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Absiract—This paper considers the optimization land-
scape of linear dynamic output feedback control with
robustness constraints. We consider the feasible set of all
the stabilizing full-order dynamical controllers that satisfy
an additional 7{, robustness constraint. We show that this
Hoo-constrained set has at most two path-connected com-
ponents that are diffeomorphic under a mapping defined
by a similarity transformation. Our proof technique utilizes
a classical change of variables in ., control to establish
a surjective mapping from a set with a convex projection to
the H.-constrained set. This proof idea can also be used to
establish the same topological properties of strict sublevel
sets of linear quadratic Gaussian (LQG) control and optimal
Hoo control. Our results bring positive news for gradient-
based policy search on robust control problems.

Index Terms— Optimization landscape, sublevel set, di-
rect policy search, 7, control, LQG control

[. INTRODUCTION

Inspired by the impressive successes of reinforcement learn-
ing, model-free policy optimization techniques are receiving
renewed interests from the controls field. Indeed, we have
seen significant recent advances on understanding the theoret-
ical properties of policy optimization methods on benchmark
control problems, such as linear quadratic regulator (LQR)
[1]-[4], linear robust control [5]-[8], and Markov jump linear
quadratic control [9]-[11].

It is well-known that all these control problems are non-
convex in the policy space. Classical control theory typically
parameterizes the control policies into a convex domain over
which efficient optimization algorithms exist [12]. An impor-
tant recent discovery is that despite non-convexity, many state-
feedback control problems (e.g., LQR) admit a useful prop-
erty of gradient dominance [1]. Therefore, model-free policy
search methods are guaranteed to enjoy global convergence
for these problems [1], [3], [9]. Note that most convergence
results require a direct access of the underlying system state,
in which a simple change of variables exist to get a convex
reformulation of the control problems [13].

For real-world control applications, however, we may only
have access to partial output measurements. In the output
feedback case, the theoretical results for direct policy search
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are much fewer and far less complete [14]-[18]. It remains
unclear whether model-free policy gradient methods can be
modified to yield global convergence guarantees. It has been
revealed that the set of stabilizing static output-feedback
controllers can be highly disconnected [14]. This is quite
different from the state feedback case [19]. Such a negative
result indicates that the performance of gradient-based policy
search on static output feedback control highly depends on the
initialization, and only convergence to stationary points has
been established [15]. It is thus natural to investigate dynami-
cal controllers for the output feedback case, and to see whether
the corresponding optimization landscape is more favorable for
direct policy search methods. The very recent work [16] shows
that the set of stabilizing full-order dynamical controllers has
at most two path-connected components that are identical in
the frequency domain. This brings some positive news and
opens the possibility of developing global convergent policy
search methods for dynamical output feedback problems, such
as linear quadratic Gaussian (LQG) control [16]. Two other
recent studies are [17], [18]. In [18], the global convergence of
policy search over dynamical filters was proved for a simpler
estimation problem.

It is well-known that the optimal LQG controller has no
robustness guarantee [20]. It is thus important to explicitly
incorporate robustness constraints for the search of dynamical
controllers. In this paper, we study the topological properties
of the feasible set for linear dynamical output feedback control
with H., robustness constraints. The H., constraints have
been widely used in robust control [12], [21] and risk-sensitive
control [22]. Our main result shows that the set of all stabi-
lizing full-order dynamical controllers satisfying an additional
input-output H, constraint has at most two path-connected
components, and they are diffeomorphic under a mapping
defined by a similarity transformation. Our proof technique is
inspired by [16] and relies on a non-trivial but known change
of variables for H, control [23], [24]. If the control cost is
invariant under similarity transformation, one can initialize the
local policy search anywhere within the feasible set and there
is always a continuous path connecting the initial point to a
global minimum. Some implications on the connectivity of
strict sublevel sets of H., and Ho control are discussed. Our
result sheds new light on model-free policy search for robust
control tasks.

The rest of this paper is organized as follows. In Section II,
we formulate the linear dynamic output feedback control with
‘H o constraints as a constrained policy optimization problem.
Section III presents our main theoretical results. We revisit
connectivity of strict sublevel sets for LQG and H, control



in Section IV. We conclude the paper in Section V.

