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Detection of Nonrandom Sign-Based Behavior for

Resilient Coordination of Robotic Swarms
Paul J Bonczek , Rahul Peddi , Shijie Gao , and Nicola Bezzo

Abstract—Cooperative multirobot systems coordinate their mo-
tion by exchanging information through consensus schemes to
achieve a common goal. In the event of stealthy cyber attacks,
compromised measurements and communication broadcasts can
hijack a portion or the entire system toward undesired states.
However, in order for these attacks to be effective, they have to
exhibit nonrandom characteristics that contradict the expected
multirobot system behavior. To deal with these hidden attacks, we
propose a runtime monitoring framework that considers the signed
residual, defined as the difference between the expected and the
received information to identify and isolate unexpected nonrandom
behavior within the multirobot system. Specifically, the technique
that we propose—named Cumulative Sign detector—monitors and
compares changes in signed values of residual with their expected
occurrences to detect inconsistencies and trigger alarms when an
attack is discovered. Our results are validated theoretically by
providing detection bounds and are demonstrated with simulations
and experiments on swarms of unmanned ground vehicles under
different attacks in comparison with state-of-the-art residual-based
detection schemes.

Index Terms—Attack detection, distributed robot systems,
multirobot systems, swarms.

I. INTRODUCTION

M
ANY advancements in sensing, control, planning, mo-

bility, and networking have enhanced mobile robotic

systems allowing precise and robust autonomous operations that

were unthinkable until only recently. Within robotics, multiagent

system coordination and swarming have long been studied and

are gaining back attention, thanks to the many technological

advances, but this also brings upon security issues. Multia-

gent systems are typically used to perform coordinated tasks

in a distributed fashion. This collaborative nature allows for
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Fig. 1. Pictorial motivation of the problem investigated in this article: in
nominal conditions, (a) and (b) i.e., with no attack, a multiagent system can
reach the desired goal (red “X”), whereas in the presence of an attack [red disks
in (b)], the system is hijacked away.

numerous applications that would be more difficult or not

possible to perform with just a single agent, such as factory

and warehouse logistics [1], vehicle platooning [2], connected

vehicle-to-vehicle operations [3], [4], surveillance [5], disaster

relief [6], and exploration missions [7].

With such benefits in multirobot systems, however, comes the

risk of cyber attacks. In fact, all the aforementioned applications

are typically designed without considering cyber-security issues,

assuming that all the actors (i.e., other robots) in the multirobot

settings are cooperative. In the presence of a compromised robot

in the network, liveness (i.e., the ability to perform and complete

correctly a task) and safety (i.e., avoid collisions or reaching

undesired states) properties can be violated. The presence of ma-

licious actors in a network can potentially manipulate the entire

multirobot system, hijacking a mission and potentially leading

the system toward undesired states, as pictorially represented

in Fig. 1.

Such situations can be caused by compromised communica-

tions, which results in incorrect sharing of information between

robots, or by manipulated sensor measurements, leading com-

promised robots to react to altered on-board signals that are also

broadcast to surrounding neighbors. In a successful hijacking

attempt, an attacker is able to implement a stealthy attack

sequence to degrade system performance, all while remaining

hidden from detection. The term stealthy has been adopted in

a wide range of attack scenarios on stochastic systems, such
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as in zero-dynamics [8], replay [9], zero-alarm [10], and hid-

den [11] attack cases. In this article, the term stealthy indicates

an attack sequence that mimics normal (attack-free) behavior of

traditional detection schemes (i.e., a hidden attack [11]), where

attackers leverage the noise characteristics within a multirobot

system to evade detection during a hijacking attempt. To dis-

cover such attacks, the key principle that we leverage is that

an attacker attempting to hijack one or more robots within a

multirobot system via stealthy sensor and/or communication

attacks will inherently exhibit nonrandom/inconsistent behav-

iors in order to be effective, contradicting an expected behavior

of the system model. Specifically, in this article, we monitor

the residual—which is defined as the difference between a

measured/received value and the predicted/expected value—in

order to discover inconsistent behavior due to these hijacking

attempts. Our proposed monitoring scheme—which we name

the Cumulative Sign (CUSIGN) detector—differs from other

residual-based detectors [12]–[20] as its purpose is to monitor

for inconsistencies in signed behavior (i.e., nonrandomness) of

the residual in multirobot systems. Once an attack is discovered,

we propose a framework to 1) isolate the compromised robots

and 2) reconfigure the network to continue the desired task.

A. Related Work

The topic of resilience of multiagent systems has received

extensive consideration in the engineering and computer sci-

ence communities recently [21]. Much attention has gone into

resilience of these systems based on network connectivity, de-

termined by the underlying graph topology of the network [22].

