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Impaired wound healing is a significant financial and medical burden. The synthesis
and deposition of extracellular matrix (ECM) in a new wound is a dynamic process
that is constantly changing and adapting to the biochemical and biomechanical
signaling from the extracellular microenvironments of the wound. This drives either
a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM
deposition, structure, and composition lead to impaired healing in diseased states,
such as in diabetes. Valid measures of the principal determinants of successful ECM
deposition and wound healing include lack of bacterial contamination, good tissue
perfusion, and reduced mechanical injury and strain. These measures are used by
wound-care providers to intervene upon the healing wound to steer healing
toward a more functional phenotype with improved structural integrity and
healing outcomes and to prevent adverse wound developments. In this review,
we discuss bioengineering advances in 1) non-invasive detection of biologic and
physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and
3) computational tools that efficiently evaluate the complex data acquired from the
wounds based on basic science, preclinical, translational and clinical studies, that
would allow us to prognosticate healing outcomes and intervene effectively. We
focus on bioelectronics and biologic interfaces of the sensors and actuators for real
time biosensing and actuation of the tissues. We also discuss high-resolution,
advanced imaging techniques, which go beyond traditional confocal and
fluorescence microscopy to visualize microscopic details of the composition of
the wound matrix, linearity of collagen, and live tracking of components within the

Abbreviations: DAMPs, damage associated molecular patterns; ECM, extracellular matrix; DR,
dynamic reciprocity; EPS, extracellular polymeric substances; IM-MS, ion mobility mass
spectrometry; H,O,, hydrogen peroxide; Pt-Black, Platinum-Black; ICGFA, indocyanine green
fluorescence angiography; SUSI, high-frequency spectral ultrasound; OCT, optical coherence
tomography; DS-OCT, diffusion-sensitive optical coherence tomography; US-OCE, ultrasound
sensitive optical coherence elastography; SHG, second harmonic generation; CMPs, collagen-
mimetic peptides; ICG, indocyanine green; NIR, near-infrared; TPF, two-photon excited
fluorescence; SHT, second harmonic generation tomography; DNN, deep neural networks; CNN,
convolutional neural network.
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wound microenvironment. Computational modeling of the wound matrix,
including partial differential equation datasets as well as machine learning
models that can serve as powerful tools for physicians to guide their decision-
making process are discussed.

KEYWORDS

wound healing, extracellular matrix (ECM), biofilm, biosensor, machine learning,
impaired wound healing, perfusion, bioelectronics

1 Introduction

Wound healing is a complex physiologic process dependent
on many cellular and molecular factors, most often resulting in
the formation of a fibrotic scar. Human wound care and
treatment burden aiming to attenuate fibrosis and avoid
abnormal, pathologic healing represents a substantial portion
of the global medical industry. In the United States alone, close to
$1.5 billion are spent managing burns and burn-related injuries,
much of which is spent on secondary interventions managing the
resulting scar (Sen, 2021; Singer and Clark, 1999; Armstrong
et al,, 2020). Additionally, over 80 million surgical incisions are
created each year on top of 12 million traumatic lacerations
(Schultz and Wysocki, 2009). Over 8 million patients have
chronic, non-healing wounds, the management of which costs
Medicare between $28 million and $96 million annually (Volk
etal, 2011; Olezyk et al., 2014). Aberrant healing can also lead to
hypertrophic scars and keloid formation, which affects roughly
11 million patients annually (Eming et al., 2007; Sorg et al., 2017).

Moreover, wounds are not only expensive to manage, but can be
life threatening: diabetic foot ulcers have a similar mortality rate
to cancer (30.5% vs. 31%) (Armstrong et al., 2020). Successfully
managing wound healing would alleviate a serious financial
burden on the medical system as well as significantly
contribute to reducing morbidity and mortality.

The paragon of successful wound healing is the regenerative
healing phenotype observed in midgestational fetal skin wounds.
While regenerative healing mechanisms are primarily explored
and modeled by researchers to alleviate the burden of scarring,
inducing regenerative ECM deposition should also be targeted as
an important objective in the healing of chronic wounds, which
are a more pressing issue beyond cosmetic wound healing.
Physiologically, wounds heal in a defined and organized
manner, progressing through the overlapping phases of
hemostasis, inflammation, proliferation, and remodeling
(Figure 1) (Singer and Clark, 1999). In the first phase,
hemostasis is achieved through vasoconstriction, activation of
the coagulation cascade, and clot formation. Damaged tissue
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Phases of wound healing. (A) Wound healing progresses through four phases including hemostasis, inflammation, proliferation, and
remodeling. (B) Representative H&E staining of wounds in the inflammation stage demonstrating poor granulation tissue formation in an infected
wound. Arrows represent wound edge. Illustration created using Biorender.com.
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releases damage associated molecular patterns (DAMPs) that
signal recruitment of neutrophils and monocytes responsible for
scavenging bacteria and devitalized tissue. As the inflammation
phase winds down, the proliferative phase is dominated by
activated myofibroblasts and the synthesis of new extracellular
matrix (ECM). The ECM not only provides structural scaffolding
and integrity to the healing wound, but also simultaneously acts
as a reservoir for crucial growth factors (Schultz and Wysocki,
2009), and plays an active role in regulating cell migration,
differentiation, proliferation, and survival (Olczyk et al., 2014),
to promote wound neovascularization and keratinocyte-
mediated wound re-epithelialization. ECM synthesis and
remodeling are dynamic processes. Collagen serves as the
major constituent of the cutaneous ECM, with collagen type
11T laid down first in the healing wound which is then replaced by
collagen type I during the remodeling phase, culminating in scar
formation and playing a major role in the stiffness of the skin
(Ben-Amor et al., 2014). Other components such as elastin,
laminins, chondroitin sulphate, and proteoglycans are essential
to ECM physiology, and contribute to biomechanical properties
of the skin allowing for elasticity, cell signaling and sensing
changes in surrounding microenvironment and shifting the
structural framework of the ECM in response to micro
environmental cues. Several differences among the wound
ECM constituents have been shown to play a critical role in
the regenerative wound healing phenotype based on the accrued
literature in fetal vs. adult dermal wound healing. These
differences include a higher ratio of collagen type III to
collagen type I in the regenerative wound microenvironment
with elevated and sustained levels of hyaluronan and an absence
of elastin as compared to the fibrotic wounds. Non-invasive study
of the differences in ECM patterns during the progression of
healing of fetal and adult wounds will provide insights to
recapitulate the regenerative phenotype.

