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Abstract. Simulation optimization involves optimizing some objective function that can 
only be estimated via stochastic simulation. Many important problems can be profitably 
viewed within this framework. Whereas many solvers—implementations of simulation- 
optimization algorithms—exist or are in development, comparisons among solvers are not 
standardized and are often limited in scope. Such comparisons help advance solver devel
opment, clarify the relative performance of solvers, and identify classes of problems that 
defy efficient solution, among many other uses. We develop performance measures and 
plots, and estimators thereof, to evaluate and compare solvers and diagnose their strengths 
and weaknesses on a testbed of simulation-optimization problems. We explain the need 
for two-level simulation in this context and provide supporting convergence theory. We 
also describe how to use bootstrapping to obtain error estimates for the estimators.
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1. Introduction and Motivation
Simulation optimization (SO) involves the optimization 
of some objective function over a (possibly constrained) 
feasible region, in which at least one of the objective and 
constraint functions is estimated through a stochastic sim
ulation. The decision variables for such problems can be 
continuous, integer-ordered, or even categorical. Such 
problems are typically highly challenging because sto
chastic simulation yields estimators that are slow to con
verge; the canonical error is of stochastic order c�1=2, 
where c is a measure of the computational effort devoted 
to the simulation (Asmussen and Glynn 2007). Moreover, 
many SO problems lack structure, such as smoothness, 
that might be exploited by specialized solvers, that is, 
implementations of algorithms for solving SO problems.

We consider optimization problems of the form 
{min f (x) | x ∈ D}, where D is a domain. We assume that f 
is estimated through stochastic simulation, and for sim
plicity, we assume that determining whether a point x 
lies in the domain D does not require simulation; that is, 
simulation is needed only in estimating f. This setup 
excludes the case in which constraints of the form g(x) ≥ 0 

must be satisfied, where g(x) is estimated by simulation. 
Such problems arise in practice, but we do not yet have a 
recommendation on performance metrics for them. Pro
blems with deterministic constraints, that is, those in 
which any constraint functions are deterministic and 
readily evaluated, are included.

The development of SO solvers is an active area of 
research. Much effort is devoted to the design of solvers 
with provable convergence guarantees, whether to local 
or global solutions, for example, Kushner and Yin (2003), 
Andradóttir (2006, 2015), Cooper et al. (2020), and Li and 
Ryzhov (2022). Such convergence analyses are valuable 
and insightful yet are typically most relevant in an 
asymptotic regime in which the computational effort 
becomes very large, especially in the case of results for 
global optimization. Because that regime can be difficult 
to reach in practice, there is a need to better understand 
the preasymptotic regime, in which solvers have yet to 
narrow in on a neighborhood of an optimal solution. 
This regime can be very difficult to explore analytically 
although some results are available, for example, 
Ghadimi and Lan (2015).
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The preasymptotic regime can be investigated through 
the use of a testbed of SO problems and solvers; see Fu 
(2002) and Glynn (2002) for the germ of this idea and, for 
example, Chau and Fu (2015) and Dong et al. (2017) for 
recent examples of simulation experiments assessing the 
relative performance of SO solvers. See also section 5 of 
Amaran et al. (2016) for a discussion on SO solver compar
isons and the need and utility of testbeds. Such experi
ments are important for a number of reasons. First, they 
can help with the development of new solvers by provid
ing a testbed of problems and helping identify good 
choices of a solver’s parameters through calibration over 
a set of problems. Second, they can help determine which 
solvers are effective when run with practically relevant 
computational budgets; a solver can be viewed as effec
tive when it solves problems rapidly and reliably. Third, 
they can help identify problems or classes of problems 
that are relatively easy to solve or that defy efficient solu
tion with existing solvers, thereby motivating further 
solver development and ensuring that research effort 
remains focused on more challenging problems. They 
can likewise provide insight into the structural proper
ties of problems, such as convexity and/or pathwise 
smoothness, that are especially well or poorly handled 
by a solver.

Testbeds are of great value to research communities 
outside of SO (Ali et al. 2005, Gould et al. 2015, Netlib 
2021, Wikipedia 2021). Compared with these other com
munities, the SO research community lags in the devel
opment of testbeds, but there has been recent progress. 
SimOpt is a library of simulation-optimization problems 
and solvers that is undergoing a redesign. See Pasupathy 
and Henderson (2006, 2011), Dong et al. (2017), and Eck
man et al. (2019, 2022b) for background and recent devel
opments and Eckman et al. (2020) for the library itself.

In parallel with the development and collection of pro
blems and solvers, one also needs metrics for evaluating 
and comparing solver performance. This paper focuses 
on the development of such metrics and methods for 
estimating them. Solvers are compared on the basis of 
their progress in improving the objective function value 
as a function of completed simulation replications.

In developing metrics, we attempt to capitalize on 
related metrics developed in other optimization commu
nities, namely, performance profiles (Dolan and Moré 
2002, Ali et al. 2005, Gould and Scott 2016), data profiles 
(Moré and Wild 2009), accuracy profiles (Beiranvand 
et al. 2017), and log-ratio profiles (Morales 2002, Shi et al. 
2021). There are special aspects of SO that prevent direct 
translation of the aforementioned metrics. For example, 
the fact that we cannot exactly (to numerical precision) 
evaluate an objective function and instead must estimate 
it through stochastic simulation means that we can never 
be certain that one solution is better than another or that 
a solution is close in objective function value to an opti
mal solution. Still, we can strive to make assertions with 

high confidence by controlling sample sizes and depen
dence structures through judicious use of common ran
dom numbers (CRN). In general, the estimation issues 
present in developing metrics and associated estimators 
are nontrivial.

The complexity of SO is reflected in related work in 
stochastic programming on assessing solution quality. 
Bayraksan and Morton (2006) develop new interval 
estimates of the optimality gap of a proposed solution 
that apply, at least in principle, to our setting. To com
pute their interval estimates, one needs to be able to 
obtain the globally optimal solution to a sample ver
sion of an SO problem. To that end, the examples pre
sented therein are convex, whereas we do not assume 
convexity. Still, that work inspires our use of scalings 
relative to the objective function value of optimal or 
near-optimal solutions. Bayraksan and Morton (2009) 
review and extend Bayraksan and Morton (2006) to 
include bias reduction, jackknifing, randomized quasi- 
Monte Carlo methods, and sequential sampling. Con
vexity is also central to the work in Lan et al. (2012) for 
obtaining bounds in convex SO problems when using 
mirror-descent algorithms. Many of these ideas are 
reviewed in the survey of Homem-de Mello and Bayr
aksan (2014), which also discusses statistical hypothe
sis testing of Karush–Kuhn–Tucker conditions for a 
given solution. Such methods are specific to a pro
posed solution and, thus, not suitable for our purpose 
of comparing solvers.

We view the primary contributions of this paper to be 
the following: 

• We identify important characteristics of solver per
formance and ways to measure them.

• We recommend an experimental design that accom
modates many SO solvers. The design typically requires 
the use of two-level simulation, and we exploit that lit
erature to inform the experimental design. Our experi
mental setup is readily implemented and has been 
fully implemented in SimOpt (Eckman et al. 2020, 
2022b).

• We develop a variety of metrics and clarify their 
uses in evaluating one or more solvers on one or more 
problems, namely, progress curves, terminal progress 
plots, area and terminal scatterplots, solvability profiles, 
and difference profiles. Unnormalized progress curves 
that show the estimated objective function of the esti
mated best solution seen so far have been used for a long 
time to track solver progress on a single problem (e.g., 
Pasupathy and Henderson 2006) and compare multiple 
solvers on a single problem (e.g., Dong et al. 2017). Our 
metrics considerably extend these ideas, building on 
related ideas from deterministic-optimization testbeds. 
Our proposed metrics do not align perfectly with metrics 
used in testbeds for deterministic-optimization methods; 
we explain what is unique about SO to justify our choices 
of metrics. Progress curves and solvability profiles are 
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related to plots used in other research fields, for example, 
convergence plots and data profiles, whereas terminal 
progress plots, scatterplots, and difference profiles are 
new.

• We draw a distinction between budget-specific sol
vers and budget-agnostic solvers. The former use prior 
knowledge of the budget to set key parameters that con
trol solver behavior. For example, Nemirovski et al. 
(2009) provide a stochastic approximation solver in 
which the step-length sequence and solution-averaging 
weights are both budget-specific. In contrast, budget- 
agnostic solvers do not exploit prior knowledge of the 
budget. Our focus is budget-agnostic solvers, but we 
also discuss the evaluation of budget-specific solvers 
and comparisons between solvers from the two classes.

• We make judicious use of CRN to improve various 
estimators.

• We describe a bootstrapping approach for asses
sing the estimation error in our estimated metrics.

