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ABSTRACT

Incremental development is the process of writing a small snippet of

code and testing it before moving on. For students in introductory

programming courses, the value of incremental development is es-

pecially higher as they may suffer from more syntax errors, lack the

proficiency to address complicated bugs, and may be more prone to

frustration when struggling to correct code. However, to evaluate

the effectiveness of interventions that aim to teach programming

processes such as incremental development, we need to develop

measures to assess such processes. In this paper, we present a way

to measure incremental development. By qualitatively analyzing

15 student coding interviews, we identified common behaviors in

the programming process that relate to incremental development.

We then leveraged a dataset of over 1000 development sessions

ś about 52,000 code snapshots at compilation time ś to automat-

ically detect the common behaviors identified in our qualitative

analysis. Finally, we crafted a formal metric, called the łMeasure

of Incremental Developmentž (MID), to quantify how effectively

a student used incremental development during a programming

session. The MID detects common non-incremental development

patterns such as excessive debugging after large additions of code to

automatically assess a sequence of snapshots. The MID aligns with

human evaluations of incrementality with over 80% accuracy. Our

metric enables new research directions and interventions focused

on improving students’ development practices.

CCS CONCEPTS

· Software and its engineering→ Software development tech-

niques; · Social and professional topics → Student assess-

ment.
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1 INTRODUCTION

Based on conversations with practitioners at the SIGCSE Techni-

cal Symposium, it appears that many CS1 instructors have had a

student who comes to their office hours after writing all the code

for an assignment, but the student would not have compiled or run

their program even once. Instructors would likely recognize that

the student’s strategy to write the whole assignment in one attempt

is an example of an ineffective programming process.

The computing education field places high importance on stu-

dents learning effective programming processes. One such process

is incremental developmentÐthe process of writing a small snippet

of code and testing the snippet before proceeding. In fact, a łFun-

damental Programming Constructž in the Computing Curricula

2001 report is that łstudents apply the techniques of structured

decomposition to break a program into smaller piecesž [23].

Although the technique is a key learning goal for computing

curricula, incremental development is not precisely defined and able

to be assessed at scale by educators. łIncremental developmentž is

generally understood as a łcode-a-little, test-a-littlež strategy [1, 2],

but such general definitions present ambiguity. For example, what

is considered ła littlež amount of code? How much code should a

student add in one step? Even with a precise definition, educators

simply cannot observe every student’s development process to

detect incremental development.

However, an automated metric that monitors a student’s adher-

ence to incremental development with comparable accuracy to an

instructor could enable every student to receive feedback on their

development process. To thoroughly understand incremental de-

velopment with the goal of automatically measuring it, we ask the

following research questions:

RQ1:What common programming behaviors characterize incre-

mental development among CS1 students?

RQ2: How can we measure incremental development by creat-

ing a metric to automatically detect these common programming

behaviors?
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To answer RQ1, we conducted programming interviews with

CS1 students and qualitatively analyzed these interviews to iden-

tify common patterns and behaviors in a student’s programming

process. For RQ2, we collected thousands of student code snap-

shots from three programming assignments in a CS1 course to

automate the detection of the common behaviors we observed in

our qualitative analysis. We synthesize our findings to develop a

metric to automatically measure incremental development among

introductory computer science students at scale.

2 RELATED WORK

Several early works in computing education research have provided

qualitative, process-oriented assessments of student programming

behavior. Soloway in 1988 published łStudying a Novice Program-

merž that presents a variety of qualitative methods that aim to un-

derstand novices’ reasoning, approaches, and debugging skills [22].

Perkins et al. in 1986 use clinical studies of children’s programming

behaviors to verify that novices often have trouble decomposing

a program into smaller pieces and may haphazardly tinker with

their code while debugging [18]. In fact, a recent literature review

on process-oriented approaches to analyze novice programming

pointed to numerous studies that use the approach of observing

code snapshots during student development to detect patterns in

compilations, problem-solving, debugging, etc. [24].