Pathophysiologic states such as in diabetic ulcers, venous
ulcers, and immunosuppression lead to a cessation of normal
wound healing, leading to chronic wounds that are characterized
by a prolonged inflammatory phase with dysregulated ECM,
leading to dysfunctional epithelization. While normal wound
healing occurs in a highly regulated fashion from “outside-in”,
this coordinated process goes awry in chronic and difficult-to-
heal wounds, often characterized by a large wound size and
variable depths across the wound bed that are simultaneously
“stuck” in different healing phases (Tredget et al., 1997; Eming
et al,, 2007; Gurtner et al., 2008; Ogawa, 2008; King et al., 2013;
Duscher et al., 2014; Balaji et al., 2017; Sorg et al., 2017; Rodrigues
et al., 2019; LeBleu and Neilson, 2020). These wounds can also be
viewed in the context of disrupted dynamic reciprocity. Dynamic
reciprocity (DR) is defined as ongoing, bidirectional interaction
amongst cells and their surrounding microenvironment, which
supports the concept that cells’ surrounding microenvironment
and the cells’ function and phenotype may depend on each other.
DR-driven biochemical, biophysical and cellular responses to
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injury play pivotal roles in regulating wound healing responses.
Concerning ECM, dynamic reciprocity deems ECM an active
signaling entity rather than an inert scaffold (Bissell and Aggeler,
1987; Schultz et al., 2011). DR was reported by different groups;
the interaction between endothelial cells and ECM was first
described by Bornstein and others in 1982 as DR, with further
seminal work reporting the interaction of ECM with cells
(Bissell et 1982;
Bornstein et al., 1982). DR is evident in all four stages of

through transmembrane receptors al.,
normal wound healing, with integrins playing a key role in
modulating interactions between cells and the ECM. Elevated
protease levels in the chronic wounds hinder ECM—cell
interactions by integrin switching or lack of integrin
presentation due to destroyed/damaged attachment sites for
the cells in the ECM (Larjava et al, 1993; Lafrenie and
Yamada, 1996; Miyamoto et al., 1996; Lobmann et al., 2002).
Therefore, the functional cells in the wound are deprived of
signals required for migration, proliferation, and differentiation.
Further, the pathogenesis of these wounds has been linked to
persistently high proteolytic activity along with excess deposition
of ECM (Buccafusco and Serra, 1985; McCarty and Percival,
2013). Impaired healing and scarring also reduce the elasticity
and integrity of the remodeled tissue while impairing its function
(Davey et al., 2003; Corr and Hart, 2013), with even more severe
complications in patients who suffer from diseases that lead to
poor wound healing and chronic wounds, such as diabetes
mellitus (Weiser et al., 2018).

Current metrics for evaluating successful healing of a wound
rely primarily upon measuring re-epithelialization. When a
wound appears to be stalled in the progression of healing, a
physician investigates the factors usually involved in hampering
wound healing such as bacterial infection, inadequate perfusion,
and mechanical strain on the site of injury, often requiring
further imaging studies or procedures. These factors negatively
impact the successful deposition and remodeling of ECM in a
wound. However, the current standard of care does not evaluate
the integrity and quality of the ECM of the healing
wound-understandably, as non-invasive methods of evaluating
the ECM are not yet commonplace, and invasive assessment by
sampling tissue biopsies create additional morbidity at the site of
injury. Novel techniques that allow longitudinal, non-invasive,
multiparametric monitoring of the wound healing progress in
real time will be a significant boon to the field of wound care.

There are many new and emerging techniques that can be
utilized to further evaluate biologic factors in the healing wound
which ultimately determine the structure and function of the
ECM of a healed wound. Multimodal electronic biosensors that
have better wound interfaces can assess the wound state in real-
time with enhanced spatiotemporal resolution. Similarly,
mathematical models providing a theoretical map of the ECM
can be used to run simulations of wound healing end points
based on given inputs, which will aid in forecasting the healing
outcomes of complex wounds and allow for timely interventions.
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Machine learning algorithms can process complex chemical
signals and ECM data inputs to determine the state of wound
healing with the potential to predict optimal interventions to
promote wound healing. Together, these computational models
along with in vivo animal models will allow for the integration of
physiological, molecular, mechanical, and electronic processes
that increase both the number of independent signals that can be
monitored simultaneously and the number of stimuli that can be
administered to the repairing wound tissue.

These technologies may potentially lead to a transformative
wound healing approach that can expedite recovery, eliminate
incomplete healing with scarring, and reduce the risks of
infection and limb amputations (Zhang et al., 2021). In
addition, the ability to real-time monitor the wound status
without continuous screenings by medical professionals, may
result in substantially reduced treatment cost and facilitate
clinicians in more precisely tracking the healing process of the
patients, enabling developments of personalized and predictive
care. Biosensors, which actively monitor the early wound
environment for bacterial infection, perfusion, and mechanical
strain, will allow wound care providers the opportunity to
intervene on wounds that are predicted to fail to heal. Novel
non-invasive measures of the quality of the ECM deposition in
the healing wound will clue in providers as to the functional
dependability of the healed wound. Machine learning and deep
learning will allow extraction of the mass data provided by novel
biosensing and ECM visualizing modalities predicting wound
failure, and perhaps 1 day intervening, before human evaluation
has even taken place.

2 Wound interface biosensing

At the onset of the healing process, it is essential to establish
an infection free wound bed along with sufficient perfusion of the
granulating tissue to allow for successful ECM deposition.
Development of biosensors to detect bacterial contamination
through presence of a biofilm, odor, H,O,, temperature, pH, and
even direct bacterial detectors as well as perfusion via oxygen
sensors and near-infrared fluorescence have led to novel methods
to evaluate the progression and hinderance of wound healing.
Development of technologies such as these will allow physicians,
particularly vascular surgeons, to rapidly identify and intervene
upon wounds that display characteristics of non-healing wounds,
especially in the crucial timeframe immediately following
revascularization.

