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1. Introduction in a dock, users can rent it and return it at any other sta-

As bike-sharing systems become an integral part of the ~ tion with an open dock. However, system imbalance
urban landscape, novel lines of research seek to model ~ often causes some stations to have only empty (or open)
and optimize their operations. In many systems, such ~ docks and others to have only full docks (ie., ones
as New York City’s Citi Bike, users can rent and return ~filled with bikes). In the former case, users need to find
bikes at any station within the city. This flexibility makes ~ alternate modes of transportation, whereas in the latter
the system attractive for commuters and tourists alike. ~ they might not be able to end their trip at the intended
From an operational point of view, however, this flexibil- ~ destination. In many bike-sharing systems, this has
ity leads to imbalances when demand is asymmetric, asis ~ been found to be a leading cause of customer dissatis-
commonly the case. The main contributions of this paper ~ faction (Capital Bikeshare 2014).
are to identify key questions in the design of operationally To meet demand in the face of asymmetric traffic,
efficient bike-sharing systems, to develop a polynomial- ~ bike-sharing system operators seek to rebalance the
time algorithm for the associated discrete optimization  system by moving bikes from locations with too few
problems, to apply this algorithm on real usage data, and ~ open docks to locations with too few bikes. To facili-
to investigate the effect this optimization has in practice. tate these operations, a burst of recent research has
The largest bike-sharing systems in the United States  investigated models and algorithms to increase their
are dock based, meaning that they consist of stations,  efficiency and increase customer satisfaction. Although
spread across a city, each of which has a number of  similar in spirit to some of the literature on rebalancing,
docks in which bikes can be locked. If a bike is present ~ in this work we use a different control to increase
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customer satisfaction. Specifically, we answer the ques-
tion how should bike-sharing systems allocate dock capacity
to stations within the system to minimize the number of dis-
satisfied customers?

A superficial analysis of usage data reveals that
there may be potential in reallocating capacity: some
stations have spare capacity that users never or rarely
use (see Figure EC.1 in Online Appendix EC.1), whereas
other stations have all of their capacity used on most
days. We give a more theoretically grounded answer to
this question by developing two optimization models,
both based on the underlying metric that system per-
formance is captured by the expected number of cus-
tomers that do not receive service. In the first model, we
focus on planning one day, say 6:00 a.m. to midnight,
where for each station we determine its allocation of
bikes and docks; this framework assumes that there is
sufficient rebalancing capacity overnight to restore the
desired bike allocation by 6:00 a.m. the next morning.
As in practice this turns out to be quite difficult, the sec-
ond model considers a setup induced by a long-run
average that assumes that no rebalancing happens at all;
in a sense, this exhibits the opposite regime. The theory
developed in this paper enabled extensive computa-
tional experiments on real data sets; through these we
found that there are dock allocations that simultane-
ously perform well with respect to both models, yield-
ing improvements to both (in comparison with the cur-
rent allocation) of up to 20%. These results were
leveraged by system operators in Chicago and New
York City and led to 100 (200) docks being moved in
New York City (Chicago). Convinced by the impact
analysis in these cities, operators of other major US
bike-sharing systems, including Blue Bikes in Boston
and Capital Bikeshare in Washington, DC, have run
our analysis on their data to capture the potential of
reallocated dock capacity as well.

1.1. Our Contribution

Raviv and Kolka (2013) defined a user dissatisfaction
function (UDF) that measures the expected number of
out-of-stock events at an individual bike-sharing sta-
tion. To do so, they define a stochastic process on the
possible number of bikes (between zero and the
capacity of the station). The stochastic process observes
attempted rentals and returns of bikes over time; this
process is assumed to be exogenously given at each sta-
tion and independent of our decisions/the availability
of bikes and docks in other stations. Each arrival trig-
gers a change in the state, either decreasing (rental) or
increasing (return) the number of available bikes by
one. When the number of bikes is zero and a rental is
attempted, or when it equals the station capacity and a
return is attempted, a customer experiences an out-of-
stock event. Various follow-up papers (Parikh and
Ukkusuri 2015, O'Mahony 2015, Schuijbroek et al. 2017)

have suggested different ways to compute the expected
number of out-of-stock events c;(d;, b;) that occur over
the course of one day at each station i for a given alloca-
tion of b; bikes and d; empty docks (i.e., d; + b; docks in
total) at station i at the start of the day.

We use the same UDFs to model the question of
how to allocate dock capacity within the system.
Given ¢(-,-) Vi, our goal is to find an allocation of
bikes and docks in the system that minimizes the total
expected number of out-of-stock events within a sys-
tem of n stations, that is, X1, ci(d;, b;). Because the
number of bikes and docks is limited, we need to
accommodate a budget constraint B on the number of
bikes in the system and another on the number of
docks D + B in the system. Other constraints are often
important, such as lower and upper bounds on the
capacity for a particular station; furthermore, through
our collaboration with Citi Bike in NYC it also became
apparent that operational constraints limit the number
of docks moved from the current system configura-
tion. Thus, we aim to minimize the objective among
solutions that require at most some number of docks
moved. Notice that D and B could either denote the
inventory that is currently present in the system (in
which case the question is how to reallocate it) or
include new inventory (in which case the question is
how to augment the current system design).

After formally defining this model and discussing
its underlying assumptions in Section 2, we design in
Section 3 a discrete gradient-descent algorithm that
provably solves the minimization problem with O(n +
B+ D) oracle calls to evaluate cost functions and an
(in practice, vastly dominated) overhead of O((n + B +
D)log(n)) elementary list operations. In Section 4, we
show that scaling techniques, together with a subtle
extension of the analysis of the gradient-descent algo-
rithm, improve the running-time to O(nlog(B+ D))
oracle calls and O(log(B + D)(nlog(n))) elementary list
operations for the setting without operational con-
straints; in Online Appendix EC.5 we include the
proofs thereof and explanations of how operational
constraints can be handled when aiming for running-
time logarithmic in B + D. In Online Appendix EC.6,
we include a computational study to complement this
theoretical analysis of the efficiency of our algorithms.

The primary motivation of this analysis is to investi-
gate whether the number of out-of-stock events in
bike-sharing systems can be significantly reduced by a
data-driven approach. In Section 5, we apply the algo-
rithms to data sets from Boston, New York City, and
Chicago to evaluate the impact on out-of-stock events.
One shortcoming of that optimization problem is its
assumption that we can perfectly restore the system to
the desired initial bike allocation overnight. Through
our collaboration with the operators of systems across
the country, it has become evident that current
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rebalancing efforts overnight are vastly insufficient to
realize such an optimal (or even near-optimal) alloca-
tion of bikes for the current allocation of docks. Thus,
we consider in Section 5.1 the opposite regime, in which
no rebalancing occurs at all. To model this, we define
an extension of the cost function under a long-run aver-
age regime. In this regime, the assumed allocation of
bikes at each station is a function of only the number of
docks and the estimated demand at that station. Inter-
estingly, our empirical results reveal that operators of
bike-sharing systems can have their cake and eat it too:
optimizing dock allocations for one of the objectives
(optimally rebalanced or long-run average) yields most
of the obtainable improvement for the other.

Based on our recommendations the operators of
Citi Bike in New York City agreed with the city’s
Department of Transportation to move 34 docks
between six stations as part of a pilot program. We
use these moves to evaluate the impact of reallocated
capacity. Specifically, in Section 6, we prove that
observing rentals and returns after capacity has been
added provides a natural way to estimate the reduc-
tion in out-of-stock events (because of dock capacity
added) that can be computed in a very simple man-
ner. We apply this approach to the stations that were
part of the pilot to derive estimates for the realized
reduction in the number of stockouts at those stations.

1.2. Related Work
A recent line of work, including variations by Raviv
et al. (2013), Forma et al. (2015), Kaspi et al. (2017), Ho
and Szeto (2014), and Freund et al. (2020), considered
static rebalancing problems, in which a capacitated
truck (or a fleet of trucks) is routed over a limited time
horizon. The truck may pick up and drop off bikes at
each station to minimize the expected number of out-
of-stock events that occur after the completion of the
route. These are evaluated by the same objective func-
tion of Raviv and Kolka (2013) that we consider as well.
In contrast to this line of work, O'Mahony (2015)
addressed the question of allocating both docks and
bikes; he uses the UDFs (defined over a single interval
with constant rental and return rates) to design a mixed
integer program over the possible allocations of bikes
and docks. Our work extends on this by providing a
fast algorithm for generalizations of that same problem
and extensions thereof. The optimal allocation of bikes
has also been studied by Jian and Henderson (2015),
Datner et al. (2019), and Jian et al. (2016), with the latter
also considering the allocation of docks (in fact, the
idea behind the algorithm considered by Jian et al.
(2016) is based on an early draft of this paper). They
each develop frameworks based on ideas from simula-
tion optimization; whereas they also treat demand for
bikes as being exogenous, their framework captures the
downstream effects of changes in supply upstream.

