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Abstract. Simulation optimization involves optimizing some objective function that can
only be estimated via stochastic simulation. Many important problems can be profitably
viewed within this framework. Whereas many solvers—implementations of simulation-
optimization algorithms—exist or are in development, comparisons among solvers are not
standardized and are often limited in scope. Such comparisons help advance solver devel-
opment, clarify the relative performance of solvers, and identify classes of problems that
defy efficient solution, among many other uses. We develop performance measures and
plots, and estimators thereof, to evaluate and compare solvers and diagnose their strengths
and weaknesses on a testbed of simulation-optimization problems. We explain the need
for two-level simulation in this context and provide supporting convergence theory. We
also describe how to use bootstrapping to obtain error estimates for the estimators.
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1. Introduction and Motivation
Simulation optimization (SO) involves the optimization
of some objective function over a (possibly constrained)
feasible region, in which at least one of the objective and
constraint functions is estimated through a stochastic sim-
ulation. The decision variables for such problems can be
continuous, integer-ordered, or even categorical. Such
problems are typically highly challenging because sto-
chastic simulation yields estimators that are slow to con-
verge; the canonical error is of stochastic order c 12
where ¢ is a measure of the computational effort devoted
to the simulation (Asmussen and Glynn 2007). Moreover,
many SO problems lack structure, such as smoothness,
that might be exploited by specialized solvers, that is,
implementations of algorithms for solving SO problems.
We consider optimization problems of the form
{minf(x) | x € D}, where D is a domain. We assume that f
is estimated through stochastic simulation, and for sim-
plicity, we assume that determining whether a point x
lies in the domain D does not require simulation; that is,
simulation is needed only in estimating f. This setup
excludes the case in which constraints of the form g(x) > 0

must be satisfied, where g(x) is estimated by simulation.
Such problems arise in practice, but we do not yet have a
recommendation on performance metrics for them. Pro-
blems with deterministic constraints, that is, those in
which any constraint functions are deterministic and
readily evaluated, are included.

The development of SO solvers is an active area of
research. Much effort is devoted to the design of solvers
with provable convergence guarantees, whether to local
or global solutions, for example, Kushner and Yin (2003),
Andradéttir (2006, 2015), Cooper et al. (2020), and Li and
Ryzhov (2022). Such convergence analyses are valuable
and insightful yet are typically most relevant in an
asymptotic regime in which the computational effort
becomes very large, especially in the case of results for
global optimization. Because that regime can be difficult
to reach in practice, there is a need to better understand
the preasymptotic regime, in which solvers have yet to
narrow in on a neighborhood of an optimal solution.
This regime can be very difficult to explore analytically
although some results are available, for example,
Ghadimi and Lan (2015).
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The preasymptotic regime can be investigated through
the use of a testbed of SO problems and solvers; see Fu
(2002) and Glynn (2002) for the germ of this idea and, for
example, Chau and Fu (2015) and Dong et al. (2017) for
recent examples of simulation experiments assessing the
relative performance of SO solvers. See also section 5 of
Amaran etal. (2016) for a discussion on SO solver compar-
isons and the need and utility of testbeds. Such experi-
ments are important for a number of reasons. First, they
can help with the development of new solvers by provid-
ing a testbed of problems and helping identify good
choices of a solver’s parameters through calibration over
a set of problems. Second, they can help determine which
solvers are effective when run with practically relevant
computational budgets; a solver can be viewed as effec-
tive when it solves problems rapidly and reliably. Third,
they can help identify problems or classes of problems
that are relatively easy to solve or that defy efficient solu-
tion with existing solvers, thereby motivating further
solver development and ensuring that research effort
remains focused on more challenging problems. They
can likewise provide insight into the structural proper-
ties of problems, such as convexity and/or pathwise
smoothness, that are especially well or poorly handled
by asolver.

Testbeds are of great value to research communities
outside of SO (Ali et al. 2005, Gould et al. 2015, Netlib
2021, Wikipedia 2021). Compared with these other com-
munities, the SO research community lags in the devel-
opment of testbeds, but there has been recent progress.
SimOpt is a library of simulation-optimization problems
and solvers that is undergoing a redesign. See Pasupathy
and Henderson (2006, 2011), Dong et al. (2017), and Eck-
man etal. (2019, 2022b) for background and recent devel-
opments and Eckman et al. (2020) for the library itself.

In parallel with the development and collection of pro-
blems and solvers, one also needs metrics for evaluating
and comparing solver performance. This paper focuses
on the development of such metrics and methods for
estimating them. Solvers are compared on the basis of
their progress in improving the objective function value
as a function of completed simulation replications.

In developing metrics, we attempt to capitalize on
related metrics developed in other optimization commu-
nities, namely, performance profiles (Dolan and Moré
2002, Ali et al. 2005, Gould and Scott 2016), data profiles
(Moré and Wild 2009), accuracy profiles (Beiranvand
etal. 2017), and log-ratio profiles (Morales 2002, Shi et al.
2021). There are special aspects of SO that prevent direct
translation of the aforementioned metrics. For example,
the fact that we cannot exactly (to numerical precision)
evaluate an objective function and instead must estimate
it through stochastic simulation means that we can never
be certain that one solution is better than another or that
a solution is close in objective function value to an opti-
mal solution. Still, we can strive to make assertions with

high confidence by controlling sample sizes and depen-
dence structures through judicious use of common ran-
dom numbers (CRN). In general, the estimation issues
present in developing metrics and associated estimators
are nontrivial.

The complexity of SO is reflected in related work in
stochastic programming on assessing solution quality.
Bayraksan and Morton (2006) develop new interval
estimates of the optimality gap of a proposed solution
that apply, at least in principle, to our setting. To com-
pute their interval estimates, one needs to be able to
obtain the globally optimal solution to a sample ver-
sion of an SO problem. To that end, the examples pre-
sented therein are convex, whereas we do not assume
convexity. Still, that work inspires our use of scalings
relative to the objective function value of optimal or
near-optimal solutions. Bayraksan and Morton (2009)
review and extend Bayraksan and Morton (2006) to
include bias reduction, jackknifing, randomized quasi-
Monte Carlo methods, and sequential sampling. Con-
vexity is also central to the work in Lan et al. (2012) for
obtaining bounds in convex SO problems when using
mirror-descent algorithms. Many of these ideas are
reviewed in the survey of Homem-de Mello and Bayr-
aksan (2014), which also discusses statistical hypothe-
sis testing of Karush-Kuhn-Tucker conditions for a
given solution. Such methods are specific to a pro-
posed solution and, thus, not suitable for our purpose
of comparing solvers.

We view the primary contributions of this paper to be
the following:

o We identify important characteristics of solver per-
formance and ways to measure them.

e We recommend an experimental design that accom-
modates many SO solvers. The design typically requires
the use of two-level simulation, and we exploit that lit-
erature to inform the experimental design. Our experi-
mental setup is readily implemented and has been
fully implemented in SimOpt (Eckman et al. 2020,
2022b).

e We develop a variety of metrics and clarify their
uses in evaluating one or more solvers on one or more
problems, namely, progress curves, terminal progress
plots, area and terminal scatterplots, solvability profiles,
and difference profiles. Unnormalized progress curves
that show the estimated objective function of the esti-
mated best solution seen so far have been used for a long
time to track solver progress on a single problem (e.g.,
Pasupathy and Henderson 2006) and compare multiple
solvers on a single problem (e.g., Dong et al. 2017). Our
metrics considerably extend these ideas, building on
related ideas from deterministic-optimization testbeds.
Our proposed metrics do not align perfectly with metrics
used in testbeds for deterministic-optimization methods;
we explain what is unique about SO to justify our choices
of metrics. Progress curves and solvability profiles are
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related to plots used in other research fields, for example,
convergence plots and data profiles, whereas terminal
progress plots, scatterplots, and difference profiles are
new.

e We draw a distinction between budget-specific sol-
vers and budget-agnostic solvers. The former use prior
knowledge of the budget to set key parameters that con-
trol solver behavior. For example, Nemirovski et al.
(2009) provide a stochastic approximation solver in
which the step-length sequence and solution-averaging
weights are both budget-specific. In contrast, budget-
agnostic solvers do not exploit prior knowledge of the
budget. Our focus is budget-agnostic solvers, but we
also discuss the evaluation of budget-specific solvers
and comparisons between solvers from the two classes.

e We make judicious use of CRN to improve various
estimators.

e We describe a bootstrapping approach for asses-
sing the estimation error in our estimated metrics.