Notations: The set of k£ x k real symmetric matrices is
denoted by Sk, and the determinant of a square matrix M
is denoted by det M. We use I to denote the k£ x k identity
matrix, and use O, xx, to denote the k1 x ko zero matrix;
we sometimes omit their dimensions if they are clear from
the context. Given a matrix M € R¥1*k2  MT denotes the
transpose of M. For any M, M, € S*, we use M; < M,
(My = M) and My = M, (M5 > M) to mean that Mo — M,
is positive (semi)definite.

Il. PRELIMINARIES AND PROBLEM STATEMENT
A. Dynamic output feedback with H~, constraints
We consider a continuous-time linear dynamical system!
z(t) = Az(t) + Byw(t) + Bau(t),
z(t) = C1z(t) + D1yw(t) + Digu(t), (D
y(t) = Cox(t) + Darw(t),

where x(t) € R"= is the state, u(t) € R™ is the control
action, w(t) € R™ is the exogenous disturbance, y(t) € R™v
is the measured output, and z(t) € R™» is the regulated
performance output. We make the following assumption.

Assumption 1: The state-space model (A, B, Cs) in (1) is
stabilizable and detectable.

We aim to design a controller that maps the measured
output to the control action, in order to minimize some
control performance metric, while satisfying stability and/or
robustness constraints. Such control design problems can be
formulated as a constrained policy optimization of the form

min  J(K), (2)
where the decision variable K is determined by the policy
parameterization, the objective function .J(K) measures the
closed-loop performance, and the feasible set K is specified
by some stability/robustness requirements. We consider the
following policy parameterization and robustness constraint:

Decision variable K: Output feedback control problems
typically require dynamical controllers, and we consider the
full-order dynamical controller in the form of:

§(t) = Ak&(t) + Bry(t),
u(t) = Ck&(t) + Dxy(t),
where £(¢) is the controller state with the same dimension

as x(t), and matrices (Ak, Bk, Ck, Dk) specify the controller
dynamics. For convenience, we denote

3)

but this matrix K should be interpreted as the dynamical
controller in (3).

Feasible region: The controller K needs to stabilize the
closed-loop system and satisfy a robustness constraint that
enforces the Ho, norm of the transfer function from w(t) to
z(t) smaller than a pre-specified level ~.

!All topological results can be extended to the discrete-time domain.

We allow a general cost function J(K), which can be an
‘Ho performance on some other performance channel, or more
general user-specified performance metrics. One advantage
for the policy optimization formulation (2) is that it opens
the possibility of solving robust control design via model-
free policy search methods. This paper aims to characterize
connectivity of K and strict sublevel sets of J(K).

B. Problem statement

We denote the state of the closed-loop system as ( =
[T ET]T after combining (3) with (1). It is not difficult to
derive the closed-loop system

¢(t) = Aad(t) + Baw(t),

(5)
Z(t) = CdC(t) + Dclw(t),
where the matrices (A, Bel, Cel, De1) are given by
A — A+ ByDCy ByCk
cl - — BKC2 AK )
By + ByDk Doy
Ba =
: [ Bk D2 ] ©)

Ca := [C1 4+ D12DkCy  D12Ck] ,
D¢y := D11 + D12DkD2;y.

The closed-loop system is internally stable if and only if A
is Hurwitz [12]. The set of full-order stabilizing dynamical
controllers is thus defined as

Cotay 1= {K € Rwtna)x(ny+na) | 4 g Hurwitz} NG
The transfer function from w(t) to z(t) is
T.w(s) = Ca(sI — Aa)”"Ba + Da. ()
Then, the feasible set is formally specified as

]C'y = {K S Cstabl ||Tzw||oo < 7}7 (9)

where || T.y|lc denotes the Ho, norm of T,,, and can
be calculated as || T,ul|lcc := sup, omax(T:w(jw)), with
Omax(+) denoting the maximum singular value. In (9), we
explicitly highlight the robustness level v via the subscript.
Under Assumption 1, there exists a finite positive value

N = irlif 1T 20l o -

Then, K, is non-empty if and only if v > ~*. By definition (9),
we have KC,, C Cyap, for any positive 7.

In (2), it is possible to estimate the gradient of J(K) and
IT.wl , from sampled system trajectories, and one may apply
model-free gradient-based barrier algorithms to find a solution
in an iterative fashion. To understand the performance of such
model-free policy search algorithms, we need to characterize
the optimization landscape of (2). In particular, we focus on
some geometrical properties of the feasible region XC, and
strict sublevel sets of J(K). It is well-known that K. is
in general non-convex, but little is known about their other
geometrical properties. Only a very recent work shows that
Cstab has at most two path-connected components that are
identical up to similarity transformations [16, Theorems 3.1
& 3.2].