This paper is organized as follows. Section 2 describes 
characteristics of SO problems and solvers in more 
detail and explains the need for so-called macrorepli
cations and postreplications. Section 3 introduces progress 
curves as a starting point for measuring solver perfor
mance on a single problem on a single macroreplication. 
We describe two ways to aggregate these curves over mul
tiple macroreplications, expanding on ideas sketched out 
in Pasupathy and Henderson (2006), and discuss estima
tors for such aggregate progress curves. These estimators 
use two-level, that is, nested, simulation, wherein macrore
plications constitute the outer level and postreplications 
constitute the inner. Section 4 explores the use of the area 
under progress curves to efficiently summarize the perfor
mance of multiple solvers on multiple problems, also pro
viding estimators. Section 5 proposes solvability profiles, 
which are closely related to data profiles as originally 
proposed in Moré and Wild (2009). Solvability profiles 
are based on the (random) time required to approxi
mately solve a problem as opposed to progress curves, 
which are based on the (random) improvement in 
objective function value as a function of time. Solvabil
ity profiles as well as their differences, which we call 
“difference profiles,” allow a succinct comparison of the 
performance of multiple solvers on multiple problems. 
Section 6 discusses evaluating the finite-time perfor
mance of both budget-agnostic and budget-specific 
solvers; unless otherwise noted, we assume budget- 
agnostic solvers. Section 7 provides examples of the 
comparative plots we advocate. Section 8 discusses 
convergence rates of our estimators, appealing to the 
literature on two-level simulation. We conclude in Sec
tion 9. The online supplement provides further details 
of the numerical examples in Section 7, the proof of a 
result given in Section 8, and more details of our use of 
bootstrapping to assess estimation errors in the various 
metrics.

2. Problems, Solvers, and 
Experimental Design

It is natural to use a testbed of SO problems to evaluate 
and compare SO solvers. In doing so, we want to exploit 
the literature on the use of testbeds in related areas, such 
as in linear programming and stochastic linear program
ming. SO problems and solvers, however, possess unique 
features that we must consider. For instance, a linear 
program in standard form can be fully specified by a 
vector of objective function coefficients, a constraint 
matrix, and a vector of constraint right-hand-side 
values. Such a succinct description allows one to read
ily describe problems and to write code to generate 
random problem instances. We find ourselves some
what envious of this relative simplicity when we con
template specifying SO problems. To do so, one must 
describe a mechanism through which sample paths 
can be constructed (e.g., a stochastic simulation model) 
and precisely define the performance measures.

Given this complexity, it is very tempting to instead 
use “synthetic” SO problems in which one takes a 
deterministic-optimization problem for which the objec
tive and any constraints are specified using closed-form 
formulae and “corrupts” the problem by adding mean- 
zero stochastic noise. For example, one might add mean- 
zero Gaussian noise to the Rosenbrock (1960) function. 
From a testing standpoint, this offers several advantages: 

• The optimal solution is the same as that of the orig
inal deterministic problem, which is often known.

• Simulation replications (i.e., function evaluations) 
are computationally inexpensive.

• Many high-dimensional, deterministic optimiza
tion problems exist for testing.

• Such objective functions typically have known 
structure.

The main disadvantage of this approach is that (solu
tion-dependent) variances, gradient estimators, and effects 
of CRN are all highly artificial. For example, a perfect 
instantiation of CRN—in which the same additive sto
chastic error is applied at all feasible solutions—yields 
sample-path functions that resemble the original deter
ministic function, just shifted vertically by a common 
offset. Thus, a deterministic-optimization solver that 
ignores the stochastic nature of the problem should 
perform very well although it might struggle on gen
eral SO problems. We believe synthetic problems are 
problematic when it comes to comparing SO solvers 
and do not consider them further.

For each problem we study, we specify a budget of T 
simulation replications within which solvers must oper
ate. We measure budgets in terms of replications because 
this definition is platform-independent in that perfor
mance measures do not change when run on computers 
with different architectures. Still, this measure has its 
disadvantages because it does not account for solver- 
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specific computation apart from simulation replications. 
For example, a solver may exploit additional informa
tion, such as direct gradient estimates (Fu 2006), or need 
to factor progressively larger matrices when using 
Gaussian-process predictions, but the associated compu
tational burden is not counted. Moreover, in asynchro
nous parallel computing environments, it is challenging 
to unambiguously define which replications come first. 
Our choice to measure budget in simulation replications 
is, therefore, imperfect. As long as it is clearly under
stood and the results are transparently presented, we 
consider it to be a reasonable choice.

Solvers are tasked with finding an estimated best solu
tion and not exceeding a budget T though we are also 
interested in their performance at intermediate budgets 
smaller than T. Budget-agnostic solvers do not tailor 
their parameters to the budget and, thus, can perform a 
single run until the budget T is exhausted, reporting the 
estimated best solution seen at intermediate budgets as 
they proceed. On the other hand, budget-specific solvers 
tailor their parameters to each intermediate budget. 
Unless otherwise stated, we focus on budget-agnostic 
solvers though we discuss budget-specific solvers in 
some depth in Section 6. We do not accommodate 
solvers that require a random budget, such as many 
ranking-and-selection algorithms that provide frequentist 
statistical guarantees. Our framework, thus, encompasses 
a diversity of algorithms, including gradient-descent, 
trust-region methods, direct-search methods, and evolu
tionary algorithms that track populations of solutions, but 
it is not completely general.

Simulation optimization gives rise to multiple sources 
of randomness. Function estimates obtained from simu
lation models are random, and some solvers, such as 
genetic algorithms, are intrinsically random. Therefore, 
a single run of a solver on a problem cannot yield a 
complete sense of the solver’s potential performance. 
Consequently, we conduct multiple macroreplica
tions; a macroreplication consists of a single run of a 
solver on a problem using up to the budget of T replica
tions. Macroreplications collectively give a sense of the 
variable performance of a solver on a problem and are 
central to how we evaluate solvers. However, multiple 
macroreplications are not essential when solving an 
SO problem in practice.

On each macroreplication, a solver uses estimates of 
objective function values to guide a search for better 
solutions. Such a search is biased toward solutions 
whose estimated objective function value is lower (for 
minimization problems) than the true value because of 
random sampling (Mak et al. 1999). This phenomenon is 
sometimes known as optimization bias, and it means 
that the estimated objective function value at an esti
mated optimal solution is biased low. Accordingly, 
whenever we want to obtain unbiased estimators of the 
progress of SO solvers, we use a fresh set of simulation 

replications, which we term “postreplications,” that are 
independent of those used in the macroreplications. 
Postreplications entail estimating objective function 
values and, thus, are conceptually simpler than macrore
plications, which involve the interaction between a 
solver and a problem.

Our experimental design, thus, has two levels: we con
duct multiple macroreplications of each solver on a 
given problem and obtain postreplications in a postpro
cessing stage. The distributional information we obtain 
from multiple macroreplications and postreplications 
then needs to be summarized in some fashion.

3. Progress Curves
In deterministic optimization, a common measure of per
formance of a single solver on a single problem is the 
time or number of function evaluations needed to find 
an optimal solution or a solution with objective value 
within some tolerance of the optimum. This form of eval
uation does not easily translate to SO for the following 
reasons: 

• Optimal solutions to SO problems are usually not 
known.

• In linear programming, for example, one can 
determine whether a given solution is optimal through 
a certificate of optimality, for example, complementary 
slackness conditions, without needing to know an opti
mal solution in advance. Such certificates are rare in SO 
problems, so even if an optimal solution were visited, 
usually it could not be identified as optimal.

• Suppose that an optimal solution x∗ is known for 
an SO problem, and we want to check whether a candi
date solution, x, has an objective function value, f(x), 
within some given tolerance, ɛ, of f (x∗). This determina
tion is subject to stochastic error in the estimator 
fN(x) � fN(x∗) obtained by averaging the outputs of N 
replications at each solution.

• The simulation error can be reduced by increasing 
the number of replications simulated at a solution, but 
this comes at a computational cost. This is not typically 
a feature of the deterministic-optimization setting.

For a given problem with the computational budget 
T, let X(t) be the recommended solution when using an 
intermediate budget tT, t ∈ [0, 1]. In a slight abuse of 
language, we refer to t as “time.” For a fixed t, the 
recommended solution X(t) is random, depending as it 
does on the outputs of the simulation replications and 
their influence on the solver’s progress. Solvers may 
also deliberately inject additional randomness into this 
process, as with, for example, genetic or random- 
search algorithms. Collectively, the solutions recom
mended over a range of budgets are described by the 
stochastic process X :� {X(t) : t ∈ [0, 1]}. Although the 
recommended solution can change at only discrete 
times t � 0, 1=T, 2=T, : : : , 1, it is convenient to represent 
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X as a continuous-time stochastic process by assuming 
that, at any time t, it takes the value of the most recent 
recommended solution. Thus, X is piecewise constant 
in time, that is, once a solution is recommended, it 
plays the role of an incumbent solution until it is 
replaced by a new recommended solution.

We are especially interested in the stochastic process 
f (X) :� {f (X(t)) : t ∈ [0, 1]}, where the random variable 
f (X(t)) is the true objective function value of the random 
recommended solution X(t) obtained on a generic macro
replication. The process f (X) describes the solver’s pro
gress in identifying better solutions over time and, for a 
given realization, that is, macroreplication, can be plotted 
over time. The deterministic analog of this plotted func
tion is widely used in the deterministic-optimization com
munity to study convergence and compare solvers on a 
given problem (Beiranvand et al. 2017). Such plots also 
frequently appear in the SO literature.