This paper is organized as follows. Section 2 describes
characteristics of SO problems and solvers in more
detail and explains the need for so-called macrorepli-
cations and postreplications. Section 3 introduces progress
curves as a starting point for measuring solver perfor-
mance on a single problem on a single macroreplication.
We describe two ways to aggregate these curves over mul-
tiple macroreplications, expanding on ideas sketched out
in Pasupathy and Henderson (2006), and discuss estima-
tors for such aggregate progress curves. These estimators
use two-level, that is, nested, simulation, wherein macrore-
plications constitute the outer level and postreplications
constitute the inner. Section 4 explores the use of the area
under progress curves to efficiently summarize the perfor-
mance of multiple solvers on multiple problems, also pro-
viding estimators. Section 5 proposes solvability profiles,
which are closely related to data profiles as originally
proposed in Moré and Wild (2009). Solvability profiles
are based on the (random) time required to approxi-
mately solve a problem as opposed to progress curves,
which are based on the (random) improvement in
objective function value as a function of time. Solvabil-
ity profiles as well as their differences, which we call
“difference profiles,” allow a succinct comparison of the
performance of multiple solvers on multiple problems.
Section 6 discusses evaluating the finite-time perfor-
mance of both budget-agnostic and budget-specific
solvers; unless otherwise noted, we assume budget-
agnostic solvers. Section 7 provides examples of the
comparative plots we advocate. Section 8 discusses
convergence rates of our estimators, appealing to the
literature on two-level simulation. We conclude in Sec-
tion 9. The online supplement provides further details
of the numerical examples in Section 7, the proof of a
result given in Section 8, and more details of our use of
bootstrapping to assess estimation errors in the various
metrics.

2. Problems, Solvers, and

Experimental Design

It is natural to use a testbed of SO problems to evaluate
and compare SO solvers. In doing so, we want to exploit
the literature on the use of testbeds in related areas, such
as in linear programming and stochastic linear program-
ming. SO problems and solvers, however, possess unique
features that we must consider. For instance, a linear
program in standard form can be fully specified by a
vector of objective function coefficients, a constraint
matrix, and a vector of constraint right-hand-side
values. Such a succinct description allows one to read-
ily describe problems and to write code to generate
random problem instances. We find ourselves some-
what envious of this relative simplicity when we con-
template specifying SO problems. To do so, one must
describe a mechanism through which sample paths
can be constructed (e.g., a stochastic simulation model)
and precisely define the performance measures.

Given this complexity, it is very tempting to instead
use “synthetic” SO problems in which one takes a
deterministic-optimization problem for which the objec-
tive and any constraints are specified using closed-form
formulae and “corrupts” the problem by adding mean-
zero stochastic noise. For example, one might add mean-
zero Gaussian noise to the Rosenbrock (1960) function.
From a testing standpoint, this offers several advantages:

o The optimal solution is the same as that of the orig-
inal deterministic problem, which is often known.

e Simulation replications (i.e., function evaluations)
are computationally inexpensive.

e Many high-dimensional, deterministic optimiza-
tion problems exist for testing.

e Such objective functions typically have known
structure.

The main disadvantage of this approach is that (solu-
tion-dependent) variances, gradient estimators, and effects
of CRN are all highly artificial. For example, a perfect
instantiation of CRN—in which the same additive sto-
chastic error is applied at all feasible solutions—yields
sample-path functions that resemble the original deter-
ministic function, just shifted vertically by a common
offset. Thus, a deterministic-optimization solver that
ignores the stochastic nature of the problem should
perform very well although it might struggle on gen-
eral SO problems. We believe synthetic problems are
problematic when it comes to comparing SO solvers
and do not consider them further.

For each problem we study, we specify a budget of T
simulation replications within which solvers must oper-
ate. We measure budgets in terms of replications because
this definition is platform-independent in that perfor-
mance measures do not change when run on computers
with different architectures. Still, this measure has its
disadvantages because it does not account for solver-
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specific computation apart from simulation replications.
For example, a solver may exploit additional informa-
tion, such as direct gradient estimates (Fu 2006), or need
to factor progressively larger matrices when using
Gaussian-process predictions, but the associated compu-
tational burden is not counted. Moreover, in asynchro-
nous parallel computing environments, it is challenging
to unambiguously define which replications come first.
Our choice to measure budget in simulation replications
is, therefore, imperfect. As long as it is clearly under-
stood and the results are transparently presented, we
consider it to be a reasonable choice.

Solvers are tasked with finding an estimated best solu-
tion and not exceeding a budget T though we are also
interested in their performance at intermediate budgets
smaller than T. Budget-agnostic solvers do not tailor
their parameters to the budget and, thus, can perform a
single run until the budget T is exhausted, reporting the
estimated best solution seen at intermediate budgets as
they proceed. On the other hand, budget-specific solvers
tailor their parameters to each intermediate budget.
Unless otherwise stated, we focus on budget-agnostic
solvers though we discuss budget-specific solvers in
some depth in Section 6. We do not accommodate
solvers that require a random budget, such as many
ranking-and-selection algorithms that provide frequentist
statistical guarantees. Our framework, thus, encompasses
a diversity of algorithms, including gradient-descent,
trust-region methods, direct-search methods, and evolu-
tionary algorithms that track populations of solutions, but
itis not completely general.

Simulation optimization gives rise to multiple sources
of randomness. Function estimates obtained from simu-
lation models are random, and some solvers, such as
genetic algorithms, are intrinsically random. Therefore,
a single run of a solver on a problem cannot yield a
complete sense of the solver’s potential performance.
Consequently, we conduct multiple macroreplica-
tions; a macroreplication consists of a single run of a
solver on a problem using up to the budget of T replica-
tions. Macroreplications collectively give a sense of the
variable performance of a solver on a problem and are
central to how we evaluate solvers. However, multiple
macroreplications are not essential when solving an
SO problem in practice.

On each macroreplication, a solver uses estimates of
objective function values to guide a search for better
solutions. Such a search is biased toward solutions
whose estimated objective function value is lower (for
minimization problems) than the true value because of
random sampling (Mak et al. 1999). This phenomenon is
sometimes known as optimization bias, and it means
that the estimated objective function value at an esti-
mated optimal solution is biased low. Accordingly,
whenever we want to obtain unbiased estimators of the
progress of SO solvers, we use a fresh set of simulation

replications, which we term “postreplications,” that are
independent of those used in the macroreplications.
Postreplications entail estimating objective function
values and, thus, are conceptually simpler than macrore-
plications, which involve the interaction between a
solver and a problem.

Our experimental design, thus, has two levels: we con-
duct multiple macroreplications of each solver on a
given problem and obtain postreplications in a postpro-
cessing stage. The distributional information we obtain
from multiple macroreplications and postreplications
then needs to be summarized in some fashion.

3. Progress Curves

In deterministic optimization, a common measure of per-
formance of a single solver on a single problem is the
time or number of function evaluations needed to find
an optimal solution or a solution with objective value
within some tolerance of the optimum. This form of eval-
uation does not easily translate to SO for the following
reasons:

e Optimal solutions to SO problems are usually not
known.

e In linear programming, for example, one can
determine whether a given solution is optimal through
a certificate of optimality, for example, complementary
slackness conditions, without needing to know an opti-
mal solution in advance. Such certificates are rare in SO
problems, so even if an optimal solution were visited,
usually it could not be identified as optimal.

e Suppose that an optimal solution x* is known for
an SO problem, and we want to check whether a candi-
date solution, x, has an objective function value, f(x),
within some given tolerance, €, of f(x*). This determina-
tion is subject to stochastic error in the estimator
fn(x) — fu(x*) obtained by averaging the outputs of N
replications at each solution.

o The simulation error can be reduced by increasing
the number of replications simulated at a solution, but
this comes at a computational cost. This is not typically
a feature of the deterministic-optimization setting.