2.1 Detection of bacterial contamination
and biofilms

A constant source of consternation for clinicians,
infections are especially prevalent in chronic diabetic
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wounds, contributing to dysregulated wound healing.
Sensors can be utilized to detect markers of infection like
bacterial by-products and toxins as well as enzymes secreted
by neutrophils (Ma et al., 2022; Nnachi et al., 2022; Ramasamy
etal., 2022). About two thirds of chronic wounds present with
bacteria that tend to produce a biofilm, a matrix consisting of
extracellular polymeric substances (EPS) (Zhao et al.,, 2013).
Bacterial biofilms form a protective barrier that encourages
the formation of multicellular communities through the
production of a complex matrix of glycoproteins and
polysaccharides and hinder healing by suppressing the
effectiveness of the host immune response to infection
(Volden et al., 2010). Biofilms also protect bacteria from
antibiotics at the concentrations which would normally kill
the bacteria. Therefore, wounds are often debrided when there
is a clinical suspicion of biofilm formation. Objective methods
of sensing biofilm formation would provide valuable clinical
information to indicate the need for wound debridement.
High-frequency acoustic microscopy is a novel technique,
which, when used in conjunction with targeted ultrasound
contrast agents, allows for detection and quantification of
bacterial biofilms (Anastasiadis et al, 2014). Another
promising method for detecting biofilms in the field of
wound healing is mass spectrometry. In 2013, Hines et al.
demonstrated, using a diabetic rat model, the ability of ion
(IM-MS) to
characterize and model wound pathology through non-

mobility mass spectrometry accurately
invasive collection and analysis of a small sample of wound
exudate (Hines et al., 2013). Mass spectrometry has also been
used to characterize and quantify the presence of bacterial
biofilms, including in human dermal wounds (Charlton et al.,
2000; Ashrafi et al., 2018; Achek et al., 2020). In recent years,
this technology has been used for the detection of metastatic
breast and thyroid cancers, and has been translated into the
clinic in a handheld device, the MasSpec Pen Systemm, for real
time determination of tumor margins during pancreatic
cancer surgery (Zhang et al., 2017; King et al., 2021). This
technology may offer physicians a non-invasive, real-time
method for analysis of a wound and determination of
healing status. While this would require studies to model
the healing wound and determine the variables to assess, it
is a tool that could change the way wounds are assessed in the
clinic and provide a method for rapid characterization of the
ECM. Other indirect measures of bacterial contamination and
biofilm formation include wound pH, odor, hydrogen
peroxide levels, and temperature-which will be discussed in
the following sections.

2.1.1 pH sensors

pH is a sensitive indicator of bacterial infections in the
inflammation phase. pH of normal healing wounds is in the
range of 5.5-6.5 during the wound healing. However, in non-
healing infected wounds, pH tends to be above 6.5 (Schneider
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et al., 2007). Although pH can be slightly affected by diet and
diseases, the variations of wound pH in response to the
infection are more severe. Thus, monitoring pH will
in the
inflammation phase. pH can be easily measured with the

provide important data on possible infection
help of indicator dyes (Kromer et al, 2022; Srivastava
et al., 2022). However, care must be taken that these dyes
do not leach from the dressings. Sridhar and others have
developed a sensor based on a pH sensitive hydrogel between
two coils (Vijayaraghavan et al., 2009). The coils displace as
the hydrogel swells with changes in pH and result in a change
of inductance. This kind of electronic sensor will be ideal in
the future as we move toward smart wound dressings that can
detect changes in pH and deploy measures to address the
perturbations. pH monitoring does present difficulties,
however, as the pH of a non-infected wound tends to
fluctuate as a part of the physiologic wound healing
response. Thus, alterations in pH are not necessarily
specific to bacterial infection (Sharpe et al., 2013). Using
dual-sensors, which create composite data from multiple
readouts may add to the specificity of pH sensors. For
example, levels of uric acid indicate the severity of the
wound and decrease as the wound heals (Fernandez et al.,
2012). Sharifuzzaman et al. (2020) developed a wearable
biosensor for detection of uric acid, further integrated with
a temperature and pH detection system to correlate changes in
temperature, pH, and uric acid levels, allowing for more
precise recognition of bacterial infection. Direct bacterial
sensing is a much more specific measure to determine the
presence and severity of microbial contamination in a wound.
Preclinical dual-sensors are in development which perform
real-time monitoring of pH and bacterial cellular attachment
(Sheybani and Shukla, 2017). Simultaneous measurement of
pH and bacterial colony size allows for a much more specific
approximation of wound infection, and such a sensor could be
applied to flexible materials and integrated into functional
sensors such as bandages.

2.1.2 Odor sensors

Bacterial colonization can also be detected via odor
sensors that detect chemicals and other byproducts secreted
by bacteria. These sensors, known as “electronic noses,” can
identify bacterial strains based on their characteristic odor
(Wiggins et al., 1985; Pavlou et al., 2002; Allardyce et al.,
2006). Detection of volatile organic compounds from the
wound exudate is a complex process. For example, chronic
wound lesions secrete compounds detected by GC-MS, which
resolves these signals. The difficulty then lies in processing the
resultant plethora of information (Thomas et al., 2010). At
present, the instrumentation for resolving these peaks is quite
bulky. Therefore, sensors that offer portability and real-time
gas detection are needed. Low-cost alternatives to gas sensors
are chemiresistors and metal oxide detectors. However, these
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lack sensitivity in obtaining fine distinctions amongst the
volatile gases.

2.1.3 Hydrogen peroxide sensors

Hydrogen peroxide (H,0,) is generated in the inflammation
phase of wound healing through oxidative damage, and thus,
detection of H,O, may be helpful in assessing the state of a
wound and presence of contaminants. However, commercially
available, enzyme-modified electrode systems to detect H,O,
usually suffer from issues such as temperature and pH stability as
well as a complicated procedures for in vivo applications. To
address this issue, recent studies suggest using platinum as the
catalyst surface for direct non-enzymatic H,O, sensing (Miao
2014). Platinum-Black (Pt-Black)
microelectrodes have proven to be highly sensitive for in vivo

et al, In particular,
H,0, measurements, which also offers superior accuracy over a
large range of H,O, concentrations (Ben-Amor et al,, 2014; Du
etal,2017; Yuetal,, 2021; Xie et al., 2022). By deploying an array
of Pt-Black microelectrodes, the H,O, concentration and the
resulting electrochemical currents can be readily monitored
using a standard potentiostat circuit.

2.1.4 Temperature sensors

Temperature is a key metric for understanding not only
infection, but perfusion as well. Infection is indicated in the case
of elevated temperature, yet decreased temperature can be a
marker of local ischemia and biofilm formation. Many
temperature sensors are made of carbon nanotubes and
connected to a transponder while others are colorimetric, and
detect up to £0.5°C (Zang et al., 2012). These are low cost, yet are
superseded by electronic sensors that offer better sensitivity.
Nanodiamonds (ND) are another material which provide
non-invasive optical imaging with excellent mechanical and
optical properties (Khalid et al, 2020). Khalid et al. have
proposed the integration of nanodiamonds-silk materials to
develop temperature sensors. These hybrids are thermally
stable and are resistant to degradation as compared to silk
In addition to

temperature, these dressings also detect cell turnover and

alone, when tested in a murine model.

antibacterial activity. These arrays will allow for a direct
digital output of temperature readings that can be fed back
into a controller on a smart wound.