Recent work has focused on automated, quantitative assessments

of the development process. A trial of work followed Jadud’s initial

work to define the Error Quotient (EQ) in 2006, which measures

how effectively a student recovers from a syntax error [11]. The

Watwin Score [25], Repeated Error Density [3], and the Normalized

Programming State Model [6] all built on the idea of examining

features of the development process to predict student outcomes

and explain the variation in student achievement. However, as

Kazerouni [13] points out, none of these metrics actually measure

incremental development. A recent metric by Charitsis [7] uses NLP

techniques to measure program decomposition among novice Java

programmers. However, as we explain in Section 7, this approach

measures a different aspect of problem-solving from the metric we

developed.

Based on our goal, the works by Kazerouni et al. [12ś14] stand

out as the most similar to our approach. Kazerouni et al. present

four metrics to measure the level of incremental development and

procrastination in a programming project in a large-scale, advanced

Data Structures and Algorithms course [14]. These metrics rely on

the idea of łwall-clockž time and reward students for working on a

project in consistent time increments instead of concentrating the

work at the end of the project timeline. For example, in the Incre-

mental Checkingmetric [14], students are rewarded for consistently

making small edits with little time between compilations.

Kazerouni’s metrics capture a dimension of incremental devel-

opment related to incremental project managementÐthe idea of

spreading out the work on a project as it relates to the due date.

The metrics evaluate a development session as non-incremental

when a student writes significant solution code and many unit

tests close to a deadline. However, our work in this project defines

incremental development only by the developmental pattern of the

code itself, regardless of the due date or overall project progress.

With our framing of incremental development, a student can use a

non-incremental process days before the deadline or an incremental

process the night of the deadline. We aim to present a metric that

can be leveraged in parallel with Kazerouni’s metrics to measure

fine-grained incremental development on an individual module

level and a more general project management level.

3 METHODS

3.1 RQ1: Conducting Student Coding Interviews

To observe the behaviors associated with incremental development,

we conducted 15 interviews over Zoom in accordance with our

approved Human Subjects protocol. The participating students

were selected halfway through a 10-week CS1 course taught at

our research-intensive university in the Spring 2021 quarter. In the

interview, we asked students to complete the Rainfall Problem [21],

which asks students to write one function in Python that finds the

average of all the positive values in a list. We allowed students to

access online documentation while completing the problem and to

ask clarifying questions to the interviewer. We also asked students

to either think-aloudwhile programming or answer questions about

their process at the end of the interview using a process called

stimulated recall [4].

Analysis of Student Coding Interviews: We analyzed these

interviews by taking note of the changes they made to their code

and the timestamp of those changes to identify common patterns

in the students’ development. We took a snapshot of a student’s

code at each run to get a sense of how frequently they were testing

their code. Using these snapshots, we extracted features such as

how many lines were added and deleted between compilations,

how many total snapshots were needed to reach a solution, and

how frequently a student ran into syntactic or semantic errors. We

then created clusters of students based on the similarity of these

features and common patterns among the coding sessions, which

we will describe in Section 4.1.

3.2 RQ2: Analyzing Student Code Snapshots

To craft a metric that automates the manual process of detecting

incremental development, we collected student code snapshots from

three programming assignments in a CS1 course taught in Spring

2022 at our university. A total of 481 students were enrolled in the

course, which included 8 weekly assignments written in Python.

The three assignments [20] we analyzed were developed by the

research team and included multiple interacting functions to elicit

a range of incremental development behaviors by students.

• Assignment 1 ś łFun with Tweetsž assigned in Week 6 ś

includes one function to find the number of words in a tweet,

a second function to find the average tweet length in a list

of tweets, and a third function that returns all tweets in a

list that are shorter than the average tweet length.