We find it useful to rescale the plot of f (X), especially 
when we want to summarize a solver’s performance 
over multiple problems as we do in Sections 4 and 5. 
Related scalings are used when reporting results for 
deterministic solvers on deterministic-optimization pro
blems; see, for example, Moré and Wild (2009). To that 
end, let x0 be a fixed initial solution, and let x∗ be either a 
known optimal solution or some proxy for an optimal 
solution. We use x∗ to set the vertical scaling in progress 
curves. If x∗ is optimal, then progress curves are bounded 
below by zero. If x∗ is suboptimal and some solver identi
fies a better solution, the effect is that the progress curve 
for that solver can drop below zero. Thus, it may be more 
useful to think of x∗ as a reference solution, which, with 
the initial solution x0, provides the vertical scaling in pro
gress curves. Choosing x∗ to be an optimal solution is 
ideal in that we can then interpret the vertical scale as a 
fraction of the initial optimality gap, but that interpreta
tion is not essential.

We may choose x∗ to be the best solution seen in an 
experiment, in which case it still has the same interpreta
tion as a reference solution for vertical scaling with the 
proviso that the reference solution depends on the exper
iment. In this case, any curves or profiles are specific to 
the experiment and should not be compared with plots 
that result from different experiments. A potential 
concern with this approach is that the solver, say s, that 
identifies this best solution may appear to have better 
convergence properties than it actually does because the 
plot portrays convergence relative to the objective func
tion value of this best solution. For example, solver s may 
appear in the progress plot to attain the truly optimal 
solution in finite time with positive probability. (Such 
performance seems unlikely, especially on problems with 
continuous decision variables, though it is conceivable 
that this could happen with discrete-decision-variable 
problems.) Still, our primary focus is on benchmarking, so 
the entire progress curve and not just its final value is of 

interest. So long as this context is clear, defining x∗ in this 
manner is reasonable. If this method for defining x∗ is 
deemed problematic, one can always obtain x∗ in an 
alternative fashion, for example, through a macrorepli
cation with a much larger budget. One might be con
cerned about optimality bias when x∗ is chosen as the 
estimated best solution in an experiment. Certainly 
this choice of x∗ could exhibit such bias, but because we 
only use x∗ as a reference solution for vertical scaling, 
whereas it is the ordering between curves that is 
important, optimality bias does not cause fundamental 
difficulties.

The initial solution x0 is assumed to be common across 
all macroreplications of a solver on a given problem. As 
a result, all of the variability observed in the quality of 
the random solution recommended at a given time, that 
is, f (X(t)), can be attributed to the simulation error in 
evaluating f (·), any internal randomness in the solver, 
and their effects on the solver’s behavior. Whereas vary
ing x0 from macroreplication to macroreplication indi
cates how robust the solver is to starting from different 
initial solutions, it also leads to different rescalings of 
f (X(t)) for different macroreplications. Given these diffi
culties, we fix x0 across macroreplications; different ini
tial solutions on the same problem can be treated as 
distinct problems (Wild 2019).

For simplicity of exposition, we make several assump
tions about the objective function values at x0, x∗ and 
elsewhere:

Assumption 1. The objective function f(x) is bounded 
above and below and attains its optimal value at x � x∗.

Assumption 2. The search does not start at an optimal 
solution, that is, f (x0) ≠ f (x∗).

The assumption that f (·) is bounded above is far stron
ger than needed but simplifies the discussion. It could be 
replaced by, for example, growth conditions on f (·) and 
conditions limiting the step size in solvers. The assump
tion that x∗ is optimal allows us to assume a lower bound 
of zero on progress curves and to interpret the value of 
the progress curve as the relative optimality gap com
pared with the initial optimality gap; this assumption is 
not critical to the development. To normalize the plot of 
f (X), we offset f (X(t)) by the optimal objective function 
value, f (x∗), and divide by the initial optimality gap, 
f (x0) � f (x∗). We denote the rescaled stochastic process 
by n � {ν(t) : t ∈ [0, 1]}, where

ν(t) :�
f (X(t)) � f (x∗)

f (x0) � f (x∗)
, 

and refer to n as the “progress curve.” We refer to f (X) as 
the unnormalized progress curve. The value of the pro
gress curve at a time t ∈ [0, 1] is a random variable giving 
the ratio of the optimality gap at time t to the optimality 
gap at time 0. Under Assumptions 1 and 2, ν(t) is finite 
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for all t ∈ [0, 1]. For minimization problems, we expect 
that, with high probability, f (x0) ≥ f (X(t)) ≥ f (x∗) for all 
t ∈ [0, 1] so that ν(t) ∈ [0, 1]. On the other hand, for maxi
mization problems, we expect that, with high probabil
ity, f (x0) ≤ f (X(t)) ≤ f (x∗), and again, ν(t) ∈ [0, 1]. In 
either case, a solver that recommends better quality solu
tions over time has ν(t) decrease toward zero as t 
increases. However, ν(t) can take values above one if the 
corresponding recommended solution X(t) is worse than 
the initial solution x0. Likewise, ν(t) can take values 
below zero if X(t) is infeasible in a constrained optimiza
tion problem or if x∗ is not optimal. Though not mathe
matically precise, we find it convenient to presume that 
ν(t) takes only values between zero and one when mak
ing general statements about the progress curve and 
related quantities.

Remark 1. The plot of n depends heavily on the 
choice of the budget, T. If x∗ is a fixed, high-quality 
reference solution and T is very small, a solver will 
not make much progress toward finding x∗ and ν(t)
will hover near one. If T is very large, then a solver 
may make substantial progress toward an optimal 
solution relatively early and then remain near such an 
optimizer for the remaining time, in which case ν(t)
quickly drops to zero and remains there. When com
paring multiple solvers, the choice of the budget can 
favor slow-and-steady solvers (by increasing T) or 
rapid solvers (by decreasing T). Thus, care needs to be 
exercised in selecting T. The budget should ideally 
be large enough that a near-optimal solution can be 
found by some solver yet also small enough that dif
ferences in solvers’ finite-time performance can be 
detected. We advocate setting it equal to the effort 
used by the best performing solver to get close to an 
optimal solution. This recommendation is imprecise; 
we believe necessarily so.

The progress curve, n, is the principal random 
object by which we measure a solver’s performance 
subject to a computational budget. By running multi
ple independent and identically distributed (i.i.d.) 
macroreplications of the solver and plotting the corre
sponding realizations of n, one can visualize the run- 
to-run variability in a solver’s progress over time on a 
given problem. The distribution of these random pro
gress curves offers a wealth of information on differ
ent aspects of the solver’s behavior. For instance, the 
distribution of ν(t) for any fixed t gives a sense of the 
reliability of the solver, for example, how consistently 
it recommends high-quality solutions at an intermedi
ate budget. Also, “flattening” progress curves can 
indicate that a solver has stalled or reached a local 
optimum. In addition, the distribution of the first time 
at which ν(t) drops below some fixed threshold α ∈

[0, 1] indicates how much time it takes the solver to 
reduce the relative optimality gap to α.

3.1. Aggregate Progress Curves
When extending to multiple solvers, simultaneously 
plotting multiple realizations of n for all solvers quickly 
becomes too cluttered, making it hard to draw clear con
clusions. For this reason, we explore ways to aggregate 
or summarize aspects of n. Different manipulations of n 
lead to valuable insights into the average progress, rate 
of progress, and run-to-run reliability of a solver on a 
given problem. In Sections 4 and 5, we extend these ideas 
to enable comparisons of multiple solvers on a set of pro
blems. Collectively, these ideas rely on functions that 
take as input a stochastic process on the interval [0, 1]

and output either a scalar or a deterministic function on 
the interval [0, 1]. An example of the former includes the 
expected area under n, whereas examples of the latter 
include the mean and median of ν(t) as functions of t.

Studying the distribution of the stochastic process n at 
a fixed time or a fixed remaining optimality gap α offers 
interesting connections to other methods for evaluating 
solver performance. For instance, fixing a remaining 
optimality gap and plotting the distribution of the time 
at which the solver attains that level of improvement is 
reminiscent of data profiles (Beiranvand et al. 2017). Sim
ilarly, fixing a time and plotting the distribution of the 
remaining optimality gap closely resembles a rescaled 
accuracy profile (Beiranvand et al. 2017). However, data 
and accuracy profiles were originally developed for 
comparing deterministic-optimization solvers in which 
the “distribution” in question comes from a solver’s per
formance on a fixed set of problems.

We are interested in both the typical and tail behavior 
of ν(t) for each t ∈ [0, 1]. To do so, we introduce aggre
gate progress curves and present their estimated coun
terparts in Section 3.2. As we use the term, an aggregate 
progress curve plots some summary measure, for exam
ple, the mean, median, or some other quantile of ν(t), as a 
function of t. The mean or median is frequently reported; 
see, for example, Dong et al. (2017).