Jian et al. (2016) found that these effects are mostly cap-
tured by decensoring piecewise-constant demand esti-
mates (see Section 2.1).

Orthogonal approaches to the question of where to
allocate docks have been taken by Kabra et al. (2020)
and Wang et al. (2016). The former considers demand
as endogenous and aims to identify the station density
that maximizes sales, whereas we consider demand
and station locations as exogenously given and aim to
allocate docks and bikes to maximize the amount of
demand that is being met. The latter aims to use tech-
niques from retail location theory to find locations for
stations to be added to an existing system.

Further related literature includes a line of work on
rebalancing triggered by Chemla et al. (2013). Subsequent
papers, for example, by Nair et al. (2013), Dell’Amico et al.
(2014), Erdogan et al. (2014), Erdogan et al. (2015), Bruck
et al. (2019), and Li et al. (2020), solve variants of a routing
problem with fixed numbers of bikes that need to be
picked up/dropped off at each station; de Chardon et al.
(2016) extensively survey these papers. Before rebalanc-
ing bike-sharing systems became an object of academic
study, the closely related traveling salesman problems
with pickup and delivery had already been studied out-
side the bike-sharing domain since Hernandez-Pérez and
Salazar-Gonzalez (2004). Other approaches to rebalancing
include, for example, the papers of Liu et al. (2016),
Ghosh et al. (2016), Rainer-Harbach et al. (2013), Shu et al.
(2013), or more recently Brinkmann et al. (2019). We refer
the readers to the surveys of Laporte et al. (2018), Freund
et al. (2019), and Shui and Szeto (2020) for a wider over-
view of the rebalancing literature. Although all of these
fall into the wide range of recent work on the operation
of bike-sharing systems, they differ from our work in the
controls and methodologies they use.

Finally, a great deal of work has been conducted in
the context of predicting demand. In this work, we
assume that the predicted demand is given, for example,
using the methods of O’'Mahony and Shmoys (2015) or
Singhvi et al. (2015). Further methods to predict demand
have been suggested by Li et al. (2015), Chen et al.
(2016), and Zhang et al. (2016), among others. Our
results can be combined with any approach that predicts
demand at each station independently of all others.

1.2.1. Relation to Discrete Convexity. Our algorithms
and analyses crucially exploit the property that the
UDFs ¢(+, ) at each station are multimodular (see Defi-
nition 1). This provides an interesting connection to
the literature on discrete convex analysis. Prior works
connecting inventory management to discrete convex-
ity include Lu and Song (2005), Zipkin (2008), and Li
and Yu (2014), among others; we refer the reader to a
recent survey by Chen and Li (2021) for an extensive
overview. In concurrent work by Kaspi et al. (2017), it
was shown that the number of out-of-stock events
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F(b,U—-d—-b) at a bike-sharing station with fixed
capacity U, b bikes, and U —d — b unusable bikes is MF
(read M natural) convex in b and U —d — b; functions
with such discrete convex properties, in particular M-
convex and M! functions, were, respectively, intro-
duced by Murota (1996, 1998) and Murota and
Shioura (1999) (see the book by Murota (2003) for a
complete overview of early results in discrete convex-
ity). Unusable bikes effectively reduce the capacity at
the station, because they are assumed to remain in the
station over the entire time horizon. A station with
capacity U, b bikes, and U—-b-d unusable bikes,
must then have d empty docks; hence, c(d,b)=
F(b,U—d-Db) for d+b < U, which parallels our result
that c(-,-) is multimodular. Although this would sug-
gest that algorithms to minimize M"-convex functions
could solve our problem optimally, one can show that
M?-convexity is not preserved, even in the version
with only budget constraints: we provide in Online
Appendix EC.8.1 an example that shows both that an
M?-convex function restricted to an M*-convex set is
not M’-convex and that Murota’s algorithm for
MF-convex function minimization can be suboptimal
in our setting. In fact, when including the operational
constraints even discrete midpoint convexity, a strict
generalization of multimodularity studied for exam-
ple by Fujishige and Murota (2000) and Moriguchi
et al. (2020), which is in turn much weaker than M®
convexity, breaks down. We provide an example for
this in Online Appendix EC.8.2. Surprisingly, we are
nevertheless able to design fast algorithms; these
exploit not only the multimodularity of each individ-
ual ¢;, but also the separability of the objective func-
tion, with respect to (w.r.t.) the stations, that is, the
fact that each ¢; is only a function of d; and b;. This not
only extends ideas from the realm of unconstrained
discrete convex minimization to the constrained set-
ting, but also yields algorithms that (for our special
case) have significantly faster running times than
those that would usually arise in the context of multi-
modular function minimization. Since the conference
version of this paper appeared, Shioura (2021) has
taken our work as motivation to study M-convex
function minimization under L1-distance constraints,
a strict generalization of our objective. Finally, Shioura
(private communication) pointed out an error in a pre-
liminary version of this paper, and so, although all of
the main elements of our proof of correctness of the
discrete gradient-descent algorithm can be found in
our preliminary version (Freund et al. 2016, 2017), the
presentation here differs from that given earlier.

2. Model

The fundamental primitives of our model of a bike-
sharing system are customers, bikes, docks, and stations.

Here, we formally define these primitives and the opti-
mization problem that is based on them.

2.1. Model Primitives

A bike-sharing system consists of n stations. Each station
i is characterized by an exogenously given demand profile
pi, where p; is a distribution over arrival sequences of
customers at i over the course of a time horizon (e.g., 6:00
am. to 12:00 am.). Such arrival sequences are denoted
X=(Xy,Xa,...,Xs) € {*1}°, where X; = —1 corresponds
to a customer arriving to rent a bike, and X; = 1 corre-
sponds to a customer arriving to return a bike. The
ability of a customer arriving at a station to rent, respec-
tively, return, a bike is dependent on the number of bikes,
respectively, empty docks, available at the station at the
time of arrival: if no bikes, respectively, empty docks,
are available at the time of the customer’s arrival, the
customer is unable to rent, respectively, return, a bike
and disappears with an out-of-stock event. If instead a
customer arrives at a station to rent a bike and a bike is
available, then the number of bikes at the station
decreases by one, and the number of empty docks at the
station increases by one. Similarly, if a customer arrives
to return a bike, and an empty dock is available at that
time, then the number of bikes at the station increases by
one and the number of empty docks decreases by one.
Throughout the time horizon, the total number of docks
(empty and full) at station i remains the same. This is
because the number of empty docks increases by one if
and only if the number of full docks decreases by one
(and vice versa). The respective number of bikes and
empty docks at the station at the time of arrival of X; is
based only on (i) the initial allocation of bikes and empty
docks at the beginning of the time horizon and (ii) the
arrival sequence of customers up to X;, which we denote
Xt-1)=(Xy,..., Xs-1).

2.2. Initial Allocations of Bikes and Docks

The decision variables in our optimization model are
the initial number of empty docks and bikes allocated
to each station i at the beginning of the time horizon.
We denote the initial number of empty docks at sta-
tion i by d;, and the initial number of bikes (full docks)
by b;; combining these two we find that a station 7 has
an allocated capacity of d; + b; docks in total.

2.3. User Dissatisfaction Function

The UDF c¢*(d,b) maps the initial number of empty
docks and bikes to the number of customers, among
the sequence X = (Xj,...,X;), that experience out-of-
stock events (Figure 1). Then, the UDF at station i is
given by ¢;(d,b) = Ex.,[c}(d,b)]. In an effort to keep
notation concise in the main body of the text, we
move a formal recursive definition of ¢*(-,-) to Online
Appendix EC.3.1. UDFs are sometimes used with dif-
ferent weights for stock-outs depending on whether
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Figure 1. (Color online) UDFs as a Function of Bikes for
Three Different Stations with Capacity 39
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they occur at empty or full stations; although we focus
throughout on the unweighted case, in which c¢*(d, b)
is just a count of the stockouts, our results extend to
the weighted case (see Online Appendix EC.3.1).