For a given problem with the computational budget
T, let X(t) be the recommended solution when using an
intermediate budget tT, t € [0,1]. In a slight abuse of
language, we refer to ¢t as “time.” For a fixed t, the
recommended solution X(f) is random, depending as it
does on the outputs of the simulation replications and
their influence on the solver’s progress. Solvers may
also deliberately inject additional randomness into this
process, as with, for example, genetic or random-
search algorithms. Collectively, the solutions recom-
mended over a range of budgets are described by the
stochastic process X := {X(t) : t € [0,1]}. Although the
recommended solution can change at only discrete
times t=0,1/T,2/T,...,1, itis convenient to represent
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X as a continuous-time stochastic process by assuming
that, at any time f, it takes the value of the most recent
recommended solution. Thus, X is piecewise constant
in time, that is, once a solution is recommended, it
plays the role of an incumbent solution until it is
replaced by a new recommended solution.

We are especially interested in the stochastic process
f(X) :={f(X(t)) : t €[0,1]}, where the random variable
f(X(#)) is the true objective function value of the random
recommended solution X(f) obtained on a generic macro-
replication. The process f(X) describes the solver’s pro-
gress in identifying better solutions over time and, for a
given realization, that is, macroreplication, can be plotted
over time. The deterministic analog of this plotted func-
tion is widely used in the deterministic-optimization com-
munity to study convergence and compare solvers on a
given problem (Beiranvand et al. 2017). Such plots also
frequently appear in the SO literature.

We find it useful to rescale the plot of f(X), especially
when we want to summarize a solver’s performance
over multiple problems as we do in Sections 4 and 5.
Related scalings are used when reporting results for
deterministic solvers on deterministic-optimization pro-
blems; see, for example, Moré and Wild (2009). To that
end, let x be a fixed initial solution, and let x* be either a
known optimal solution or some proxy for an optimal
solution. We use x* to set the vertical scaling in progress
curves. If x* is optimal, then progress curves are bounded
below by zero. If x* is suboptimal and some solver identi-
fies a better solution, the effect is that the progress curve
for that solver can drop below zero. Thus, it may be more
useful to think of x* as a reference solution, which, with
the initial solution x,, provides the vertical scaling in pro-
gress curves. Choosing x* to be an optimal solution is
ideal in that we can then interpret the vertical scale as a
fraction of the initial optimality gap, but that interpreta-
tion is not essential.

We may choose x* to be the best solution seen in an
experiment, in which case it still has the same interpreta-
tion as a reference solution for vertical scaling with the
proviso that the reference solution depends on the exper-
iment. In this case, any curves or profiles are specific to
the experiment and should not be compared with plots
that result from different experiments. A potential
concern with this approach is that the solver, say s, that
identifies this best solution may appear to have better
convergence properties than it actually does because the
plot portrays convergence relative to the objective func-
tion value of this best solution. For example, solver s may
appear in the progress plot to attain the truly optimal
solution in finite time with positive probability. (Such
performance seems unlikely, especially on problems with
continuous decision variables, though it is conceivable
that this could happen with discrete-decision-variable
problems.) Still, our primary focus is on benchmarking, so
the entire progress curve and not just its final value is of

interest. So long as this context is clear, defining x* in this
manner is reasonable. If this method for defining x* is
deemed problematic, one can always obtain x* in an
alternative fashion, for example, through a macrorepli-
cation with a much larger budget. One might be con-
cerned about optimality bias when x* is chosen as the
estimated best solution in an experiment. Certainly
this choice of x* could exhibit such bias, but because we
only use x* as a reference solution for vertical scaling,
whereas it is the ordering between curves that is
important, optimality bias does not cause fundamental
difficulties.

The initial solution x; is assumed to be common across
all macroreplications of a solver on a given problem. As
a result, all of the variability observed in the quality of
the random solution recommended at a given time, that
is, f(X(t)), can be attributed to the simulation error in
evaluating f(-), any internal randomness in the solver,
and their effects on the solver’s behavior. Whereas vary-
ing xp from macroreplication to macroreplication indi-
cates how robust the solver is to starting from different
initial solutions, it also leads to different rescalings of
f(X(t)) for different macroreplications. Given these diffi-
culties, we fix xy across macroreplications; different ini-
tial solutions on the same problem can be treated as
distinct problems (Wild 2019).

For simplicity of exposition, we make several assump-
tions about the objective function values at xp, x* and
elsewhere:

Assumption 1. The objective function f(x) is bounded
above and below and attains its optimal value at x = x*.

Assumption 2. The search does not start at an optimal
solution, that is, f(xo) # f(x*).

The assumption that f(-) is bounded above is far stron-
ger than needed but simplifies the discussion. It could be
replaced by, for example, growth conditions on f(-) and
conditions limiting the step size in solvers. The assump-
tion that x* is optimal allows us to assume a lower bound
of zero on progress curves and to interpret the value of
the progress curve as the relative optimality gap com-
pared with the initial optimality gap; this assumption is
not critical to the development. To normalize the plot of
f(X), we offset f(X(t)) by the optimal objective function
value, f(x*), and divide by the initial optimality gap,
f(x0) — f(x*). We denote the rescaled stochastic process
by v = {v(t) : t € [0, 1]}, where

) SO )

flxo) = f(x)
and refer to v as the “progress curve.” We refer to f(X) as
the unnormalized progress curve. The value of the pro-
gress curve ata time t € [0,1] is a random variable giving
the ratio of the optimality gap at time ¢ to the optimality
gap at time 0. Under Assumptions 1 and 2, v(¢) is finite
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for all ¢ € [0,1]. For minimization problems, we expect
that, with high probability, f(xo) > f(X(t)) > f(x*) for all
t€[0,1] so that v(t) € [0, 1]. On the other hand, for maxi-
mization problems, we expect that, with high probabil-
ity, f(xo) <f(X(#)) <f(x), and again, v(t)€[0,1]. In
either case, a solver that recommends better quality solu-
tions over time has v(f) decrease toward zero as t
increases. However, v(f) can take values above one if the
corresponding recommended solution X(t) is worse than
the initial solution x,. Likewise, v(t) can take values
below zero if X(t) is infeasible in a constrained optimiza-
tion problem or if x* is not optimal. Though not mathe-
matically precise, we find it convenient to presume that
v(t) takes only values between zero and one when mak-
ing general statements about the progress curve and
related quantities.

Remark 1. The plot of » depends heavily on the
choice of the budget, T. If x* is a fixed, high-quality
reference solution and T is very small, a solver will
not make much progress toward finding x* and v(t)
will hover near one. If T is very large, then a solver
may make substantial progress toward an optimal
solution relatively early and then remain near such an
optimizer for the remaining time, in which case v(t)
quickly drops to zero and remains there. When com-
paring multiple solvers, the choice of the budget can
favor slow-and-steady solvers (by increasing T) or
rapid solvers (by decreasing T). Thus, care needs to be
exercised in selecting T. The budget should ideally
be large enough that a near-optimal solution can be
found by some solver yet also small enough that dif-
ferences in solvers’ finite-time performance can be
detected. We advocate setting it equal to the effort
used by the best performing solver to get close to an
optimal solution. This recommendation is imprecise;
we believe necessarily so.

The progress curve, v, is the principal random
object by which we measure a solver’s performance
subject to a computational budget. By running multi-
ple independent and identically distributed (i.i.d.)
macroreplications of the solver and plotting the corre-
sponding realizations of », one can visualize the run-
to-run variability in a solver’s progress over time on a
given problem. The distribution of these random pro-
gress curves offers a wealth of information on differ-
ent aspects of the solver’s behavior. For instance, the
distribution of v(t) for any fixed f gives a sense of the
reliability of the solver, for example, how consistently
it recommends high-quality solutions at an intermedi-
ate budget. Also, “flattening” progress curves can
indicate that a solver has stalled or reached a local
optimum. In addition, the distribution of the first time
at which v(t) drops below some fixed threshold « €
[0,1] indicates how much time it takes the solver to
reduce the relative optimality gap to a.

3.1. Aggregate Progress Curves

When extending to multiple solvers, simultaneously
plotting multiple realizations of v for all solvers quickly
becomes too cluttered, making it hard to draw clear con-
clusions. For this reason, we explore ways to aggregate
or summarize aspects of ». Different manipulations of »
lead to valuable insights into the average progress, rate
of progress, and run-to-run reliability of a solver on a
given problem. In Sections 4 and 5, we extend these ideas
to enable comparisons of multiple solvers on a set of pro-
blems. Collectively, these ideas rely on functions that
take as input a stochastic process on the interval [0,1]
and output either a scalar or a deterministic function on
the interval [0, 1]. An example of the former includes the
expected area under v, whereas examples of the latter
include the mean and median of v(f) as functions of £.