The mean progress at time t ∈ [0, 1] is defined as 
µ(t) :� Eν(t), where the expectation is over X(t), the ran
dom solution recommended at time t starting from the 
(deterministic) initial solution x0. For a fixed β ∈ (0, 1), 
the β-quantile progress at time t ∈ [0, 1] is defined as 
χβ(t) :� inf{q : Pr{ν(t) ≤ q} ≥ β}. Different choices of β 
accommodate a user’s interest in a solver’s median per
formance (β � 0:5) or tail performance in the direction of 
strong (e.g., β � 0:05) or poor (e.g., β � 0:95) perfor
mance. (When no confusion can arise, we suppress β in 
this notation.) To estimate the mean and β-quantile pro
gress, we can obtain M i.i.d. macroreplications of the 
solver on the given problem, each yielding a sequence of 
recommended solutions Xm :� {Xm(t) : t ∈ [0, 1]} for 
m � 1, 2, : : : , M. Throughout this paper, a subscript m 
indicates a quantity associated with macroreplication m; 
for example, nm is the progress curve realized on macro
replication m. For problems in which we can exactly (to 

Eckman, Henderson, and Shashaani: Diagnostics for Simulation-Optimization Solvers 
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
3:

70
80

:a
20

1:
19

00
:a

dc
b:

a9
4e

:7
e4

1:
37

26
] o

n 
26

 F
eb

ru
ar

y 
20

23
, a

t 1
7:

55
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



numerical precision) compute f (·), the mean progress at 
time t ∈ [0, 1] can be estimated by averaging the progress 
from each macroreplication:

µ(t; M) :�
1
M

XM

m�1
νm(t) �

1
M

XM

m�1

f (Xm(t)) � f (x∗)

f (x0) � f (x∗)
:

The β-quantile progress at time t ∈ [0, 1] can likewise be 
estimated by taking the sample β-quantile, 

χ(t; M) :� inf q :
1
M

XM

m�1
I(νm(t) ≤ q) ≥ β

( )

:

Remark 2. It is important to understand how many 
macroreplications suffice to get reasonably precise 
estimates of µ(t) and χ(t). Understanding the error 
associated with estimating µ(t) and χ(t) by µ(t; M) and 
χ(t; M), respectively, is worthwhile, yet we defer our 
discussion until the end of Section 3.2, where we con
sider a two-level simulation setting.

3.2. Estimated (Aggregate) Progress Curves
Typically, we cannot exactly compute f (·) and must 
resort to estimating the progress curve for a given reali
zation of X via simulation. This setting is an instance of 
two-level simulation: in the outer level, macroreplica
tions of the solver produce realizations of X, and in the 
inner level, we obtain N postreplications at each recom
mended solution up to the budget. For a fixed time t ∈

[0, 1] and postreplication index n � 1, 2, : : : , N, let Yn(t)
denote the corresponding noisy observation of the ob
jective function value f (X(t)). The N postreplications 
Y1(t), Y2(t), : : : , YN(t) are assumed to be conditionally 
independent of one another and of the estimated func
tion values obtained in the course of the macroreplica
tions, conditional on the sequence of recommended 
solutions, X.

As a default, we assume that CRN are used to evaluate 
the solutions recommended at different intermediate 
budgets on a given macroreplication; thus, for each 
n � 1, 2, : : : , N, Yn :� {Yn(t) : t ∈ [0, 1]} is a piecewise-constant 
function with breakpoints corresponding to times at 
which the recommended solution changes. This use of 
CRN is intended to produce stable estimated progress 
curves and reduce redundant simulation of a solution 
that is possibly recommended at multiple times on a 
given macroreplication. Although X is modeled as a 
continuous-time stochastic process, Yn can easily be 
obtained by using the same random primitives to simu
late each distinct solution in X as output by the solver.

In a similar manner, we obtain L postreplications at 
solutions x0 and x∗, and for each postreplication index 
l � 1, 2, : : : , L, we let Y0l and Y∗l denote the corresponding 
noisy observations. Here too, we assume that CRN are 
used to evaluate x0 and x∗. We allow L to differ from N 
because estimates of f (x0) and f (x∗) are needed for all 

times t at which we estimate ν(t). We, thus, expect to use 
a greater run length, L, for these common terms than the 
standard postreplication run length, N. Moreover, we 
foresee using the same estimates of f (x0) and f (x∗) to con
struct the estimated progress curves from other macrore
plications of the same solver.

We use the shorthand notation fN(·) and fL(·) to denote 
the sample averages of N and L i.i.d. postreplications, 
respectively, that is,

fN(X(t)) :�
1
N

XN

n�1
Yn(t) for t ∈ [0, 1], fL(x0) :�

1
L

XL

l�1
Y0l,

and fL(x∗) :�
1
L

XL

l�1
Y∗l:

Based on the postreplications, the estimated progress at 
time t ∈ [0, 1] is defined as

ν(t; L, N) :�
fN(X(t)) � fL(x∗)

fL(x0) � fL(x∗)
:

We adopt the convention that the solver recommends 
the initial solution x0 at time t � 0. Hence, we set 
ν(0; L, N) � 1 even though fN(x0) almost certainly does 
not equal fL(x0).

For this setting in which f (·) must be estimated from 
simulation postreplications, the mean and β-quantile 
progress curves can be estimated by aggregating the esti
mated progress curves from each of M i.i.d. macrorepli
cations. Specifically, the estimated mean progress at time 
t ∈ [0, 1] is

µ(t; L, M, N) :�
1
M

XM

m�1
νm(t; L, N)

�
1
M

XM

m�1

fN(Xm(t)) � fL(x∗)

fL(x0) � fL(x∗)
, 

where νm(t; L, N) is the estimated progress at time t 
from the mth macroreplication. Similarly, the estimated 
β-quantile progress at time t ∈ [0, 1] is the sample 
β-quantile, that is, 

χ(t; L, M, N) :� inf q :
1
M

XM

m�1
I(νm(t; L, N) ≤ q) ≥ β

( )

:

At any given time t ∈ [0, 1], the estimated aggregate pro
gress values µ(t; L, M, N) and χ(t; L, M, N) are computed 
via two-level simulation.

As with any estimation procedure, statistical error can 
pose challenges. For example, at any given time t ∈ [0, 1]

and macroreplication m, the estimated progress νm(t; L, N)

may take a negative value if the solution Xm(t) is mis
identified as being better than x∗ because of highly noisy 
function values and an insufficient number of postreplica
tions. The statistical error in the estimators µ(t; L, M, N)
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and χ(t; L, M, N) can be assessed in several ways. Assum
ing finite second moments of Y1(t), Y01, and Y∗1, standard 
confidence-interval machinery yields an interval estimator 
of µ(t) based on µ(t; L, M, N). Additional conditions are 
required to establish the validity of corresponding interval 
estimators of χ(t) based on χ(t; L, M, N). The analysis for 
both error estimators is discussed in Section 8, in which we 
use two-level simulation analysis to assess the asymptotic 
order of the error. From a practical standpoint, we pre
scribe a general bootstrapping approach that provides 
error estimates for these metrics (and others); see Online 
Appendix C for a full description.

Whereas aggregate progress curves summarize the 
typical and tail behavior of ν(t) for each t ∈ [0, 1], they 
cannot be easily extended to evaluate the performance of 
one or more solvers on multiple problems. For this rea
son, we introduce metrics that each reduce a collection of 
progress curves to a scalar rather than a function in the 
next two sections. Section 4 focuses on monitoring each 
solver’s performance on each problem in a set of pro
blems, whereas Section 5 provides a metric to compare 
the overall performance of the solvers.

4. Area Under Progress Curves
The area under the progress curve is given by the ran
dom variable

A :�

Z 1

0
ν(t) dt �

Z 1

0

f (X(t)) � f (x∗)

f (x0) � f (x∗)
dt:

Provided a solver is unlikely to recommend solutions 
worse than x0 or better than x∗, A takes values in [0, 1]

with high probability. Our rescaling of f (X(t)) addresses 
several shortcomings of a related metric proposed by 
Pasupathy and Henderson (2006): the area under the 
curve f (X).

The random variable A can be interpreted as the sol
ver’s time-average relative optimality gap up to the bud
get T on a given macroreplication. Smaller values of A 
indicate better performance in the sense that the solver 
recommended better solutions on average throughout a 
given macroreplication. Although the area under the pro
gress curve summarizes a solver’s time-average progress, 
it does not capture all aspects of a solver’s behavior given 
a fixed budget. For example, two progress curves can 
have the same area under them but exhibit very different 
solver behaviors with one showing steady progress over 
time and the other showing early rapid progress before 
plateauing. Although imperfect, distributional properties 
of A can be used for comparisons over multiple problems.

