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To explore the connection between brain and behavior in engineering design, this
study measured the change in neurocognition of engineering students while they
developed concept maps. Concept maps help designers organize complex ideas
by illustrating components and relationships. Student concept maps were graded
using a pre-established scoring method and compared to their neurocognitive acti-
vation. Results show significant correlations between performance and neurocog-
nition. Concept map scores were positively correlated with activation in students’
prefrontal cortex. A prominent sub-region was the right dorsolateral prefrontal cortex
(DLPFC), which is generally associated with divergent thinking and cognitive flex-
ibility. Student scores were negatively correlated with measures of brain network
density. The findings suggest a possible neurocognitive mechanism for better perfor-
mance. More research is needed to connect brain activation to the cognitive activi-
ties that occur when designing but these results provide new evidence for the brain
functions that support the development of complex ideas during design.

Introduction

A holistic design approach requires designers to develop a systems point of view
[1, 2]. This means understanding the complex and dynamic relationships between
components of the problem [2, 3]. Too often, engineers tend to isolate elements of
a complex problem and design to optimize these individual elements [4, 5]. Design
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methods and tools that help open designers to see the entire system, rather than the
individual pieces, holds the potential to improve their design outcomes.

Concept mapping is one approach to help designers think holistically about
components of systems and their relationships. It can improve the engineering design
process by helping designers connect new concepts with existing information [6].
Concept mapping works by organizing and graphically representing components and
their relationships [7]. Concept maps begin with a main idea and then branch out
to show how that main idea is related to other ideas, drawing connections between
concepts at various hierarchical levels and from different categories.

Concept maps are also used as an educational tool because they help students learn
complex systems [8]. For example, when teaching students about sustainability [9,
10]. Concept mapping coincides with constructivist learning processes. Learners can
attain new knowledge by integrating new ideas or concepts with existing ideas that
are illustrated within a concept map [6]. However, how connections between ideas are
formed in the brain through concept mapping is not well understood. The amount of
cognitive effort used for concept mapping certainly plays a role but where this effort
occurs in the brain and how brain regions work together to create new concepts and
connections is not well known. Better understanding designers’ neurocognition when
they are constructing concept maps and how this correlates with their performance
can provide new indicators for design.

The study presented in this paper measured designers’ neurocognition when they
developed concept maps, their concept map scores, and the correlation between these
two measures. Multiple methods for scoring concept maps are often used to assess
designers’ ability to think in systems [10, 11]. The most common is counting the
number of concepts, cross-links, and the level of hierarchies represented on the maps
[1]. Using this technique provides three measures to compare with designers’ brain
activation. A neuroimaging technique called functional near-infrared spectroscopy
was used to capture brain activation when students were drawing a concept map for
an engineering design problem. This study provides the correlations between these
components of concept maps and their brain activation.

Background

Concept mapping provides an approach to visualize complexities and the interactions
between concepts early in the design process [12]. The current understanding of how
concept mapping improves design is it creates multiple retrieval paths in the brain
for accessing new concepts and information [13]. However, this understanding is
based predominantly on observational studies measuring design cognition through
think aloud protocols, interviews, and the evaluation of products to infer changes in
designers’ brains [14, 15]. A limitation of these traditional approaches is the lack of
objective measurements of the underlying mechanism of neurocognition.

Methods from neuroscience offer an approach to measure neurocognitive activity
during engineering design [16]. This additional layer of information can help
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explain how tools and techniques, like concept mapping, create novel connections
in designers’ brains and how these connections correspond with designers gener-
ating new concepts. The neurocognitive function that supports a designers’ ability
to recognize complex relationships and how they use this to create new knowledge
is under explored.

Prior literature suggests that concept mapping elicits greater activation in the
prefrontal cortex, the region of the brain generally associated with cognitive functions
that are involved with designing [11]. What is less understood is how this activation is
related to performance. How does ability to recognize complex relationships correlate
with cognitive effort? If concept mapping opens new retrieval paths in the brain, is
this expressed as more connected brain regions? Establishing a connection between
designers’ brains and their minds can provide the foundation for future tools and new
measures of design effectiveness. The research presented in this paper contributes to
this aim by characterizing the neurocognition of designers while concept mapping
and how changes in their brain are related to outcomes. The following section outlines
the multiple techniques that are often used to observe designers’ brain behavior.