Studying the distribution of the stochastic process » at
a fixed time or a fixed remaining optimality gap « offers
interesting connections to other methods for evaluating
solver performance. For instance, fixing a remaining
optimality gap and plotting the distribution of the time
at which the solver attains that level of improvement is
reminiscent of data profiles (Beiranvand et al. 2017). Sim-
ilarly, fixing a time and plotting the distribution of the
remaining optimality gap closely resembles a rescaled
accuracy profile (Beiranvand et al. 2017). However, data
and accuracy profiles were originally developed for
comparing deterministic-optimization solvers in which
the “distribution” in question comes from a solver’s per-
formance on a fixed set of problems.

We are interested in both the typical and tail behavior
of v(t) for each t € [0,1]. To do so, we introduce aggre-
gate progress curves and present their estimated coun-
terparts in Section 3.2. As we use the term, an aggregate
progress curve plots some summary measure, for exam-
ple, the mean, median, or some other quantile of v(t), as a
function of . The mean or median is frequently reported;
see, for example, Dong et al. (2017).

The mean progress at time t€[0,1] is defined as
t(t) := Ev(t), where the expectation is over X(t), the ran-
dom solution recommended at time ¢ starting from the
(deterministic) initial solution xy. For a fixed g € (0,1),
the B-quantile progress at time t € [0,1] is defined as
Xp(t) := inf{q : Pr{v(t) < q} > }. Different choices of
accommodate a user’s interest in a solver’s median per-
formance ( = 0.5) or tail performance in the direction of
strong (e.g., p=0.05) or poor (e.g., p=0.95) perfor-
mance. (When no confusion can arise, we suppress f in
this notation.) To estimate the mean and p-quantile pro-
gress, we can obtain M ii.d. macroreplications of the
solver on the given problem, each yielding a sequence of
recommended solutions X, :={X,(t):t€][0,1]} for
m=1,2,...,M. Throughout this paper, a subscript m
indicates a quantity associated with macroreplication ;
for example, v, is the progress curve realized on macro-
replication m. For problems in which we can exactly (to
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numerical precision) compute f(-), the mean progress at
time t € [0, 1] can be estimated by averaging the progress
from each macroreplication:

nf(Xon(t) —f)
Z flxo) =fx)

The B-quantile progress at time ¢ € [0,1] can likewise be
estimated by taking the sample -quantile,

x(EM) _mf{q —Zﬂ(vm(t) <q) >ﬁ}

m=1

1 M
p(t; M) ::M;vm(t)

Remark 2. It is important to understand how many
macroreplications suffice to get reasonably precise
estimates of u(t) and x(t). Understanding the error
associated with estimating u(t) and x(t) by u(t; M) and
X(t; M), respectively, is worthwhile, yet we defer our
discussion until the end of Section 3.2, where we con-
sider a two-level simulation setting.

3.2. Estimated (Aggregate) Progress Curves
Typically, we cannot exactly compute f(-) and must
resort to estimating the progress curve for a given reali-
zation of X via simulation. This setting is an instance of
two-level simulation: in the outer level, macroreplica-
tions of the solver produce realizations of X, and in the
inner level, we obtain N postreplications at each recom-
mended solution up to the budget. For a fixed time ¢ €
[0,1] and postreplication index n=1,2,...,N, let Y,(t)
denote the corresponding noisy observation of the ob-
jective function value f(X(f)). The N postreplications
Yi(t),Ya(t),..., Yn(t) are assumed to be conditionally
independent of one another and of the estimated func-
tion values obtained in the course of the macroreplica-
tions, conditional on the sequence of recommended
solutions, X.

As a default, we assume that CRN are used to evaluate
the solutions recommended at different intermediate
budgets on a given macroreplication; thus, for each
n=12,...,N, Y, :={Y,(t) : t €[0,1]} is a piecewise-constant
function with breakpoints corresponding to times at
which the recommended solution changes. This use of
CRN is intended to produce stable estimated progress
curves and reduce redundant simulation of a solution
that is possibly recommended at multiple times on a
given macroreplication. Although X is modeled as a
continuous-time stochastic process, Y, can easily be
obtained by using the same random primitives to simu-
late each distinct solution in X as output by the solver.

In a similar manner, we obtain L postreplications at
solutions xy and x*, and for each postreplication index
I=1,2,...,L,weletYy and Y,; denote the corresponding
noisy observations. Here too, we assume that CRN are
used to evaluate xy and x*. We allow L to differ from N
because estimates of f(xg) and f(x*) are needed for all

times t at which we estimate v(t). We, thus, expect to use
a greater run length, L, for these common terms than the
standard postreplication run length, N. Moreover, we
foresee using the same estimates of f (xy) and f(x*) to con-
struct the estimated progress curves from other macrore-
plications of the same solver.

We use the shorthand notation fy(+) and f; () to denote
the sample averages of N and L ii.d. postreplications,
respectively, thatis,

X)) = ZY () for t€[0,1], fi(xo):= ZYoz,

o 1
and fL(x ) = EZ Y,‘l.
=1

Based on the postreplications, the estimated progress at
timef € [0,1] is defined as

_ INEX() = fr(x)
frlxo) —frlxs)

We adopt the convention that the solver recommends
the initial solution xy at time t = 0. Hence, we set
v(0;L,N) =1 even though fy(xo) almost certainly does
notequal f1 (xo).

For this setting in which f(-) must be estimated from
simulation postreplications, the mean and p-quantile
progress curves can be estimated by aggregating the esti-
mated progress curves from each of M i.i.d. macrorepli-
cations. Specifically, the estimated mean progress at time
te[0,1]is

u(t;L,M,N) :=

v(£;L,N) :=

1 M

f (X (t) — fL(x*)
Z f(xo) fL(x)

where v,,(t;L,N) is the estimated progress at time ¢
from the mth macroreplication. Similarly, the estimated
p-quantile progress at time t€[0,1] is the sample
p-quantile, that is,

M
m=1

Atany given time t € [0, 1], the estimated aggregate pro-
gress values p(t; L, M, N) and x(t; L, M, N) are computed
via two-level simulation.

As with any estimation procedure, statistical error can
pose challenges. For example, at any given time ¢ € [0, 1]
and macroreplication 1, the estimated progress v,,(t; L, N)
may take a negative value if the solution X,,(t) is mis-
identified as being better than x* because of highly noisy
function values and an insufficient number of postreplica-
tions. The statistical error in the estimators u(t;L, M, N)
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and x(t; L, M, N) can be assessed in several ways. Assum-
ing finite second moments of Y1(t), Y01, and Y., standard
confidence-interval machinery yields an interval estimator
of u(t) based on u(t;L,M,N). Additional conditions are
required to establish the validity of corresponding interval
estimators of x(t) based on x(t;L, M, N). The analysis for
both error estimators is discussed in Section 8, in which we
use two-level simulation analysis to assess the asymptotic
order of the error. From a practical standpoint, we pre-
scribe a general bootstrapping approach that provides
error estimates for these metrics (and others); see Online
Appendix C for a full description.

Whereas aggregate progress curves summarize the
typical and tail behavior of v(t) for each t € [0,1], they
cannot be easily extended to evaluate the performance of
one or more solvers on multiple problems. For this rea-
son, we introduce metrics that each reduce a collection of
progress curves to a scalar rather than a function in the
next two sections. Section 4 focuses on monitoring each
solver’s performance on each problem in a set of pro-
blems, whereas Section 5 provides a metric to compare
the overall performance of the solvers.

4. Area Under Progress Curves
The area under the progress curve is given by the ran-

dom variable
HAX(D) = f(x)
A= /v(t)dt Fxo) —f00) dt.

Provided a solver is unlikely to recommend solutions
worse than x or better than x*, A takes values in [0,1]
with high probability. Our rescaling of f(X()) addresses
several shortcomings of a related metric proposed by
Pasupathy and Henderson (2006): the area under the
curve f(X).

The random variable A can be interpreted as the sol-
ver’s time-average relative optimality gap up to the bud-
get T on a given macroreplication. Smaller values of A
indicate better performance in the sense that the solver
recommended better solutions on average throughout a
given macroreplication. Although the area under the pro-
gress curve summarizes a solver’s time-average progress,
it does not capture all aspects of a solver’s behavior given
a fixed budget. For example, two progress curves can
have the same area under them but exhibit very different
solver behaviors with one showing steady progress over
time and the other showing early rapid progress before
plateauing. Although imperfect, distributional properties
of A can be used for comparisons over multiple problems.

