted arrays,

computing prefix sums, and filtering, all of which can be done in

𝑂 (𝑚) work and 𝑂 (log𝑚) span over length-𝑚 arrays [11].

Proof of Lemma 4.1. The proof of Lemma A.2 shows that con-

structing a ZW summary just consists of finding 𝑂 (log(𝜀𝑛)/𝜀) ele-
ments by rank. □

Lemma A.5. Given two ZW summaries with a total size of𝑚, merg-
ing them as described in Lemma A.3 can be done in 𝑂 (𝑚) work and
𝑂 (log𝑚) span.

Proof. Let 𝑄1 and 𝑄2 be the summaries to be merged. Follow-

ing the algorithm given in the proof of Lemma A.3, use a parallel

algorithm for merging sorted arrays to combine 𝑄1 and 𝑄2 into an

output 𝑄 . When merging, keep track of whether each element is

from 𝑄1 or 𝑄2.

To compute rmin(·;𝑄) values, each element in 𝑄1 must deter-

mine its predecessor in 𝑄2. Create an array 𝐴 of size |𝑄 |. For each
index 𝑖 ∈ {1, 2, . . . , |𝑄 |}, set𝐴[𝑖] to 1 if the 𝑖-th element of𝑄 is from

𝑄2 and to 0 otherwise. Then compute a prefix sum over 𝐴 to obtain

a list of sums 𝑆 . Now for any 𝑖 , if the 𝑖-th element 𝑞𝑖 of 𝑄 is from

𝑄1, then the 𝑆 [𝑖]-th entry of𝑄2 is the predecessor of 𝑞𝑖 . As a result,

we can now compute rmin(𝑞;𝑄) for all 𝑞 in𝑄1. Similar logic allows

us to compute the rest of rmin(·;𝑄) and rmax(·;𝑄).
All of this takes 𝑂 ( |𝑄1 | + |𝑄2 |) work and 𝑂 (log( |𝑄1 | + |𝑄2 |))

span. □

LemmaA.6. Given a ZW summary of size𝑚, pruning it as described
in Lemma A.4 can be done in 𝑂 (𝑚) work and 𝑂 (log𝑚) span.

Proof. Given an 𝜀-approximate summary 𝑄 of size𝑚 and a pa-

rameter𝐵, the core part of pruning is to compute𝑘 = 𝑂 (𝐵 log(𝑛/𝐵))
rank queries in parallel efficiently. If 𝑘 > 𝑚 then we should just

return 𝑄 as it is already small enough.

Otherwise, consider the set of rank queries {𝑟1, ..., 𝑟𝑘 } that we
want to compute. A query for rank 𝑟𝑖 consists of binary searching for

the location of 𝑟𝑖 (1+𝜀) in rmax(·;𝑄) to get the largest element𝑞 (𝑖) ∈
𝑄 such that rmax(𝑞 (𝑖) ) ≤ 𝑟𝑖 (1 + 𝜀) (Algorithm 5). We can batch all

the searches together by creating a 𝑘-length array 𝐴 containing

query value 𝑟𝑖 (1 + 𝜀) for all 𝑖 and performing a parallel merge of 𝐴

with rmax(·;𝑄) to get an output array𝑀 . Then for each 𝑟𝑖 (1 + 𝜀) ∈
𝑀 , its predecessor in𝑀 will either be 𝑞 (𝑖) or be 𝑟𝑖−1 (1 + 𝜀). If it is
𝑞 (𝑖) , then we can complete the corresponding query, and otherwise

the query can be discarded since it will have the same result as

the query on rank 𝑟𝑖−1. The results of the queries can be written

into a new array𝐶 , and filtering all successful queries from𝐶 gives

the output summary. Merging and filtering takes 𝑂 (𝑚) work and

𝑂 (log𝑚) span. □

Proof of Lemma 4.3. Merge 𝑄1 and 𝑄2 in parallel into an 𝜀-

approximate summary using Lemma A.5. Then, apply Lemma A.6

to prune the result to size𝑂 (𝑏 log(𝑛/𝑏) at the cost of 1/𝑏 additional
error using Lemma A.6. □

B Tighter batch-decremental MSF work bound
This section describes how to get the bound of 𝑂 (log3 𝑛 log(1 +
𝑛/Δ)) expected amortized work per edge for the batch-decremental

MSF algorithm in Theorem 4.5, where Δ denotes the average dele-

tion batch size.

We use two lemmas given by Acar et al. [2]:

Lemma B.1. For any non-negative integers 𝑛 and 𝑟 ,
𝑟∑︁

𝑤=0

2
𝑤
log

(
1 + 𝑛

2
𝑤

)
= 𝑂

(
2
𝑟
log

(
1 + 𝑛

2
𝑟

))
Lemma B.2. For any 𝑛 ≥ 1, the function 𝑥 log(1 + 𝑛/𝑥) is strictly
increasing with respect to 𝑥 for 𝑥 ≥ 1.

Now we analyze the cost of searching for replacement edges in

the batch-decremental MSF algorithm.

Lemma B.3. The expected work of searching for replacement edges
on one HDT level for the batch-decremental MSF algorithm is

𝑂

(
𝑘 log2 𝑛 log

(
1 + 𝑛

𝑘

)
+ 𝑝 log2 𝑛 log

(
1 + 𝑛

𝑝

))
where 𝑘 is the batch size and 𝑝 is the number of edges pushed down
to the next HDT level during the search.

Proof. Let ℓ be the HDT level that we are searching. The work

of the replacement edge search process is dominated by inserting

found replacement edges into the level-ℓ ETT and by updating the

level-(ℓ − 1) ETT when pushing edges. By deferring pushing edges

to the end of the replacement search at level ℓ when we have found

all 𝑝 edges that should be pushed, we update the level-(ℓ − 1) ETT
with one operation that costs 𝑂 (𝑝 log2 𝑛(1 + 𝑛/𝑝)) expected work.
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Inserting edges into the level-ℓ ETT, on the other hand, occurs on

each round within the replacement search on this level. There are

𝑂 (log𝑘) rounds, and in each round, we search for a replacement

edge out of every “active” component, i.e., each component that still

has incident edges to search and that has size at most 2
ℓ−1

. At most

half as many components will be active on each subsequent round

because the worst case is when the replacement edges discovered

in a round pair the components off. The number of edges inserted

in a round is bounded by the number of active components, and on

the first round, there are at most 2𝑘 active components. Therefore,

on round 𝑖 , the number of edges 𝑘𝑖 inserted into the ETT is at most

𝑘𝑖 ≤ 4𝑘2−𝑖 . The work of insertions across all 𝑂 (log𝑘) rounds is
then proportional to

𝑂 (log𝑘)∑︁
𝑖=1

𝑘𝑖 log
2 𝑛 log

(
1 + 𝑛

𝑘𝑖

)
≤

𝑂 (log𝑘)∑︁
𝑖=1

4𝑘2−𝑖 log2 𝑛 log
(
1 + 𝑛

4𝑘2−𝑖

)
= 𝑂

(
4𝑘 log2 𝑛 log

(
1 + 𝑛

4𝑘

))
= 𝑂

(
𝑘 log2 𝑛 log

(
1 + 𝑛

𝑘

))
,

where Lemma B.2 provides the inequality and Lemma B.1 provides

the first equality.