Let µA :� EA and σA :�
ffiffiffiffiffiffiffiffiffiffiffiffi
VarA

√
be the expectation and 

standard deviation of the area under the progress curve. 
The quantities µA and σA measure the average and 
variability of the time-average relative optimality gap 
with smaller values indicating better average and less- 
variable run-to-run performance, respectively. Under 

Assumptions 1 and 2, µA is also the area under the mean 
progress curve:

µA � EA � E

"Z 1

0
ν(t) dt

#

�

Z 1

0
Eν(t) dt �

Z 1

0
µ(t) dt:

The area under the mean progress curve, µA, combines 
the typical as well as especially poor or strong behavior 
of ν(t) but, otherwise, offers limited information about 
the distribution of ν(t). The standard deviation σA pro
vides some information on reliability. It measures the 
across-macroreplication variability in how a solver’s 
sequence of recommended solutions evolves depending 
on the data it observes.

We can estimate µA and σA by obtaining M i.i.d. 
macroreplications of the solver and calculating the sam
ple mean and standard deviation of the areas under the 
realized progress curves. For the typical case in which 
f (·) must be estimated from postreplications, we can esti
mate µA and σA from the realized estimated progress 
curves:

µA(L, M, N) :�
1
M

XM

m�1
Am(L, N) �

1
M

XM

m�1

Z 1

0
νm(t; L, N) dt, 

and

σA(L, M, N) :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

XM

m�1

�
Am(L, N) � µA(L, M, N)

�2

v
u
u
t :

Let µp,s
A (L, M, N) and σp,s

A (L, M, N) denote the estimated 
mean and standard deviation of the area under the pro
gress curve for a given solver, s, and a given problem, p. 
By our scaling of the progress curves, µp,s

A (L, M, N) and 
σp,s

A (L, M, N) should take values in the intervals [0, 1] and 
[0, 1=2], respectively, with high probability. The perfor
mance of a solver s over a set of problems P can be 
depicted in a scatterplot of {(µ

p,s
A (L, M, N),σp,s

A (L, M, N)) :

p ∈ P}. Problems for which (µ
p
A(L, M, N),σp

A(L, M, N))

lies in the lower left quadrant of [0, 1] × [0, 1=2] are those 
on which the solver makes rapid, reliable progress. Com
paring superimposed scatterplots for different solvers 
can give a rough sense of their relative performance 
though, when comparing more than a handful of solvers, 
it may be necessary to produce separate plots.

The appearance of these scatterplots depends on 
the budget, T. The sample mean µ

p,s
A (L, M, N) should 

decrease as T increases for solvers that continue to make 
progress or at least do no worse than the previous time 
average during the additional time. The effect of T on 
σp,s

A (L, M, N) is more intricate. Roughly speaking, σA is 
related to the variability in the height of the progress 
curve. For many solvers, we observe that the interquar
tile ranges of f (X(t)) first increase as the different trajecto
ries of a solver move away from x0 and later decrease as 
they converge to x∗. (This is, of course, an oversimplification: 
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if different trajectories converge to different local optimal 
solutions, the variance of f (X(t)) may remain high for 
large t.) Thus, increasing the budget should typically 
introduce extensions of the progress curves whose 
heights are less variable, translating to less variability 
in the area under the curve, that is, smaller values of 
σp,s

A (L, M, N), but this is not universally the case. The 
choice of budget can also influence the appearance of 
the scatterplot as a result of solver characteristics. For 
example, a scatterplot depicting two solvers appears 
quite different at different budgets T if one solver 
requires more setup than another but benefits from 
that setup in the long run.

5. Solvability Profiles
Another way to compare solvers on multiple problems is 
through profiling. In this section, we explore related 
ideas for simulation optimization, in which the variable 
performance of a solver across macroreplications must 
also be addressed.

5.1. A Single Problem–Solver Pair
We previously define the progress curve as a stochastic 
process n � {ν(t) : t ∈ [0, 1]}, where ν(t) :� (f (X(t)) � f (x∗))=

(f (x0) � f (x∗)) reports the optimality gap as a function of 
time. Let τ(α) be the (random) time required to reduce 
the optimality gap to a fraction α ∈ [0, 1] of its initial 
value, that is,
τ(α) :� inf{t ∈ [0, 1] : ν(t) ≤ α}

� inf{t ∈ [0, 1] : f (X(t)) ≤ α(f (x0) � f (x∗)) + f (x∗)}, 

where the second equality only applies for a minimiza
tion problem. (A similar second equality applies for a 
maximization problem.) We take the infimum of the 
empty set to be ∞, so τ(α) takes values in [0, 1] ∪{∞}. 
(This is still true even if ν(t) can take values outside of 
[0, 1], e.g., if the reference solution x∗ is suboptimal and a 
solver finds a strictly better solution.) We refer to τ(α) as 
the α-solve time. The corresponding stochastic process 
t � {τ(α) : α ∈ [0, 1]} can be thought of as the inverse of n 
though this is not exact because n need not be monotone.

The choice of α reflects a user’s preferred reduction in 
the initial optimality gap. Values of α such as 0.5 or 0.3 
reflect a relatively modest improvement, whereas values 
such as α � 0:05 represent a quite strict requirement. 
When no confusion can arise, we fix α and suppress it in 
the notation. As with the area under the progress curve, 
the budget T plays a significant role in determining the 
solve time τ.

A plot of the cumulative distribution function of τ yields 
detailed information about how rapidly and reliably a single 
solver α-solves a single problem. Summary statistics might 
be useful, but because τ is extended-valued, moments 
are typically infinite. Instead, we look at β-quantiles of 
τ defined as π � πβ :� inf{q : Pr{τ ≤ q} ≥ β}. Assuming 
we can exactly compute f, we can estimate π by the 

sample quantile over M macroreplications,

π(M) :� inf q :
1
M

XM

m�1
I(τm ≤ q) ≥ β

( )

, 

where τm � inf{t ∈ [0, 1] : νm(t) ≤ α} is the α-solve time 
from the mth macroreplication. In other words, π(M) is 
the smallest time at which at least a fraction β of the 
macroreplications α-solve the problem. This quantity 
can be extended-valued, particularly when α is small. If f 
cannot be computed exactly, then we use the sample β 
quantile of (τm(L, N) : m � 1, 2, : : : , M), where τm(L, N) �

inf{t ∈ [0, 1] : νm(t; L, N) ≤ α} is the estimated α-solve 
time from the mth macroreplication. Perhaps reasonable 
values of β are 0.5 or 0.9. The corresponding estimators, 
denoted by π0:5(L, M, N) and π0:9(L, M, N), represent 
the median and “fairly sure” fractions of the budget 
required to α-solve the problem with 0.9 being the 
stricter requirement. Bootstrapping can be used to pro
vide error estimates for these estimators.

5.2. Multiple Solvers and Problems
Let τp,s denote the α-solve time of solver s on problem p 
given some fixed α ∈ [0, 1] and problem-specific budget 
Tp. Consider the average probability that solver s solves 
problem p within a fraction t ∈ [0, 1] of its budget, aver
aged across a set of problems p ∈ P, that is,

ρs(t) :�
1

|P|

X

p∈P

Pr{τp,s ≤ t}:

We call rs � {ρs(t) : t ∈ [0, 1]} the cdf-solvability profile of 
solver s. (Here, “cdf” stands for cumulative distribution 
function and reflects the fact that rs is an average of the 
cdfs of τp,s over problems.) Notice that ρs(1) < 1 if solver 
s cannot solve all problems p ∈ P within their budgets 
with probability one. Assuming we can compute f exactly, 
we can estimate ρs(t) for t ∈ [0, 1] by the sample propor
tion from M i.i.d. macroreplications of solver s on each 
problem p ∈ P:

ρs(t; M) :�
1

|P|

X

p∈P

1
M

XM

m�1
I(τp,s

m ≤ t):

If we cannot compute f exactly, then we replace τp,s
m by 

its two-level estimate τp,s
m (L, N) to obtain the estimator 

ρs(t; L, M, N).
The cdf-solvability profile of a solver at time t ∈ [0, 1]

gives the probability that a problem, selected uniformly 
at random from P, is α-solved by time t on a single 
macroreplication of the solver. A different form of solv
ability profile returns the fraction of problems in P that a 
given solver α-solves by time t with probability exceed
ing β. More precisely, we define

ρs
β(t) :�

1
|P|

X

p∈P

I(Pr{τp,s ≤ t} ≥ β) �
1

|P|

X

p∈P

I(πp,s
β ≤ t), 
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and call rs
β � {ρs

β(t) : t ∈ [0, 1]} the β-quantile-α-solvabil
ity profile of solver s. Here, πp,s

β is the β-quantile of the 
α-solve time τp,s of solver s on problem p. For β � 0:9, for 
example, ρs

β(t) gives the fraction of problems we are 
fairly sure solver s α-solves by time t. Natural one- and 
two-level estimators of ρs

β(t) are

ρs
β(t; M) :�

1
|P|

X

p∈P

I(πp,s
β (M) ≤ t) and

ρs
β(t; L, M, N) :�

1
|P|

X

p∈P

I(πp,s
β (L, M, N) ≤ t), 

respectively. Quantile-solvability profiles are perhaps 
more intuitive than cdf-solvability profiles because they 
depict a fraction of problems as opposed to a fraction of 
macroreplications. They summarize the progress curves of 
problem–solver pairs based on quantiles at time t, thereby 
diminishing the effect of macroreplications with particularly 
poor or strong performance. Because quantile-solvability 
profiles are piecewise-constant and increasing in t with 
jumps of size |P|

�1, they are coarsely quantized for small 
problem sets.