Using fNIRS to Explore Neurocognitive Activation
and Brain Network

Multiple techniques are available to measure neurocognition, such as functional
magnetic resonance imaging (fMRI) [17], electro-encephalography (EEG) [18], and
functional near-infrared spectroscopy (fNIRS) [19]. Each technique has its pros and
cons. fMRI provides excellent spatial resolution through whole head scanning, but
requires participants to lie down in a closed environment without much mobility [20].
EEG has the best temporal resolution, but it is harder to pinpoint the brain region
where electrical activity occurs [21]. fNIRS offers relatively good resolution in both
space and time, but it is usually limited to measuring activations in the human cortex
rather than the whole brain [22].

Considering the nature of engineering design and concept mapping, fNIRS was
used in this study because it provided participants a more realistic design environment
than fMRI with relatively good spatial resolution of participants’ prefrontal cortex.
fNIRS measures the change of oxygenated (oxy-Hb) and deoxygenated hemoglobin
(deoxy-Hb), also called blood oxygenation level dependent (BOLD) response. BOLD
response is a proxy for brain activity [23]. An increase in oxy-Hb typically mirrors
more neuronal activity and implies the allocation of resources and nutrients by the
cerebrovascular system [24].

The prefrontal cortex (PFC) was the brain region of interest in this study. The PFC
is the neural basis of working memory and higher-order cognitive processing, such as
sustained attention, reasoning, and evaluations [25]. Based on anatomy and function,
the PFC is divided into several sub-regions, including the dorsolateral PFC (DLPFC),
ventrolateral PFC (VLPFC), medial PFC (mPFC) and orbitofrontal cortex (OFC),
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Fig. 1 Prefrontal cortex and its sub-regions [28]

shown in Fig. 1. These sub-regions contribute to different aspects of the cognitive
processing in the PFC, and asymmetric cognitive functions are usually identified in
the two brain hemispheres [26, 27].

There are several types of analysis used to understand neurocognitive data
in neuroimaging studies [29], such as activation analysis (change of activation
level) [30], network analysis (functional connectivity among different regions) [28],
and interpersonal analysis (activation synchronization between two collaborating
subjects) [31]. Activation analysis and network analysis have been used in prior
design neurocognitive studies to describe changes in the brain of individual designers
[28, 29]. Activation analysis usually compares the activation variables extracted
from the BOLD response, such as mean, the area under the curve, kurtosis, time to
peak, slope, or the beta coefficients from the general linear models between different
subjects or under different conditions [29]. Network analysis calculates the func-
tional correlation and develops the network among the brain regions of interest [29].
Numerous network features, such as network density, clustering coefficient, and effi-
ciency, can be calculated using graph theory to characterize the neural coordination
between different brain regions [32].

Brain networks provide an approach to explore functional connectivity and infor-
mation processing in the brain [33]. Central regions, or nodes, in the brain may facil-
itate functional interaction and act as a control for information flow as it interacts
with many other brain regions [34]. Specific regions or nodes maybe be important,
what is not known is whether the size of the functionally connected regions in the
brain (i.e., density, clustering coefficient) is correlated to performance.

Brain networks have been used to explore underlying neural correlates of creativity
[35]. Yet, little is known about brain functional connectivity during concept genera-
tion. Design neurocognition has focused primarily on brain activation [36, 37] more
than functional connectivity. The aim in this study was to observe both brain activa-
tion and functional connectivity and measure how these are correlated with designers’
performance when creating concept maps.
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Research Questions

The aim of the research presented in this paper was to understand how neurocognition
is related to performance when concept mapping. The specific research questions are:

(1) What is the relationship between concept mapping performance and neurocog-
nition?

(2) What is the relationship between concept mapping performance and neuro-
network coordination?