The expected work from inserting replacement edges and push-

ing edges is then𝑂 (𝑘 log2 𝑛 log(1+𝑛/𝑘)+𝑝 log2 𝑛 log(1+𝑛/𝑝)). □

Similar to the above lemma minus a multiplicative factor of

𝑂 (log2 𝑛), Acar et al. [2] prove in Lemma 4.5 of their paper that

the expected work of searching for replacement edges on one HDT

level for their “interleaved” connectivity algorithm is 𝑂 (𝑘 log(1 +
𝑛/𝑘) + 𝑝 log(1 + 𝑛/𝑝)) where 𝑘 is the batch size and 𝑝 is the num-

ber of pushed edges. Acar et al. then use their lemma to show in

Theorem 4.7 of their paper that their interleaved connectivity al-

gorithm achieves 𝑂 (log𝑛 log(1 + 𝑛/Δ)) expected amortized work

per edge by summing the work of replacement searches across all

HDT levels and all batches of deletions. We can apply the same

analysis as Acar et al.’s Theorem 4.7 to get the same work plus a

multiplicative factor of 𝑂 (log2 𝑛) for our batch-decremental MSF

algorithm, i.e.,𝑂 (log3 𝑛 log(1+𝑛/Δ)) expected amortized work per

edge, as desired.

C Dynamic HAC dendrogram
counterexamples

The canonical output for HAC is a dendrogram representing the

hierarchy of clusters. A natural question for dynamic graph HAC

is whether we can maintain the dendrogram dynamically. In this

section, we show examples where an edge update causes Ω(𝑛)
changes in the dendrogram. Explicitly maintaining the dendrogram

dynamically therefore seems inefficient in the worst case. Here we

assume a dendrogram is represented a binary tree (for each con-

nected component of the graph) with labeled leaves, and changes

in a dendrogram mean changes in the parent or child pointers of a

dendrogram node.

(a) Graph

0 1 2 3 4 5

(b) Dendrogram without edge {2, 3}

0 1 2 3 4 5

(c) Dendrogram with edge {2, 3}
Figure 4: Example of a graphwhose single-linkageHAC dendrogram changes
a lot if an edge is added.

(a) Graph

5 0 2 1 4 3

(b) Dendrogram without edge {0, 5}

5 0 2 4 1 3

(c) Dendrogram with edge {0, 5}
Figure 5: Example of a graph whose HAC dendrogram under complete link-
age or weighted average linkage changes a lot if an edge is added.

C.1 Single linkage
Let 𝑛 ∈ N be even. Consider a graph consisting of two star graphs

of 𝑛/2 vertices. In one star, the edge weights are 1, 3, 5, . . . , 𝑛 − 3,
and in the other star, the edge weights are 2, 4, 6, . . . , 𝑛 − 2.

Adding an edge of weight 𝑛 − 1 between the centers of the two

stars causes Θ(𝑛) changes to the dendrogram. Figure 4 shows this

graph with 𝑛 = 6 along with its dendrograms. Without the weight-

(𝑛− 1) edge, the dendrogram consists of two binary trees with long

spines. In one of the stars, consider any vertex 𝑣 whose incident

edge’s weight is𝑤 < 𝑛 − 3, and let 𝑢 be the vertex whose incident

edge’s weight is 𝑤 + 2, e.g., we could pick 𝑣 = 0 and 𝑢 = 1 in

Figure 4. In the dendrogram, 𝑣 ’s parent’s other child is the parent

of 𝑢. With the weight-(𝑛 − 1) edge added, however, the two binary

trees “interleave”, and 𝑣 ’s parent’s other child is no longer the parent

of 𝑢. Therefore, either 𝑣 ’s parent changed, 𝑢’s parent changed, or

𝑣 ’s parent’s child changed. This is true for any of the Θ(𝑛) choices
of 𝑣 . Moreover, no two vertices share parents, so changes to one

vertex’s parent’s child do not overlap with changes to another

vertex’s parent’s child. This shows that the number of changes in

the dendrogram caused by the addition of the weight-(𝑛 − 1) edge
is indeed Θ(𝑛).
C.2 Complete and weighted average linkage
Let 𝑘 ∈ N. Create a graph on 𝑛 = 2𝑘+2 vertices. For 𝑖 ∈ {1, 2, . . . , 𝑘},
add edge {0, 𝑖} with weight 3𝑘 + 𝑖 , edge {𝑖, 𝑘 + 𝑖} with weight 2𝑘 + 𝑖 ,
and edge {𝑖, 𝑛 − 1} with weight 1.
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Figure 6: Example of a graph whose average-linkage HAC dendrogram an
edge is added.

(a) A vertex 𝑣 with two
neighbors in an Sub-
Conn instance.

(b) The corresponding HAC instance adds a vertex
𝑣′.

Figure 7: The figure displays the extra vertex and edges added for a particular
vertex 𝑣 in Lemma D.1’s reduction from SubConn to complete-linkage HAC.

Adding an edge of weight 4𝑘 + 1 between vertices 0 and 𝑛 − 1
producesΘ(𝑛) changes in the dendrogram.With the weight-(4𝑘+1)
edge, for all 𝑖 ∈ {1, 2, . . . , 𝑘}, vertices 𝑖 and 𝑘 + 𝑖 directly merge with

each other. Therefore, vertices 𝑖 and 𝑘 + 𝑖 have the same parent in

the dendrogram.Without the edge, each vertex successively merges

as a singleton cluster with vertex 0’s cluster. Then no vertices have

the same parent in the dendrogram besides vertices 0 and 𝑛 − 1.
C.3 Average linkage
The construction is similar to the graph given for complete and

weighted average linkage in Appendix C.2. Let 𝑘 ∈ N. Create a

graph on 𝑛 = 4𝑘 + 1 vertices. For 𝑖 ∈ {1, 2, . . . , 𝑘}, add edge {0, 𝑖}
with weight 2𝑘2 + 𝑖 and edge {𝑖, 𝑘 + 𝑖} with weight 𝑘 + 𝑖 . For 𝑖 ∈
{2𝑘 + 1, 2𝑘 + 2, 2𝑘 + 3, . . . , 4𝑘 − 1}, add edge {𝑖, 𝑛 − 1} with weight

8𝑘3.

Adding an edge of weight 8𝑘3 between vertices 0 and 𝑛 − 1

produces Θ(𝑛) changes to the dendrogram. Figure 6 shows the

graph with 𝑘 = 2. As in Appendix C.2, with the extra edge, vertices

1 through 2𝑘 merge as pairs, whereas without the extra edge, those

vertices merge as singleton clusters with vertex 0.

D HAC lower bounds
This section contains deferred proofs of the lower bounds stated in

Section 6.3.

To complete the proof of Theorem 6.1, we give a reduction from

SubConn to complete-linkage HAC.