Let u, :=EA and 04 := Y VarA be the expectation and
standard deviation of the area under the progress curve.
The quantities 4 and 04 measure the average and
variability of the time-average relative optimality gap
with smaller values indicating better average and less-
variable run-to-run performance, respectively. Under

Assumptions 1 and 2, 4 is also the area under the mean

progress curve:
1 1 1
/ v(t)dt] - / Ev(t)dt = / ey,
0 0 0

The area under the mean progress curve, 114, combines
the typical as well as especially poor or strong behavior
of v(t) but, otherwise, offers limited information about
the distribution of v(f). The standard deviation 0,4 pro-
vides some information on reliability. It measures the
across-macroreplication variability in how a solver’s
sequence of recommended solutions evolves depending
on the data it observes.

We can estimate 14 and o4 by obtaining M i.i.d.
macroreplications of the solver and calculating the sam-
ple mean and standard deviation of the areas under the
realized progress curves. For the typical case in which
f(-) must be estimated from postreplications, we can esti-
mate 14 and o4 from the realized estimated progress
curves:

pu,=EA=E

i, (L M,N) := ZAW,(L N) = / (L, N)dt,

and

M

ﬁ; (A(LN) — 1, (L M,N))*.
Let 1/’ (L,M,N) and ¢’;’(L,M,N) denote the estimated
mean and standard deviation of the area under the pro-
gress curve for a given solver, s, and a given problem, p.
By our scaling of the progress curves, 1/’ (L, M,N) and
af;’s (L, M, N) should take values in the intervals [0, 1] and
[0,1/2], respectively, with high probability. The perfor-
mance of a solver s over a set of problems P can be
depicted in a scatterplot of {(¢/;*(L, M, N),d"’ (L, M,N)) :
p € P}. Problems for which (u/(L,M,N),d"(L,M,N))
lies in the lower left quadrant of [0,1] X [0, 1/2] are those
on which the solver makes rapid, reliable progress. Com-
paring superimposed scatterplots for different solvers
can give a rough sense of their relative performance
though, when comparing more than a handful of solvers,
itmay be necessary to produce separate plots.

The appearance of these scatterplots depends on
the budget, T. The sample mean /" (L,M,N) should
decrease as T increases for solvers that continue to make
progress or at least do no worse than the previous time
average during the additional time. The effect of T on
0’ (L,M,N) is more intricate. Roughly speaking, 0, is
related to the variability in the height of the progress
curve. For many solvers, we observe that the interquar-
tile ranges of f(X(t)) first increase as the different trajecto-
ries of a solver move away from x; and later decrease as
they converge to x*. (This is, of course, an oversimplification:

oa(L,M,N) :=
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if different trajectories converge to different local optimal
solutions, the variance of f(X(f)) may remain high for
large t.) Thus, increasing the budget should typically
introduce extensions of the progress curves whose
heights are less variable, translating to less variability
in the area under the curve, that is, smaller values of
0"’ (L,M,N), but this is not universally the case. The
choice of budget can also influence the appearance of
the scatterplot as a result of solver characteristics. For
example, a scatterplot depicting two solvers appears
quite different at different budgets T if one solver
requires more setup than another but benefits from
that setup in the long run.

5. Solvability Profiles

Another way to compare solvers on multiple problems is
through profiling. In this section, we explore related
ideas for simulation optimization, in which the variable
performance of a solver across macroreplications must
also be addressed.

5.1. A Single Problem-Solver Pair

We previously define the progress curve as a stochastic
process v = {v(t) : t € [0, 1]}, where v(t) := (f(X(t)) — f(x))/
(f(x0) — f(x*)) reports the optimality gap as a function of
time. Let 7(a) be the (random) time required to reduce
the optimality gap to a fraction a € [0,1] of its initial
value, that is,

() :=inf{t € [0,1] : v(t) < a}
=inf{t € [0,1] : f(X()) < a(f(x0) —f(x")) + f(x)},

where the second equality only applies for a minimiza-
tion problem. (A similar second equality applies for a
maximization problem.) We take the infimum of the
empty set to be oo, so t(a) takes values in [0,1] U{co}.
(This is still true even if v(t) can take values outside of
[0,1], e.g., if the reference solution x* is suboptimal and a
solver finds a strictly better solution.) We refer to t(«) as
the a-solve time. The corresponding stochastic process
7={1(a):a €[0,1]} can be thought of as the inverse of »
though this is not exact because » need not be monotone.

The choice of a reflects a user’s preferred reduction in
the initial optimality gap. Values of a such as 0.5 or 0.3
reflect a relatively modest improvement, whereas values
such as @ =0.05 represent a quite strict requirement.
When no confusion can arise, we fix a and suppress it in
the notation. As with the area under the progress curve,
the budget T plays a significant role in determining the
solve time 7.

A plot of the cumulative distribution function of 7 yields
detailed information about how rapidly and reliably a single
solver a-solves a single problem. Summary statistics might
be useful, but because 71 is extended-valued, moments
are typically infinite. Instead, we look at f-quantiles of
T defined as 7 = 7p := inf{q : Pr{t < g} > p}. Assuming
we can exactly compute f, we can estimate 7= by the

sample quantile over M macroreplications,

(M) := mf{q —ZH(Tm <q)> ﬁ}
m=1

where 7, =inf{t € [0,1] : v,;(f) < a} is the a-solve time
from the mth macroreplication. In other words, (M) is
the smallest time at which at least a fraction § of the
macroreplications a-solve the problem. This quantity
can be extended-valued, particularly when « is small. If f
cannot be computed exactly, then we use the sample f8
quantile of (7,,(L,N): m=1,2,...,M), where 7,,(L,N) =
inf{t €[0,1] :v,,(£;L,N) < a} is the estimated a-solve
time from the mth macroreplication. Perhaps reasonable
values of § are 0.5 or 0.9. The corresponding estimators,
denoted by ms(L,M,N) and 7g9(L, M, N), represent
the median and “fairly sure” fractions of the budget
required to a-solve the problem with 0.9 being the
stricter requirement. Bootstrapping can be used to pro-
vide error estimates for these estimators.

5.2. Multiple Solvers and Problems

Let 77° denote the a-solve time of solver s on problem p
given some fixed « € [0,1] and problem-specific budget
T". Consider the average probability that solver s solves
problem p within a fraction t € [0, 1] of its budget, aver-
aged across a set of problems p € P, thatis,

Z Pr{t’® <t}.

peP

pi(t) = 7

We call p° = {p°() : t € [0, 1]} the cdf-solvability profile of
solver s. (Here, “cdf” stands for cumulative distribution
function and reflects the fact that p° is an average of the
cdfs of ©7° over problems.) Notice that p*(1) < 1 if solver
s cannot solve all problems p € P within their budgets
with probability one. Assuming we can compute fexactly,
we can estimate p°(t) for t € [0,1] by the sample propor-
tion from M ii.d. macroreplications of solver s on each
problemp € P:

pi(t;M) =

7 Z MZ (7 < t).

peP

If we cannot compute f exactly, then we replace 7}; by
its two-level estimate 7h; (L, N) to obtain the estimator
p°(t;L,M,N).

The cdf-solvability profile of a solver at time t € [0,1]
gives the probability that a problem, selected uniformly
at random from P, is a-solved by time t on a single
macroreplication of the solver. A different form of solv-
ability profile returns the fraction of problems in P that a
given solver a-solves by time t with probability exceed-
ing B. More precisely, we define

Z]I(Pr{’cps <t}=p)=

peP

pp(t) = |P|ZH(nps<t)

|P| peP
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and call p} = {p3(t) : t € [0, 1]} the -quantile-a-solvabil-

ity proﬁle of so ver s. Here, 1t}}" is the f-quantile of the

a-solve time 77 of solver s on problem p. For = 0.9, for

example, pi(t) gives the fraction of problems we are

fairly sure solver s a-solves by time ¢. Natural one- and
two-level estimators of p 5(f) are

pp(t; M) := |P| FEZP]I(NZ'S(M) <t) and
py(t;L, M,N) := Z]I( P(LM,N)<t),
|P| peP

respectively. Quantile-solvability profiles are perhaps
more intuitive than cdf-solvability profiles because they
depict a fraction of problems as opposed to a fraction of
macroreplications. They summarize the progress curves of
problem-solver pairs based on quantiles at time ¢, thereby
diminishing the effect of macroreplications with particularly
poor or strong performance. Because quantile-solvability
profiles are p1ecew1se-constant and increasing in t with
jumps of size [P| !, they are coarsely quantized for small
problem sets.