In many cases, it is desirable to explicitly encode some
robustness guarantee for the feasible region [20]-[22]. How-
ever, the connectivity of the H.-constrained set K, remains
unknown. In this paper, we focus on topological properties of
K., and their implications to gradient-based policy search. We
will show that K., shares similar properties with Cggat.

Remark 1: The dynamical controller (3) is proper. Depend-
ing on the cost function J(K) (e.g., LQG [12]), we may
want to confine the policy space to strictly proper dynamical
controllers. Then the feasible set is defined as

K,:={Kek,| Dgx=0}. (10)

Our analysis technique works for both K, and K., and we
show that X, and C, have similar topological properties. []

I1l. PATH-CONNECTIVITY OF K,

In this section, we present our main results on the topolog-
ical properties of X,. We first have a simple observation.

Lemma 1: Let v > ~*. The set K, is non-empty, open,
unbounded and can be non-convex.

This fact is well-known. Then openness of K., follows from
the continuity of the H., norm. It is unbounded since H
norm is invariant under similarity transformations that are
unbounded in the state-space domain. The non-convexity is
also known, and we illustrate it using the example below.

Example 1: Consider an open-loop unstable dynamical sys-
tem(l)WithA:Bl232201:CQZD21:D12:1,
and Dy = 0. It is easy to verify that the following dynamical

0 2 oy |0 =2
E—Q -2 K® = 2 —QT
HCCI(SI_Acl)_chl+DCIHOO < 3.33, and thus we have
KM € Ks.s3, K® € Ks.33. However, %(K(l) + K(z)) =
0 0
0 o]

Despite the non-convexity, K, has some nice connectivity

property which will be established in this section.

controllers K1) = satisfy

fails to stabilize the system, and is outside K3 33.

A. Main results

Our first main technical result is stated as follows.

Theorem 1: Given any «y > ~*, the set K, has at most two
path-connected components.

Before presenting a formal proof for Theorem 1, we first
give some high-level ideas. Based on the bounded real lemma
[21], we have K € K, if and only if the matrix inequality,

ATP+ PAy PBy CJ
BSP —~I DCT1
Ccl -Dcl

—~I
is feasible. Clearly, the condition (11) is not convex in K
and P. Our result in Theorem 1 relies on the fact that (11)
can be convexified into a linear matrix inequality (LMI) (that
is convex and hence path-connected), using a non-trivial but
known change of variables for H . control [23], [24]. The only
potential of disconnectivity comes from the fact that the set of
invertible matrices corresponding to similarity transformations
has two path-connected components. Our proof is inspired
by the recent work [16] that characterizes Cgi,p, only, with

<0, P=0, (1D

the main difference being that we need to analyze a more
complicated H, constraint (11).

We now illustrate this idea for the case of state feedback
(i.e. y(t) = x(t) and u(t) = Kz(t) with K € R™*"=) TIn
this case, it is known that (11) is feasible? if and only if

M,(Q,L)<0, Q>0 (12)
is feasible, where M, (Q, L) is defined as
QAT +AQ+L'B] + BoL By (C1Q+ DyoL)T
BT I 0
C1Q + D12L 0 -1

Using a simple change of variables K = LQ ™!, we have

{K € R"*™ | (11) is feasible}
= {K =LQ ' € R™*™ | (12) is satisfied}.

Since the set of (Q, L) satisfying LMI (12) is convex and
the map K = LQ~! is continuous, the set {K € R"=*"u |
(11) is feasible} is path-connected.

The analysis above hinges upon the fact that in the state-
feedback case, the non-convex condition (11) can be convex-
ified using the simple change of variables K = LQ~'. In
the output feedback case, a similar condition can be derived
using a more complicated change of variables in [24]. We will
leverage this fact to prove Theorem 1. Specifically, it is known
that a controller K € K, can be constructed from the solution
of the following LMI condition:

X I PPN

{I Y} =0, My(X,Y,A,B,C,D)<0, (13)
where X € §",Y € S", A € R=*ns B € R%=*ny C €
R™« X"z and Dc R™«*"y are decision variables. The linear
mapping M., (X,Y, A, B, C, D) is defined as