Methods

Experiment Design

The study was part of a larger project that explored the effects of concept mapping
on engineering concept generation. Here we report on the correlation between the
concept map scores and neurocognition when developing their concept maps. The
Institutional Review Board at Virginia Tech approved the project. Participants were
recruited from engineering courses at Virginia Tech. A total of 33 engineering
graduate and undergraduate students completed the concept mapping experiment.

Prior to the experiment, engineering students were briefed and trained to use
concept maps. This pre-experiment training included a 4-min video introducing
concept maps and drawing a concept map to learn and practice how to do it.
Engineering students were then outfitted with the fNIRS cap, as shown in Fig. 2a
(Shimadzu LIGHTNIRS model). Change in oxygenated hemoglobin (oxy-Hb), a
proxy for neurocognitive activity [23], was measured using this fNIRS cap. Figure 2b
illustrates the placement of light sensors and channels according to the international
10-20 placement system. The 22 channels captured the change in oxy-Hb in the
prefrontal cortex (PFC), covering multiple sub-regions in the PFC.

Fig. 2 a fNIRS equipment, and b prefrontal cortex channel placement
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Once the fNIRS instrument began recording change in oxy-Hb, students were
instructed to complete a word tracing task prior to concept mapping. The change in
oxy-Hb while word tracing was later used as a baseline for activation in their PFC
and subtracted from the change in oxy-Hb when developing their concept maps.
Participants were then instructed to create a concept map. The instructions were to
Create a concept map illustrating all of the mobility systems on campus. The average
time spent on this task is 10 min, but you have as much time as you need to do it. Hit the
space bar when you are done reading this prompt and are ready to begin developing
your concept map.

Participants were given as much time as they needed to create their concept maps.
PsycoPy was used in the experiment to provide engineering students with timed
instructions [38]. The average time length for concept mapping lasted 8.48 min (SD
= 4.38 min).

Data Analysis

Each hand-drawn concept map was digitized and all concepts and relationships were
coded using the tool CMAP-PARSE [39]. This is a frequently used and previously
developed method for scoring concept maps. A limitation of this approach is its
quantitative focus. It works by counting the number of concepts (NC), the level of
highest hierarchies (HH), and the number of crosslinks (NCL) between different
categories [10]. A concept map score (CMS) was determined using Eq. (1). More
details about the scoring method can be found in [10]. Each of the variables (NC,
HH, NCL, and CMS) were used as an indicator of concept mapping performance.
The higher the CMS score the better the performance.

CMS = NC + 5 % HH + 10 % NCL (1)

To eliminate noise and motion artifacts, fNIRS’s raw data were processed using a
bandpass filter (0.01-0.1 Hz, third-order Butterworth filter) and independent compo-
nent analysis with a coefficient of spatial uniformity of 0.5. The parameters in these
steps were selected based on prior research [40, 41]. Filtering was conducted using
Shimadzu’s fNIRS software. Two out of 33 participants were removed due to bad
signals. Baseline correction and z transformation were applied to normalize the data
between subjects.

Neurocognitive data were analyzed using two approaches: activation analysis and
network analysis. Both are standard approaches to understanding design neurocog-
nition [28, 29]. The activation analysis focused on the change of oxy-Hb in different
brain regions when concept mapping. The positive area under the oxy-Hb curve
(AUC) when concept mapping (illustrated as the colored area in Fig. 3) was used
as a proxy for cognitive load since AUC takes both activation level and time into
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account. Prior research has also demonstrated that AUC provides a high level of accu-
racy when classifying the level of cognitive load [42, 43]. The AUC was calculated
for each subject when they were developing their concept maps.

Network analysis was used to calculate brain functional connectivity. Pairwise
activation (i.e., oxy-Hb) synchronization among the 22 channels for each participant
was calculated and represented in a Pearson correlation matrix. A threshold (0.75
was used in this study) was applied to transform the correlation matrix into a binary
matrix. Channel pairs with the value “1” in the matrix suggest the high functional
connectivity between the two brain regions. The connectivity is represented as an
edge linking the two channels in the network figure. Figure 4 presents the process
of developing a brain network from the oxy-Hb response. More details on brain
network calculations can be found in [28, 32]. Then network features including
density, clustering coefficient, and efficiency, were calculated for each participant.