Because p°(t; M) and Ph 5(t; M) are bounded, their
second moments are finite, and hence, we can obtain a
confidence interval for each t € [0,1] using asymptotic
normality, bootstrapping, or other mechanisms for
bounded random variables (Diouf and Dufour 2005,
Learned-Miller and Thomas 2019). As for p°(t;L, M, N)
and P (t;L,M,N), one can construct confidence inter-
vals usmg the bootstrapping procedure outlined in
Online Appendix C.

The (estimated) cdf- or quantile-solvability profiles for
a set of solvers can be plotted on the same graph with
higher curves indicating better performance on the set of
problems. Whereas area-under-the-progress-curve scat-
terplots summarize the overall performance of solvers
for different problems, solvability profiles provide com-
parisons of the solvers’ performance at different times,
aggregated over all problems. As a result, solvability
profiles provide insight about the rate of progress for dif-
ferent solvers.

5.3. Difference Profiles

So far, we have discussed how to compute solvability
profiles for each solver in a set of solvers, S. However,
when comparing any two solvers, sharper comparisons
can be obtained through paired differences. As we see, a
difference plot shows how the performance of each
solver compares with that of a fixed benchmark solver,
So. The benchmark solver sy can be one that has exhibited
robust performance across a range of problems, such as
the Nelder-Mead algorithm as tested in Dong et al.
(2017), or it can be a newly proposed solver. The bench-
mark solver can also be used to determine a reasonable
budget for each problem p € P by running s, until an
acceptable optimality gap in the problem is achieved.

For solver s, define
5(t) = p'(t) —

the difference between the cdf-solvability profiles of sol-
vers s and sy at time t. The quantity 6°(t) is deterministic,
ranges between -1 and 1, and is similar to the continu-
ously ranked probability score (Matheson and Winkler
1976) between two distributions. We define the cdf-
solvability difference profile, henceforth cdf-difference
profile, of solver s as & ={6°(t):t€[0,1]}. The cdf-
difference profile represents the difference between the
probabilities of solvers s and sy solving a problem chosen
uniformly at random from P within a fraction ¢ € [0,1] of
its associated budget. An analogous definition yields the
p-quantile-a-solvability difference profile or, in short,
quantile-difference profile of solver s: &; = {6 (t):te
[0,1]3}, whereé 5(f) := pﬁ(t) p o(t)fort €[0,1] .Iffcanbe
computed exactly, we can estimate 5°(t) and 6;(1‘) from
M ii.d. macroreplications by &°(f; M) := p*(t; M) — p*(t; M)
and 0p(t; M) := p3(t; M) — pif (t; M), respectively. When f
cannot be computed exactly, the corresponding two-
level estimators are given by 6°(t; L, M, N) := p*(t; L, M, N)
—pSO(tLMN) and O3(t;L,M,N) —pﬁ(tLMN)
pﬁ ’(t;L,M,N).

The ordering of solvers in difference profiles is the
same as that of the solvability profiles, but comparisons
with the benchmark s, are accentuated. Moreover, differ-
ence profiles can take advantage of CRN, much as one
can use paired difference estimators to estimate a differ-
ence of means in classical statistics. Difference profiles
for multiple solvers can be exhibited in a single plot by
pairing all solvers against a benchmark solver s,. In such
a plot, solver s overperforms (underperforms) solver s,
at a time f€[0,1] if the difference profile lies above
(below) zero at time t. Pointwise confidence intervals can
be constructed via bootstrapping or other methods men-
tioned in the previous section.

p*(t) for te[0,1],

6. Budget-Specific Solvers

Our focus to this point has been on solvers that do not
explicitly consider the budget T in setting their para-
meters. Such budget-agnostic solvers can report esti-
mated best solutions at intermediate budgets as they
proceed on a single macroreplication. On the other hand,
measuring and interpreting the progress of budget-
specific solvers is more nuanced. One can run a budget-
specific solver with a single budget T on a given problem
and, for any fixed t, define X(t) to be the (random) re-
commended solution upon expending an intermediate
budget tT. This approach yields a stochastic process
X1 ={Xr(t): 0 <t <1}, where the subscript T explicitly
indicates the dependence on the given budget. One can
then generate the performance measures we define for
budget-agnostic solvers as before. This approach allows
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time-dependent comparisons with budget-agnostic sol-
vers, but it is not entirely satisfactory because the stochastic
process Xris specific to the budget T. Consequently, under
this approach, the progress of a budget-specific solver at an
intermediate budget tT no longer signifies how the solver
performs if given a budget of tT at the outset.

It may appear that these issues can be resolved by run-
ning separate macroreplications of a budget-specific
solver at multiple intermediate budgets T; = ,T,i=1,2,
...,k, and defining each X(#;) as the solution recom-
mended at termination. However, even though the mar-
ginal distributions of X(t;) are well-defined, it is unclear
how to precisely characterize the joint distribution of
X(t1),X(t2),..., X(t) for budget-specific solvers. This
joint distribution depends, for example, on whether one
uses CRN across the macroreplications run with differ-
ent budgets. Moreover, if the solver uses an internal
source of randomness, then how is that source coordi-
nated across those same macroreplications? The fact that
this joint distribution is not well-defined for budget-
specific solvers affects several of our performance mea-
sures. Progress curves, which depict the scaled value of
f(X(t)) as a function of time over a single macroreplica-
tion, are no longer well-defined because they rely on the
joint behavior of f(X(#)) at multiple values of ¢. Likewise,
neither the time-average optimality gap A nor the solve
time (@) are well-defined, meaning that area scatter-
plots and solvability profiles are not well-defined.

Nevertheless, the progress at time f, v(t), as well as its
mean ((t) and quantile x(f), are well-defined because
they rely on the distribution of f(X(t)) for only a single ¢.
One can, therefore, still run multiple macroreplications of
budget-specific solvers at multiple budgets but redefine
our performance measures to depend on the marginal
distributions of f(X(t;)) for i=1,2,...,k. For example,
one can estimate the mean progress and quantile progress
at times f1,t,,...,t and produce estimated mean and
quantile progress curves. Both the appearance of these
curves—which now have jumps at a common set of
breakpoints—and their interpretation differ from those of
budget-agnostic solvers. Area scatterplots are harder to
generalize because they depend on the joint distribution
of the heights of progress curves at multiple time points,
and this joint distribution is not well-defined. Generaliza-
tions are possible but seem hard to justify in a principled
manner. This approach of specifying a finite set of times
on which to focus, thus, has fundamental difficulties, and
even if we ignore those difficulties, the chosen times are
necessarily arbitrary. Moreover, from a practical stand-
point, this approach is computationally very demanding;
multiple macroreplications are required at multiple bud-
gets, in contrast to budget-agnostic solvers that do not
require new macroreplications at each budget. Given
these flaws, we elect not to pursue this approach either.

The approach we instead advocate is to evaluate a
budget-specific solver at a single budget T through the

distribution of f(X(t)), the true objective function value at
the random recommended solution X(f), scaling to v(f) =
[FX(H) = fF(x)]/1f (x0) — f(x*)] to improve interpretabil-
ity. The natural choice of a single budget is T, which arises
when t = 1. We can then compare both budget-specific
and budget-agnostic solvers at this budget (for a single
problem) through distributional properties of v(1). To
summarize the results of multiple solvers tackling a single
problem, we use so-called terminal-progress comparative
violin plots (or boxplots) of v(1), plotting one distribution
per solver. With multiple solvers and problems, one might
still use comparative violin plots or boxplots, but with each
violin (box) representing a mixture distribution of a single
solver’s performance across multiple problems. Such plots
are likely hard to interpret, however, so we instead recom-
mend a scatterplot in which each problem—solver combi-
nation is represented by a single point with coordinates
given by the mean and standard deviation of v(1) for that
problem-solver combination. We refer to these plots as ter-
minal progress scatterplots.