Definition 1. A function f : Z? — R {0} with
fd+1,b+1)—fd+1,b)>f(d,b+1)-f(d,b);, (1)
fd@-1b+1)-f(d-1,b)>f(d,b)-fd,b-1);, (2)
fd+1,b-1)-fd,b-1)>f(d,b)-fd-1,b); (3)

for all d, b is called multimodular (Hajek 1985, Altman

et al. 2000, Murota 2003). For future reference, we also
define the following implied additional inequalities

((6) and (1) are equivalent, (1) and (2) imply (5), and

(3) and (6) imply (4)):

f@d+2,b)-f(d+1,b) > f(d+1,b)-f(d,b); (4)
fd,b+2)—f(d,b+1)=f(d,b+1)-f(d,b); (5)
fd+1,b+1)—f(d,b+1)2f(d+1,b)—f(d,Db). (6)

For f evaluating to infinite values, we assume the conven-

tions that co—oco=00,00>x, and x> —oco for every

x € RU{—00,00}. We refer the reader to Figure EC2 in

Online Appendix EC.1 for a visual illustration of the dimin-
ishing return properties described by these inequalities.

2.4. System-Wide Objective

Our goal is to minimize the combined number of out-
of-stock events across the system, that is, 3,c;(d;, b;).
Writing d and b for the vectors that contain d; and b;
in their ith position, we denote this sum by c(d,b).

We minimize c¢(d,b) subject to four kinds of con-
straints that we introduce now.

2.5. Constraints

Our optimization problem involves two kinds of
budget constraints. The first is on the total number of
bikes allocated, that is, >;b;, bounded by B. The sec-
ond is on the total number of docks allocated in the
system, that is, 3};d; + b;, which is bounded by D + B.
In addition, we have an operational constraint that
bounds the number of docks that can be reallocated
within the system. To formally state this constraint it
is useful to define the following.

Definition 2. Consider two allocations (;i ,5) and
(3’,5’) with |3 + E|1 = |a?’ + 5’|1, that is, the same num-
ber of docks allocated in total. The number of docks
that need to be reallocated to get from (3 ,E ) to (3’,5’)
(ignoring the allocation of bikes) is |c?’ +V —d
—b |;/2. For allocations (2 ,5) and (2’,5') with the
same total number of docks we define this as the dock-
move distance between them. o

Given an initial allocation (d,b), for which we
assume Zl-Eli +Z_J,'§ D+B, the operational constraint is
then of the form |d +b — d-b l; /2 < z for some z (where
this constraint is well-defined even when |d +bl, #

|3 +b |1). Finally, we have physical constraints that give
lower and upper bounds on the number of docks allo-
cated to each station i, where we assume that 0 <[; <
d; +b; < u; for every i. The resulting optimization prob-
lem can be written as follows:

minimize C(a ,E )

(d, b)eN"x"

S.t.z d; + b;
S, <B,

d +b-d -bl,/2<z
li < di + b,’ <u; Vi. (Pl)

<D+B,

Following standard convention, we define ¢;(d;, b;) =
oo for d;+b; >u; and d; + b; <I;, which allows us to
drop the last row of inequalities in (P1). We also set
ci(d,b)=o00 for d < 0 or b < 0. With these changes,
ci(+,-) fulfills the inequalities in Definition 1.

Lemma 1. The function c,(-,-) is multimodular.

The proof of the lemma is based on a coupling argu-
ment and appears in Online Appendix EC3.1. In
addition, we may add a (n+1) st dummy (“depot”)
station D to guarantee that the first two constraints
hold with equality in an optimal solution. Thus, we
can transform our original optimization problem into
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one of the following form, which is our focus throughout
the main body of the text:

minimize c(d,b)
(E,Z))Ezrﬁlxzrﬁl

S~t-2di +b;
Zbi =B,
i

d+b-d —bl,/2<z where|d +b|,=D+B.
(P2)

Specifically, the reduction from Problem (P1) to (P2) is

based on the following: let D=D+B-3d;+b; that
is, the number of docks that are not in the current allo-
cation but can be added, z =z + L%J, and define station
D with Ip = B,up =2B+D, dp+bp=B+D, and cp(d, b) =
d+b—-B when Ip <d+b < up—observe that cp fulfills
the requirements of Definition 1. Furthermore, ¢p has
the property that its objective is increasing in the
number of docks allocated to it, whereas the objec-
tive at all other stations is nonincreasing in the
number of docks allocated. In the proof of the follow-
ing proposition, this will be used to ensure that optimal
solutions to (P2) fulfill dp + bp =Ip. It is worth noting
that our algorithm/analysis for (P2) does not rely on
the ¢; being nonincreasing in the number of docks allo-
cated, that is, cp being decreasing will not affect our
analysis.

Proposition 1. If (2 ,5) is optimal for (P2) with stations
[n] U{D}, bike budget B, dock budget D + 2B, and opera-
tional constraint z, then restricting (d ,b ) to [n] is optimal

for (P1).

The proof of the proposition is in Online Appendix
EC.3.2. There, we also show how to optimally solve an
optimization problem that involves an additional trade-
off between the size of D and the size of z, that is,
between the inventory cost of additional docks and the
operational cost of reallocating docks. We are now ready
to discuss the assumptions in our model before analyz-
ing in Section 3 an algorithm to optimally solve (P2).

2.6. Discussion of Assumptions

Before describing and analyzing the algorithm we use
to solve the optimization problem in Section 3, we dis-
cuss the assumptions and advantages that come along
with them.

2.6.1. Seasonality and Frequency of Reallocations. In
contrast to bike rebalancing, the reallocation of docks
is a strategic question that involves docks being
moved at most annually. As such, a concern is that
the recommendations for a particular month might
not yield improvement for other times of the year.

One way to deal with this is to explicitly distinguish,
in the demand profiles, between different seasons,
that is, have k different distributions for k different
types of days and then consider the expectation over
these as the objective. Although the user dissatisfac-
tion functions accommodate that approach, we find
on real data (see Section 5.3) that this is not actually
necessary: the reallocations that yield greatest impact
for the summer months of one year also perform very
well for the winter months of another. This even held
true in New York City, where the system significantly
expanded year-over-year: despite the number of sta-
tions in the system more than doubling and total rid-
ership increasing by around 70% from 2015 to 2017,
we find that the estimated improvement due to reallo-
cated docks is surprisingly stable across these differ-
ent months. In part this is because of the fact that the
relative demand patterns at different stations strongly
correlate between seasons, that is, the demand of each
station in each interval in one month is well approxi-
mated by a constant multiple of demand in another.
For example, the vectors of half-hourly demand esti-
mates (either rentals or returns) for each New York
City station in June and December 2018 have a Pear-
son correlation coefficient greater than 0.85. Although
this does not formally imply that the improvement in
the UDFs would correlate, it gives some explanation
for why it might.

2.6.2. Cost of Reallocation. Rather than explicitly build-
ing in a cost for reallocations in our formulation, we
instead bound the number of docks that are moved. This
is mostly motivated by our industry partner’s practical
considerations: the cost of physically reallocating capacity
from one location to another is negligible when com-
pared with the administrative effort, a negotiation with
city officials and other stakeholders, needed to reallocate
capacity. As part of these negotiations the operator will
request that a limited number of docks be moved from
the current system configuration. While we solve the
problem assuming that this number is a known constant,
in practice it is part of the negotiations. To hold these
negotiations it is of utmost importance for the operator to
know the value of reallocating a given (fixed) number of
docks; thus, our results were used to help prepare the
operator for these negotiations, in particular, to answer
for different values of z the crucial questions of how much
benefit would the system derive from moving z docks and
which docks would be among those z. This then also implies
that tactical questions of how to carry out the realloca-
tions is of minor importance in practice. Furthermore, the
cost of reallocating docks can be compared with the cost
of rebalancing bikes: while the (one-off) reallocation of a
single dock is about an order of magnitude more expen-
sive than that of a single bike, the reallocated dock has
daily impact on improved service levels (in contrast to
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the one-off impact of a rebalanced bike). Thus, the cost
quickly amortizes, and Citi Bike estimates this will hap-
pen in as little as two weeks. Finally, the cost to acquire
new docks is orders of magnitudes higher than all of the
aforementioned costs, leading us to focus only on reallo-
cated capacity in our analysis; nevertheless, we show in
Online Appendix EC.3.3 that the algorithm also extends
to capture the tradeoff between installing newly bought
and reallocating existing docks.