To address Research Question (1), Pearson correlation analysis was performed
using the 31 participants that had adequate signal data comparing their concept
map performance scores (including each of the concept map variables NC, HH,
NCL, CMS) and their neurocognitive activation (AUC) in their prefrontal cortex. To
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Fig. 3 Anexample of the positive area under the curve (AUC), where the first vertical lines represent
a change in stimuli and the second vertical line represents the end of the task
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Fig. 4 The process of creating brain network graphs, which is a proxy for functional coordination
in the prefrontal cortex



206 M. Hu et al.

address Research Question (2), Pearson correlation analysis was performed using
the 31 participants’ concept map performance scores (including the concept map
variables NC, HH, NCL, CMS) and network features (density, clustering coefficient,
efficiency).

Results

The mean and standard deviation of the number of concepts (NC), highest hierarchy
(HH), number of crosslinks (NCL), and concept map scores (CMS) averaged from
participants are shown in Table 1. Here, the average concept map score is 89 with 21
concepts, 4 hierarchies, and 4 crosslinks.

Examples from two participants are used to visualize the concept map, activation,
and brain network coordination. One of the example participants had a relatively
lower CMS (39) and the other had a relatively higher CMS (131) compared to the
mean of 89. These participants’ concept maps are illustrated in Fig. 5.

Average activation area under the curve (AUC) in the prefrontal cortex (PFC) and
the heat map illustrating AUC for both participants is illustrated in Fig. 6. Their brain
network features, and brain network graphs are included in Table 4.

The participants with higher performance in concept mapping (i.e., a higher CMS)
showed higher cognitive activation (i.e., a higher AUC value). The example partic-
ipant, who had the high CMS of 131, elicited an AUC value of 2.33. The example
participant, who had the low CMS of 39, elicited an AUC value of 1.88. These
results were common across participants and suggest a potential relationship between
concept mapping performance and neurocognitive activation represented by AUC.

While participants with higher performance in concept mapping (i.e., a higher
CMS) showed higher cognitive activation (i.e., a higher AUC value), they also
showed a sparser brain network with fewer complexities (i.e., lower values in network
features) compared to participants with lower performance in concept mapping. The
two example participants are shown in Table 2 and their results are similar to the
remaining participants. These results suggest another potential relationship between
concept mapping performance and brain network features. The better the concept
map performance, the higher the AUC, but sparser the brain network.

Table 1 Students’ average concept mapping performance scores

NC HH NCL CMS
Mean 21.3 4.6 4.5 89.0
Standard deviation 8.72 293 5.44 63.40
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Fig. 5 Examples of concept maps with a a low Concept Map Score (CMS) of 39 and b a high
Concept Map Score (CMS) of 131
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Fig. 6 Example of participants change in AUC: a An AUC score of 1.88 for a participant with a
low CMS and b an AUC of 2.33 for a participant with a high CMS

Table 2 Network features for two participants when developing concept maps

Network Participant with a lower CMS Participant with a higher CMS
Density 0.75 0.29

Clust. Coef. |0.87 0.64

Efficiency 0.88 0.55

Graph
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Table 3 Pearson correlation coefficients between brain activation and concept mapping perfor-
mance (NC is the number of concepts, HH is the highest hierarchy, NCL is the number of crosslinks,
and CMS is the concept maps score; Note * denotes p < 0.05, ** denotes p < 0.001)

Brain regions NC HH NCL CMS
PFC 0.391* 0.035 0.685%* 0.650%*
Right PFC 0.427* 0.085 0.738%%* 0.712%%*
Left PFC 0.353 0.024 0.630%* 0.595%%*
Right DLPFC 0.392%* 0.087 0.756%** 0.723%%*
Left DLPFC 0.339 0.077 0.651%%* 0.624%**
Right OFC 0.565%%* 0.130 0.463* 0.506*
Left OFC 0.453* —0.011 0.520%* 0.507*
Medial PFC 0.348 0.121 0.561%* 0.558*
Right VLPFC 0.433%* 0.089 0.695%%* 0.677%*
Left VLPFC 0.237 0.036 0.468%** 0.443%*