7. Examples

We present examples of the aforementioned plots for
an experiment conducted with problems and solvers
from the SimOpt testbed (Eckman et al. 2020). Our prob-
lem set consists of 20 instances of three problems—
SSCONT-1, IRONORECONT-1, and SAN-1—for a total of
60 problem instances. SSCONT-1 is an (s, S) inventory
problem with continuous demand and order quantities
in which the objective is to identify the reorder and
order-up-to levels that minimize the expected per-
period total cost: the sum of back-order, order, and
holding costs. IRONORECONT -1 is another production-
planning problem in which a manufacturer of iron ore
seeks to determine the price levels at which to start and
stop production or sell all stock so as to maximize
expected profit. SAN-1 is a stochastic activity network
problem in which the objective is to choose the mean task
durations in the network that minimize the expected
length of the longest path plus a penalty paid for reduc-
ing the mean task durations. The dimensions of the three
problems are 2, 3, and 13, respectively, and all problems
are formulated with continuous decision variables
and nonnegativity constraints. More detailed problem
descriptions can be found in the documentation for
SimOpt (Eckman et al. 2020), and Online Appendix A
lists specific parameter settings we used. All code and
data for these experiments can be found in an accompa-
nying GitHub repository (Eckman et al. 2022a).

We test four classes of solvers:

Random Search randomly samples solutions from
the feasible region and takes a fixed number of replica-
tions at each solution. New solutions are generated
until the budget is exhausted. We test two versions
of Random Search with 10 (RS10) and 50 (RS50)
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replications per solution. See, for example, Chia and
Glynn (2013) for basic theory on random search.

ASTRO-DF is a stochastic, derivative-free, trust-
region method that uses adaptive sampling at each vis-
ited solution and interpolation to build local models
(Shashaani et al. 2018).

STRONG is another stochastic, derivative-free, trust-
region method that uses design of experiments to sam-
ple neighboring solutions and construct a first or second
order approximation of the objective function (Chang
et al. 2013, Chang 2014).

Nelder-Mead is a heuristic algorithm that main-
tains a simplex of solutions and performs a variety of
geometric operations to alter the structure of the sim-
plex and traverse the feasible region (Nelder and Mead
1965, Barton and Ivey 1996).

All solvers are given a budget of T = 1,000 replications
for each instance of SSCONT - 1 and TRONORECONT - 1 and
a budget of T =10,000 for each instance of SAN-1. We
run M = 10 macroreplications of each solver on each
problem instance with all solvers starting from a com-
mon initial solution on all macroreplications. In a post-
processing stage, we take N = 100 postreplications at all
recommended solutions. One might consider using dif-
ferent numbers of postreplications for those recom-
mended solutions that may be noisier than others, but
using a fixed N for all solutions has its merits, including
simplicity and transparency. For each problem instance,
the proxy optimal solution, x*, is taken to be the recom-
mended solution with the best postreplicated estimate
fn(-) over all macroreplications of all solvers. We take L
= 200 postreplications at x, and x* for each problem
instance. Ideally, the values M, N, and L would all be
chosen very large to ensure smooth plots with small
uncertainty ranges (as indicated by the shading in the
plots from bootstrapping). Computational considera-
tions necessitate compromise. Our choices are simply
plausible values that yield reasonable results, and cer-
tainly other choices could be made. In general, all three
parameters must be increased to reduce the uncer-
tainty ranges in the plots; see Section 8.

In Figure 1, we present plots for a problem instance of
SSCONT-1 with a mean demand of 1, = 400 units and a
mean lead time of i, = 6 days. Because the comparison
is made over a single problem instance, one can use the
unnormalized progress curves for interpretability. The
confidence intervals in these plots, constructed via boot-
strapping, depict the error in estimating solver perfor-
mance on this problem instance.

Figure 1(a) and (b) shows that progress curves are
highly variable because of the high variance of the lead
time. The mean progress curves in Figure 1(b) illuminate
the average performance of different solvers over time
and offer a clear ordering of the solvers based on their
empirical performance. Figure 1(c) depicts the cdf of the
a-solve times for a = 0.20, that is, the first times at which

each solver recommends a solution within 20% of opti-
mal (relative to the original optimality gap) on any given
macroreplication. Figure 1(c) shows the same ranking of
solvers on the problem instance as in Figure 1(b). The
terminal-progress violin plots in Figure 1(d) show that
ASTRO-DF consistently recommends high-quality solu-
tions upon termination, whereas STRONG struggles to
improve upon the initial solution. A possible explanation
for the latter is that we implemented a version of STRONG
that increases the sample size whenever the estimated
gradient is close to zero, which may arise given how the
experiments were performed using CRN across solu-
tions. The shape of the violin plots also indicates that,
although Nelder-Mead, RS10, and RS50 can recom-
mend competitive solutions, the quality of their final
recommendations is more variable.

Next, we examine the tools we propose to compare
solvers over a testbed of problems. Area and terminal-
progress scatterplots for the 20 instances of SAN-1
appear in Figure 2(a) and (b), respectively, with the corre-
sponding plots for the 20 instances of IRONORECONT -1
appearing in Figure 2(c) and (d). We omit plots for
SSCONT-1 and all 60 instances combined for space rea-
sons. We also suppressed the horizontal and vertical bars
that indicate bootstrapped confidence intervals to reduce
clutter, but they can optionally be added. On saN-1,
there is very clear clustering of solver performances.
Both random search solvers fail to make any progress as
indicated by the points at the bottom right of the plots.
The performance of the other three solvers is similar.
ASTRO-DF has more variable time-averaged perfor-
mance than both Nelder-Mead and STRONG, but its
superior terminal progress makes it clearly preferable to
STRONG. Both Nelder-Mead and ASTRO-DF are left-
shifted in the terminal-progress scatterplot relative to
the area scatterplot as one might expect from solvers
making steady progress over time. For the problem
IRONORECONT- 1, STRONG has the best terminal perfor-
mance among the solvers though all solvers demon-
strate mixed performance, suggesting some of these
instances are difficult to solve. The variability in the ter-
minal progress for some of the solvers appears to be
greater than that of the time-average progress as evi-
denced by the wider vertical spread of the points in
Figure 2(d).

Figure 3(a) and (c), shows cdf- and quantile-solvability
profiles of the five solvers over the full set of problem
instances. The cdf-solvability profile pertains to the time
required to reduce the optimality gap (of any problem)
to a fifth of its initial value on each macroreplication of
each problem instance. The quantile-solvability profiles
are presented for the median performance of solvers;
these plots thereby discount the effect of extreme solve
times encountered on certain macroreplications. The
right endpoints of the cdf- and quantile-solvability pro-
files show that our problem set includes some hard
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Figure 1. (Color online) Results for SSCONT -1 with Mean Demand u, = 400 Units and Mean Lead Time i, = 6 Days
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problems that all solvers fail to 0.2-solve within the
budget of simulation replications. Of the solvers, RS10
can quickly 0.2-solve about one third of the problem
instances, which is to be expected because the cheap sam-
pling of solutions (particularly for low-dimensional pro-
blems, such as SSCONT-1 and TRONORECONT-1) allows
RS10 to quickly visit improving solutions. RS10’s supe-
rior initial performance relative to ASTRO-DF quickly dis-
appears as the fraction of the budget increases and
ASTRO-DF then dominates. The cdf-solvability and quan-
tile solvability profiles also show that the high-level
ordering of solvers changes depending on the fraction of
the budget expended. Finally, although Nelder-Mead is
slow to 0.2-solve problems, it makes steady progress
throughout.

The difference profiles in Figure 3(b) and (d), depict
the performance gaps between ASTRO-DF and the other
solvers and further clarify the perceived superiority of
ASTRO-DF’s performance over the problem set. An advan-
tage of the difference profiles is that they exploit CRN, so

we see statistically significant differences between the
solvers.

8. Convergence of the Estimators
The number of macroreplications, M, and postreplica-
tions L, N affects the properties of our estimators. Here,
we explore the impact of these parameters on the conver-
gence of the estimators, exploiting the theory of two-
level simulation. For simplicity, throughout this section,
we fix the time ¢ and consider the pointwise error in the
estimated progress curves at that fixed time. Ideally, we
would consider multiple values of t simultaneously
because we are interested in the entire aggregate pro-
gress curve, but such an analysis appears to be quite
involved. The analysis for a fixed t shows what we
believe to be the main points.

We assume that the postreplications used to estimate
f(Xi(t)) are independent of those used to estimate
f(X;(t)) for i # j, that is, that the postreplications used to
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Figure 2. (Color online) Scatterplots of the Mean and Standard Deviation of Areas Under Estimated Progress Curves ((a) and
(c)) and Terminal Progress ((b) and (d)) for SAN-1 and TRONORECONT - 1, Respectively
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evaluate recommended solutions from different macro-
replications are mutually independent. Moreover, we
assume that the L postreplications used to estimate f(x)
and f(x*) are independent of those used to estimate
fX;(t),j=1,2,...,M. We allow the L postreplications
at xpand x" to be statistically dependent.