2.6.3. Bike Rebalancing. The user dissatisfaction func-
tions assume that no rebalancing takes place over the
course of the planning horizon. System data indicate
that this is close to reality at most stations; for example,
in New York City, more than 60% of all rebalancing is
concentrated at just 28 of 762 stations, which justifies the
assumption for most stations. Now, consider the remain-
ing few stations, at which almost all rebalancing is con-
centrated: perhaps unsurprisingly, we find that none of
these stations are identified by the optimization as hav-
ing their capacity reduced. In general, rebalancing can
always limit the number of dissatistied users to zero:
consider a station with two docks that is stocked with
one bike; as long as rebalancing adds/removes a bike
after each pickup/dropoff, users will not experience
stockouts. Thus, reducing the number of dissatisfied cus-
tomers at a station with no rebalancing is somewhat
analogous to reducing rebalancing needs at a station
with rebalancing. For illustrative purposes, consider the
following deterministic example: a station with 60 docks
observes demand for 120 rentals in the morning and
demand for 120 dropoffs in the afternoon. Suppose the
station is full with bikes in the morning. Without reba-
lancing, the station observes 60 —x stockouts in the
morning, and 60 —y stockouts in the afternoon, where
x,y <60 are respectively the number of bikes rebalanc-
ing drops off in the morning/picks up in the afternoon.
With 15 docks added these quantities would turn into
45 — x and 45 —y for x,y < 45. Thus, the same amount of
rebalancing, up to a smaller upper bound, would simply
reduce the number of dissatisfied customers (by the
amount captured by the UDFs); beyond that upper
bound additional rebalancing is no longer needed. This
example aligns with anecdotal experiences system
operators have shared with us: stations that had dock
capacity added to them subsequently required less
rebalancing.

Although we assume that no rebalancing occurs
over the course of the planning horizon, the optimiza-
tion model assumes that the initial number of bikes at
each station is optimally allocated. We relax this
assumption in Section 5.1 when we consider a regime
in which no rebalancing occurs at all. Despite the fact
that the two regimes can be viewed as polar opposites
(optimally rebalanced overnight and no rebalancing

overnight), our results indicate that they yield very
similar recommendations for the operators. Our moti-
vation to focus on these opposite extremes is simple:
modeling a modest amount of rebalancing poses sig-
nificant challenges. For example, unlike the effect of
daily usage patterns, overnight rebalancing is affected
by greater variability from external factors, ranging
from the number of trucks to the supply of just-
repaired bikes.

2.6.4. Exogenous Rentals and Returns. The demand
profiles assume that the sequences of arrivals are exog-
enous; that is, there is a fixed distribution that defines
the sequence of rentals and returns at each station.
Before justifying this assumption, it is worth consider-
ing a setting in which it fails spectacularly: consider an
allocation of bikes and docks that allocates no bikes at
all. With no bikes, no attempted rental is ever success-
ful and therefore no returns ever occur. As such, the
sequence of arrivals of returns at one station are not
independent of the allocations elsewhere.

Another extreme arises where the stations never
run out of bikes, and there is always capacity available
to receive bike returns. In this case, bike rentals and
returns proceed smoothly independent of allocations
and therefore can be viewed as exogenously given.
This ideal case is the one to which we strive in our
reallocation efforts. Of course, the assumption is never
realized exactly in practice.

At this point, it is helpful to discuss the stochastic
model for rentals and returns that we use in our calcu-
lations. Suppose that at each station, potential bikers
arrive according to a Poisson process that is independ-
ent of that at all other stations. Such a model is plausi-
ble because of the Palm-Khintchine theorem that
states, roughly speaking, that the superposition of the
bike rentals of a large number of independent users is
well modeled by a Poisson process (Cinlar 1972; Kar-
lin and Taylor 1975, p. 221; Nelson 2013, p. 107). Also,
suppose that users select their destinations according
to an origin-destination routing matrix, thereby split-
ting the Poisson incoming flows into independent
biker flows. Assuming biking times between any fixed
pair of stations are identically distributed, and are
independent across all bikers and station pairs, it fol-
lows that the process of returning bikes at a destina-
tion station from a fixed origin station, being a
delayed Poisson process, is again a Poisson process.
However, then, the overall bike-return process at the
destination station, being a superposition of such
flows from all origin stations, is again a Poisson proc-
ess. Moreover, because of the splitting property of
Poisson processes, the rental-return processes at each
destination station are mutually independent. Thus, at
each station, it is reasonable to model the returns and
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rentals of bikes as Poisson processes, justifying the
exogenous arrivals assumption. This modeling struc-
ture is approximate for several reasons: (i) the Poisson
flows entering a destination station are interrupted if
an upstream station runs out of bikes, (ii) a destination
station may observe additional returns due to nearby
stations being full, and (iii) a station may observe
additional demand because of nearby stations being
empty. As mentioned earlier, we attempt to minimize
such shortages, so that we strive for conditions under
which the approximation is close to reality, although
it is still an approximation. Under this Poisson model,
the rental and return processes at different stations
are not independent. For example, a surge in rentals
at one station may result in a surge of returns at a
“downstream” station. Fortunately, our objective
function is additively separable in stations, so inde-
pendence at different stations is not required to com-
pute the objective function; the “marginal” property
that flows are Poisson at each station considered indi-
vidually suffices.

Perhaps an even stronger justification for the exogenous-
arrivals assumption comes from work by Jian et al.
(2016) and Datner et al. (2019), who both use simula-
tion optimization approaches. Datner et al. (2019) use
their simulation optimization approach to identify
only the optimal allocation of bikes. They endogenize
(i) to (iii) and compare their results to optimizing with
the UDEF. Although they focus on a slightly different
objective (total user travel time, where stockouts may
lead to pickups/dropoffs at other stations or to users
walking), they also report the fraction of rides affected
by stockouts, which is what we/the UDFs aim to mini-
mize; for this objective, their solutions improve on the
UDFs by only 1.2% on average (across six scenarios).
Similarly to us, Jian et al. (2016) aim to find the configu-
ration of bikes and docks across the system that mini-
mizes the number of out-of-stock events over the
course of the day. In contrast to the user dissatisfaction
functions, decensoring the demand data for their simu-
lation required additional modeling decisions that
allow them to endogenize (i) and (ii). Although this
simulation approach still assumed that demand for
rentals was exogenous, it endogenized returns, exclud-
ing (at least) the example suggested previously. How-
ever, it causes the resulting simulation optimization
problem to be nonconvex in an unbounded fashion.
Indeed, for any bound L, one can construct highly con-
trived examples in which there exists an initial alloca-
tion (d,b ) and stations i and j such that when starting
at allocation (d,b) it is the case that (a) moving two
bikes from i to j improves the objective by at least L
and (b) moving one bike from i to j gives a solution
that is worse than (d , b ). Such examples not only show
that the objective function in that model is nonconvex,
they also show that solutions from such a framework

are harder to interpret. Jian et al. (2016) proposed a
range of different gradient-descent algorithms as heu-
ristics to find good solutions, including adaptations of
the algorithms we present and analyze here. Despite
the simulation adding key complexities to the system,
the heuristics gave only limited improvements,
approximately 3%, when given the solution found by
our algorithms as a starting point. Thus, there exists
substantial data-driven evidence to justify the use of
UDFs.

Finally, the assumptions that rentals and returns are
exogenous, and the objective is separable across sta-
tions, are quite common in the rebalancing literature.
This includes, for example, Raviv and Kolka (2013),
Raviv et al. (2013), Di Gaspero et al. (2013), Rainer-
Harbach et al. (2013), Raidl et al. (2013), Ho and Szeto
(2014), Kloimiillner et al. (2014), Kaspi et al. (2017),
Forma et al. (2015), Alvarez-Valdes et al. (2016), and
Schuijbroek et al. (2017), most of whom make the
assumption implicitly.

2.6.5. Out-of-Stock Events and Demand Profiles. In
practice, we cannot observe attempted rentals at empty
stations nor can we observe attempted returns at full sta-
tions. Worse still, given that most bike-sharing systems
have mobile apps that allow customers to see real-time
information about the current number of bikes and
empty docks at each station, there may be customers
who want to rent a bike at a station, see on the app that
the station has few bikes available presently, and decide
against going to the station out of concern that by the
time they arrive, the remaining bikes will already have
been taken by someone else. Should such a case be con-
sidered an out-of-stock event (respectively, an attempted
rental)? The user dissatisfaction functions assume that
such events do not occur as the definition relies on out-
of-stock events occurring only when stations are either
entirely empty or entirely full.