2.2 Detection of tissue perfusion

Perfusion of the granulating wound bed, allowing for ideal
oxygenation, influx of nutrients and growth factors, and immune
function is essential for proper ECM deposition. In the case of
chronic wounds, there is often suboptimal macro and
microvascular perfusion to the wound bed providing
insufficient oxygen supply which leads to impaired healing

(Chan et al, 2011; Dargaville et al, 2013). Established
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methods of monitoring vascular perfusion to wounds typically
involve non-invasive means such as ankle brachial index, toe
pressures, laser speckle perfusion mapping, and laser Doppler
ultrasound flowmetry measurements performed at discreet time
points for superficial wound mapping. However, these methods
can be unreliable in the setting of calcified arteries common to
diabetic patients with critical limb-threatening ischemia (Ricco
et al., 2017). To overcome this drawback, novel advances in non-
invasive measures are being explored, such as pedal acceleration
time, which involves measuring the time from the start of the
systolic uprise in flow in a plantar artery to the peak of systole
(Sommerset et al., 2019). While pedal acceleration time has been
shown to reliably measure angiosomal perfusion to foot wounds,
it is not able to directly measure the perfusion to a wound as a
minimally invasive peripheral angiogram would (Sommerset
et al.,, 2019). All of these invasive and non-invasive measures
of tissue perfusion share a similar drawback; they are static
measures of perfusion. Continuous measures, however, may
be able to detect minute changes in oxygenation, therefore
informing providers of the potential need for an intervention
to improve blood flow.

Given these drawbacks, there is a clinical need for non-
invasive real-time measures of tissue perfusion. A step in the
right direction involves the use of fluorescence angiography to
determine perfusion to wounds. Indocyanine green fluorescence
angiography (ICGFA), a technique progressively being used in
the surgical setting, has proven to be useful in monitoring wound
perfusion as well (Whitlock et al., 2021). Its use involves injection
of a non-toxic and non-radioactive dye, which may then be
imaged using a laser and camera under which the dye fluoresces
(Patel et al., 2018). In one clinical study, poor perfusion measures
by ICGFA in patients who underwent endovascular interventions
were more predictive of failure of wound healing than other non-
invasive measures (Patel et al., 2018). Similarly, in another study
of patients with heel ulcerations, ICGFA measures successfully
identified local heel ischemia and allowed for rapid vascular
interventions to improve perfusion (Marmolejo and Arnold,
2018).

Another promising non-invasive measure of angiogenesis is
Cadence contrast pulse sequencing, which utilizes targeted
contrast agents, such as microbubbles, toward a specific
vascular marker expressed by endothelium (Stieger et al,
2008; Streeter et al., 2011). This technique has been used to
quantify angiogenesis in vivo in a murine model of mammary
carcinoma (Anderson et al., 2011). Given the ubiquity of
ultrasound technology, this method of measuring angiogenesis
could be applied to chronic wounds in an outpatient setting.

As the principal purpose of perfusion is oxygen delivery to
the healing tissue, methods of direct oxygen detection are also
useful for evaluating the healing wound. Mostafalu et al.
developed a 3D-printed smart wound dressing that can sense
the oxygen concentrations in a wound. The bandage, along with a
flexible oxygen sensor, a microcontroller and wireless radio, are
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all assembled into a compact system that can provide a direct
data readout as well as wirelessly transmit the oxygen
concentrations as the wound heals (Allardyce et al, 2006).
Researchers  are  also

implementing  oxygen-sensing

nanoparticles which can be directly incorporated into
dressings in contact with the wound surface. These particles
are excitable by ultraviolet light and emit fluorescent wavelengths
which correspond to the oxygen concentration in the wound

(Tavakol et al., 2020).

2.3 Mechanical injury and strain

Mechanotransduction is a critical factor in wound healing
and fibrosis (Wang and Thampatty, 2008). Proper coordinated
functional ECM deposition and wound healing rely on an
environment with minimal strain and no repeated injury.
Mascharak and others the
fibroblasts principally responsible for dysregulated ECM

recently demonstrated that

deposition are activated by canonical mechanotransduction
pathways, the inhibition of which allows for coordinated ECM
deposition culminating in regenerative healing (Mascharak et al.,
2021). Diabetic wounds, due to the underlying sensory
neuropathy present in this population, are particularly
susceptible to repeated injury and strain which inhibits wound
healing. Wearable sensors are in development which allow for
precise and constant measurements of strain to alert patients and
physicians of mechanical environments, which pose a risk to the
successful healing of patients’ wounds. Mehmood et al. (2015)
developed a low power flexible sensing system which obtains real
time pressure, moisture, and temperature data that can be
wirelessly transmitted to the patient or care provider,
providing insensate diabetic patients with information they
can use to modify their activity and footwear. Aiming to
remove the reliance of a sensor capable of measuring at only
one point of the wound, Baldoli and others have developed smart
wearable textiles capable of measuring distributed pressure on
the foot, which also allows for measurements of pressure at the
wound-dressing interface (Baldoli et al., 2016). Such sensors as
above can be integrated into the wound dressings or patient socks
to help in decision-making. Diagnostic sensors may dictate the
course of treatment, whereas theragnostic sensors, which detect
parameters such as levels of a specific protein, are then linked to a
database of information regarding the wound, thus paving the
way for better and personalized therapies (Harding et al., 2007;
Dargaville et al., 2013).

2.4 Multiparameter sensors
While it is beneficial to obtain singular measures of the

healing wound in real time with sensors that measure physical
attributes such as temperature, odor and pH that can indicate
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infection and perfusion, single point measurements may not
accurately assess wound tissue biology, and it is essential to be
able to assess many different characteristics of a healing wound at
once (EI-Ali et al., 2006; Ertl et al,, 2014). To assess wound
healing in a more quantitative fashion, multimodal sensors that
can sample multiple points in the wound are being developed
(Chi et al., 2015; Park et al., 2018a; Park et al., 2018b; Park et al.,
2019) In recent years, the field of microfluidics and microanalysis
has allowed for the characterization and manipulation of micro/
nanometer-scale volumes of fluids. These innovations have
allowed for the development of multi-parametric in situ
biosensors that prepare, manipulate, and analyze biofluids in a
compact and contained manner (Whitesides, 2006; Swieszkowski
et al.,, 2020). The biosensing technology discussed previously,
along with microfluidic technology, has been integrated into in
situ multi-parametric cell profilers, exampled in.