Lemma D.1. [Part of Theorem 6.1] Let 𝜆 ∈ [1, poly(𝑛)]. Suppose
we can solve dynamic / incremental / decremental 𝜆-approximate
complete-linkage HAC 𝑝 (𝑚,𝑛) preprocessing work, 𝑢 (𝑚,𝑛) update
work, and𝑞(𝑚,𝑛) query work. Then we can solve dynamic / decremen-
tal / incremental SubConn with 𝑂 (𝑚) + 𝑝 (𝑂 (𝑚),𝑂 (𝑛)) processing
work, 𝑢 (𝑂 (𝑚),𝑂 (𝑛)) update work, and 𝑞(𝑂 (𝑚),𝑂 (𝑛)) query work.
The same relationship is also true between #HAC and ConnSub.

Proof. Suppose we are given an unweighted graph 𝐺 = (𝑉 , 𝐸)
and we want to solve SubConn, maintaining some subset of vertices

𝑆 , using HAC. Define 𝜆′ = 𝜆 + 1 and set 𝜃 = 𝜆′.
Preprocessing: Construct a new, weighted graph 𝐺 ′ by copying

𝐺 and giving every edge a weight of 𝜆′. For every 𝑣 ∈ 𝑉 , create
a vertex 𝑣 ′ and add it to 𝐺 ′. Create weight-1 edges by from 𝑣 ′ to
each neighbor in 𝑁 (𝑣), and then connect 𝑣 to 𝑣 ′ with weight 𝜆′2 if

𝑣 ∈ 𝑉 \ 𝑆 . Figure 7 illustrates this construction. The new graph 𝐺 ′

has 2𝑛 vertices and at most 2𝑚 + 𝑛 edges. Initialize dynamic HAC

on graph 𝐺 ′ with 𝜃 = 𝜆′

Update: Simulate inserting a vertex 𝑣 into 𝑆 by removing edge

{𝑣, 𝑣 ′}, and simulate deletion by adding edge {𝑣, 𝑣 ′} with weight

𝜆′2.
Query: If we are reducing SubConn to HAC, return whether 𝑠

and 𝑡 are in the same cluster given similarity threshold 𝜃 . If we are

reducing ConnSub to #HAC, then return whether the number of

clusters is |𝑉 \ 𝑆 | + 1.
Correctness: Consider running HAC until similarity threshold

𝜃 . First, all the weight-𝜆′2 edges merge, leaving each 𝑣 ∈ 𝑉 \ 𝑆 in
a cluster {𝑣, 𝑣 ′} that only has incident edges of weight 1. These

clusters do not participate in any more merges. The remaining

vertices 𝑣 ∈ 𝑆 cluster into their connected components in the

subgraph induced by 𝑆 . □

We can similarly reduce SubConn to average-linkage HAC, albeit

with worse bounds:

Lemma D.2. Let 𝜆 ∈ [1, poly(𝑛)]. Suppose we can solve dynamic
/ incremental / decremental 𝜆-approximate average-linkage HAC
𝑝 (𝑚,𝑛) preprocessing work, 𝑢 (𝑚,𝑛) update work, and 𝑞(𝑚,𝑛) query
work. Then, with𝑚′ and 𝑛′ being 𝑂 (𝜆𝑛3), we can solve dynamic /
decremental / incremental SubConn with 𝑂 (𝑚′) + 𝑝 (𝑂 (𝑚′),𝑂 (𝑛′))
preprocessingwork,𝑢 (𝑂 (𝑚′),𝑂 (𝑛′)) update work, and𝑞(𝑂 (𝑚′),𝑂 (𝑛′))
query work. The same relationship is also true between #HAC and
ConnSub.

Proof. Preprocessing: Construct a new, weighted graph 𝐺 ′ by
copying 𝐺 and giving every edge a weight of 1. Add a star graph

to 𝐺 ′ consisting of a new center vertex 𝑥 and 𝜆𝑛3 − 1 leaves with
weight-2𝜆2𝑛3 edges. Add a weight-2𝜆2𝑛3 edge from 𝑥 to each 𝑣 ∈
𝑉 \ 𝑆 . Initialize dynamic HAC on 𝐺 ′ with 𝜃 = 4/𝑛2.

Update and query: Simulate inserting or removing a vertex 𝑣 in

𝑆 by removing or adding the weight-2𝜆2𝑛3 edge {𝑥, 𝑣}. Querying
is the same as 𝐿𝑒𝑚𝑚𝑎 𝐷.1 with 𝜃 = 4/𝑛2.

Correctness: The weight-2𝜆2𝑛3 edges have such high weight

that they merge before any weight-1 edge. After that, 𝑥 ’s cluster

𝐶𝑥 contains𝑉 \𝑆 and has size |𝑉 \ 𝑆 | +𝜆𝑛3. The similarity between

𝑥 ’s cluster 𝐶𝑥 and another cluster 𝐶 is at most

|𝑉 \ 𝑆 | |𝐶 |
( |𝑉 \ 𝑆 | + 𝜆𝑛3) |𝐶 |

<
𝑛

2𝜆𝑛3
=

1

2𝜆𝑛2
<
𝜃

𝜆

with the numerator on the left-hand side representing the worst

case where every vertex of 𝑉 \ 𝑆 has an edge to every vertex of

𝐶 . Therefore, 𝐶𝑥 experiences no more merges when clustering

until threshold 𝜃 . The smallest similarity between any two adjacent

clusters in the subgraph induced by 𝑆 , on the other hand, is at least

4/𝑛2 = 𝜃 (achieved by having two clusters of 𝑛/2 vertices each and

only one edge 𝑒 ∈ 𝐸 crossing their cut), so adjacent clusters will

merge. The subgraph induced by 𝑆 hence merges into its connected

components. □

The cubic preprocessing work in Lemma D.2 is too high to

achieve lower bounds conditional on triangle detection hardness

or 3SUM hardness, but it does allow lower bounds conditional on

online Boolean matrix-vector multiplication (OMv) hardness.
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In the OMv problem, we are given an 𝑛-by-𝑛 Boolean matrix

𝑀 and 𝑛 column vectors 𝑣1, . . . , 𝑣𝑛 ∈ {0, 1}𝑛 one-by-one. For each

𝑖 ∈ {1, ..., 𝑛}, we must output𝑀𝑣𝑖 over the Boolean semiring, and

we cannot see 𝑣 𝑗 for any 𝑗 > 𝑖 until we output 𝑀𝑣𝑖 . The OMv
hardness conjecture is that solving OMv with an error probability

of at most 1/3 requires Ω(𝑛3−𝑜 (1) ) work [31].

Theorem D.3. Suppose for 𝜀 > 0 and 𝑐 ∈ [0, 1) that we can solve
dynamic / partially dynamic 𝑂 (𝑛𝑐 )-approximate average-linkage
HAC with poly(𝑛) preprocessing work, 𝑂 (𝑛 (1−𝑐)/6−𝜀 ) amortized /
worst-case update work, and 𝑂 (𝑛 (1−𝑐)/3−𝜀 ) query work. Then the
OMv hardness conjecture is false.