Furthermore, to compute the user dissatisfaction
functions, we need to be able to estimate the demand
profiles: using only observed rentals and returns is
insufficient as it ignores latent demand at empty/full
stations. To get around this, we mostly apply a combi-
nation of approaches by O’Mahony and Shmoys
(2015), O’'Mahony et al. (2016), and Parikh and Ukku-
suri (2015): we estimate Poisson arrival rates (inde-
pendently for rentals and returns) for each 30-minute
interval and use a formula developed by O’Mahony
et al. (2016) to compute, for any initial condition (in
number of bikes and empty docks) the expected
number of out-of-stock events over the course of the
interval. We plug these into a stochastic recursion sug-
gested by Parikh and Ukkusuri (2015) to obtain the
expected number of out-of-stock events over the
course of a day as a function of the number of bikes
and empty docks at 6:00 a.m. This is far from being
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the only approach to compute user dissatisfaction
functions; for example, in Section 6 we explicitly com-
bine empirically observed arrivals with estimated
rates for times when rentals/returns are censored at
empty /full stations.

2.6.6. Advantages of User Dissatisfaction Functions.
The user dissatisfaction functions yield several advan-
tages over a more complicated model such as the sim-
ulation. First, they provide a computable metric that
can be used for several different operations: in Section
3, we show how to optimize over them for reallocated
capacity, and in Section 6, we use them to evaluate
the improvement from already reallocated capacity.
Chung et al. (2018) used them to study an incentive
program operated by Citi Bike in New York City, and
they have been used extensively for motorized reba-
lancing (see Section 1.2). As such, the user dissatisfac-
tion functions provide a single metric on which to
evaluate different operational efforts to improve serv-
ice quality, which adds value in itself. Second, for the
particular example of reallocating dock capacity that
we study here, they yield a tractable optimization
problem, which we prove in Section 3. Third, for the
reallocation of dock capacity, the discrete convexity
properties we prove imply that a partial implementa-
tion of the changes suggested by the optimization (see
Section 5) is still guaranteed to yield improvement.
Finally, given a solution to the optimization problem,
it is easy to track the partial contribution to the objec-
tive from changed capacity at each station, making
solutions interpretable.

3. Discrete Gradient-Descent Algorithm
We begin this section by examining the mathematical
structure of Problem (P2) that allows us to develop
efficient algorithms. In Section 3.1, we define a natural
neighborhood structure on the set of feasible alloca-
tions and define a discrete gradient-descent algorithm
on this neighborhood structure. We prove in Section
3.2 that for the problem without operational con-
straints ((P2) with z = o0), solutions that are locally
optimal with respect to the neighborhood structure
are also globally optimal; since our algorithm contin-
ues to make local improvements until it finds a local
optimum, this proves that the solution returned by
our algorithm must be globally optimal. Finally, in
Section 3.3, we prove that the algorithm takes at most
z iterations to find the best allocation obtainable by
moving at most z docks within the system (see Defini-
tion 3 for a formal definition of a move of a dock); this
not only proves that the gradient-descent algorithm
optimally solves the minimization problem when
including operational constraints, but also guarantees
that doing so requires at most D + B iterations.

3.1. Algorithm

We now present our algorithm before analyzing it for
settings without the operational constraints. Intuitively,
in each iteration our discrete gradient-descent algorithm
picks one dock and at most one bike within the system
and moves them from one station to another. It chooses
the dock and the bike to maximize the reduction in
objective value; that is, in a discrete sense, it executes a
gradient-descent step. To formalize this notion, we
define the movement of a dock via the following transfor-
mations. Denote by ¢; =(0,...,1,...,0) the canonical
unit vector that has a one in its ith position and zeros
elsewhere.

Definition 3. A dock-move from i to j corresponds to one
of the following transformations of feasible solutions:
1. Moving one (empty) dock fromi to j:

Oij(arz) = (E —€i+€j,5)

2. Moving one dock and one bike from i to j, i.e., one
full dock:

ej(d,b)=(d,b —ei+e)
3. Moving one dock from i to j and one bike from # to j:
E,-jh(a ,E) = (3 —e +eh,E +e—ey)
4. Moving one bike from 7 to 1 and one dock from i to j:
O,‘/-h(g ,E) = (c_i +e— eh,g —ei+ey)

We often refer to the first kind as moving an empty
dock from i to j and to the second kind as moving a full
dock from i to j to indicate that the dock is moved by
itself (empty) or with a bike (full). Without qualifi-
cation, the movement of a dock can refer to any of
the above. Furthermore, we define the neighborhood
N(d,b) as the set of allocations that are one dock-
move away from (d,b ):

N, b):={oy(d,b),e5d ,b),Eg(d ,b),04(d ,b):ij,h € [n]}.

Notice that (E,E)EN(E’,E’) implies that |E +b—

d - E’|l =2, that is, a dock-move distance of one; the
converse, however, does not hold true as the dock-
move distance between two allocations does not take
into account their allocation of bikes.

Throughout the paper we also sometimes refer to
the move of a bike from i to j, by which we mean a

transformation from (E,E) to (3 +e,<—ej,g —e; +ej).
This changes the allocations of bikes to stations while
keeping the number of docks at each station constant.
The previously defined neighborhood structure
gives rise to a very simple algorithm (see Algorithm 3
in Online Appendix EC.2): we first find an optimal
allocation of bikes for the current allocation of docks,
that is, when each station i is restricted to have d; + b;
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docks allocated to it (see Algorithm 1). The convexity
of each ¢; in the number of bikes (see Fact 1 in Online
Appendix EC4.1), with fixed number of docks,
implies that this can be done greedily by taking out all
the bikes and then adding them one by one (see the
first page of Hochbaum 1994). Denote this allocation

by (30,50). Then, iterate over re{1,...,z}, that is,
through z periods, by either setting (2’, Er) to be the
best allocation in the neighborhood of @d-1,b"), or if
that allocation is no better than (d'~!,b"1), returning
@d1,5"1) (see Algorithm 2). After iteration z, the algo-
rithm returns (22, EZ).

3.2. Optimality Without Operational Constraints
We first prove that Algorithm 3 returns an optimal
solution to the problem without operational con-
straints. Specifically, we analyze the following:
minimize C(E , 5)
(d, )
s.t.ﬁ + E|1 =D+B,
bl = B. (P3)

We show that an allocation (2 ,E) that is locally opti-
mal with respect to N(-,-) must also be globally optimal
with respect to (P3). Thus, if Algorithm 3, initialized
with z = oo, finds a solution for which there is no better
solution in the neighborhood, then it returns an optimal
solution to (P3). However, as that solution may have

dock-move distance greater z to (d, l_v), global optimality
of the algorithm only follows for (P3) and not for (P2).
Before we prove Lemma 3 to establish this, we first
define an allocation of bikes and docks as bike-optimal if
it minimizes the objective among allocations with the
same number of docks at each station.

Definition 4. An allocation (d ,b ) is bike-optimal if

(d b ) € argmin -, {c(c?’ ,l;; )}

(& B )2 b= b, [0 =B
The following lemma ensures that our analysis can,
for the most part, focus only on bike-optimal solutions.

Lemma 2. Suppose (Ei b ) is bike-optimal. Then given any
i and j, the allocation resulting from the best dock-move
from i toj is bike-optimal.

The proof of the lemma is in Online Appendix
EC.4.1. We highlight three implications of the lemma:

1. Because Algorithm 3 finds a bike-optimal solution
initially and picks the best dock-move in each iteration,
bike-optimality is an invariant of the algorithm, that is,
(30, EO), (31, El), (32, Ez), ... are all bike-optimal.

2. Consider a bike-optimal allocation (4 ,b ) and an
allocation (;l’, Z’) at dock-move distance 1 that is not in

N (3 b ); then there exists a dock-move from (2 b ) that
creates an allocation with (i) the same allocation of
docks at each station as (d’,b’), that is, d/ + b/ at each
station i, and (ii) an objective no worse than (E’, E’).

3. To prove optimality of Algorithm 3 for (P3) it suffi-
ces to prove that bike-optimal solutions that are locally
optimal w.r.t. our neighborhood structure are also
globally optimal.

We formalize the last of these in Lemma 3, the proof
of which we defer to Online Appendix EC.4.2. That
appendix also contains the proof of Lemma 4, of
which Lemma 3 is a corollary.

Lemma 3. Suppose d,b)is bike-optimal, but not optimal
for either (P2) or (P3). Let (Zl*, E*) denote a better solution.

Then there exists (c?’ ,l;; )€ N(ﬁ ,E) such that (j’ ,l;; ) has
both a lower objective value and a smaller dock-move dis-

tance to (E*, E*) than (2 ,E ) does.