Mi1 M1z Mz My
M, Mag Mag Moy

M,(X,Y,A,B,C,D)= MT, ML, Mys M, | (14)
M1, M3, M3, My
where the blocks M;; are given by
Mii = AX + XAT + B,C + (B:C)7,
Miz = AT + (A + ByDCy),
Mis = By + BoD Doy,
M4 = (C1X + D12C)7,
My = ATY + YA+ BCy + (BC,)T, (15)

Moz = Y B; + BDyy,
Moy = (Cy + D12]j62)T,

M3z = —v1,
Msy = (D11 + D1oDDyy)T,
M44 = —’y[

%In the state-feedback case, (A1, Bel, Cel, De1) should be calculated from
some formulas which are different from (6). We omit the details.



Based on LMI (13), we introduce two useful sets:

Fy = {(X, Y,A,B,C,D) | (13) is satisﬁed}, (16)
G, = {(X,Y,A,E,C,b,n,a) | II,E € R X",

(17)
(X,Y,A,B,C,D)c F,, Ell =T — YX}.

It is obvious that F, is convex and hence path-connected.
Together with the fact that the set of n, X n, invertible
matrices has two path-connected components, this guarantees
that G, has exactly two path-connected components. We shall
see that there exists a continuous surjective map from G, to
K., and thus X has at most two path-connected components.
A detailed proof is provided in the appendix.

Remark 2: Our analysis relies on the LMI conditions (11)
and (13) from [24] which are specialized for H., control
and are more complicated than the ones in the proof of [16,
Proposition 3.1] for characterizing stability.

B. Implications for H .. -constrained policy optimization

To understand the implications of Theorem 1 for policy
optimization, we need to formalize the relationship between
IC;r and IC; . For this, we introduce the notion of similarity
transformation that is widely used in control. For any T' €
GL,,,, let I : Cgtab — Cstab denote the mapping given by

Dk CKTil ]

Tr(K) = {TBK TAT 1

which represents similarity transformations on Cgtap,.
We have a result that is similar to [16, Theorem 3.2].
Theorem 2: 1If K has two path-connected components IC;r
and K, then ICfYr and K are diffeomorphic under the
mapping I, for any T' € GL,,, with det T < 0.
The proof of Theorem 2 is adapted from [16]. We present
the details in our arXiv report [25] due to page limit.
Furthermore, similar to [16, Theorem 3.3], we have suffi-
cient conditions to certify the path-connectedness of K.

Theorem 3: Let v > ~*. The following statements hold.

1) K, is path-connected if it has one dynamical controller
with non-minimal state-space description.

2) Suppose the plant (1) is single-input or single-output,
i.e., m =1 or p = 1. The set K, is path-connected if
and only if it has a non-minimal dynamical controller.

Proof: If K € K, is non-minimal, then its minimal
realization has dimension less than n,. In particular, we
can find a reduced-order controller (AK,BK,C'K,DK) with
dimension (n, — 1) such that

GK(SI — AK)_IBK + Dk = CK(SI — AK)_lBK + Dk.

Then, this reduced-order controller can be augmented to be a
full-order controller in K, as

pe G0
K= Bk Ag 0 EK:A/.
0 0 -1

Define a matrix T = diag(l,, 1, —1). We can directly verify
detT < 0 and Jr(K) = K. By Theorem 2, we can see that
K € KF implies Z7(K) € KT, indicating K € KT n K.
Thus, le{ N K7 is nonempty, and K, is path-connected.

The proof for the second statement is identical to the proof
of [16, Theorem 3.3], and hence is omitted here. |

Theorems 2 and 3 bring positive news on local policy search
methods for H..-constrained optimization (2). If K, is path-
connected, it makes sense to initialize the policy search from
any point in the feasible set. If K, has two path-connected
components, then the initial point may fall into either of the
components. If J(K) is invariant with respect to similarity
transformations (e.g. the LQG cost), then both components
include global minima. It becomes reasonable to initialize the
policy search within either path-connected component. The
following corollary is immediate.

Corollary 1: Suppose the cost function J(K) is invariant
with respect to similarity transformations, then there exists a
continuous path connecting any feasible point K € K, to a
global minimum of (2) if it exists.