Proof. Fix arbitrary 𝑐 ∈ [0, 1) and suppose we had an 𝑛′𝑐 -
approximate (on inputs with 𝑛′ vertices) HAC algorithm matching

the work bounds described in the theorem. Then if we were given

an 𝑠𝑡-SubConn instance with 𝑛 vertices and𝑚 edges, we can apply

the construction from Lemma D.2 with 𝜆 = Θ(𝑛3𝑐/(1−𝑐) ) to get

a 𝜆-approximate average-linkage HAC instance over a graph 𝐺 ′

with𝑚′ and 𝑛′ being 𝑂 (𝜆𝑛3) = 𝑂 (𝑛3/(1−𝑐) ) and 𝜆 ≥ 𝑛′𝑐 . Then we

can solve the instance with our 𝑛′𝑐 -approximate HAC algorithm

with poly(𝑛) preprocessing work, 𝑂 (𝑛1/2−Ω (1) ) update work, and
𝑂 (𝑛1−Ω (1) ) query work. Henzinger et al. show that such a fast

algorithm for 𝑠𝑡-SubConn is impossible conditional on OMv hard-

ness [31]. □

Lemma D.2 also implies a lower bound on average-linkage #HAC

conditional on OMv hardness since Henzinger et al.’s [31] construc-

tion that reduces OMv to 𝑠𝑡-SubConn also works for ConnSub,

but we can get a stronger lower bound by a different reduction.

Henzinger et al. prove the hardness of 𝑠𝑡-SubConn conditional on

OMv hardness by proving that it suffices to reduce a related prob-

lem called 1-uMv to 𝑠𝑡-SubConn. In the reduction, Henzinger et

al. construct a bipartite graph 𝐺 and use 𝑠𝑡-SubConn to solve the

following problem: “activate” several vertices of 𝐺 on demand and

determine whether there is any edge connecting activated vertices.

Instead of 𝑠𝑡-SubConn, we can use average-linkage #HAC to solve

this bipartite graph problem and hence get a #HAC lower bound

conditional on OMv.

Similarly, Abboud and Vassilevska Williams prove the hardness

of 𝑠𝑡-SubConn conditional on triangle detection hardness by con-

structing a bipartite graph and solving the same problem of deter-

mining whether an edge in the bipartite graph connects activated

vertices [1]. We can then also get an average-linkage #HAC lower

bound conditional on triangle detection hardness.

The following theorem states the average-linkage #HAC lower

bound conditional on OMv.

Theorem D.4. Suppose for 𝜀 > 0 and 𝑐 ∈ [0, 1) that we can solve
dynamic / partially dynamic 𝑂 (𝑚𝑐 )-approximate average-linkage
#HAC with poly(𝑛) preprocessing work, 𝑂 (𝑚 (1−𝑐)/2−𝜀 ) amortized /
worst-case update work, and 𝑂 (𝑚1−𝑐−𝜀 ) query work. Then the OMv
hardness conjecture is false.

Proof. As discussed in the text above, we construct a bipartite

graph following Henzinger et al.’s reduction from 1-uMv to 𝑠𝑡-

SubConn. Then we want to use #HAC determine whether there is

any edge connecting activated vertices in the bipartite graph. We

omit the remainder of this proof because it is similar to the proofs

(a) Triangle detection
instance

(b) The corresponding HAC instance
Figure 8: On the left is an example graph, and on the right is the result of ap-
plying to the example graph the reduction from triangle detection to average-
linkage #HAC given by Lemma D.6.

of Theorem D.5 and Lemma D.6 for reducing triangle detection to

#HAC. □

We state the average-linkage #HAC lower bound conditional on

triangle detection hardness next. The triangle detection hardness
conjecture is that there is a constant 𝛿 > 0 such that any word-

RAM algorithm detecting whether an𝑚-edge graph has a triangle

requires Ω(𝑚1+𝛿−𝑜 (1) ) expected work [1]. (The best existing trian-

gle detection algorithms take𝑂 (min{𝑚2𝜔/(𝜔+1) , 𝑛𝜔 }) work where

𝑂 (𝑛𝜔 ) is the work to multiply 𝑛-by-𝑛 matrices [5, 35].)

Theorem D.5. Suppose for 𝛿 > 0, 𝜀 > 0, and 𝑐 ∈ [0, 1) that we can
solve one of the following problems with 𝑂 (𝑚 (1+𝛿) (1−𝑐)−𝜀 ) prepro-
cessing work, 𝑂 (𝑚𝛿 (1−𝑐)−𝜀 ) update work, and 𝑂 (𝑚2𝛿 (1−𝑐)−𝜀 ) query
work:
• fully dynamic 𝑂 (𝑚𝑐 )-approximate average-linkage #HAC with
the work bounds being amortized,
• incremental (on dense graphs) or decremental𝑂 (𝑚𝑐 )-approximate
average-linkage #HAC with the work bounds being worst-case.

Then the triangle detection hardness conjecture is false for this value
of 𝛿 .

We prove the above theorem by directly reducing triangle detec-

tion to average-linkage #HAC in the following lemma.

Lemma D.6. Let 𝜆 ∈ [1, poly(𝑛)]. Suppose that we can solve dy-
namic / decremental 𝜆-approximate average-linkage #HAC with pre-
processingwork 𝑝 (𝑚,𝑛), update work𝑢 (𝑚,𝑛), and querywork𝑞(𝑚,𝑛)
amortized / worst-case. Let𝑚′ = 𝑂 (𝜆𝑛 +𝑚) and 𝑛′ = 𝑂 (𝜆𝑛). Then
triangle detection can be solved in 𝑂 (𝑚 · 𝑢 (𝑚′, 𝑛′) + 𝑛 · 𝑞(𝑚′, 𝑛′) +
𝑝 (𝑚′, 𝑛′)) work. If we have an incremental algorithm instead with
worst-case work bounds, then triangle detection can be solved in
𝑂 (𝑛2 · 𝑢 (𝑚′, 𝑛′) + 𝑛 · 𝑞(𝑚′, 𝑛′) + 𝑝 (𝑚′, 𝑛′)) work.

Proof. Suppose we are given an unweighted graph 𝐺 = (𝑉 , 𝐸)
on which we want to detect a triangle. Following the construction

in Abboud and Vassilevska Williams’s reduction from triangle de-

tection to 𝑠𝑡-SubConn [1], we construct an (initially unweighted)

bipartite graph𝐺 ′ = (𝑉 ′ = 𝐴 ∪ 𝐵, 𝐸 ′) with partitions 𝐴 and 𝐵 such

that for each 𝑣 ∈ 𝑉 we create 𝑣𝐴 ∈ 𝐴 and 𝑣𝐵 ∈ 𝐵. For every edge

{𝑢, 𝑣} ∈ 𝐸, create edges {𝑢𝐴, 𝑣𝐵} and {𝑣𝐴, 𝑢𝐵}. Abboud and Vas-

silevska Williams remark that given an arbitrary vertex 𝑣 ∈ 𝑉 , if we
“activate” 𝑢𝐴 and 𝑢𝐵 for every neighbor 𝑢 of 𝑣 , then 𝑣 participates

in a triangle if there is an edge connecting two activated vertices.