In the statement of Lemma 3, the allocation (67’ ,l;; )
is not restricted to fulfill the operational constraints;
that is, it may not be feasible for Problem (P3) (else,
this would already imply that Algorithm 3 always,
eventually, terminates with an optimal solution).
Thus, optimality only follows for (P3). The allocations

identified in the next lemma, (2’,5’) and (2**,5**),
also need not satisfy the operational constraints.

Lemma 4. Consider any bike-optimal solution (2 ,1_5) and
a better allocation (3 * H*)' let j and k denote stations with
di+b; < d* + b* and dk +by>d; +b;. Then either there
exist (d’ b’)eN(d b) with di +b; =d;+bj+1 and
(d** b**) € N(d* b*) with d* + b** = d* +bf =1 or there
exist (d’ % ) eN(d b) wzth d’ + by, = dj +bk -1 and
(d**, b**) € N(d*, b*) with di* + b* = dy + by + 1 such that

1. We have C(E b )— c(o?’ b ) > g(ﬁ*:,g**) - c(;i*,g*)

2. The dock-move distance from (d’ ,b" ) to (d*, b*) is less
than from (3 b ) and the dock-move distance from (;l**,g**)
to (d b ) is less than from (d* b*)

3. The dock-move from (d ,b) to (d’ b’) yields (d* b*)
when applied to (d**, b**) (so, e.8., zfekj(d , b )= (d’ , % ), then
ekj(ﬁ**, E**) = (2*, E*), or equivalently e,k(c;* E *) = (E**, E**)).

Remark 1. In the discrete convexity literature, a re-
writing of the objective allows this to be interpreted as
the exchange property of Mf-convex functions; this
connection has been explored in the follow-up work
of Shioura (2021).

3.3. Operational Constraints and Running Time
In this section, we show that Algorithm 3 is optimal
for (P2) by proving that, for any r, in r iterations it
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finds the best allocation obtainable by moving at most
r docks. We thereby also provide an upper bound on
the running-time of the algorithm, since an optimal
solution can be at most min{D + B,z} dock-moves
apart from (EO, EO).

Our proof works inductively. We begin by showing
(Lemma 5) that, assuming that (Er,gr) minimizes the
objective among solutions at dock-move distance at
most 7 to (d°,b0), (d"*!,b™1) must be a local optimum
among solutions at dock-move distance at most r + 1
to (30,50). This local optimality in the (r+1) st itera-
tion guarantees a particular structural property (see
Lemma EC.1 in Online Appendix EC.4.4 for details).
In Theorem 1, we use this structural property,
together with the optimality of the solution in the rth
iteration and the gradient-descent step, to show that
(d1,b™1) is globally optimal among solutions with
dock-move distance at most r + 1 to (20,50). The
proofs of Lemma 5, Lemma EC.1, and Theorem 1 can
be found in Online Appendix EC.4.

Lemma 5. Suppose (dr ’) minimizes the ob]ectwe among
solutions with |d +b —d" — b’ l, <2r and let @1, p1)
denote the next choice of the gradient-descent algorithm,
that is, an allocation in the neighborhood of (HY,ET) that
minimizes the objective. Then (d'*,b™1) is a local opti-
mum among solutions with |3 +b —E’—Erll <2(r+1);
that is, there is no solution in N(d"*', b"*') that is at dock-

move distance at most v + 1 to (E ,5 ) and has a lower objec-
tive than (d™+,b"1).

Theorem 1. Initialized at (E ,b ), Algorithm 3 finds in
iteration r an allocation that minimizes the objective among
those at dock-move distance at most equal to r.

Remark 2. In an earlier manuscript, as well as the pro-
ceedings version of the paper, we had falsely stated
that local optima are globally optimal among alloca-

tions with dock-move distance at most r to (Ei ,I; ), that
is, that Lemma 3 continues to hold in the setting
where allocations at dock-move distance v + 1 are
infeasible, and immediately derived optimality from
that and Lemma 5. An example by Shioura (2021)
shows that this is false: there exist solutions that are
locally optimal with respect to our neighborhood
structure and at dock-move distance at most r to

d,b), despite not being globally optimal among the
solutions at dock-move distance at most r. Shioura
(2021) also provides an alternative proof of correctness
for our algorithm.

4. Scaling Algorithm

We now extend our analysis in Section 3 to adapt our
algorithm to a scaling algorithm that provably finds
an optimal allocation of bikes and docks for Problem
(P3), that is, the setting without operational constraints,
in O(nlog(B + D)) iterations.

The idea underlying the scaling algorithm (see
Algorithm 4 in Online Appendix EC.2) is to proceed
in [log,(B+D)]+1 phases, where in the kth phase,
each move involves a; = 2198BD)+1-k hikes /docks
rather than just one. The kth phase is prefaced by find-
ing the bike-optimal allocation of bikes (given the
constraints of only moving a; bikes at a time), and ter-
minates when no move of a; docks yields improve-
ment. We first observe that the multimodularity of c(d,
b) implies multimodularity of c(axd, a,b) for all k (table
1.3 in Murota 2018). Thus, our analysis in the last sec-
tion implies that in the kth phase, the scaling algorithm
finds an optimal allocation among all that differ in a
multiple of a; in each coordinate from (d,b). Further-
more, as Q|log,(+D)j+1 = 1, it finds the globally optimal
allocation in phase [log,(B + D)| + 1.

Theorem 2. Algorithm 4 finds an optimal allocation for
(P3) in O(nlog(B + D)) iterations.

Theorem 2 can provide a nontrivial speedup, relative
to Om+D+B) for the gradient-descent algorithm,
when B and D are large relative to 7, that is, when sta-
tions have many docks on average. Otherwise it may
create unnecessary overhead; in Online Appendix EC.6
we observe this on real data when comparing the
different algorithms on data sets from different cities.
Motivated by this insight, we then also define a hybrid
algorithm (see Algorithm 5) that proceeds like the scal-
ing algorithm but skips some of the phases. The proof of
Theorem 2, included in Online Appendix EC.5, relies on
a proximity result that bounds the distance (in dock-
move distance) between optimal solutions in consecu-
tive phases; although we prove such a result for Problem
(P3) (Lemma EC.3), the running time bound in Theorem
2 relies on a bound from Shioura (2021) that is smaller
but less general (as it applies only to (P3) but not to
(P2)). We then extend our scaling algorithm (see Algo-
rithm 6) to also work for Problem (P2), and use our own
proximity bound to prove the following theorem.

Theorem 3. Algorithm 6 runs in time polynomial in n
and log(B + D).

We remark that a significantly faster scaling algo-
rithm for (P2) has been developed in the concurrent
work of Shioura (2021).

5. Case Studies

In this section, we present the results of case studies based
on data from three different bike-sharing systems: Citi
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Bike in New York City, Blue Bikes in Boston, and Divvy
in Chicago. Some of our results are based on an extension
of the user dissatisfaction function which we first define
in Section 5.1. Thereafter, in Section 5.2 we describe the
data sets underlying our computation. Finally, in Section
5.3, we describe the insights obtained from our analysis.
Although some of the results presented in this section are
based on proprietary data, our discussion in Online
Appendix EC.7 shows what can be reproduced using a
data set and the source code we are making public.

5.1. Long-Run-Average Cost

A topic that has come up repeatedly in discussions
with operators of bike-sharing systems is the fact that
their means to rebalance overnight do not usually suf-
fice to begin the day with the bike-optimal allocation.
In some cities, like Boston, no rebalancing at all hap-
pens overnight. As such, it is desirable to optimize for
reallocations that are robust with respect to the
amount of overnight rebalancing. To capture such an
objective, we define the long-run average of the user
dissatisfaction function. Rather than mapping an initial
condition in bikes and empty docks to the expected
number of out-of-stock events over the course of one
day, the long-run average maps to the average number
of out-of-stock events over the course of infinitely
many days. Notice that (under a weak ergodicity
assumption discussed later) in this model, the initial
allocation of bikes is irrelevant, and so is the total num-
ber of bikes allocated, as the long-run distribution of
bikes present is determined solely by the distribution of
arrival sequences. Formally, denoting by X®Y the con-
catenation of arrival sequences X and Y, that is,
(X1,..., X, Yq,...,Ys), we define the long-run average
of a station i with demand profile p; as follows.