• Assignment 2 ś łCOVID Clustersž assigned in Week 8 ś in-

cludes one function to create a dictionary with per-capita

COVID-19 cases for each state from a list of tuples, another

function to categorize states as low, medium, or high COVID-

19 risk, and a third function that returns the states in a spe-

cific risk category using the first two functions.
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• Assignment 3 ś łAnalyzing Black Lives Matter Dataž as-

signed in Week 9 ś includes one function that reformats

a dictionary into two lists based on whether there were

BLM protests in that state. The second function returns the

average value of a provided field from an inputted list of

dictionaries, and the third function uses the two functions to

compare the average rates of a provided field between states

with and without BLM protests.

The CS1 course used EdStem [8] ś a platform that features an

online compiler for students to complete programming assignments.

After the course, EdStem provided us with every snapshot at run

time for each consenting student. Our analysis focused on the

three assignments we created, which included 331, 344, and 370

submissions for assignments 1, 2, and 3 respectively. In total, we

collected over 52,000 snapshots of student code.

Analysis of Student Code Snapshots: Since the code snapshots

represent real-world student programming behavior, we used them

to automatically replicate our manual analysis. We detected the

change between two sequential snapshots with a Python library

called difflib (like the git diff command between consecu-

tive commits). This library helped us identify when students were

adding code, editing code, or testing code. By parsing the code in

each snapshot, we extracted features such as the size of chunks stu-

dents added and the number of debugging steps per added chunk.

Finally, we used the EdStem snapshots to evaluate our metric by

making manual assessments of the sequences and comparing them

to our metric’s assessments.

4 RQ1 RESULTS: UNDERSTANDING

INCREMENTAL DEVELOPMEHT

We relied on manual observations of the student coding interviews

to identify common behaviors in students’ programming processes

and to develop an understanding of incremental development.

4.1 Key Observations

Categories of Code Changes: Because incremental development

broadly entails testing after adding a chunk of code, we wanted to

categorize the types of edits to distinguish steps where students

added code or debugged code.We found three types of code changes

between compilations:

(1) Steps in which students added new code

(2) Steps in which students debug or fix their code

(3) Steps in which students only edit test cases or print state-

ments

By categorizing edits, we created a sequence of labeled steps for

each interview where each label represents the student’s type of

edit between compilations.

Excessive Debugging After Large Additions:We noticed several

instances of excessive and ineffective debugging after large chunks

of code were added by students. Three of the 15 interviewees wrote

nearly the entire function at once, but had to make numerous

adjustments to their code to fix syntax errors or logical mistakes.

All 3 students needed to use 10 or more debugging steps to fix the

issues in the initial large chunk of code. Among these students, we

noticed ineffective debugging changes that were either syntactically

incorrect or simply unrelated to the error. For example, in one of

the many debugging steps after the initial large snippet, Student 5

added a colon to a statement that appended a value to a list, which

created an additional syntax error.

Differing Amounts of Struggle:Our observations led us to define

the concept of łstrugglež during the coding process as the amount

of adjustments done by a student to fix any syntactic or semantic

errors. We noticed significant variation in students’ abilities to

solve the tasks, leading to a difference among the students’ levels

of struggle. In total, 4 of the 15 students wrote nearly the entire

function at once with almost no adjustments needed. Further, 7

students finished the task in under 20 minutes, and 6 finished in

5 or fewer compilations. Conversely, 4 took an hour or more to

reach a solution, 3 students ran their code at least 20 times in their

development process, and 5 students needed prodding towards

a solution from the interviewer while stuck in a series of errors.

We understood this variation to represent the range of skills and

experience among students in a CS1 course.

4.2 Defining Incremental Development

The results from our qualitative analysis helped us answer the series

of questions in Section 1 about how much code should be added

before testing. Although 3 students wrote the entire function at

once and experienced significant struggle when debugging the code,

four other students were able to write a similar-sized chunk of code

without facing much struggle. Therefore, we reasoned that what

constitutes ła small snippetž of code varies based on a student’s

proficiency, and we can determine whether the snippet was too

large for the student based on how many steps it took them to

resolve the errors from the code snippet.