Because ρs(t; M) and ρs
β(t; M) are bounded, their 

second moments are finite, and hence, we can obtain a 
confidence interval for each t ∈ [0, 1] using asymptotic 
normality, bootstrapping, or other mechanisms for 
bounded random variables (Diouf and Dufour 2005, 
Learned-Miller and Thomas 2019). As for ρs(t; L, M, N)

and ρs
β(t; L, M, N), one can construct confidence inter

vals using the bootstrapping procedure outlined in 
Online Appendix C.

The (estimated) cdf- or quantile-solvability profiles for 
a set of solvers can be plotted on the same graph with 
higher curves indicating better performance on the set of 
problems. Whereas area-under-the-progress-curve scat
terplots summarize the overall performance of solvers 
for different problems, solvability profiles provide com
parisons of the solvers’ performance at different times, 
aggregated over all problems. As a result, solvability 
profiles provide insight about the rate of progress for dif
ferent solvers.

5.3. Difference Profiles
So far, we have discussed how to compute solvability 
profiles for each solver in a set of solvers, S. However, 
when comparing any two solvers, sharper comparisons 
can be obtained through paired differences. As we see, a 
difference plot shows how the performance of each 
solver compares with that of a fixed benchmark solver, 
s0. The benchmark solver s0 can be one that has exhibited 
robust performance across a range of problems, such as 
the Nelder–Mead algorithm as tested in Dong et al. 
(2017), or it can be a newly proposed solver. The bench
mark solver can also be used to determine a reasonable 
budget for each problem p ∈ P by running s0 until an 
acceptable optimality gap in the problem is achieved.

For solver s, define

δs(t) :� ρs(t) � ρs0 (t) for t ∈ [0, 1], 

the difference between the cdf-solvability profiles of sol
vers s and s0 at time t. The quantity δs(t) is deterministic, 
ranges between –1 and 1, and is similar to the continu
ously ranked probability score (Matheson and Winkler 
1976) between two distributions. We define the cdf- 
solvability difference profile, henceforth cdf-difference 
profile, of solver s as ds � {δs(t) : t ∈ [0, 1]}. The cdf- 
difference profile represents the difference between the 
probabilities of solvers s and s0 solving a problem chosen 
uniformly at random from P within a fraction t ∈ [0, 1] of 
its associated budget. An analogous definition yields the 
β-quantile-α-solvability difference profile or, in short, 
quantile-difference profile of solver s: ds

β � {δs
β(t) : t ∈

[0, 1]}, where δs
β(t) :� ρs

β(t) � ρs0
β (t) for t ∈ [0, 1]. If f can be 

computed exactly, we can estimate δs(t) and δs
β(t) from 

M i.i.d. macroreplications by δs(t; M) :� ρs(t; M) � ρs0 (t; M)

and δs
β(t; M) :� ρs

β(t; M) � ρs0
β (t; M), respectively. When f 

cannot be computed exactly, the corresponding two- 
level estimators are given by δs(t; L, M, N) :� ρs(t; L, M, N)

�ρs0 (t; L, M, N) and δs
β(t; L, M, N) :� ρs

β(t; L, M, N) �

ρs0
β (t; L, M, N).
The ordering of solvers in difference profiles is the 

same as that of the solvability profiles, but comparisons 
with the benchmark s0 are accentuated. Moreover, differ
ence profiles can take advantage of CRN, much as one 
can use paired difference estimators to estimate a differ
ence of means in classical statistics. Difference profiles 
for multiple solvers can be exhibited in a single plot by 
pairing all solvers against a benchmark solver s0. In such 
a plot, solver s overperforms (underperforms) solver s0 
at a time t ∈ [0, 1] if the difference profile lies above 
(below) zero at time t. Pointwise confidence intervals can 
be constructed via bootstrapping or other methods men
tioned in the previous section.

6. Budget-Specific Solvers
Our focus to this point has been on solvers that do not 
explicitly consider the budget T in setting their para
meters. Such budget-agnostic solvers can report esti
mated best solutions at intermediate budgets as they 
proceed on a single macroreplication. On the other hand, 
measuring and interpreting the progress of budget- 
specific solvers is more nuanced. One can run a budget- 
specific solver with a single budget T on a given problem 
and, for any fixed t, define X(t) to be the (random) re
commended solution upon expending an intermediate 
budget tT. This approach yields a stochastic process 
XT � {XT(t) : 0 ≤ t ≤ 1}, where the subscript T explicitly 
indicates the dependence on the given budget. One can 
then generate the performance measures we define for 
budget-agnostic solvers as before. This approach allows 
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time-dependent comparisons with budget-agnostic sol
vers, but it is not entirely satisfactory because the stochastic 
process XT is specific to the budget T. Consequently, under 
this approach, the progress of a budget-specific solver at an 
intermediate budget tT no longer signifies how the solver 
performs if given a budget of tT at the outset.

It may appear that these issues can be resolved by run
ning separate macroreplications of a budget-specific 
solver at multiple intermediate budgets Ti � tiT, i � 1, 2, 
: : : , k, and defining each X(ti) as the solution recom
mended at termination. However, even though the mar
ginal distributions of X(ti) are well-defined, it is unclear 
how to precisely characterize the joint distribution of 
X(t1), X(t2), : : : , X(tk) for budget-specific solvers. This 
joint distribution depends, for example, on whether one 
uses CRN across the macroreplications run with differ
ent budgets. Moreover, if the solver uses an internal 
source of randomness, then how is that source coordi
nated across those same macroreplications? The fact that 
this joint distribution is not well-defined for budget- 
specific solvers affects several of our performance mea
sures. Progress curves, which depict the scaled value of 
f (X(t)) as a function of time over a single macroreplica
tion, are no longer well-defined because they rely on the 
joint behavior of f (X(t)) at multiple values of t. Likewise, 
neither the time-average optimality gap A nor the solve 
time τ(α) are well-defined, meaning that area scatter
plots and solvability profiles are not well-defined.

Nevertheless, the progress at time t, ν(t), as well as its 
mean µ(t) and quantile χ(t), are well-defined because 
they rely on the distribution of f (X(t)) for only a single t. 
One can, therefore, still run multiple macroreplications of 
budget-specific solvers at multiple budgets but redefine 
our performance measures to depend on the marginal 
distributions of f (X(ti)) for i � 1, 2, : : : , k. For example, 
one can estimate the mean progress and quantile progress 
at times t1, t2, : : : , tk and produce estimated mean and 
quantile progress curves. Both the appearance of these 
curves—which now have jumps at a common set of 
breakpoints—and their interpretation differ from those of 
budget-agnostic solvers. Area scatterplots are harder to 
generalize because they depend on the joint distribution 
of the heights of progress curves at multiple time points, 
and this joint distribution is not well-defined. Generaliza
tions are possible but seem hard to justify in a principled 
manner. This approach of specifying a finite set of times 
on which to focus, thus, has fundamental difficulties, and 
even if we ignore those difficulties, the chosen times are 
necessarily arbitrary. Moreover, from a practical stand
point, this approach is computationally very demanding; 
multiple macroreplications are required at multiple bud
gets, in contrast to budget-agnostic solvers that do not 
require new macroreplications at each budget. Given 
these flaws, we elect not to pursue this approach either.

The approach we instead advocate is to evaluate a 
budget-specific solver at a single budget tT through the 

distribution of f (X(t)), the true objective function value at 
the random recommended solution X(t), scaling to ν(t) �

[f (X(t)) � f (x∗)]=[f (x0) � f (x∗)] to improve interpretabil
ity. The natural choice of a single budget is T, which arises 
when t � 1. We can then compare both budget-specific 
and budget-agnostic solvers at this budget (for a single 
problem) through distributional properties of ν(1). To 
summarize the results of multiple solvers tackling a single 
problem, we use so-called terminal-progress comparative 
violin plots (or boxplots) of ν(1), plotting one distribution 
per solver. With multiple solvers and problems, one might 
still use comparative violin plots or boxplots, but with each 
violin (box) representing a mixture distribution of a single 
solver’s performance across multiple problems. Such plots 
are likely hard to interpret, however, so we instead recom
mend a scatterplot in which each problem–solver combi
nation is represented by a single point with coordinates 
given by the mean and standard deviation of ν(1) for that 
problem–solver combination. We refer to these plots as ter
minal progress scatterplots.