Definition 5. The long-run-average of the user dissat-
isfaction function at station i with demand profile p; is

Y~piliid.) [cV1V28- Y1 (g )]

T

We can compute c}'(d,b) by computing for a given
demand profile p; the transition probabilities p. :=
S xPi(X)Lsy(d,+b,-x,x)=y, that is, the probability of station
i having y bikes at the end of a day, given that it had x
at the beginning, and given that each sequence of
arrivals X occurs with probability p;(X). Given the
resulting transition probabilities, we define a discrete
Markov chain on {0, ...,d; + b;} and denote by n;‘fj”f its
stationary distribution. This permits us to compute
ci(d,b) = Zi:g ngfb (k)ci(d + b —k, k). Furthermore, from
the definition of c[(-,-), it is immediately clear that
cf(-,-) is also multimodular; as such, all results proven
in the previous sections about ¢,(-,-) also extend to
cf'(-,-). In addition, we observe that, as long as the dis-
crete Markov chain with transition probabilities p,, is

E
¢f(d,b) = Jim

ergodic (e.g., with demand based on nonzero Poisson
rates for both bike rentals and returns), ¢J'(-,-) depends
only on the sum of its two arguments but not on the
value of each (as the initial number of bikes does not
influence the steady-state number of bikes). Before
comparing the results of optimizing over cf(-,-) and
over ¢(-,-), we now give some intuition for why the
long-run average provides a contrasting regime.

5.1.1. Intuition for the Long-Run Average. It is instruc-
tive to consider an example to illustrate where opti-
mizing over the long-run average deviates from
optimizing over a single day. Consider two stations i
and j: at station i demand consists, determistically, of
k rentals every day; at station j, with probability P < 1,
there are k rentals followed by k returns, and with
probability 1— P there are no rentals at all. At station i
the user dissatisfaction function decreases by one for
each of the first k full docks added; however, its long-
run average objective remains constant at k: No matter
how many docks and bikes are added, in the long-run
the station is empty at the beginning of the day and
therefore all k customers experience out-of-stock
events. At station j, the first k full docks added only
decrease the user dissatisfaction function by 2P <1
each, but the long-run average is also decreased by 2P
for each dock added. Thus, optimally placing k docks
and bikes at the two stations yields fundamentally dif-
ferent solutions depending on whether we optimize
for one objective or the other. Furthermore, optimiz-
ing for the long-run average only gives a fraction 2P
of the optimal improvement for a single day, whereas
optimizing for a single day gives no improvement at
all for the long-run average objective. Two lessons can
be derived from this example. First, optimizing over
one regime can, in theory, return solutions that are
very bad in the other. Second, stations at which
demand is antipodal (rentals in the morning, returns
in the afternoon or vice versa) make better use of
additional capacity in the long-run average regime.

5.2. Data Sets

We use data sets from the bike-sharing systems of
three major American cities to investigate the effect
different allocations of docks might have in each city.
The three cities, New York City, Boston, and Chicago,
vary widely in the sizes of their systems. When the
data were collected from each system’s open data feed
(summer 2016), Boston had 1,300 bikes and 2,805
docks across 158 stations, Chicago had 4,700 bikes and
9,987 docks across 581 stations, and New York City
had 6,750 bikes and 15,274 docks across 455 stations
(given that the feeds only provide the number of
bikes in each station, they do not necessarily capture
the entire fleet size, for example, in New York City, a
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significant number of bikes are kept in depots
overnight).

For each station (in each system), we compute piece-
wise constant Poisson arrival rates to inform our demand
profiles. To be precise, we take all weekday rentals/
returns in the month of June 2016, bucket them in the
30-minute interval of the day in which they occur, and
divide the number of rentals/returns at each station
within each half-hour interval by the number of minutes
during which the station was nonempty/nonfull. We
compute the user dissatisfaction functions assuming that
the demand profiles stem from these Poisson arrivals
(Parikh and Ukkusuri 2015, O'Mahony et al. 2016). Some
of our results in this section rely on the same procedure
with data collected from other months.

Given that (in practice) we do not usually know the
lower and upper bounds on the size of each station,
we set the lower bound to be the current minimum
capacity within the system and the upper bound to be
the maximum one. Furthermore, we assume that D +
B is equal to the current allocated capacity in the sys-
tem; that is, we only reallocate existing docks.

5.3. Impact on Objective
We summarize our results in Table 1. The columns
Present, OPT, and 150-moved compare the objective
with (i) the allocation before any docks are moved, (ii)
the optimal allocation of bikes and docks, and (iii) the
best allocation of bikes and docks that can be achieved
by moving at most 150 docks from the current alloca-
tion. The columns headed ¢ contain the bike-optimal
objective for a given allocation of docks; the columns
headed c™ are the long-run-average objective (for the
same dock allocation). Two interesting observations
can be made. First, although the optimizations are
done over bike-optimal allocations without regard to
the long-run average, the latter improves greatly in all
cases. Second, in each of the cities, moving 150 docks
yields a large portion of the total possible improve-
ment. This stands in contrast to the large number of
moves needed to find the actual optimum (displayed
in the column Moves to OPT) and is due to diminish-
ing returns of the moves.

A more complete picture of these insights is given
in Figure EC.3 in Online Appendix EC.1. The x axis

Table 1. Main Computational Results

shows the number of docks moved starting from the
present allocation, and the y axis shows the cumula-
tive improvement in objective, that is, the difference
between the initial objective and the objective after
moving x docks. Each of the solid lines corresponds to
different demand estimates being used to evaluate the
same allocation of docks. The dotted lines (in the
same colors) represent the maximum improvement,
for each of the demand estimates, that can be achieved
by reallocating docks; whereas these are not achieved
through the dock moves suggested by the estimates
based on June 2016 data, significant improvement is
made toward them in every case. In particular, the ini-
tial moves yield approximately the same improve-
ment for the different objectives/demand estimates.
Thereafter, the various improvements diverge, espe-
cially for the New York City data from August 2016.
This may be partially due to the system expansion in
New York City that occurred in the summer of 2016
but does not contradict that all allocations correspond-
ing to values on the x axis are optimal in the sense of
Theorem 1.

5.3.1. Seasonal Effects. As we mentioned in Section
2, we also consider the impact of seasonal effects. In
Table 2, we show the improvement in objective when
optimizing the movement of 200 docks in New York
City based on demand estimates in June 2016 and
evaluate the objective with the long-run average
based on demand estimates based on March and
November 2017. The estimated improvements suggest
that optimizing with respect to June yields notable
improvement with respect to any other.

5.3.2. Operational Considerations. It is worth com-
paring the estimated improvement realized through
reallocating docks to the estimated improvement real-
ized through current rebalancing efforts. According to
its monthly report (NYCBS 2016), Citi Bike rebalanced
an average 3,452 bikes per day in June 2016: this num-
ber counts the average number of rebalancing actions,
meaning that each pickup/dropoff counts as one bike
rebalanced. A simple coupling argument implies that
a single pickup/dropoff yields at most a change of
one in the user dissatisfaction function (Figure 1); thus,

Present OPT 150-moved
City c " c c" c c" Moves to OPT
Boston 831 1,118 607 945 672 985 412
Chicago 1,462 2,340 763 1,847 1,224 2,123 1,556
New York City 8,251 10,937 6,499 9,232 7,954 10,643 2,821

Notes. ¢, bike-optimal; c™, long-run-average cost. Obtained from Algorithm 3 that was applied to data sets from June 2016.
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Table 2. Improvement of 200 Docks Moved Based on the
Long-Run Average Objective ¢™ Evaluated with Demand
Estimates from June 2016, Evaluated with the Long-Run
Average Objective ¢™ and Demand Estimates from 2017

June 2016 March 2017 November 2017

New York City 358.7 260.3 294.6

rebalancing reduced out-of-stock events by at most
3,452 per day (assuming that each rebalanced bike
actually has that much impact is extremely optimistic).
Contrasting that to the estimated impact of strategically
moving, for example, 500 docks diminishes the esti-
mated number of out-of-stock events by more than a fifth
of Citi Bike’s (daily) rebalancing efforts.

Second, discussions with operators uncovered an
additional operational constraint that can arise because
of the physical design of the docks. Because these usu-
ally come in triples or quadruples, the exact moves
suggested may not be feasible; for example, it may be
necessary to move docks in multiples of four. By run-
ning the scaling algorithm (see Algorithm 4 in Online
Appendix EC.2) only with k > 2, we can find an alloca-
tion in which docks are only moved in multiples of
four. With that allocation, the objective of the bike-
optimal allocation is 640, 848, and 6,573 in Boston, Chi-
cago, and New York City, respectively, suggesting that,
despite this additional constraint, compared with the
column headed by OPT and ¢, almost all the improve-
ments can be realized.