In other words, incremental development and struggle are closely

linked. Incremental development is a process in which a student

adds amanageable amount of code in a step, in which a manageable

amount is determined by how much the student struggles to fix the

chunk of code. As students will need to debug the few syntactic or

logical errors that arise, a modest amount of struggle is expected

during the programming process. However, we maintain that non-

incremental programming behavior is characterized by a significant

amount of struggle after a student writes a large chunk of code.

An advantage to this framing of incremental development is that

it accounts for the variation in student proficiency that we observed.

An issue with using rawwall-clock time or an absolute threshold for

a łlarge chunkž of code is that students will take varying amounts

of time to complete a task and may write different-sized chunks

based on the complexity of those chunks.

5 RQ2 RESULTS: AUTOMATICALLY

MEASURING INCREMENTAL

DEVELOPMENT

The results reported in this section explain our process of automati-

cally detecting the key observations from Section 4.1 in the EdStem

code snapshot data. To construct a measure of incremental devel-

opment, we aimed to replicate the manual process of categorizing

code changes, observing varying levels of struggle, and penalizing

students for excessive debugging after large changes.
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5.1 Automatic Detection of Key Observations

Categorizing Code Changes: Using the difflib library, we au-

tomatically categorized the types of edits into 3 groups, which map

to our categories of code changes in Section 4.1.

(1) Steps in which students add new lines of code were classified

as forward progress steps

(2) Steps in which students only made edits to existing lines of

code were classified as adjustment steps

(3) Steps in which students only added or edited test cases or

print statements were classified as testing steps

Quantifying Struggle: To quantify the struggle that students face

while programming, we looked for a way to leverage the number

of adjustment steps associated with each forward progress step1.

Here, we generalized the work from Becker [3], who presents a

quantification for the amount of repeated errors a student experi-

ences, called the Repeated Error Density (RED). The RED uses the

number of consecutive compilations where students get the same

error message to quantify the density of that error in a sequence.

The metric returns a higher value as a student performs more com-

pilations with the same repeated error. We interpreted the RED as

the degree to which a student struggles to fix a specific error.

Similarly, our quantification of struggle per forward progress

step captures the degree to which a student struggles to fix any

error ś syntactic or semantic ś that arises from a forward progress

step. In this step, we make the assumption that adjustment steps

represent attempts to fix issues in a student’s code. Equation 1,

derived from the RED [3], displays our quantification of struggle

for a forward progress step 𝑠 , where 𝑎𝑠 represents the number of

adjustment steps needed for that forward progress step:

struggle(F) =

(𝑎𝐹 )
2

(𝑎𝐹 + 1)
(1)

Table 1 provides the struggle for varying numbers of adjustment

steps per forward progress step. In the łSequencež column, łFž

represents forward progress steps and łAž represents adjustments.

Table 1: Quantified struggle for example sequences

Sequence Struggle

F ... 0

F A ... 0.5

F A A ... 1.3

F A A A ... 2.25

F A A A A ... 3.2

An advantage to this sub-metric is that struggle increases as the

number of adjustment steps increases. However, we noted before

that a small amount of struggle is expected during the programming

process. Our quantification of struggle aligns with this idea since

the penalty for an adjustment step later in the sequence is greater

than an adjustment step at the beginning of the sequence ś the

penalty for one adjustment step as opposed to zero steps is only

1Note that when categorizing code changes, our algorithm tracks the content of edited
lines to link each adjustment step with the one or more forward progress steps that the
student was fixing. If a student adjusts code from more than one forward progress step,
we count the adjustment step once for each forward progress step that is adjusted.

0.5, whereas the penalty for four adjustment steps as opposed to

three steps is 0.95.

Penalizing Excessive Debugging After Large Additions: Once

we applied the modified RED to quantify struggle per forward

progress step, we needed to create a single measure from the col-

lection of struggle values. Recall that a key takeaway from our

interviews was that non-incremental programming behavior was

characterized by many debugging steps after a large chunk of code.