Park et al. This technology incorporates impedance sensing,
static and dynamic optical recordings, extracellular potential
recording, and biphasic current stimulation into the same
2mm x 3mm chip with a 1,024 pixel resolution (Park et al.,
2018a). Additionally, Gao et al. developed a similar in situ
biosensor that assess a variety of biomarkers in a venous ulcer

including inflammatory —mediators, bacterial load, and
physiochemical parameters like temperature and pH. This
device allowed real-time clinical feedback as well,

incorporating a portable wireless analyzer that interfaced with
the immunosensor to allow the clinician instant access to the
readings taken (Gao et al., 2021). To counteract problems such as
skin impedance, which makes the output signal weak,
microneedle platforms can be used. Microneedle electrodes
are capable of reading signals from the dermis with high
sensitivity while sampling biofluids for further analysis (Chen
et al,, 20165 Lee et al,, 2017). This technology can still be taken a
step further by incorporating an on-demand drug delivery
system into the wound dressing that can alter treatments in
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real time based on sensor readouts. A smart dressing developed
by Mostafalu et al. (2018) incorporates a pH and temperature
sensor along with thermosensitive drug carriers and an
electronically controlled heater and onboard microcontroller
to automatically release drugs onto the wound in a
programmable, stimuli-responsive manner. The envisioned
establish

bidirectional communication between the wound and an

future generation of wound dressings will
electronic interface that will guide deployment of therapeutics
into the healing wound in an artificial intelligence-guided closed-

loop manner (Figure 2).

3 Visualization of the ECM
3.1 Advanced imaging techniques

The aforementioned sensing modalities provide data
concerning predictors of successful healing, but none are
objective measures of the quality of the healing wound. For
this reason, we must focus on measures of the granulation tissue
that provides the provisional scaffolding for the healing
wound-the ECM. While invasive procedures, such as biopsy
and traditional histology, have been required to evaluate the
quality of wound healing and study the cell populations and
demarcate the wound boundaries, they bring with them
complications and confound the healing cascade by creating
new injury, which impairs the assessment of the functional
wound repair. Non-invasive interrogation of the functional
aspects of the extracellular wound matrix is highly powerful
in helping to understand the tissue repair continuum through
repeated measurements of the same wound as opposed to any
invasive measures. Non-invasive imaging modalities have
enabled us to conduct in-depth assessment of the ECM in the
wound bed and directly observe and characterize the scaffold’s
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mechanical structure and biomechanical properties, as well as
visualize the ECM remodeling process in various pathologies.
Imaging can provide a deeper understanding and greater
information of the wounds non-invasively rather than single
dimension diagnostics. The following sections will discuss the
recent advances in ultrasound-based imaging, optical coherence
(OCT),
microscopy, all of which are non-invasive measures which can

tomography and  second-harmonic  generation
be used in a clinical setting to evaluate the quality of ECM

deposition and assess the progression of wound healing.

3.1.1 High frequency high resolution ultrasound
imaging

Ultrasound allows for a holistic and non-invasive evaluation
of a wound. This technique can analyze anatomy,
hemodynamics, elastography, and volume of a wound while
identifying variations in tissue type within the wound and
quantifying morphological features. Moreover, current non-
invasive techniques (thermography, macrophotography, laser
speckle, perfusion mapping, and laser doppler flowmetry) only
allow for superficial analysis of a wound. Ultrasound, on the
other hand, allows for visualization of deeper structures, which
greatly improves the ability to characterize full thickness wounds
(Gnyawali et al., 2020). Clinical studies are ongoing which aim to
characterize appropriately healing tissue parameters with high
frequency ultrasound; tissues such as fibrous granulation tissue,
cellular infiltrates, immature granulation tissue, and
neoepidermis can be identified based upon their echolucency
(Mohafez et al., 2018). Further advances in high resolution and
microscopic ultrasound are allowing for precise characterization
of ECM components and their orientation, which are promising
techniques that may be applied to the monitoring of wound
healing in the future (Morokov et al., 2019; Gnyawali et al., 2020).
Gnyawali et al. (2020) have developed a novel non-invasive
method of ultrasound imaging for repeated measure of wound
tissue morphometry, biomechanics and hemodynamics under
fetal regenerative, adult physiologic, and adult pathologic
(diabetic wound) conditions using murine models. Their
model uses high frequency, high resolution ultrasonography,
coupled with doppler flow imaging to obtain hemodynamic
properties of the blood flow in the artery supplying the
wound-site and measurements of tissue cellularity and elastic
strain for visualization of inflammation using Vevo strain
software. They were able to characterize stark differences in
elasticity, blood supply, and arterial pulse pressure that
distinguish regenerative vs. fibrotic wound healing patterns.
They further showed changes in the elasticity of wound-edge
tissue of diabetic wounds, where the severe strain acquired during
the early inflammatory phase persisted with a slower recovery of
elasticity in the diabetic cohort as compared to that of the non-
diabetic group. This imaging platform is versatile and clinically
relevant for real-time analyses of wound healing and allows for

multiple interrogations of the wound without disrupting the
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healing process, providing insight into the mechanical and
functional aspects of the wound healing continuum, that can
be readily applied to monitor wound healing in patients
(Gnyawali et al., 2020).

In addition, high-frequency spectral ultrasound (SUSI) is an
emerging technology that could provide a safe, portable, non-
invasive diagnostic tool to detect ECM structure and fibrosis of
various wounds including deep wounds through the fat, muscle,
and bone along with dermis, and to the epidermis. SUSI, unlike
conventional ultrasound imaging, takes advantage of a wide
spectrum of signals based on radio-frequency backscattered
signals to detect characteristic parameters independent of the
function of the machine or the skill of the operator. SUSI allows
for an objective and quantitative characterization of tissue. These
spectral characteristics can be analyzed to identify specific tissue
types through factors other than morphology (Ranganathan
et al., 2018). In recent years, this technology has been used to
successfully identify metastatic infiltration of biomaterials by
cancer cells. This demonstration of cell specific identification
is promising, as it demonstrates the capability of the technology
to distinguish tissues at the cellular level and help to better
characterize a wound’s healing status as described at the cellular,
not gross morphological level (Bushnell et al., 2020).

3.1.2 Elastography
Elastography is an ultrasound-based, non-invasive imaging
modality that aids in the assessment of scaffold mechanical
properties, such as volume, stiffness, and density (Sigrist et al.,
2017). Recently, estimates of ECM stiffness and other stromal
components using this technique has been used as a biomarker in
assessing tumor microenvironments, as increased estimated
tumor stiffness correlates to increased collagen density and
fibroblast-rich environments (Riegler et al, 2018). Moving
beyond the tumor environment, elastography was next used to
evaluate tendon healing following reconstruction, providing
non-invasive means to monitor successful healing and
properties  (Gulledge et 2019;
2020). More wave
elastography has been applied to objectively measuring human

mechanical tissue al.,

Frankewycz et al, recently, shear
scar stiffness, where it reliably measured the stiffness of burn
scars in a non-invasive manner (DeJong et al., 2020). This study
further demonstrated that novice ultrasonographers became just
as reliable as experienced ultrasonographers following a short
training session in, further supporting elastography’s possible
role in a bedside clinical environment of wound evaluation.
Elastography is limited in its use, however, as its spatial
resolution is large and is unable to resolve microscopic details

necessary for evaluation of collagen microstructures.