Therefore, to detect whether the graph 𝐺 has a triangle, we can

iterate through each 𝑣 ∈ 𝑉 , activate 𝑣 ’s neighbors, check for an

edge between activated vertices, and deactivate 𝑣 ’s neighbors.
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We focus on the case of fully dynamic #HAC. To solve this

bipartite graph problem using #HAC, we give every existing edge in

𝐸 ′ a weight of 1. For each 𝑣 ∈ 𝐴∪𝐵, add a star graph to𝐺 ′ consisting
of a center vertex 𝑣 ′ and 𝜆 − 1 leaves with weight-(𝜆 + 1)2 edges.
Add a weight-(𝜆 + 1)2 edge {𝑣, 𝑣 ′} as well. Initialize #HAC on 𝐺 ′

with threshold 𝜃 = 1. We can “activate” a vertex 𝑣 by deleting edge

{𝑣, 𝑣 ′} and “deactivate” it by re-inserting the edge. The graph𝐺 ′ has
𝑚′ = 𝑂 (𝜆𝑛 +𝑚) edges and 𝑛′ = 𝑂 (𝜆𝑛) vertices. Figure 8 illustrates
this construction with 𝐺 being Figure 8a and 𝐺 ′ being Figure 8b.

To determine whether there is an edge between activated ver-

tices, query for the number of clusters if we cluster until threshold

𝜃 . If the number of clusters is |𝐴| + |𝐵 |, then there is no such edge,

otherwise there is such an edge. This is true because all deacti-

vated vertices merge with their corresponding star, and then their

incident edges fall below weight 1/𝜆 and hence are no longer con-

sidered when clustering until threshold 𝜃 = 1. If there are no edges

between two active vertices, then no more merges occur and we are

left with |𝐴| + |𝐵 | clusters. If there is an edge between two active

vertices, at least one of them will merge and we will be left with

fewer clusters.

The number of #HAC queries is𝑂 (𝑛) (once for each vertex in𝑉 ),

and the number of #HAC updates is 𝑂 (𝑚) (once for each neighbor

of each vertex in𝑉 , i.e., twice for each edge of 𝐸). The total work is

then 𝑂 (𝑚 · 𝑢 (𝑚′, 𝑛′) + 𝑛 · 𝑞(𝑚′, 𝑛′) + 𝑝 (𝑚′, 𝑛′)).
As Abboud and Vassilevska Williams note for the partially dy-

namic case, we cannot deactivate vertices by inserting edges if we

are considering decremental #HAC. Instead, we roll back the state

of the #HAC algorithm until the vertices are no longer activated.

This rolling back means that we can only analyze worst-case work

and not amortized work. For incremental #HAC, we initialize the

graph 𝐺 ′ to not have the edges of the form {𝑣, 𝑣 ′} (i.e., all vertices
are activated). When we are iterating over 𝑣 ∈ 𝑉 , instead of activat-

ing 𝑣 ’s neighbors, we deactivate its non-neighbors. This increases

the number of #HAC updates from 𝑂 (𝑚) to 𝑂 (𝑛2). □

Proof of Theorem D.5. Fix arbitrary 𝑐 ∈ [0, 1) and suppose we
had an𝑚′𝑐 -approximate (on inputs with𝑚′ edges) #HAC algorithm

matching the work bounds described in the theorem. Then given

a graph 𝐺 on 𝑛 vertices and 𝑚 ≥ 𝑛 edges upon which we want

to solve triangle detection, we can apply the construction from

Lemma D.6 with 𝜆 = Θ(𝑚𝑐/(1−𝑐) ) to get a 𝜆-approximate average-

linkage #HAC instance over a graph 𝐺 ′ with𝑚′ = 𝑂 (𝑚𝑐/(1−𝑐)𝑛 +
𝑚) ≤ 𝑂 (𝑚𝑐/(1−𝑐)𝑚) = 𝑂 (𝑚1/(1−𝑐) ) and with 𝜆 =𝑚′𝑐 . We apply a

𝑚′𝑐 -approximate #HAC algorithm to solve triangle detection via

Lemma D.6 in𝑂 (𝑚 ·𝑢 (𝑚′, 𝑛′) + 𝑛 · 𝑞(𝑚′, 𝑛′) + 𝑝 (𝑚′, 𝑛′)) work (for

fully dynamic and decremental #HAC; the analysis for incremental

#HAC swaps the𝑚 factor with 𝑛2 and hence only gives bounds on

dense graphs). Substituting in the bounds of the #HAC algorithm

and substituting 𝑚′ = 𝑂 (𝑚1/(1−𝑐) ) shows that we’ve solved tri-

angle detection in 𝑂 (𝑚1+𝛿−Ω (1) + 𝑛𝑚2𝛿−Ω (1) ) work. Abboud and

Vassilevska Williams provide a lemma showing that such a fast tri-

angle detection algorithm gives an 𝑂 (𝑚1+𝛿−Θ(1) ) work algorithm

for triangle detection [1]. □

Next, we move on to reductions from SubUnion. We finish the

proof of Lemma 6.4 by reducing partially dynamic SubUnion to

partially dynamic average-linkage HAC.

Figure 9: The figure illustrates the HAC instance constructed in Lemma D.7’s
reduction from SubUnion to complete-linkage HAC. For cleanliness, we do
not draw all the weight-1 edges from 𝑥 to each 𝑢 ∈ 𝑈 and from 𝑡 to each
𝑋𝑖 ∈ 𝑋 .

Continued proof of Lemma 6.4. If we want to reduce incre-

mental/decremental SubUnion to decremental/incremental average-

linkage HAC, the update strategy in the proof of Lemma 6.4 for

the fully dynamic case is invalid since we cannot add a weight-𝑤𝑦

edge and delete a weight-𝑤𝑥 edge (or vice versa).

Instead, we construct the same HAC instance as in the fully

dynamic case except that we make 𝑦 have edges to every 𝑋𝑖 ∈
𝑋 rather than only 𝑋𝑖 ∈ 𝑆 . When processing updates, we skip

modifying edges incident on 𝑦 and only add or remove the edges

incident on 𝑥 . Then we need to increase ℓ𝑥 so that 𝐶𝑥 and 𝐶𝑦 do

not merge with each other too early; we increase the constants as

follows:

ℓ𝑥 = 2|𝑋 |𝑤𝑦/(𝜆 + 1) = 𝑂 (𝜆8 |𝑈 |2 |𝑋 | + 𝜆5 |𝑈 | |𝑋 |2 + 𝜆2 |𝑋 |3),
𝑤𝑥 = 𝜆(ℓ𝑥 + |𝑋 |)𝑤𝑦 + 1.