C. The case of strictly proper controllers

We briefly discuss the case of strictly proper dynamical
controllers with Dk = 0, which is required in some classical
control problems, including the continuous-time LQG problem
[12]. The topological properties of I@W in (9) and K, in (10)
are identical. To see this, we let

F,={(X,Y,A,B,C,D) e F, | D=0},
g’y :{(X7Y7A’B7ca]j7na5) Gg’y | ]5:0}

Minor modification of the proofs in the appendix can show
that 7., is path-connected, and that G., has two path-connected
components. The same mapping ® in (21) is a continuous and
surjective mapping from giy to 167. Therefore, we conclude
that ’67 has at most two path-connected components and they
are diffeomorphic under the similarity transformation with
detT < 0.

IV. REVISIT SUBLEVEL SETS IN LQG AND H., CONTROL

The results in Section III can be also interpreted as the
connectivity of strict sublevel sets in optimal H., control.
Based on (8), T., can be viewed as a function of K, and
the optimal H, synthesis [12] can be formulated as

T2l oo

subject to K € Cqtap-

min
K (18)

Now, K, in (9) is exactly the 7-level strict sublevel set of the
optimal H ., control (18). Thus, Theorems 1 to 3 characterize
the strict sub-level sets of optimal H., control.

In addition to (18), the proof idea of using the change of
variables (21) can be applied to other output feedback control
problems to establish connectivity of their strict sublevel sets.
For example, we can consider an Ho formulation of the LQG
control [16] as follows

. 2
min HTsz2

K (19)
subject to K € Cstap, N {K | Dk = 0},



where || T,.||2 denotes the Hs norm of T.,. This problem
(19) covers the LQG control as a special case when the dy-
namics in (1) are chosen appropriately (this fact is well-known;
see [26] for early discussions). The same proof techniques in
Section III can establish the connectivity of the strict sublevel
sets of (19):

Ly ={KECuu | Dk =0, || To0ll3 <7} 0)

We have the following result (see our report [25] for details).

Theorem 4: Under [16, Assumption 1], the strict sublevel
set £ (20) has at most two path-connected components Efyl)
and E(f). If so, Es,l) and E(f) are diffeomorphic under the
mapping Jr, for any T' € GL,,, with detT" < 0.

A straightforward implication from Theorem 4 is that there
exists a continuous path connecting any feasible point K &
L. to a global minimum of LQG control. Moreover, path
connectivity of sublevel sets may imply further landscape
properties [27], [28]. For example, using a special definition
of minimizing sets in [28, Definition 5.1], Theorem 5.4 in [28]
guarantees that H ., control (18) and LQG control (19) have
a unique global minimizing set in some weak sense.

Definition 1: A nonempty S is an LT-critical set® (or LTCS)
for the function HTszg if 1) HTzwﬂg is constant, VK € S,
and 2) for any ' > ~ with « being the value of ||T,,, H; over
S, the strict sublevel set £,/ has a single connected component
containing S, and the intersection of all such single connected
components with 7’ > + equals to S.

Definition 2: A LTCS is called a global LT-minimizing set
(or global LTMS) if the value of ||Tzw||§ over this set is no
greater than the values of ||Tzw||§ for all K € Cgiap.

Corollary 2: If the global H, optimal controller exists, then
the cost function |\Tzw||g (as a function of K) has a unique
global LTMS, and no other LT-critical sets.

This result is a direct consequence of [28, Theorem 5.4].
A similar result holds for H ., control. Corollary 2 ensures a
unique minimizing set only in a weak sense, and does not rule
out the normal notion of local minima and saddle points. For
(19). saddle points actually exist [16]. A rigorous definition of
strict local minima for (18) or (19) requires extra work due to
unboundedness of similarity transformations. Discussions on
local optimality conditions appear in [29].

V. CONCLUSIONS

We have proved that the set of .-constrained full-order
dynamical controllers has at most two path-connected com-
ponents (cf. Theorem 1) and they are diffeomorphic under
similarity transformations (cf. Theorem 2). We have also
discussed various implications on the strict sublevel sets of
LQG and H, control (cf. Theorem 4). This brings positive
news for direct policy search of robust controllers.
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APPENDIX

This appendix presents the proof of Theorem 1.