3.1.3 Optical coherence tomography

Optical coherence tomography scatters low-energy, high-
wavelength light within a specimen to construct an image of
the tissue structure and offers high-resolution, multi-sectional
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Optical coherence tomography and elastography. (A) Schematic of optical coherence tomography. (B) Set up for Optical Coherence
Elastography. Red box designates location of sample/subject of interest. (C) Elastographic map of mouse skin with scar denoted within white dotted
lines. (D) Cross section of normal skin using OCE. (E) Cross section of scar using OCE. Illustration generated using Biorender.com. OCE images

courtesy of Dr. Kirill Larin Lab at the University of Houston.

imaging. This modality has been widely used, in both
experimental and clinical settings, to visualize complex
microarchitecture assemblies at the micrometer level and has
been extensively reviewed (Cannon et al., 2022; Groux et al.,
2022; Ji et al., 2022; Sanchez et al., 2022). With regards to ECM
characterization, it allows for rapid quantification of the amount
of ECM that has been produced, as well as identification of
factors that affect production rate such as cell proliferation and
assessment of collagen microchannels within the ECM
(Bagnaninchi et al, 2007). Recent advances have combined
OCT with diffusion-sensitive technology using gold nanorods
(DS-OCT) to increase the resolution from micrometers to
nanometers, in order to appropriately distinguish collagen-
based heterogeneity within the matrix (Blackmon et al., 2016).

Within the last few years, a new technique has emerged that
combines the spectral domain of OCT with the ultrasound
transducer of elastography, called ultrasound and phase
sensitive optical coherence elastography (US-OCE). An
acoustic radiation frequency from the ultrasound wave
perturbs the surface of the specimen, resulting in a level of
displacement (Figure 3). This displacement is then measured
by the OCT system. Though seemingly simple, this technique
combines the strengths of both independent methods. US-OCE
has greater spatial resolution and is capable of quantifying the
deformations in the specimen, providing information on the
properties of the material as well (Wu et al., 2015; Liu et al., 2016;
Nair et al.,, 2019). Though it has mostly been tested in lenses and
small bowel tissue, OCT was recently trialed in a human study of
split thickness skin grafting to monitor vascular structures and
integration of the graft into the tissue (Deegan et al., 2021). This
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technique is well suited to study ECM stiffness and structure in
wound healing.

3.1.4 Single-photon, multi-photon, and second
harmonic generation imaging

Optical imaging techniques such as single and multi-photon
microscopy are uniquely suited to visualize and quantify ECM
structure with minimal invasion over long periods of time,
thereby providing exquisite detail of the inherently dynamic
wound ECM remodeling from time of injury to weeks or
months of remodeling. As the microstructure of the collagen
is a primary determinate of the mechanical properties of the
scaffold, the bulk optical properties from imaging could be used
to predict bulk mechanical properties of the ECM.

Fluorescence-based ~ single-photon and  multi-photon
microscopy with specifically targeted probes capable of the
detection of ECM components can be used to assess the ECM
composition. Recent studies have utilized collagen-mimetic
peptides (CMPs), which are synthetic chains of amino acids
and replicate the strands in natural collagen fibers, to detect
damaged collagen (Dones et al, 2019; Ellison et al.,, 2020).
However, the availability of specifically targeted probes with
clinically approved fluorescence agents, such as Indocyanine
green (ICG), and instrumentation is still limited. As well,
molecular imaging enables non-invasive visualization of
cellular and subcellular processes that may allow early
detection, quantification, staging, and phenotyping of fibrosis.
The role of molecular imaging probes for detecting fibrosis and
fibrogenesis, the active formation of new fibrous tissue, and their

application to models of fibrosis across organ systems and
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fibrotic processes has been reviewed elsewhere (Montesi et al.,
2019). The availability of probes for the detection of ECM
molecules, including collagens type I and III, oxidized
collagen, fibrin and elastin, as well as for detection of
neutrophil degranulation and vascular leak makes this
imaging methodology much appealing to study cutaneous
wound healing progression. Furthermore, these PET/SPECT
probes require very low mass doses and have the properties of
rapid clearance from the blood pool with low uptake in other
organs making it highly translational.

Multiphoton microscopy is capable of high resolution, three-
dimensional imaging of the ECM to a depth on the order of 1 mm
using femtosecond pulses of near-infrared (NIR) laser light. Fibrillar
collagen responds to near-infrared laser light with both second
harmonic generation (SHG) and two-photon excited fluorescence
(TPF). SHG microscopy uses the second-order, nonlinear optical
response to visualize tissue microarchitecture without tagging or
destruction of the specimen (Guo et al., 1997). SHG occurs when
two incident photons interact with the non-centrosymmetric triple-
helical structure of collagen and combine to form a single emitted
photon of exactly half the wavelength or twice the energy, offering a
label-free measure of intact collagen with high spatial resolution.
During the remodeling phase, collagen type III is replaced with
collagen type I, thus changing the overall collagen architecture. The
changes in collagen fiber layering and deposition in the creation of
the new ECM can be directly visualized and tracked with this
method. Recent studies have detailed the imaging of collagen fibers
in the skin, the lung, and the retina (Mostaco-Guidolin et al., 2017).
Tanaka et al. (2013) performed SHG imaging on in vivo samples to
observe changes in dermal collagen fibers in living rat burn models.
The strength of this imaging technique relies on its use of the
collagen dipole to discern orientation, since, in wound healing,
collagen fibrils tend to present in a non-linear orientation.
Combining SHG that detects
fluorescence-based single-photon detection of denatured or

intact collagen only, with

fibrillar collagen with probes, will provide a clear demarcation of
normal skin, wound boundary, and fibrotic remodeling. A drawback
of SHG, however, is that it is limited to providing a two-dimensional
representation of the tissue of interest. Furthermore, this technique is
expensive, with bulky equipment that utilizes non-eye-safe class IV
lasers, thereby limiting its clinical application. In contrast, 3D second
harmonic generation tomography (SHT) rotates the specimen to
collect images from all three planes to create a 3D image (Campbell
et al, 2017), which can help characterize the intricate collagen
assemblies within the ECM.