To penalize this behavior in our automated metric, we decided to

weight the amount of struggle for a forward progress step based

on the size of the step. With this weighting scheme, we penalize

sequences of significant struggle after large additions to the code,

aligning with our understanding of incremental development in

Section 4.2. Moreover, we reasoned that a large addition of code rep-

resents a greater proportion of the student’s programming process

than a small addition of code, so we want these larger additions to

contribute to the measure of incremental development more than

the smaller additions.

We evaluated several options to quantify the size of code added

in a chunk, including the number of lines, the number of lexical

tokens, and the Halstead Volume [10] of the chunk. All three op-

tions performed the same in our quantitative evaluation that we

conducted later (see Section 6). Therefore, we opted to use the num-

ber of lexical tokens in a forward progress step to represent size,

since line counts can theoretically vary based on programmer style

or affordances of different programming languages and Halstead

Volume introduces unnecessary complexity for the same result. We

present Equation 2 to calculate the proportional size of a forward

progress step 𝑠 , assuming the function numTokens(s) returns the

number of tokens in forward progress step 𝑠:

size(F) =

numTokens(F)
∑

𝑁

𝐹=0
numTokens(F)

(2)

5.2 The Measure of Incremental Development

Our automatic detection of the common incremental development

behaviors motivated an automated metric, which we call the łMea-

sure of Incremental Developmentž (MID).

Input: The input for the MID is a sequence of snapshots collected

at compilation time throughout a student’s development process for

a programming task. The task can be any length and does not need

to include multiple functions for our metric to make an assessment.

Algorithm:

(1) Label each snapshot as a forward progress, adjustment, or

test code step based on the categories in Section 5.1. We

ignore test code steps since these edits do not affect the

functionality of the code.

(2) Compute the struggle and size of each forward progress step

using Equations 1 and 2.

(3) Calculate a weighted average of the struggle values using the

proportional sizes of the forward progress steps as weights.

The MID can be written as follows, where 𝑠 represents a single

forward progress step out of the 𝑛 total forward progress steps:

MID =

𝑁∑︁

𝐹=1

size(F) · struggle(F) (3)
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Figures 1 and 2 show the metric in action. Each white rectangle

represents a forward progress step, scaled based on the size of the

step in tokens. Each black rectangle following a white rectangle in-

dicates an adjustment step for that forward progress step. To obtain

our final measure of incrementality, we compute the average of the

values in the łStrugglež row by using the values in the łProportion

of Total Sizež row as the weights.

Figure 1: Example of non-incremental development from

student code snapshot data

Figure 2: Example of incremental development from student

code snapshot data

Output: The MID returns a score greater than or equal to 0. If a

student experiences no struggle ś indicated by a student using zero

adjustment steps ś then they will get a score of 0. As the amount of

struggle increases, especially after large forward progress steps, the

metric score increases. A higher metric score signals an ineffective

development process (i.e., non-incremental) because the student

likely experienced significant struggle after a larger progress step.

Conversely, a lower score indicates that a student likely used an

effective incremental development process for their skill level.

Interpreting MID Values: To identify a score threshold between

incremental and non-incremental development, two team members

independently conducted a review of 40 sequences of snapshots and

labeled each as incremental or non-incremental based on manually

detecting the common behaviors of non-incremental development

identified in Section 4.1. The reviewers agreed on 35 of the 40

sequences, resulting in a Cohen’s kappa statistic of 0.68 (substantial

agreement) [16]. After deliberating on the 5 disagreements, the

reviewers finalized two categories of 28 incremental sequences and

12 non-incremental sequences. We then applied our metric to each

of these sequences. By comparing our manual label to the score

returned by our metric, we found that a score of 2.5 is the optimal

separator between incremental and non-incremental development.