The weight 𝑤𝑥 is chosen to be so large that all of the weight-𝑤𝑥

edges merge before any weight-𝑤𝑦 edge. After the weight-𝑤𝑥 edges

merge, the similarity between 𝐶𝑥 and 𝐶𝑦 is bounded above by

|𝑋 \ 𝑆 | (𝑤𝑦 + |𝐶𝑦 ∩𝑈 |𝐿)
|𝐶𝑥 | |𝐶𝑦 |

<
|𝑋 | (𝑤𝑦 + |𝐶𝑦 ∩𝑈 |𝐿)

ℓ𝑥 |𝐶𝑦 |

=
|𝑋 |𝑤𝑦

ℓ𝑥 |𝐶𝑦 |
+
|𝑋 | |𝐶𝑦 ∩𝑈 |𝐿

ℓ𝑥 |𝐶𝑦 |
<
|𝑋 |𝑤𝑦

ℓ𝑥
+ |𝑋 |𝐿

ℓ𝑥
<

2|𝑋 |𝑤𝑦

ℓ𝑥
= 𝜆 + 1,

where the numerator of the first term comes from having a weight-

𝑤𝑦 edge from 𝐶𝑦 to each 𝑋𝑖 in 𝐶𝑥 and from potentially having a

weight-𝐿 edge from every 𝑋𝑖 ∈ 𝐶𝑥 to every 𝑢 ∈ 𝑈 contained in 𝐶𝑦 .

Comparing Equation (1) to this upper bound, we find that all of the

weight-𝐿 edges incident on 𝑢 ∈ 𝑈 covered by 𝑆 merge before 𝐶𝑥
and 𝐶𝑦 merge. Regardless of whether or not 𝐶𝑥 and 𝐶𝑦 merge, it is

still true that 𝑡 either merges with an uncovered 𝑢 ∈ 𝑈 if it exists

or merges with 𝑠 , and hence queries return the correct answer. □

Finally, we give reductions from SubUnion to complete-linkage

HAC, weighted-average-linkage HAC, and average-linkage #HAC.

Lemma D.7 (Part of Theorem 6.2). Let 𝜆 ∈ [1, poly(𝑛)]. Suppose
we can solve dynamic / incremental / decremental 𝜆-approximate
complete-linkage HAC with 𝑝 (𝑚,𝑛) preprocessing work, 𝑢 (𝑚,𝑛) up-
date work, and 𝑞(𝑚,𝑛) query work. Then we can solve dynamic /
decremental / incremental SubUnion with with 𝑝 (𝑚′, 𝑛′) process-
ing work, 𝑢 (𝑚′, 𝑛′) update work, and 𝑞(𝑚′, 𝑛′) query work where
𝑚′ = 𝑂 (∑𝑖 |𝑋𝑖 |) and 𝑛′ = 𝑂 ( |𝑈 | + |𝑋 |).
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Figure 10: The figure illustrates theHAC instance constructed in LemmaD.8’s
reduction from SubUnion to weighted-average-linkageHAC. In this example,
the number of leaves (gray vertices) ℓ per star is 2. Many weight-1 edges (the
thinly drawn edges) from leaves to other vertices are omitted for cleanliness.

Proof. Suppose we are given a SubUnion instance (𝑋,𝑈 ) with
subset 𝑆 ⊆ 𝑋 . Define 𝜆′ = 𝜆 + 1 and set the clustering threshold to

be 𝜃 = 𝜆′.
Preprocessing: Figure 9 illustrates the graph we will construct.

Given a SubUnion instance (𝑋,𝑈 ) with subset 𝑆 ⊆ 𝑋 , create a graph
with a vertex representing each 𝑋𝑖 ∈ 𝑋 , a vertex representing each

𝑢 ∈ 𝑈 , and a weight-𝜆′3 edge {𝑋𝑖 , 𝑢} for each 𝑢 ∈ 𝑋𝑖 for each
𝑋𝑖 ∈ 𝑋 . Add three extra vertices 𝑥 , 𝑠 , and 𝑡 . Add a weight-1 edge

{𝑥,𝑢} for each 𝑢 ∈ 𝑈 . Add a weight-𝜆′4 edge {𝑥, 𝑋𝑖 } for each
𝑋𝑖 ∈ 𝑋 \ 𝑆 . Add a weight-𝜆′ edge {𝑠, 𝑡}. Add a weight-1 edge {𝑠,𝑢}
and a weight-𝜆′2 edge {𝑡,𝑢} for each 𝑢 ∈ 𝑈 . Add a weight-1 edge

{𝑡, 𝑋𝑖 } for each 𝑋𝑖 ∈ 𝑋 . The resulting graph𝐺 has 𝑛 = 𝑂 ( |𝑋 | + |𝑈 |)
vertices and𝑚 = 𝑂 (∑𝑖 |𝑋𝑖 |) edges. Initialize dynamic HAC on 𝐺

with 𝜃 = 𝜆′.
Update: To simulate adding 𝑋𝑖 into 𝑆 in the SubUnion instance,

delete edge 𝑥, 𝑋𝑖 in 𝐺 . To remove 𝑋𝑖 from 𝑆 , insert the weight-𝜆′4

edge {𝑥,𝑋𝑖 }.
Query: Query if vertices 𝑠 and 𝑡 are in the same cluster if we clus-

ter up to similarity 𝜃 . If yes, then return that 𝑆 covers𝑈 , otherwise

return that 𝑆 does not cover 𝑈 .

Correctness: All the weight-𝜆′4 merge first, putting 𝑥 and all

𝑋𝑖 ∈ 𝑋 \𝑆 in the same cluster. Then all edges incident on this cluster

have weight-1, so they don’t participate in any more merges when

clustering with threshold 𝜃 . Then the weight-𝜆′3 edges incident
on 𝑋𝑖 ∈ 𝑆 merge, causing the subgraph induced by taking 𝑋𝑖 ∈ 𝑆
and all 𝑢 ∈ 𝑈 to merge into its connected components. Connected

components containing some 𝑋𝑖 will have a weight-1 edge to 𝑡 ,

whereas the other connected components consisting of a singleton

𝑢 ∈ 𝑈 will have a weight 𝜆′2 edge with 𝑡 .
Consider the case where 𝑆 covers𝑈 . In this case, all edges from

𝑡 to some 𝑢 ∈ 𝑈 have weight 1, and the next edge to merge is the

weight-𝜆′ between 𝑠 and 𝑡 . Hence 𝑠 and 𝑡 are in the same cluster,

and a query will return the correct answer. In the case where 𝑆 does

not cover𝑈 , the next edge to merge is a weight-𝜆′2 edge between 𝑡
and some 𝑢 ∈ 𝑈 . After that, 𝑡 ’s cluster has a weight-1 edge with 𝑠 ,

so 𝑡 does not merge with 𝑠 when clustering until threshold 𝜃 . Hence

a query will return the correct answer in this case too. □

Lemma D.8 (Part of Theorem 6.2). Let 𝜆 ∈ [1, poly(𝑛)]. Suppose
we can solve dynamic / incremental / decremental 𝜆-approximate
weighted-average-linkage HACwith 𝑝 (𝑚,𝑛) preprocessingwork,𝑢 (𝑚,𝑛)

update work, and 𝑞(𝑚,𝑛) query work. Then we can solve dynamic
/ decremental / incremental SubUnion with with 𝑝 (𝑚′, 𝑛′) process-
ing work, 𝑢 (𝑚′, 𝑛′) update work, and 𝑞(𝑚′, 𝑛′) query work where
𝑚′ = 𝑂 ( |𝑈 | log 𝜆 +∑𝑖 |𝑋𝑖 |) and 𝑛′ = 𝑂 ( |𝑈 | + |𝑋 | + log 𝜆).