Students’ Neurocognitive Activation Is Positively Correlated
with Their Concept Mapping Performance

Pearson correlation analysis was conducted to better test the relationship between
concept mapping performance, cognitive activation, and network features. Concept
map performance was measured by the number of concepts (NC), highest hierarchy
(HH), number of crosslinks (NCL), and concept maps score (CMS). Each of the
variables was compared to sub-regions within the PFC. NC had a significant posi-
tive relationship with brain activation across the PFC, specifically, the right PFC,
the right dorsolateral PFC (DLPFC), the right orbitofrontal cortex (OFC), the left
OFC, and the right ventrolateral PFC (VLPFC). NCL was positively correlated with
brain activation in the PFC and all sub-regions. Considering NC weighs most in the
CMS, CMS shows a similar positive correlation with brain activation in the PFC and
other significant sub-regions. The HH shows no significant correlation with brain
activation. The Pearson correlation coefficients are included in Table 3. The most
significant correlation between CMS and AUC was in the right DLPFC. These results
are also illustrated in Fig. 7a.

Students’ Brain Network Features Are Negatively Correlated
with Their Concept Mapping Performance

Significant negative correlations were identified between concept mapping perfor-
mance and the multiple network features among the 31 participants. As Table 4
suggests, correlations between clustering coefficients with HH, NCL, and CMS are
significant but negative. Other correlations between network features and concept
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Fig. 7 Significant positive correlation between a CMS and brain activation and b significant
negative correlation between CMS and clustering coefficient

Table 4 Pearson correlation coefficients between network features and concept mapping perfor-
mance

Network features NC HH NCL CMS
Density —0.231 —0.320 —0.289 —0.354
Clustering coefficient —0.128 —0.404* —0.370* —0.425%
Efficiency —0.218 —0.327 —0.235 —0.307

Note * p <0.05; p** < 0.001

mapping performance are also negative but not statistically significant. The most
significant correlation between the clustering coefficient and CMS is visualized in
Fig. 7b.

Discussion

Neurocognitive activation and the functional network of students’ prefrontal cortex
(PFC) were different for students with higher and lower concept map scores. Students
with higher concept map scores elicited significantly higher overall cognitive effort
(i.e., brain activation measured as the positive area under the oxy-Hb curve, or
AUQC) in their PFC. The PFC plays a critical role in sustaining focused attention and
performing executive functions [25]. Higher AUC in the PFC among high concept
map achievers is consistent with prior studies from other fields that also measured
behavioral performance or task completion [44]. However, activation in the PFC
may not always be synonymous with performance. Rather, it may be a better proxy
for mental effort [44]. Novices, for example, tend to exert more mental effort for a
similar level of task completion as an expert [45].
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Designing is more complex than just task completion and this may have an
effect on patterns of neurocognitive activation. For instance, novice versus expert
designers tend to approach design problems differently [46] and this may also
be reflected in brain activation. For example, when brainstorming, first-year engi-
neering students elicited higher brain activation in a region generally associated with
divergent thinking whereas senior engineering students, with more experience brain-
storming, recruited higher activation in their brains in a region generally associated
with uncertainty processing and self-reflection [30].

The most significant differences between students with high and low concept
map performance was in their right dorsolateral PFC (DLPFC) and medial PFC. A
significant positive correlation was found between the AUC in these sub-regions and
the number of concepts and crosslinks that the student designers developed. The
right DLPFC is often associated with divergent thinking and cognitive flexibility
[47]. This finding echoes those of a prior neurocognitive study that have also found
concept mapping elicited higher brain activation in the DLPFC [11]. The medial
PFC is often involved in making associations [48]. This cognitive function provides a
possible explanation for the positive correlation between AUC in the medial PFC and
the number of crosslinks, since crosslinks represent associations between different
categories of concepts.