7. Examples
We present examples of the aforementioned plots for 
an experiment conducted with problems and solvers 
from the SimOpt testbed (Eckman et al. 2020). Our prob
lem set consists of 20 instances of three problems— 
SSCONT-1, IRONORECONT-1, and SAN-1—for a total of 
60 problem instances. SSCONT-1 is an (s, S) inventory 
problem with continuous demand and order quantities 
in which the objective is to identify the reorder and 
order-up-to levels that minimize the expected per- 
period total cost: the sum of back-order, order, and 
holding costs. IRONORECONT-1 is another production- 
planning problem in which a manufacturer of iron ore 
seeks to determine the price levels at which to start and 
stop production or sell all stock so as to maximize 
expected profit. SAN-1 is a stochastic activity network 
problem in which the objective is to choose the mean task 
durations in the network that minimize the expected 
length of the longest path plus a penalty paid for reduc
ing the mean task durations. The dimensions of the three 
problems are 2, 3, and 13, respectively, and all problems 
are formulated with continuous decision variables 
and nonnegativity constraints. More detailed problem 
descriptions can be found in the documentation for 
SimOpt (Eckman et al. 2020), and Online Appendix A 
lists specific parameter settings we used. All code and 
data for these experiments can be found in an accompa
nying GitHub repository (Eckman et al. 2022a).

We test four classes of solvers: 
Random Search randomly samples solutions from 

the feasible region and takes a fixed number of replica
tions at each solution. New solutions are generated 
until the budget is exhausted. We test two versions 
of Random Search with 10 (RS10) and 50 (RS50) 

Eckman, Henderson, and Shashaani: Diagnostics for Simulation-Optimization Solvers 
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2023 INFORMS 11 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
3:

70
80

:a
20

1:
19

00
:a

dc
b:

a9
4e

:7
e4

1:
37

26
] o

n 
26

 F
eb

ru
ar

y 
20

23
, a

t 1
7:

55
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



replications per solution. See, for example, Chia and 
Glynn (2013) for basic theory on random search.

ASTRO-DF is a stochastic, derivative-free, trust- 
region method that uses adaptive sampling at each vis
ited solution and interpolation to build local models 
(Shashaani et al. 2018).

STRONG is another stochastic, derivative-free, trust- 
region method that uses design of experiments to sam
ple neighboring solutions and construct a first or second 
order approximation of the objective function (Chang 
et al. 2013, Chang 2014).

Nelder–Mead is a heuristic algorithm that main
tains a simplex of solutions and performs a variety of 
geometric operations to alter the structure of the sim
plex and traverse the feasible region (Nelder and Mead 
1965, Barton and Ivey 1996).

All solvers are given a budget of T � 1, 000 replications 
for each instance of SSCONT-1 and IRONORECONT-1 and 
a budget of T � 10, 000 for each instance of SAN-1. We 
run M � 10 macroreplications of each solver on each 
problem instance with all solvers starting from a com
mon initial solution on all macroreplications. In a post
processing stage, we take N � 100 postreplications at all 
recommended solutions. One might consider using dif
ferent numbers of postreplications for those recom
mended solutions that may be noisier than others, but 
using a fixed N for all solutions has its merits, including 
simplicity and transparency. For each problem instance, 
the proxy optimal solution, x∗, is taken to be the recom
mended solution with the best postreplicated estimate 
fN(·) over all macroreplications of all solvers. We take L 
� 200 postreplications at x0 and x∗ for each problem 
instance. Ideally, the values M, N, and L would all be 
chosen very large to ensure smooth plots with small 
uncertainty ranges (as indicated by the shading in the 
plots from bootstrapping). Computational considera
tions necessitate compromise. Our choices are simply 
plausible values that yield reasonable results, and cer
tainly other choices could be made. In general, all three 
parameters must be increased to reduce the uncer
tainty ranges in the plots; see Section 8.

In Figure 1, we present plots for a problem instance of 
SSCONT-1 with a mean demand of µD � 400 units and a 
mean lead time of µL � 6 days. Because the comparison 
is made over a single problem instance, one can use the 
unnormalized progress curves for interpretability. The 
confidence intervals in these plots, constructed via boot
strapping, depict the error in estimating solver perfor
mance on this problem instance.

Figure 1(a) and (b) shows that progress curves are 
highly variable because of the high variance of the lead 
time. The mean progress curves in Figure 1(b) illuminate 
the average performance of different solvers over time 
and offer a clear ordering of the solvers based on their 
empirical performance. Figure 1(c) depicts the cdf of the 
α-solve times for α � 0:20, that is, the first times at which 

each solver recommends a solution within 20% of opti
mal (relative to the original optimality gap) on any given 
macroreplication. Figure 1(c) shows the same ranking of 
solvers on the problem instance as in Figure 1(b). The 
terminal-progress violin plots in Figure 1(d) show that 
ASTRO-DF consistently recommends high-quality solu
tions upon termination, whereas STRONG struggles to 
improve upon the initial solution. A possible explanation 
for the latter is that we implemented a version of STRONG 
that increases the sample size whenever the estimated 
gradient is close to zero, which may arise given how the 
experiments were performed using CRN across solu
tions. The shape of the violin plots also indicates that, 
although Nelder–Mead, RS10, and RS50 can recom
mend competitive solutions, the quality of their final 
recommendations is more variable.

Next, we examine the tools we propose to compare 
solvers over a testbed of problems. Area and terminal- 
progress scatterplots for the 20 instances of SAN-1 
appear in Figure 2(a) and (b), respectively, with the corre
sponding plots for the 20 instances of IRONORECONT-1 
appearing in Figure 2(c) and (d). We omit plots for 
SSCONT-1 and all 60 instances combined for space rea
sons. We also suppressed the horizontal and vertical bars 
that indicate bootstrapped confidence intervals to reduce 
clutter, but they can optionally be added. On SAN-1, 
there is very clear clustering of solver performances. 
Both random search solvers fail to make any progress as 
indicated by the points at the bottom right of the plots. 
The performance of the other three solvers is similar. 
ASTRO-DF has more variable time-averaged perfor
mance than both Nelder–Mead and STRONG, but its 
superior terminal progress makes it clearly preferable to 
STRONG. Both Nelder–Mead and ASTRO-DF are left- 
shifted in the terminal-progress scatterplot relative to 
the area scatterplot as one might expect from solvers 
making steady progress over time. For the problem 
IRONORECONT-1, STRONG has the best terminal perfor
mance among the solvers though all solvers demon
strate mixed performance, suggesting some of these 
instances are difficult to solve. The variability in the ter
minal progress for some of the solvers appears to be 
greater than that of the time-average progress as evi
denced by the wider vertical spread of the points in 
Figure 2(d).

Figure 3(a) and (c), shows cdf- and quantile-solvability 
profiles of the five solvers over the full set of problem 
instances. The cdf-solvability profile pertains to the time 
required to reduce the optimality gap (of any problem) 
to a fifth of its initial value on each macroreplication of 
each problem instance. The quantile-solvability profiles 
are presented for the median performance of solvers; 
these plots thereby discount the effect of extreme solve 
times encountered on certain macroreplications. The 
right endpoints of the cdf- and quantile-solvability pro
files show that our problem set includes some hard 
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problems that all solvers fail to 0.2-solve within the 
budget of simulation replications. Of the solvers, RS10 
can quickly 0.2-solve about one third of the problem 
instances, which is to be expected because the cheap sam
pling of solutions (particularly for low-dimensional pro
blems, such as SSCONT-1 and IRONORECONT-1) allows 
RS10 to quickly visit improving solutions. RS10’s supe
rior initial performance relative to ASTRO-DF quickly dis
appears as the fraction of the budget increases and 
ASTRO-DF then dominates. The cdf-solvability and quan
tile solvability profiles also show that the high-level 
ordering of solvers changes depending on the fraction of 
the budget expended. Finally, although Nelder–Mead is 
slow to 0.2-solve problems, it makes steady progress 
throughout.

The difference profiles in Figure 3(b) and (d), depict 
the performance gaps between ASTRO-DF and the other 
solvers and further clarify the perceived superiority of 
ASTRO-DF’s performance over the problem set. An advan
tage of the difference profiles is that they exploit CRN, so 

we see statistically significant differences between the 
solvers.

8. Convergence of the Estimators
The number of macroreplications, M, and postreplica
tions L, N affects the properties of our estimators. Here, 
we explore the impact of these parameters on the conver
gence of the estimators, exploiting the theory of two- 
level simulation. For simplicity, throughout this section, 
we fix the time t and consider the pointwise error in the 
estimated progress curves at that fixed time. Ideally, we 
would consider multiple values of t simultaneously 
because we are interested in the entire aggregate pro
gress curve, but such an analysis appears to be quite 
involved. The analysis for a fixed t shows what we 
believe to be the main points.

We assume that the postreplications used to estimate 
f (Xi(t)) are independent of those used to estimate 
f (Xj(t)) for i ≠ j, that is, that the postreplications used to 

Figure 1. (Color online) Results for SSCONT-1 with Mean Demand µD � 400 Units and Mean Lead Time µL � 6 Days 

Notes. (a) Estimated progress curves. (b) Unnormalized mean progress curves. (c) Cdfs of 0.2-solve times. (d) Terminal progress violin plots.
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evaluate recommended solutions from different macro
replications are mutually independent. Moreover, we 
assume that the L postreplications used to estimate f (x0)

and f (x∗) are independent of those used to estimate 
f (Xj(t)), j � 1, 2, : : : , M. We allow the L postreplications 
at x0 and x∗ to be statistically dependent.