Remark 3. It is not helpful to use CRN in the postre-
plications used to evaluate solutions from different
macroreplications. Doing so creates a dependence
across macroreplications that slows down the conver-
gence of the estimators.

Throughout this section, we assume x, the optimal
solution, is deterministic and given. In practice it often
needs to be estimated. One might extend the ideas
presented here under some assumption about the
behavior (as a function of L, M, and N) of an estimator
of x* that replaces x*, but such methodology depends
heavily on the nature of f and the manner in which x*
is estimated.
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We shall, in some detail, analyze mean progress
curves and discuss quantile progress curves to a lesser
degree.

8.1. Mean Progress Curves

How accurate is the estimator u(t;L,M,N) of u(t)? We
state our observations in terms of an overall computa-
tional budget of simulation replications used to run the
entire experiment, including all macroreplications and
postreplications. We denote this overall budget by c and
assume, for simplicity, that the cost of running a replica-
tion (likewise postreplication) is uniform in x. Thus, we
regard L = L(c), M = M(c), and N = N(c) as functions of
¢, which we assume are bounded below by one to avoid
trivialities, and we suppress the dependence on c for
notational simplicity. We first run M macroreplications
with per-macroreplication cost (average number of
simulation replications) Tt and then complete the post-
replications at cost 2L + MN replications, yielding the
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Figure 3. (Color online) Profiles over All Problem Instances
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profiles.

estimator u(t; L, M, N). Thus, ¢ = TtM + 2L + MN, where
Tt > 1 represents the number of simulation replications
needed for a single macroreplication out to time Tt, MN is
the number of postreplications at recommended solutions
Xy (), Xo(t), ..., Xm(t), and L postreplications are spent at
each of solutions x; and x*. (For simplicity, we ignore
rounding effects associated with the need for L, M, and N
to all be integers.)
To proceed, we require additional assumptions.

Assumption 3. Simulation replications at any solution x
are unbiased, that is, EY1(x) = f(x) for all x.

Assumption 4. Simulation replications at any solution x
have bounded (in x) nonzero variance, that is, o(x):=
varY1(x) is positive and bounded in x.

Assumptions 3 and 4 (and Assumption 1 stated ear-
lier) permit a transparent analysis but are restrictive. For
example, relaxing Assumption 3 might be useful in the

context of steady-state simulation. We expect the conclu-
sions of Theorem 1 to hold under relaxed assumptions,
but we do not attempt to relax the assumptions because
we do not think additional insight would be obtained.

We say that a family of random variables X(c) is
Op(h(c)) if the family {X(c)/h(c) : ¢ > co} is tight for some
co > 0. The proof of the following result appears in
Online Appendix B.

Theorem 1. Suppose that Assumptions 1-4 hold and

min{L, M} — oo as ¢ — oco. Then, u(t;L,M,N) — u(t) in
probability as ¢ — co. Moreover,

p(t;LM,N) = (L, M,N) + Oy (L™ + M),
where the random variable [i(t;L,M,N) has mean p(t) and
variance o m m ,
MN M L

for appropriate constants ay, a, and as.

¢A(L,M,N) =
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Recall that ¢ = TtM + MN + 2L, representing the total
number of simulation replications. For large budgets c,
the variance of fi(t;L,M,N) is minimized by taking
the number of macroreplications M to be linear in c, the
number of postreplications L to be linear in ¢, and the num-
ber of postreplications N to be constant in ¢ as can be
derived by standard calculus arguments that relax the con-
straint that these quantities be integers. In that case, the var-
iance of ji(t;L,M,N) is of order c~!, which is the usual
canonical rate in Monte Carlo, and the need for two-level
simulation does not result in a deterioration in the conver-
gencerate.

The conclusion that the estimator u(t;L,M,N) con-
verges at the canonical rate (asymptotic variance of order
¢~ !)when L, M, and N are chosen appropriately is in line
with the observations in Sun et al. (2011) for two-level
simulations. The purpose of Theorem 1 is not to help
identify optimal choices of the parameters L, M, and N
because such choices depend on parameters that are dif-
ficult to compute. Rather, we present the result to
emphasize the convergence rate.

One might be tempted to use Theorem 1 to develop
confidence intervals on values of the mean progress
curve. Doing so requires developing estimators of the
various constants appearing in the result. It seems to be
far more practical to use bootstrapping to obtain error
estimates as discussed in Online Appendix C.

8.2. Quantile Progress Curves

The quantile progress estimator x(¢; L, M, N) can be ana-
lyzed using techniques similar to those we use for
u(t; L, M, N). However, quantile estimation for two-level
simulation poses an additional challenge. Quantile esti-
mators are analyzed in Lee (1998), Lee and Glynn (2003),
and Gordy and Juneja (2010), in which asymptotic theory
is developed in the case in which the number of postre-
plications N is the same at all macroreplication solutions.
It is natural, however, not to seek high accuracy in esti-
mating the true objective function value of recom-
mended solutions with relative optimality gaps that are
far from that of the true quantile x4(t). Gordy and Juneja
(2010) and Broadie et al. (2011) exploit this observation,
analyzing estimators that carefully vary the second level
sample sizes, achieving a faster convergence rate than
the common-N estimator. Extensions are explored in
Broadie et al. (2015) and Hong et al. (2017). In what fol-
lows, we adopt a common number of postreplications,
N, for all macroreplication solutions.

To rigorously state convergence results for x(t; L, M, N),
which is a quantile estimator using two-level simulation,
requires a great deal of associated notation and regularity
assumptions as is clear from Lee (1998) and Gordy and
Juneja (2010). Accordingly, we choose not to state such
results, but rather indicate what one can expect in general
in our setting given the results in the aforementioned
literature.

First, in the case when the solution space is discrete,
the results in Lee and Glynn (2003) indicate that the
mean-squared error of the estimator x(f; L, M, N) is typi-
cally minimized when the number of postreplications L
is of order ¢, the number of macroreplications M is of
order c and the number of postreplications N is of order
Inc, in which case the mean squared error is of order
Inc/c. This is slower than the canonical rate 1/c, but only
by a logarithmic factor. Second, in the case when the
solution space is continuous, the mean squared error of
the estimator x(f;L,M,N) is typically minimized when
the number of postreplications L is of order ¢*3, the
number of macroreplications M is of order ¢*?, and the
number of postreplications N is of order c'/3, in which
case the mean squared error is of order c2/3; see section
3.1.2 of Lee (1998).

9. Conclusions

Current practice in computational comparisons of SO
solvers is inconsistent. We provide a two-level experi-
mental design consisting of macroreplications and post-
replications with systematic CRN implementation and
error estimation. Postreplications to remove optimiza-
tion bias are rarely performed in existing literature.

We develop and demonstrate a range of plots for use
in empirical evaluation of SO solvers on a testbed of pro-
blems. Progress curves are closely related to curves that
have frequently been used to date, indicating the objec-
tive function value of the most recently recommended
solution as a function of time, but when progress curves
appear, they are usually based only on the original
macroreplications, not on postreplications. Moreover,
our plots differ in the way they are scaled with the x-axis
reflecting the fraction of the computational budget
expended and the y-axis reflecting the fraction of the
initial optimality gap that remains. Progress curves
and closely related plots giving the cdf of the a-solve
time for varying o provide a great deal of information
about the performance of a single solver operating on a
single problem. Yet these plots are less useful when
one wishes to explore the performance of a solver on
multiple problems or to compare the performance of
multiple solvers on multiple problems. Area scatterplots
and solvability profiles can prove useful in this more
information-rich setting by providing a high-level view of
overall performance.

We provide some examples of these plots that clarify
both their nature and usefulness. We believe these exam-
ples provide a “proof of concept” that demonstrates the
potential in such comparisons. The plots generated here
were obtained using the very recently upgraded SimOpt
testbed (Eckman et al. 2020), which is now available for
general use. The new version of SimOpt was designed to
be useful not just in the simulation-optimization setting
we explore here, but also in other settings such as in data
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farming (Eckman et al. 2022c). Those design improve-
ments will be reported elsewhere.
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