While the increased activation in the right DLPFC and medial PFC was positively
correlated with concept map performance, network density, clustering coefficient,
and efficiency was negatively correlated with concept mapping performance. This
might suggest that new retrieval paths for accessing concepts and making associations
between these concepts may not be reflected in the complexity of the brain network
(i.e., density and clustering coefficient). Less global coordination across the PFC and
greater localized activation within specific sub-regions like the DLPFC and medial
PFC may lead to better design performance [11].

These results also present new questions about what happens in designers’ brains
and how this may affect their designs. For instance, how might these results differ
with expert designers? The student designers in this study were not experts in systems
thinking, which likely contributed to the positive correlation between cognitive acti-
vation and performance. More variability may occur among design experts who may
have a higher degree of systems thinking ability than the students or more experi-
ence and knowledge to make associations between concepts. Another question is
how these student designers’ brains may change as their ability to create concept
maps improves. A possible explanation is the activation in their right DLPFC, and
medial PFC, increase more quickly as they become familiar with this type of design
activity and train their brain to perform well on the task. Future research can begin
to test this assumption and explore how other tools and techniques shape both brain
and designer behavior.

There are several limitations that need mentioning. This study focused on previ-
ously established scoring methods to assign concept maps a score. A preliminary
analysis of the contents and quality can be found in [49]. The study presented in
this paper also only measured the neurocognitive activity in the PFC. This region of
interest was selected because of its importance in engineering design and concept
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generation [28]. Other brain regions are required for this type of cognitive task
and maybe equally important for engineering design (e.g., parietal cortex) [11, 50].
However, whole brain scans come with a trade-off in portability and realism in repli-
cating engineering design in an experiment. The sample size of 31 subjects produced
good statistical power and met the average sample size of 28 subjects suggested in a
systematic review [29], but a future study may consider replicating the experiments
with a larger sample size.

Conclusion

Significant brain-behavior correlations were observed when student designers were
using concept maps during engineering design. Concept mapping performance,
measured using the traditional scoring method, is positively correlated with cogni-
tive activation in the prefrontal cortex (PFC), especially the right dorsolateral PFC.
This region is generally associated with divergent thinking and cognitive flexibility.
In contrast, concept mapping performance was negatively correlated with functional
connectivity across the prefrontal cortex. These opposed relationships might suggest
that concept mapping relies more on activation in a specific region, specifically the
right DLPFC, rather than coordination between PFC sub-regions.

Understanding how concept mapping performance correlates with neurocogni-
tion can begin to help inform pedagogy and design practice for eliciting the under-
lying neurocognitive patterns that help promote performance. More qualitative-
quantitative analysis is also needed to expand how performance of concept maps
is being measured. The approach used in this study to measure performance relied
on the concept map scores, which were derived using the number of concepts, the
level of highest hierarchies, and the number of crosslinks between different cate-
gories. This approach did not adequately account for the novelty or quality of the
ideas. Future research can consider these additional measures and how they may
relate to patterns of neurocognition. In addition, these findings may differ among
expert designers compared to novices.

The research reported here presents one aspect of the development of the neural
underpinnings of design activity. It forms part of the triangulation for measuring
design output (the design), design cognition (the mind) and design neurocognition
(the brain). The findings from this research open new questions about how brain
behavior and design behavior are related, how this may vary across designers, and
what this means for design education. Evaluating a design remains fraught with
subjectivity, where the criteria for measurement are not yet fully agreed upon,
let alone how to measure those criteria. Measuring design cognition is better devel-
oped with several approaches whose results potentially map onto each other. It still
contains a mixture of subjective and objective measurements but measuring brain
activations during design activities provides an objective result that is independent
of the measurer. There is still considerable research needed to connect brain acti-
vations and their resultant networks to the cognitive activities that occur during
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designing. Methods for analyzing brain activity measurements themselves require
further development if they are to capture the higher order cognition involved in
designing.
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