Remark 3. It is not helpful to use CRN in the postre
plications used to evaluate solutions from different 
macroreplications. Doing so creates a dependence 
across macroreplications that slows down the conver
gence of the estimators.

Throughout this section, we assume x∗, the optimal 
solution, is deterministic and given. In practice it often 
needs to be estimated. One might extend the ideas 
presented here under some assumption about the 
behavior (as a function of L, M, and N) of an estimator 
of x∗ that replaces x∗, but such methodology depends 
heavily on the nature of f and the manner in which x∗

is estimated.

We shall, in some detail, analyze mean progress 
curves and discuss quantile progress curves to a lesser 
degree.

8.1. Mean Progress Curves
How accurate is the estimator µ(t; L, M, N) of µ(t)? We 
state our observations in terms of an overall computa
tional budget of simulation replications used to run the 
entire experiment, including all macroreplications and 
postreplications. We denote this overall budget by c and 
assume, for simplicity, that the cost of running a replica
tion (likewise postreplication) is uniform in x. Thus, we 
regard L � L(c), M � M(c), and N � N(c) as functions of 
c, which we assume are bounded below by one to avoid 
trivialities, and we suppress the dependence on c for 
notational simplicity. We first run M macroreplications 
with per-macroreplication cost (average number of 
simulation replications) Tt and then complete the post
replications at cost 2L + MN replications, yielding the 

Figure 2. (Color online) Scatterplots of the Mean and Standard Deviation of Areas Under Estimated Progress Curves ((a) and 
(c)) and Terminal Progress ((b) and (d)) for SAN-1 and IRONORECONT-1, Respectively 
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estimator µ(t; L, M, N). Thus, c � TtM + 2L + MN, where 
Tt ≫ 1 represents the number of simulation replications 
needed for a single macroreplication out to time Tt, MN is 
the number of postreplications at recommended solutions 
X1(t), X2(t), : : : , XM(t), and L postreplications are spent at 
each of solutions x0 and x∗. (For simplicity, we ignore 
rounding effects associated with the need for L, M, and N 
to all be integers.)

To proceed, we require additional assumptions.

Assumption 3. Simulation replications at any solution x 
are unbiased, that is, EY1(x) � f (x) for all x.

Assumption 4. Simulation replications at any solution x 
have bounded (in x) nonzero variance, that is, σ2(x) :�

varY1(x) is positive and bounded in x.

Assumptions 3 and 4 (and Assumption 1 stated ear
lier) permit a transparent analysis but are restrictive. For 
example, relaxing Assumption 3 might be useful in the 

context of steady-state simulation. We expect the conclu
sions of Theorem 1 to hold under relaxed assumptions, 
but we do not attempt to relax the assumptions because 
we do not think additional insight would be obtained.

We say that a family of random variables X(c) is 
Op(h(c)) if the family {X(c)=h(c) : c ≥ c0} is tight for some 
c0 > 0. The proof of the following result appears in 
Online Appendix B.

Theorem 1. Suppose that Assumptions 1–4 hold and 
min{L,M} → ∞ as c → ∞. Then, µ(t; L, M, N) → µ(t) in 
probability as c → ∞. Moreover,

µ(t; L, M, N) � µ̃(t; L, M, N) + Op(L�1 + M�1), 

where the random variable µ̃(t; L, M, N) has mean µ(t) and 
variance

ς2(L, M, N) �
a1

MN +
a2

M +
a3

L , 

for appropriate constants a1, a2 and a3.

Figure 3. (Color online) Profiles over All Problem Instances 

Notes. (a) Cdf solvability profiles. (b) Difference of cdf solvability profiles. (c) Quantile solvability profiles. (d) Difference of quantile solvability 
profiles.
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Recall that c � TtM + MN + 2L, representing the total 
number of simulation replications. For large budgets c, 
the variance of µ̃(t; L, M, N) is minimized by taking 
the number of macroreplications M to be linear in c, the 
number of postreplications L to be linear in c, and the num
ber of postreplications N to be constant in c as can be 
derived by standard calculus arguments that relax the con
straint that these quantities be integers. In that case, the var
iance of µ̃(t; L, M, N) is of order c�1, which is the usual 
canonical rate in Monte Carlo, and the need for two-level 
simulation does not result in a deterioration in the conver
gence rate.

The conclusion that the estimator µ(t; L, M, N) con
verges at the canonical rate (asymptotic variance of order 
c�1) when L, M, and N are chosen appropriately is in line 
with the observations in Sun et al. (2011) for two-level 
simulations. The purpose of Theorem 1 is not to help 
identify optimal choices of the parameters L, M, and N 
because such choices depend on parameters that are dif
ficult to compute. Rather, we present the result to 
emphasize the convergence rate.

One might be tempted to use Theorem 1 to develop 
confidence intervals on values of the mean progress 
curve. Doing so requires developing estimators of the 
various constants appearing in the result. It seems to be 
far more practical to use bootstrapping to obtain error 
estimates as discussed in Online Appendix C.

8.2. Quantile Progress Curves
The quantile progress estimator χ(t; L, M, N) can be ana
lyzed using techniques similar to those we use for 
µ(t; L, M, N). However, quantile estimation for two-level 
simulation poses an additional challenge. Quantile esti
mators are analyzed in Lee (1998), Lee and Glynn (2003), 
and Gordy and Juneja (2010), in which asymptotic theory 
is developed in the case in which the number of postre
plications N is the same at all macroreplication solutions. 
It is natural, however, not to seek high accuracy in esti
mating the true objective function value of recom
mended solutions with relative optimality gaps that are 
far from that of the true quantile χβ(t). Gordy and Juneja 
(2010) and Broadie et al. (2011) exploit this observation, 
analyzing estimators that carefully vary the second level 
sample sizes, achieving a faster convergence rate than 
the common-N estimator. Extensions are explored in 
Broadie et al. (2015) and Hong et al. (2017). In what fol
lows, we adopt a common number of postreplications, 
N, for all macroreplication solutions.

To rigorously state convergence results for χ(t; L, M, N), 
which is a quantile estimator using two-level simulation, 
requires a great deal of associated notation and regularity 
assumptions as is clear from Lee (1998) and Gordy and 
Juneja (2010). Accordingly, we choose not to state such 
results, but rather indicate what one can expect in general 
in our setting given the results in the aforementioned 
literature.

First, in the case when the solution space is discrete, 
the results in Lee and Glynn (2003) indicate that the 
mean-squared error of the estimator χ(t; L, M, N) is typi
cally minimized when the number of postreplications L 
is of order c, the number of macroreplications M is of 
order c and the number of postreplications N is of order 
lnc, in which case the mean squared error is of order 
ln c=c. This is slower than the canonical rate 1=c, but only 
by a logarithmic factor. Second, in the case when the 
solution space is continuous, the mean squared error of 
the estimator χ(t; L, M, N) is typically minimized when 
the number of postreplications L is of order c2=3, the 
number of macroreplications M is of order c2=3, and the 
number of postreplications N is of order c1=3, in which 
case the mean squared error is of order c�2=3; see section 
3.1.2 of Lee (1998).

9. Conclusions
Current practice in computational comparisons of SO 
solvers is inconsistent. We provide a two-level experi
mental design consisting of macroreplications and post
replications with systematic CRN implementation and 
error estimation. Postreplications to remove optimiza
tion bias are rarely performed in existing literature.

We develop and demonstrate a range of plots for use 
in empirical evaluation of SO solvers on a testbed of pro
blems. Progress curves are closely related to curves that 
have frequently been used to date, indicating the objec
tive function value of the most recently recommended 
solution as a function of time, but when progress curves 
appear, they are usually based only on the original 
macroreplications, not on postreplications. Moreover, 
our plots differ in the way they are scaled with the x-axis 
reflecting the fraction of the computational budget 
expended and the y-axis reflecting the fraction of the 
initial optimality gap that remains. Progress curves 
and closely related plots giving the cdf of the α-solve 
time for varying α provide a great deal of information 
about the performance of a single solver operating on a 
single problem. Yet these plots are less useful when 
one wishes to explore the performance of a solver on 
multiple problems or to compare the performance of 
multiple solvers on multiple problems. Area scatterplots 
and solvability profiles can prove useful in this more 
information-rich setting by providing a high-level view of 
overall performance.

We provide some examples of these plots that clarify 
both their nature and usefulness. We believe these exam
ples provide a “proof of concept” that demonstrates the 
potential in such comparisons. The plots generated here 
were obtained using the very recently upgraded SimOpt 
testbed (Eckman et al. 2020), which is now available for 
general use. The new version of SimOpt was designed to 
be useful not just in the simulation-optimization setting 
we explore here, but also in other settings such as in data 
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farming (Eckman et al. 2022c). Those design improve
ments will be reported elsewhere.
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