Using the threshold of 2.5, our metric correctly labelled 33 of the 40

(82.5%) sequences. We found that a score below 2 typically indicates

incremental behavior and a score above 3 typically indicates non-

incremental behavior. A score between 2 and 3 consisted of many

łclose-callsž, as labelled by the reviewers, so it was harder to make

a decision on these. Table 2 summarizes these classifications.

We have posted our metric publicly as a Python package called

measure-incremental-development so researchers can apply the

MID to their own sequences of snapshots [19].

Table 2: Interpretation of values outputted by MID

Score Label

0 - 2 Likely incremental

2 - 2.5 Somewhat incremental

2.5 - 3 Somewhat non-incremental

3+ Likely non-incremental

6 EVALUATION

6.1 Theoretical Evaluation

To evaluate our understanding of incremental development against

existing interpretations of it, we examined prior work that discusses

the history, purpose, and goal of incremental development. In the

influential work łIterative and Incremental Development: A Brief

Historyž by Larman and Basili [15], the authors discuss the shift

away from the łwaterfallž method, which involves fully developing

the project code before testing the entirety of the program. Among

the primary reasons for adopting incremental development in the

1960s was that it "leads to a more thorough system shakedown" and

"avoids implementer ... discouragement" [9, 15]. Similarly, 1970’s

software-engineering thought leader Harlan Mills further espoused

incremental development, noting that the waterfall method may re-

sult in a program that łexceeds our human intellectual capabilities

for management and controlž [15, 17]. Although these philosophies

were written about industry-level programming projects, the idea

that incremental development is used to reduce programmer strug-

gle and to keep a program in a manageable state is applicable to

student programming in CS courses.

Figures 1 and 2 show how our measurement of incremental devel-

opment aligns with this understanding of incremental development.

The sequence in Figure 1, according to our threshold, is considered

non-incremental behavior. The student adds 70% of their code in

one step and spends 9 adjustment steps fixing the errors, which is

precisely the type of behavior we want to detect as non-incremental.

Although the two other forward progress steps are effective, the

majority of the program was written non-incrementally, resulting

in the high score (MID = 5.55).

On the other hand, the sequence in Figure 2 is labelled as incre-

mental. The student adds code in manageable chunks, indicated by

the limited adjustment steps after each forward progress step. Al-

though the student experienced greater struggle during the fourth

forward progress step, this was not an especially large chunk of

code compared to other chunks, resulting in a low score (MID =

1.63). Interestingly, the sequences in Figures 1 and 2 have 10 total

adjustment steps. However, the student in Figure 1 used nearly all

the adjustments on the large code addition, so they were penalized

much more compared to the student in Figure 2 who used fewer

adjustments across smaller-sized additions.

6.2 Quantitative Evaluation

We evaluated our metric against human raters to check if our metric

agrees with a manual rating of a sequence of snapshots.

Two human reviewers evaluated 20 pairs of randomly-selected

and randomly-paired sequences. On average, each reviewed se-

quence contained 97 snapshots. The reviewers evaluated a pair
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MID Label

Not

Incremental Incremental Total

Human Incremental 12 2 14

Label Not

Incremental 1 5 6

Total 13 7 20

Table 3: Comparison ofMID’s labels to human reviewer labels

by looking at every snapshot in both sequences to decide which

sequence was more incremental. The reviewers kept note of the

łclose-calls,ž which indicated tough decisions for the reviewers. The

reviewers agreed on 16 of the 20 pairs. The Cohen’s kappa value

here was 0.56 (moderate agreement) [16]. The reviewers then delib-

erated to reach a consensus on the 4 pairs with disagreement. We

compared our final list of human choices to our metric’s choices on

the same 20 pairs and found that the metric agreed with humans on

16 (80%) of the 20 pairs. Among the four misclassified pairs, three

were marked as close-calls, indicating that the reviewers also had a

hard time classifying these pairs.

We also evaluated whether the threshold of 2.5 was an accu-

rate cutoff to separate incremental and non-incremental sessions.