Proof. Suppose we are given a SubUnion instance (𝑋,𝑈 ) with
subset 𝑆 ⊆ 𝑋 . Define 𝜆′ = 𝜆 + 1, define ℓ =

⌈
log(2𝜆′7)

⌉
, and fix the

clustering threshold to be 𝜃 = 2𝜆.

Preprocessing: Figure 10 illustrates the graph we will construct.

Create a graph 𝐺 with a vertex representing each 𝑋𝑖 ∈ 𝑋 , a vertex
representing each 𝑢 ∈ 𝑈 , and a weight-2𝜆′7 edge {𝑋𝑖 , 𝑢} for each
𝑢 ∈ 𝑋𝑖 for each 𝑋𝑖 ∈ 𝑋 . Add extra vertices 𝑠 and 𝑡 . Add a weight-2𝜆
edge {𝑠, 𝑡}, and add a weight-2𝜆′4 edge {𝑡,𝑢} for each 𝑢 ∈ 𝑈 . We’ll

want to construct this graph so that 𝑠 and 𝑡 end up in the same

cluster when clustering until threshold 𝜃 = 2𝜆 if and only if 𝑆 covers

𝑈 .

We’ll add three star graphs to 𝐺 with centers 𝑥 , 𝑦, and 𝑧, each

with ℓ leaves. The purpose of the star centered on 𝑥 is to merge

with 𝑋𝑖 ∈ 𝑋 \ 𝑆 and stop them from merging from with anything

else. The purpose of star 𝑧 is that in the case where 𝑆 does not cover

𝑈 , 𝑡 will merge with some uncovered 𝑢 ∈ 𝑈 , then merge with 𝑧,

and finally the star will stop 𝑡 from merging with 𝑠 . The purpose of

star 𝑦 is to lower the weight from 𝑢 to 𝑡 for all 𝑢 ∈ 𝑈 covered by 𝑆

so that if 𝑆 covers 𝑢, then 𝑡 will not merge with 𝑧.

For the star graph with center 𝑥 and leaves 𝑥1, . . . , 𝑥ℓ , make the

edge from 𝑥 to 𝑥𝑖 have weight 2𝜆
′8
for each 𝑥𝑖 . Connect 𝑥 to 𝑋𝑖 for

each 𝑋𝑖 ∈ 𝑋 \ 𝑆 with weight 2𝜆′9. For each leaf 𝑥𝑖 , connect 𝑥𝑖 to

𝑦 with weight 1, and connect 𝑥𝑖 to 𝑢 ∈ 𝑈 with weight 1 for each

𝑢 ∈ 𝑈 . For the star graph with center 𝑦 and leaves 𝑦1, . . . , 𝑦ℓ , make

the edge from 𝑦 to 𝑦𝑖 have weight 2𝜆
′5
for each 𝑦𝑖 . Connect 𝑦 to

𝑋𝑖 for each 𝑋𝑖 ∈ 𝑋 with weight 2𝜆′6. For each leaf 𝑦𝑖 , add edges

{𝑦𝑖 , 𝑡} and {𝑦𝑖 , 𝑧} with weight 1. For star graph with center 𝑧 and

leaves 𝑧1, . . . , 𝑧ℓ , make the edge from 𝑧 to 𝑧𝑖 have weight 2𝜆
′2
for

each 𝑧𝑖 , and connect each 𝑧𝑖 to 𝑠 with weight 1. Connect 𝑧 to 𝑢 for

each 𝑢 ∈ 𝑈 with weight 2𝜆′3.
Update and query: Like in Lemma D.7, simulate adding or re-

moving 𝑋𝑖 in 𝑆 by deleting or adding the weight-2𝜆′9 weight edge
{𝑥, 𝑋𝑖 } in 𝐺 . Answer queries about whether 𝑆 covers𝑈 by return-

ing whether 𝑠 and 𝑡 are in the same cluster if we run HAC until

similarity 𝜃 .

Correctness: Consider what happens when we run HAC up to

similarity threshold 𝜃 = 2𝜆. First, the weight-2𝜆′9 edges merge so

that each 𝑋𝑖 ∈ 𝑋 \ 𝑆 is in a cluster with 𝑥 . Then the weight-2𝜆′8

edges merge the leaves of 𝑥 ’s star with 𝑥 so that the cluster’s remain-

ing incident edges fall below weight 2 (using the same inductive

rationale as in the proof of Lemma 6.3). Hence each 𝑋𝑖 ∈ 𝑋 \ 𝑆
no longer participates in any more merges. Then the weight-2𝜆′7

edges incident on 𝑋𝑖 ∈ 𝑆 merge, causing the subgraph induced by

taking𝑋𝑖 ∈ 𝑆 and all𝑢 ∈ 𝑈 to merge into its connected components.

Each connected component containing an 𝑋𝑖 then merges with 𝑦

via its weight-2𝜆′6 edge. The weight-2𝜆′5 edges merge the leaves

of 𝑦’s star with 𝑦 so that other edges incident on those connected

components fall below 2 and don’t participate in any more merges.

In the case where 𝑆 covers𝑈 , the weight-2𝜆′2 edges merge, and

then the weight-2𝜆 edge merges, placing 𝑠 and 𝑡 in the same cluster.

Hence a query will return the correct answer. In the case where

𝑆 does not cover 𝑈 , 𝑡 merges with each uncovered 𝑢 ∈ 𝑈 via the
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Figure 11: The figure illustrates theHAC instance constructed in LemmaD.9’s
reduction from SubUnion to average-linkage #HAC. For cleanliness, we re-
duce the number of leaves (gray vertices) displayed attached to vertex 𝑥 .

weight-2𝜆′4 edges, then merges with 𝑧 via a weight-2𝜆′3 edge. The
weight-2𝜆′2 edges merge the leaves of 𝑧’s star with 𝑧, decreasing

the weight between 𝑡 and 𝑠 to below 2. Hence 𝑡 and 𝑠 do not merge,

and a query again returns the correct answer. □

LemmaD.9 (Part of Theorem 6.2). Let 𝜆 ∈ [1, poly(𝑛)]. Suppose we
can solve dynamic 𝜆-approximate average-linkage #HAC in 𝑝 (𝑚,𝑛)
preprocessing work, 𝑢 (𝑚,𝑛) update work, and 𝑞(𝑚,𝑛) query work.
Then we can solve dynamic SubUnion with with 𝑝 (𝑚′, 𝑛′) processing
work,𝑢 (𝑚′, 𝑛′) update work, and 𝑞(𝑚′, 𝑛′) query work where𝑚′ and
𝑛′ are 𝑂 (𝜆( |𝑋 | + |𝑈 |) |𝑋 |).