Lemma 2: For any (X,Y,A,B,C,D,II,2) € G, II and
= are always invertible, and consequently, the block triangular

I 0 I O X
[YBQ E} and {o 1 }

The proof is straightforward by observing that det(IIZ) =
det(YX —I) # 0 for any (X,Y,A,B,C,D,I,E) € G,.
Based on the change of variables in [24], we can map each
element of G, back to a controller K € R(utna)x(ny+ns)
For each Z = (X, Y,A,E,C,]j,H,E) in G, we define

matrices are invertible.

| ®p(Z) 2c(2)
)= l%m 04(2)
o ) @D
I 0 D c 10X
YB, = BA-YvAX| |0 TI

The nonlinear change of variables in (21) is from [24],
which allows us to establish the following essential result. This
result can be derived from [24], and we provide a proof for
completeness.

Proposition 1: The mapping ® in (21) is a continuous and
surjective mapping from G, to KC,.

Proof: 1Tt is clear that ®(-) is a continuous mapping. To
show that ® is a mapping onto K., we need to prove the
following statements:

1) For any arbitrary controller K € K, there exists Z =
(X,Y,A,B,C,D 11, E) € G, such that ®(Z) = K.

2) For all Z = (X YA B C, D JLE) € G, we have
®(Z) € K,.
_ Dk Ck
To show the first statement, let K = Be Ay € K, be

arbitrary. By the bounded real lemma [21], there exists P > 0
such that (11) is feasible. We partition the matrix P as

Y E
r-[2 .

Without loss of generality, we assume that det = # 0 (other-
wise we can add a small perturbation on = thanks to the strict
inequality in (11)). We further define

(22)

X 1" y =] X I

{H X} - [: Y} LT [H 0]. 23)
we can verify that

YX +Z=1, T'PT = ﬁ( ﬂ = 0. (24)

Now we choose (A,B, C,f)) as
A =Y (A + ByDiCy) X + EBkCo X
+ Y BoCkII 4+ ZAKI,
B =Y By Dk + B,
C =DxCyX + CKIL, D = Dx.
We can verify that M, (X, Y,A,B,C, f)) is the same as

(25)

T 0 0 ACTIP + PA.q PBqg C‘} T 0 0
0 I 0 Bl P —yI DLl ]0 I of,
0 0 I Ccl Dd —’)/I 0 0 I

which is clearly negative definite due to (11). Thus, we have
Z=(X,Y,A B,C,D,IIE) € G, by the definition of G,.
Note that (25) can be compactly rewritten as

D C [T 0][Dk Ck][I CoX

B A-YAX| |YBy Z||Bk A| |0 TI |-
Based on Lemma 2, we have

Dk Ck| _ [®p(Z2) Pc(2)] _ ¥(2)
Bk Ak Op(Z) Da(2) '

Therefore, the first statement is true. The second statement
reduces to the standard controller construction for LMI-based
Hoo-synthesis [24]. We complete the proof. [ ]

Remark 3: The analysis technique via the change of vari-
ables (21) in Proposition 1 is from [24]. This analysis can also
be used for Hs and other costs; see [24] for details.

Based on Proposition 1, any path-connected component of
G, has a path-connected image under the surjective mapping
®. Consequently, the number of path-connected components
of K, will be no more than the number of path-connected
components of G. The number of path-connected components
of the set G, is given below.

Proposition 2: The set G, has two path-connected compo-
nents, given by

g’-y‘r = {(X,KA,B,C,:E),H,E) € g’)’ ‘ detII > O}’
g, = {(X,Y,A,B,C,D,ILE) € G, | detT < 0}.
Proof: First, F, is path-connected since it is convex.
The set of real invertible matrices GL,,, = {II € R"=*"= |
det TI#0} has two path-connected components [30]
GL} ={Il € R™*"™ | detII > 0},
GL, ={IIeR" " | detIl < 0}.

Thus, the Cartesian product F, x GL,, has two path-
connected components. We further observe that the mapping
from (XYABCDH) to (X,Y,A,B,C,D,II, (I

Y X)II71) is a continuous bijection from F, x GL,,, to gw.
This immediately leads to the desired conclusion. [ ]

The proofs for Proposition 2 and [16, Proposition 3.2] are
similar. Proposition 3.2 in [16] can be viewed as a special
case of Proposition 2 with v — +o00. Now Theorem 1 can be
proved by combining Proposition 1 and Proposition 2.

Proof of Theorem 1: We define £F := &(G") and K :=
@(g; )- We have K, = IC,j UK. If K is not path-connected,
the two path-connected components of K., are exactly le and
IC; . Based on Proposition 1, Theorem 1 holds.
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