Two reviewers labeled a new set of 20 sequences as incremental

or not, marking tough decisions as close-calls and resolving any

disagreements through deliberation. Our reviewers agreed on 17

of the 20 labels, resulting in a Cohen’s kappa of 0.66 (substantial

agreement) [16]. We then applied the MID to the 20 sequences,

classifying a sequence as incremental if the metric returned a score

below 2.5. The metric agreed with our reviewers on 17 (85%) of the

20 sequences, displayed in Table 3. Of the 3 incorrect classifications,

2 of them were classified as close calls and had scores of 2.8 and 3.7.

The other incorrect classification was one that reviewers marked

as non-incremental, but received a score of 1.3.

7 DISCUSSION

The high accuracy between the manual assessment of incremental

development and the automated assessment from the MID show

promise that our metric can accurately determine the level of in-

cremental development used in a programming session.

Advantages Compared to Prior Work: Since we evaluated the

MID on its ability to replicate manual evaluations of incrementality,

our work separates the students’ development practices from their

outcomes. Previous metrics [3, 6, 13, 14, 25] discussed in Section 2

extract features from a development process to predict outcomes

such as submitting on time or passing all test cases. While these

metrics are certainly valuable for predicting assignment grades

and informing interventions, our metric serves as a way to capture

whether the coding process itself is incremental or not.

The MID also offers a unique perspective on incremental devel-

opment and problem decomposition. Unlike previous approaches

such as Charitsis’ NLP approach [7], our metric examines each stu-

dent in the context of their own capabilities, meaning that the ideal

size of the decomposed problems varies from student to student.

Further, the MID can make an assessment on relatively easy-to-

collect data. The only input is a sequence of snapshots at run-time,

which many modern or online IDEs, such as EdStem, can collect;

other metrics require data that is more difficult to collect such as

compiler output or wall-clock time [3, 6, 14], or they depend on

features of a specific IDE [5, 11, 12].

Threats to Validity: A core component of incremental develop-

ment involves the programmer planning out the stages of their

development process. Without knowing the programmer’s devel-

opment plan, we have to make some assumptions about the pro-

grammer’s intent that threaten our metric’s validity.

One assumption of this metric is that a programmer’s newly

added code corresponds to an attempt at adding behavior. However,

this may not be fully representative of the programmer’s thought

process. For example, a student could make a one-line addition of

code with the intent to debug an error. We would count this as

forward progress when it truly represents an adjustment. However,

since we weight forward progress steps based on their size to penal-

ize large changes, we proceed with this assumption. Nonetheless,

alternate solutions that capture this intent may exist and exploring

these approaches is certainly an avenue of future work.

We also assume that we can match adjustments to forward

progress steps based on locality. We do this because we noticed that

programmers may go back to previous additions to make delayed

edits, so associating these adjustments with only the most recent

forward progress step did not seem to reflect the programmer’s

intent. However, this assumption does not take into account that

adding new code may require the user to edit preexisting code to

achieve compatibility. In this case, it is possible that the metric

performs poorly on longer and more complex problems.

Potential Applications: Our metric can be immediately used

to determine the level of incremental development used by CS1

students. The results of such a study can help researchers identify

ways to improve student development processes.

Our metric also enables real-time assessment through an IDE-

plugin that automatically computes the MID as students program.

With such a tool, educators can promote incremental development

among students by monitoring students’ programming processes

and intervening as necessary. Further, the MID supports future

research endeavors by allowing instructors to assess the effect of

pedagogical strategies on students’ programming behaviors.

8 CONCLUSION

In this work, we identified common behaviors of incremental and

non-incremental development among CS1 students. We found ways

to automatically detect these behaviors in a sequence of coding

snapshots at compilation, culminating into a formal metric ś the

Measure of Incremental Development (MID). The MID aligns with

prior work that frames incremental development as a process that

keeps a program in a manageable state and automatically evaluates

students’ development with over 80% accuracy. Therefore, our work

makes an important contribution to the computing education com-

munity: an accurate and automated metric to measure a student’s

adherence to incremental development.
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