4 Computational modeling of
the ECM

With massive innovations in sensing and imaging
technology, multitudes of multimodality data will be collected

which can be used to instantaneously understand the progression
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of a healing wound and predict the final healing outcome.
However, the amount of data to be processed will be too
burdensome or impossible for simple human interpretation,
thus computational models of the ECM and the healing
wound must be developed. Using these models will facilitate
wound parameter extraction and processing, linking the qualities
of the healing wound which will predict successful or failed
wound healing outcome, allowing the wound care provider to
intervene in a timely fashion to improve the chances of optimal
wound healing.

4.1 Modeling in the different stages of
wound healing

Much work has been done to model the proliferative phase of
the wound healing process, as this phase represents the period of
fibroblast proliferation and ECM deposition which closes the
wound. These models are two-to-three variable models that
attempt to simulate proliferation of cells as functions of tissue
oxygen tension, capillary and fibroblast density, and/or
and ECM
deformation. Initially, inputs to these numerical models

mechanical factors including cell traction
included the presence of endothelial cells, macrophage-
released chemokines, and new blood vessels (Pettet et al,
1996). Later models evolved to include vascular networks and
interactions between independent and dependent factors,
executed by modeling angiogenesis as a function of VEGF or
tissue oxygen tension (Dor et al., 2003; Schugart et al., 2008).
Most recent models included several ECM components such as
ECM deformation and cellular traction forces, as well as other
wound conditions like growth factor, oxygen concentrations, and
the presence of new blood vessels and fibroblasts (Valero et al.,
2014). The purpose of these models is to mathematically simulate
optimal ECM formation in wound healing, which then allows
researchers to define pathologic states of wound healing such as
in the case of bacterial contamination and inadequate perfusion.
Mathematically modeling the remodeling phase is
complex, as this phase is characterized by the interaction of
variety of factors. Schluter et al. (2012) proposed that, within
this phase, ECM fibers represent one of the most important
factors guiding cellular migration to the wound. By estimating
cell speed and size, total traction forces on the ECM, and ECM
rearrangement due to these traction forces they found that 1)
matrix stiffness and density leads to decreased cell movement
(increased persistence of the cells within the matrix), 2) more
orderly matrix structure leads to increased persistence, and
finally, 3) in general, under wound healing conditions, cells
tend to follow one another and matrix stiffness influences this
behavior positively (Schluter et al., 2012). Using models such
as these allow researchers to optimize the ideal wound
stiffness for cellular reparative function and then develop
techniques to measure stiffness in non-invasive ways.
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TABLE 1 Advantages and disadvantages of partial differential equation systems and deep learning systems.

Non-linear partial differential
equations system

Advantages Can see and control input variables

Ability to model highly complex systems as a function of specific

input variables

Disadvantages Labor and computationally intensive

Difficult to change model given new data

Selected
Readings

Alber et al. (2019)

Benhammouda and Vazquez-Leal (2014)

4.2 Holistic wound healing evaluation with
data-driven models

Integrating the three distinct healing phases, inflammation,
proliferation, and remodeling, into a coherent system has been a
central challenge of devising computational models of ECM and
wound state dynamics. Numerical solutions that couple wound
closure due to cell migration and angiogenesis have been
explored using finite element and finite difference methods to
solve the diffusion-reaction equations that define the physiology
of the system and the hyperbolic equations governing the
interface (the skin).

More advanced approaches have focused on introducing
disease or injury states to the computational model used to
describe ECM and tissue dynamics. Surgical tension wound
states, tissue necrosis, and tissue ischemia have all been
explored as additional conditions in which models have been
compared to experimental findings with predictive success (Xue
et al., 2009; Tepole et al., 2014; Valero et al., 2014). In addition,
these models with pathologic states that complicate wound
healing also serve as platforms to explore novel therapeutic
factors to reverse and regenerate tissues.

All the models described thus far have been non-linear,
partial differential equations systems with finite element
methods solutions. While models such as these can use single
parameter inputs to predict an expected outcome, they are unable
to take conglomerate multimodality data and extract a computed
outcome. In the data science realm, models that use machine
learning may serve to help predict wound outcomes and guide
decision making, but unlike differential equations systems, they
can learn and adapt from the data they are given over time. Due
to the high dimensionality of imaging and sensing data, most
deep learning models have focused on wound stratification in
images, but recently, models have been developed on risk
stratification and healing prediction of wounds based on a
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Deep neural network/Deep
learning system

Hierarchical feature learning ability transforming high-dimensional data into low-
dimensional latent features

Ability of integrating multimodal data

Ability to handle noisy data

Computationally expensive

Less interpretability

Wang and Gao (2019)
Ching et al. (2018)

1

large database of images and patient demographics (Wang
et al, 2015; Li et al, 2018; Moccia et al., 2019). These two
types of models are summarized in Table 1. Future models
may be able to combine the two techniques, to create a
learning framework that uses ECM composition and structure,
as well as known signaling pathways of patient-specific wounds
to predict wound healing outcomes. This can become a powerful
tool to help physicians guide their decision making.

4.3 Machine intelligence for wound
healing approaches

With the many and varied new methods under development
for collecting extremely large amounts of data surrounding the
status of the ECM and a wound’s progression through the phases
of the healing process, there is an unprecedented need for high
dimensional data modeling to analyze the information and allow
wound care providers to make informed decisions regarding
treatment without significant delays. Thus, it is imperative to
process high dimensional data, which has been acquired with a
high sampling rate, into real-time feedback to enhance the
system’s performance, and guide physician interventions based
upon predicted wound healing outcome. To do this, various
advancements in data-driven approaches with machine learning
have been developed and utilized. The future may hold an
adaptive “closing of the loop”, allowing an artificial controller
to read the outputs of the computational algorithms from the
multi-modal sensing to accurately assess the wound state in real-
time, then trigger smart delivery systems to release therapeutics
and drugs, without provider decision making.