If we can solve incremental / decremental 𝜆-approximate average-
linkage #HAC, then then the bounds hold for solve decremental /
incremental SubUnion with𝑚′ and 𝑛′ being 𝑂 (𝜆2 ( |𝑋 | + |𝑈 |) |𝑋 |2).

Proof. Suppose we are given a SubUnion instance (𝑋,𝑈 ) with
subset 𝑆 ⊆ 𝑋 . We start by describing the case where we have a

fully dynamic algorithm rather than a partially dynamic algorithm.

Define the following constants:

𝜃 = 1/(|𝑋 | + |𝑈 |),
𝑤𝑦 = 𝜆 |𝑋 | + 1 = 𝑂 (𝜆 |𝑋 |),
ℓ𝑥 = 𝜆 |𝑋 |/𝜃 = 𝑂 (𝜆( |𝑋 | + |𝑈 |) |𝑋 |),
𝑤𝑥 = 𝜆(ℓ𝑥 + |𝑋 |) + 1 = 𝑂 (𝜆2 ( |𝑋 | + |𝑈 |) |𝑋 |) .

Preprocessing: Figure 11 illustrates the graph we will construct.

Create a graph 𝐺 with a vertex representing each 𝑋𝑖 ∈ 𝑋 , a vertex
representing each 𝑢 ∈ 𝑈 , and a weight-1 edge {𝑋𝑖 , 𝑢} for each
𝑢 ∈ 𝑋𝑖 for each𝑋𝑖 ∈ 𝑋 . Add an extra vertex 𝑦, and add a weight-𝑤𝑦

edge from 𝑦 to 𝑋𝑖 for each 𝑋𝑖 ∈ 𝑆 . Add a star graph with center

𝑥 and ℓ𝑥 leaves connected to the center with weight 𝑤𝑥 . Add a

weight-𝑤𝑥 edge from 𝑥 to 𝑋𝑖 for each 𝑋𝑖 ∈ 𝑋 \ 𝑆 . This graph has

𝑂 (ℓ𝑥 ) vertices and edges. Initialize #HAC on this graph.

Update: Simulate adding 𝑋𝑖 to 𝑆 by adding a weight-𝑤𝑦 edge

from 𝑋𝑖 to 𝑦 and removing the weight-𝑤𝑥 from 𝑋𝑖 to 𝑥 . Similarly,

simulate removing 𝑋𝑖 from 𝑆 by removing edge {𝑋𝑖 , 𝑦} and adding

edge {𝑋𝑖 , 𝑥}.
Query: Query whether there are exactly two clusters when per-

forming HAC up to threshold 𝜃 . If yes, then return that 𝑆 covers𝑈 ,

otherwise return that 𝑆 does not cover𝑈 .

Correctness: The weights 𝑤𝑥 and 𝑤𝑦 are chosen to be large

enough that all the edges of weight𝑤𝑥 and𝑤𝑦 merge before any

weight-1 edge. Let 𝐶𝑥 denote 𝑥 ’s cluster (containing 𝑋 \ 𝑆) and
𝐶𝑦 denote 𝑦’s cluster (containing 𝑆). From this point onwards, the

similarity between 𝐶𝑥 to another cluster 𝐶 is always at most

|𝑋 \ 𝑆 | |𝐶 ∩𝑈 |
|𝐶𝑥 | |𝐶 |

≤ |𝑋 \ 𝑆 ||𝐶𝑥 |
<
|𝑋 |
ℓ𝑥

=
𝜃

𝜆
,

so𝐶𝑥 experiences no more merges. On the other hand, consider𝐶𝑦 ,

which has edges connecting it to every 𝑢 ∈ 𝑈 covered by 𝑆 . Each

𝑢 ∈ 𝑈 is a singleton cluster until it merges with 𝐶𝑦 . The similarity

between𝐶𝑦 and some 𝑢 ∈ 𝑈 covered by 𝑆 and not yet merged with

𝐶𝑦 is always at least

1

|𝑋 | + |𝑈 | = 𝜃,

so every 𝑢 ∈ 𝑈 covered by 𝑆 merges with 𝐶𝑦 when clustering until

threshold 𝜃 .

After all the merges, in the case where 𝑆 covers 𝑈 , we return

the correct answer to a query since the only two clusters are 𝐶𝑥
and 𝐶𝑦 . Otherwise, if 𝑆 does not cover 𝑈 , then there will be more

than two clusters since each uncovered 𝑢 ∈ 𝑈 will be in a singleton

cluster. Hence we answer queries correctly in both cases.

Partially dynamic: The update strategy is invalid if we want to re-
duce incremental/decremental SubUnion to decremental/incremental

#HAC. Instead, construct the graph so that 𝑦 has edges to every

𝑋𝑖 ∈ 𝑋 rather than only 𝑋𝑖 ∈ 𝑆 . When processing updates, we skip

modifying edges incident on 𝑦 and only add or remove the edges

incident on 𝑥 . Then we need to increase ℓ𝑥 so that 𝐶𝑥 and 𝐶𝑦 do

not merge with each other; we adjust the constants as follows:

ℓ𝑥 = 2𝜆 |𝑋 |𝑤𝑦/𝜃 = 𝑂 (𝜆2 ( |𝑋 | + |𝑈 |) |𝑋 |2),
𝑤𝑥 = 𝜆(ℓ𝑥 + |𝑋 |)𝑤𝑦 + 1 = 𝑂 (𝜆4 ( |𝑋 | + |𝑈 |) |𝑋 |3) .

The weight 𝑤𝑥 is chosen to be so large that all the weight-𝑤𝑥

edges merge before the weight-𝑤𝑦 edges. The last change in the

correctness analysis to make sure that𝐶𝑦 and𝐶𝑥 never merge from

this point onwards. The weight between 𝐶𝑥 and 𝐶𝑦 is bounded

above by

|𝑋 \ 𝑆 | (𝑤𝑦 + |𝐶𝑦 ∩𝑈 |)
|𝐶𝑥 | |𝐶𝑦 |

<
|𝑋 | (𝑤𝑦 + |𝐶𝑦 ∩𝑈 |)

ℓ𝑥 |𝐶𝑦 |

=
|𝑋 |𝑤𝑦

ℓ𝑥 |𝐶𝑦 |
+
|𝑋 | |𝐶𝑦 ∩𝑈 |
ℓ𝑥 |𝐶𝑦 |

<
|𝑋 |𝑤𝑦

ℓ𝑥
+ |𝑋 |
ℓ𝑥

<
2|𝑋 |𝑤𝑦

ℓ𝑥
=
𝜃

𝜆
,

so indeed 𝐶𝑦 and 𝐶𝑥 do not merge. □

Existing lower bounds conditional on SETH for SubUnion apply

directly to complete-linkage HAC and weighted-average-linkage

HAC, whereas to turn Lemma D.9 into the lower bounds in Theo-

rem 6.2, we apply Lemma 6.5.
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