6. A Posteriori Evaluation of Impact
In this section, we show how one can use the user dis-
satisfaction functions to estimate (after the fact) the
impact of reallocated capacity, and apply this
approach to the 6 stations that were part of the pilot
program mentioned in Section 1.1. One way to evalu-
ate the impact would be to estimate new demand
rates after docks have been reallocated, compute new
user dissatisfaction functions for stations with added
(decreased) capacity, and evaluate for those stations
and the new demand rates the decrease (increase)
between the old and the new number of docks. A
drawback of such an approach is the heavy reliance on
the assumed underlying stochastic process. Instead, we
present here a data-driven approach with only little
reliance on estimated underlying demand profiles.
Throughout this section, we denote by d and b the
number of empty docks and bikes at a station after
docks were reallocated, whereas d’ and b’ denote the
respective numbers before docks were reallocated.
Although d + b and d’ +b" are known (capacity before
and after docks were moved) and b can be found on
any given morning (number of bikes in the station at

6:00 a.m.), we rely on some assumed value for b’—for
that, in our implementation, we picked both min{d” +
b,b} and b x (d‘;:g/), that is, either the same number of
bikes (unless that would be larger than the old
capacity before docks were added) or the same pro-
portion of docks filled with bikes.

6.1. Arrivals at Stations with Increased Capacity
In earlier sections, we assumed a known distribution
for the sequence of arrivals based on which we com-
pute the user dissatisfaction functions. In contrast, in
this section we rely exclusively on observed arrivals
(without any assumed knowledge of the underlying
stochastic process) to analyze stations with increased
capacity. This is motivated by a coupling argument to
justify that censoring need not be taken care of explic-
itly in this case. To formalize our argument, we need
to introduce some additional notation for the arrival
sequences. Recall from Section 2 that we denoted by
X =(Xy,...,Xs) a sequence of customers arriving at a
bike-sharing station to either rent or return a bike and
that X included failed rentals and returns, which in
practice would not be observed because they are cen-
sored. Which X; are censored depends on the (initial)
number of bikes and docks at the station. Let us
denote by X(d, b) the subsequence of X that only
includes those customers whose rentals/returns are
successful (not censored) at a station that is initialized
with d empty docks and b bikes, that is, the ones who
do not experience out-of-stock events. Given the nota-
tion cX(-,-) used in Section 2 for a particular sequence
of arrivals, we can then compute ¢X@(-,-). In particu-
lar, denoting by d’,b’ the number of empty docks and
bikes without the added capacity, we may compute
cX@h(d’,b"). The following proposition then motivates
the notion that censoring may be ignored at stations
with added capacity.

Proposition 2. For any X, d’ <d and b’ < b, we have

CX(d/, b/) _ CX(I?Z, b) — CX(d,b)(d/I b/) _ CX(d’b)(d, b)
— CX(d,b)(d/’ b/)

Proof. The proof of the second equality follows imme-
diately from X(d, b) including exactly those customers
among X that are not censored, when a station is ini-
tialized with d empty docks and b bikes, so
cX@h(d,b)=0. Now, on the left-hand side, we can
inductively go through all customers among X that
are out-of-stock events when the station is initialized
with d empty docks and b bikes. Since d>d’ and
b>1', each one of those increases both terms in the
difference by one. Thus, taking them out of X does not
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affect the value of the difference. However, then, we
are left with only X(d, b).

6.1.1. Extension to Stations with Decreased Capacity.
Proposition 2 does not apply to stations with decreased
capacity: suppose d < d’ and b = b’; once the station (ini-
tialized with d empty docks and b bikes) becomes full,
X(d, b) observes no further returns even though these
would be part of X(d’,0"). To account for out-of-stock
events occurring in that way, we fill in the censored
periods with demand estimates. This does not usually
require knowledge of the full demand-profile; for
example, for a station that is nonempty and nonfull
over the course of the day, no estimates are needed at
all. Furthermore, for periods of time in which the sta-
tion is full, we only need to estimate the number of
intended returns; rentals over that period of time
would not be censored.

6.1.2. Extension to Rebalancing. Based on our reason-
ing in Section 2.6, our analysis of the user dissatisfac-
tion functions and the resulting optimization problem
(see Sections 2 and 3) thus far did not consider the reba-
lancing of bikes. In contrast, in the a posteriori analysis,
we are able to take rebalancing into account.

To simplify the exposition, we restrict ourselves here
to rebalancing that adds bikes to a station, though the
reasoning extends to rebalancing that removes bikes.
The simplest approach to treat bikes added through
rebalancing is to just treat them as returns and thus
include them (as virtual customers) in the sequence of
arrivals X. However, this may cause an unreasonable
increase to the value of cX@?(d’,b’) (when the number
of bikes added is greater than the number of empty
docks would have been at that point in time if the sta-
tion had initially had 4’ empty docks). In that case, the
virtual customers (corresponding to rebalanced bikes)
would incur out-of-stock events and thereby increase
the value of the user dissatisfaction function. A more
optimistic method that also treats rebalanced bikes as
virtual customers is to redefine the user dissatisfaction
function in such a way that out-of-stock events are only
incurred by returns that correspond to nonrebalanced
bikes. This, in essence, decouples the user dissatisfac-
tion functions into subsequences, each of which are

Figure 2. (Color online) Evaluation of Impact at Stations
with Increased and Decreased Capacity
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evaluated independently. Our analysis applied the lat-
ter, more optimistic method.

6.2. Impact of Initial Dock Moves in New
York City

We consider three stations at which capacity was
increased and three stations at which it was decreased
based on our recommendations. For two of the stations
at which capacity was increased, 12 docks were added;
for one of them, the capacity was increased by 10; the
decreases were by the same amounts, so in total this
involved reallocating 34 docks. In Figure 2, we present
the estimated impact for each weekday in April 2018
(without the extension to rebalancing). For stations with
added capacity, we set 4 and b according to the number
of bikes at 6:00 a.m. We evaluated cX“@?(d’,1’) for sta-
tions with docks added (see Proposition 2) using the
observed arrivals X(d, b) for each day. For the stations
with docks taken away we estimated X by assuming a
Poisson number of rentals (returns) whenever the station
was empty (full), where the rate is based on decensored
estimated demand from the same month. We use that to
compute cX@) (@, b') — cX@b)(d, b) for these stations. The
resulting values for different implementations are sum-
marized in Table 3; aggregated over the entire month,
the estimated net reduction in out-of-stock events varies

Table 3. Estimated Cumulative Changes at Stations Affected by Dock Reallocations Based on the Different Evaluations

Described in Section 6.1

No rebalancing

Rebalancing

min{b,d’ +b'} bx (L) min{b,d’ +b'} bx (%)
Decrease where capacity was added 831.0 1,121.0 882.0 1,027.0
Increase where capacity was taken 0 58.7 0 59.7
Net reduction 831.0 1,062.3 882.0 967.3
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between 831 and 1,121, which is about 1.2-1.6 fewer dis-
satisfied users per day and dock moved. Translating this
into reduced rebalancing costs and comparing it to the
cost of reallocating docks, strategically reallocating docks
amortizes (depending on some system idiosyncrasies) in
2-5 weeks.

7. Conclusion

We considered several models that capture central
questions in the design of dock-based bike-sharing sys-
tems, as are currently prevalent in North America.
These models gave rise to new algorithmic discrete
optimization questions, and we have demonstrated
that they have sufficient mathematical structure to per-
mit their efficient solution, thereby also extending exist-
ing theory in discrete convexity. We have focused on
the (re)allocation of docks throughout the footprint of a
bike-sharing system, capturing aspects of both better
positioning of existing docks, and the optimal augmen-
tation of an existing system with additional docks.
These algorithms and models have been employed by
systems within the United States with the desired effect
of improving their day-to-day performance.

An alternative to optimizing dock allocations is to
abandon the need to do so at all, by means of adopt-
ing a so-called dockless system. This approach has
become prevalent in China and is gradually being
implemented in North America on a much smaller
scale (both in comparison with the systems in China
and to the dock-based systems in North America); the
management of these systems has its own challenges,
and it remains to be seen whether these challenges
can be overcome. Hybrid systems in which differen-
tial pricing enables centralized docking/parking areas
that work in concert with dockless bikes may provide
another path forward, as is done, for example, in Port-
land’s Biketown system. Extensions of the methods
we developed here will likely see continued use in
this new setting as well.
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