4.3.1 Machine learning

Machine learning models have been used in the wound
healing space to judge the state of wound healing based on
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Illustration of potential machine learning applications to wound healing. (A) Schematic of machine learning vs. deep neural network use to
improve wound healing outcomes. (B) Machine learning to modulate interventions to improve wound healing. Illustration created using
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wound measurements, gross images, and spatial frequency-
domain imaging by a number of groups (Papazoglou et al,
2010; Rowland et al.,, 2019; Berezo et al.,, 2021; Squiers et al.,
2021). Using machine learning algorithms trained on data gained
in both human and animal experiments, models can be
developed to determine the state of a wound based on the
analysis of hand-picked, meaningful, and clinically relevant
biophysical, biochemical, and histologic parameters, using
linear regression models mapping sensor measurements to
linearized approximation of the wound state. This kind of
feature extraction has previously been demonstrated through
the segmentation of clinical images and analysis of distinct and
explicit biomarkers such as texture, shape, and color in order to
diagnose and evaluate the clinical state of wounds in a variety of
clinical pathologies (Cui et al., 2019; Kassem et al., 2021; Oukil
et al., 2021). For example, the IDx-DR 2.0 algorithm has been
utilized to detect diabetic retinopathy through feature extraction
and analysis of clinical images of the retina (Abramoff et al., 2016;
Obeid et al, 2019). Moreover, a classical machine learning
pipeline AR to
epithelialization of burn wounds has been validated through

utilizing  NIS-Elements analyze re-

intraclass correlation to clinician analyzed images (Bloemen
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et al, 2012). This demonstrates the viability of machine
learning algorithms to successfully and meaningfully predict
wound outcomes as compared to the current standard of care.
However, classic machine learning requires an expert, such as a
physician, to curate the data processed by the machine, in essence
informing the machine as to what input to “focus” on (feature
extraction) in developing predictive model. This method of data
analysis allows for precise and quantifiable feature extraction
guided by experts that can be easily cross-validated to improve
accuracy. However, the need for human influence in machine
learning can allow unrecognized or uncharacterized patterns in
the data to go overlooked. This weakness can be overcome by
utilizing deep neural network modeling with reinforcement
learning (Figure 4).

4.3.2 Deep neural network modeling (deep
learning)

Improving upon explicable models to predict wound healing
outcomes, deep neural networks (DNN) represent a potential
powerful tool for evaluation of healing wounds, as it allows for
analysis of wounds without explicit feature extraction, allowing
for previously unrecognized patterns to be analyzed and
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quantified. As the data collected by the above methods becomes
greater in complexity and quantity, using machine learning
becomes burdensome for correction and improving the
trained models. DNNs differ from machine learning in that
they are capable of hierarchical feature extraction which
eliminates burdensome and costly feature engineering, thus
allowing for simultaneous evaluation of greater magnitudes of
data throughput. Over the past several years, DNNs have proved
to be powerful tools for a wide range of modeling and prediction
tasks, and have been shown to be effective in the diagnosis and
prognostication of a variety of different pathologies (Janowczyk
and Madabhushi, 2016; Cui et al., 2019; Chan et al., 2020; Morid
et al,, 2021; Yang et al,, 2021). For example, like the explicable
model, a DNN would take biophysical and biochemical inputs
from the wound and output a prognosis for the wound. A novel
application of neural networking to wound healing is processing
simple photographs of wounds into a segmentation mask from
which the wound area can be extracted (Cui et al., 2019), which
aids in negating the significant burden of subjective inaccuracy of
the human-performed measurements. This directly impacts
patient care as the improvement in diabetic wound size in the
first 4-weeks of healing is predictive of successful ultimate wound
healing (Sheehan et al., 2006; Lavery et al., 2008; Sprigle et al.,
2012).

Utilizing reinforcement learning makes sequential
decision making possible. Reinforcement learning is the
goal-directed learning exercised by biologic systems driven
by achieving rewards while avoiding punishment (Wang et al.,
2021). Machine Learning and DNN models are not suitable for
sequential decision making in the changing environment. The
power of reinforcement learning not only lies on the fact that
the quality of each action is not measured by immediate
reward, but also that it can discover the sequence of
decisions (optimal policy) that maximizes the reward in
unseen environment.

Finally, as with any image analysis, it is necessary to
consider image quality and standardization. In order to
overcome the inherent variation in image quality, lighting,
and other factors, it has been shown that a composite
approach in which images are pre-processed and segmented
allows utilization of DL without the requirement of extensive
training as previously required (Li et al., 2018). As well, this
issue can be minimized by creating a standard procedure for
image acquisition, with successful implementation in place by
the Diabetic Foot Consortium through their eKare database of
patient DFU images (Mamone et al., 2020). While in the past
DNN have been considered as an undecipherable “black box”,
recent studies have shown that it is possible to visualize
explanations of features extracted by convolutional neural
networks (CNNs) by utilizing the flowing gradient to final
CNN layer to create a localization map highlighting important
regions in the image for predicting the concept (Selvaraju
et al., 2019).
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Moreover, there are a variety of commercially available
architecture CNNs that have been validated in a variety of
clinical settings, ranging from skin wound healing to the
detection of lung damage in SARS-CoV2 patients from lung
images (Ohura et al, 2019; Yang et al, 2021). With the
availability of such options, it is necessary to consider the
many upshots and pitfalls for each, and develop image
analysis pipelines that can reliably and reproducibility used
for modeling.

4.3.3 Closing the loop (artificial intelligence)
Current advances in computational analysis in wound
healing aim to culminate in an entirely hands off
implementation and utilization of the predictive data
given by the machine learning and DNN models to
improve wound healing with adaptive treatment regimen.
This can be accomplished by designing and developing smart
dressings that can sense various biophysical and biochemical
parameters and deploy interventional therapeutics. The
outputs from the models can feed back into an onboard
that, and highly
interpretable classical linear control systems, will enable

controller using well understood
tuning of interventions to correct for deviations from the
ideal progression through the wound healing phases along a
number of variables (Kailath, 1980). This process can be
further fine-tuned by implementing reinforcement learning,
where the algorithms detect the effects of interventions on
the wound state and determine if the intervention had the
desired outcome, reinforcing said intervention if it worked,
and eliminating it if it has an adverse effect (Wang et al,
2021). By comparing outcomes of a given intervention to the
expected outcome of the ideal intervention and minimizing
the gap between these two variables, the smart dressings will
be able to adapt to unique wounds, patients, and contexts.
This technology exists already in the form of Q-learning and
policy gradients, although it has yet to be utilized in a smart
wound dressing device format (Watkins and Dayan, 1992;
Peters and Schaal, 2008).

5 Conclusion

The ECM in a healing wound is a critical and active
regulator of cell behavior. Its composition and structure are
key modulators in preventing aberrant scarring and fibrosis.
Novel physiologic biosensors, advanced imaging techniques,
mathematical models, and in vitro and in vivo studies all
contribute to our overall understanding of the changes that
take place during the inflammatory and remodeling phases of
wound healing which determine the structural and
functional quality of ECM through the healing process.
Translating these pre-clinical methods of non-invasive

wound measurements and data processing, providers will
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be able to faithfully monitor, predict, and possibly intervene
in the wound healing process to improve difficult-to-heal
wounds.
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