A widely used method for multiagent resilience is through con-

sensus protocols that leverage the mean subsequence reduced

(MSR) algorithms [23]–[27], in which all vehicles in a network

come to an agreement on a global variable of interest (e.g.,

velocity, position, and heading angle). Such consensus protocols

are resilient to F number of compromised (e.g., noncooper-

ative) agents, which rely on network topologies that satisfy

the (2F + 1) robustness properties, in which every agent in

the network follows the strategy of diminishing the effect of

potentially deceptive information due to cyber attacks or faults

by ignoring up to F agents with shared values that contrast the

most from its own value of the global consensus variable. As

noted by Wang and Ishii [28], the purpose of MSR algorithms

is not to detect misbehaving (i.e., compromised) agents in a

network, but rather to simply leave out values consisting of the

greatest difference in magnitude.

An example of misbehaving agent detection in multiagent

networks was presented by Chen et al. [29] that propose the

Flag Raising Distributed Estimator such that each agent in

the network estimates an unknown parameter by an iterative

algorithm that leverages both its own sensor measurement and its

neighbor’s estimate of the parameter to detect the presence of ad-

versarial agents. As a neighbor’s parameter estimate differs from

an agent’s own parameter beyond a chosen threshold, the neigh-

bor is deemed adversarial, thus raising a flag. Zhao et al. [30]

utilize agents as mobile detectors that allow for isolation of any

malicious agents that collude with each other in an attempt to

take advantage of network connectivity constraints. Another ex-

ample can be found in [31], where every uncompromised agent

can detect and isolate misbehaving agents in leader–follower and

leaderless consensus networked systems. Each agent employs a

multiphase reputation-based protocol by relying on local obser-

vations and adaptive consensus weight updates on neighbors to

allow for resilient convergence of uncompromised agents in the

formation. Taking a different approach to detection, Khazraei et

al. [32] propose a network-wide shared watermarking signal that

is applied to control inputs of each agent in multirobot systems;

then, a residual-based anomaly detection scheme is used to

find any misbehaving agents. Lee and Min [33] leverage the

residual-based Cumulative Sum (CUSUM) anomaly detector,

first characterized in [34], to discover spoofs to on-board navi-

gation systems of robots in multirobot systems, thus allowing the

mobile robot team to arrive at its desired destination. Different

from the aforementioned works, our proposed decentralized

framework considers deceptive cyber attacks that intentionally

hide within the uncertainties to avoid detection from traditional

residual-based detection procedures in multirobot systems con-

sisting of stochastic linear time-invariant (LTI) modeled agents.

This work builds on previous research considering deceptive

cyber attacks to systems by injecting false data while trying to re-

main undetected within system noise [12]. Previous works have

analyzed the effects of malicious sensor attacks on individual

systems leveraging the Kalman filter for state estimation [35].

Similarly, Kwon et al. [16] characterize how undetected attacks

compromise closed-loop systems that utilize the Kalman filter

in terms of state and system dynamic degradation.

Several attack detection techniques exist in the literature that

also analyze the residual and leverage an alarm-based procedure,

one of which is Bad Data (BD) detection [12] that monitors

each element within the residual vector and triggers an alarm

any time the residual element extends beyond a chosen thresh-

old value. Another popular method is compound scalar testing

(CST) [16] that reduces the residual vector into a scalar test

measure of chi-square distribution. An improvement of CST

in [17] is made by including a coding matrix to sensor outputs

that is unknown to attackers to improve detection capabilities

of stealthy attacks. Furthermore, Murguia and Ruths [13], [14]

formalize a model-based detector of the CUSUM algorithm

that is commonly used as a monitor for change detection, by

leveraging known characteristics of the system dynamical and

noise models to provide a desired alarm rate during operation.

While these traditional alarm-based detection methods offer

compelling performance for discovering attacks, an intelligent

attacker may be able to exploit system uncertainties (e.g., mea-

surement noises) to evade detection by emulating an expected

alarm-based behavior. In order for an attack to be effective

(e.g., degrade system performance) while hiding within system

uncertainties, it must inherently create inconsistent nonrandom

signed behavior of the residual.

In our recent work, we have presented techniques to detect

nonrandom residual behavior due to sensor spoofing attacks,

like in [36]–[38]. In [36], the Wilcoxon Signed Rank and Serial

Independence Runs statistical tests [39], [40] were leveraged

to find inconsistencies within a windowed sequence of residual
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data. Furthermore, we characterized the CUSIGN detector [37]

on a single system, inspired by the CUSUM procedure in [34],

with the purpose of finding nonrandom residual behavior by

checking for changes in occurrence of the signed measurement

residual values while leveraging a chi-square detection scheme.

Additionally, in [37], we demonstrated the detection capabili-

ties of CUSIGN when compared to the model-based CUSUM

procedure (also utilizing the chi-square scheme) [13] in the

presence of stealthy sensor attacks that intentionally hide within

system noises. In this transaction, we expand on these works by

further developing runtime techniques to monitor for nonrandom

residual behavior and detect inconsistencies within multirobot

systems due to cyber attacks.

B. Contribution

This article has the following contributions. We propose a

novel residual-based attack detection scheme for multirobot

systems to find nonrandom residual behaviors due to stealthy

communication and sensor attacks that are undetectable by cur-

rent state-of-the-art residual-based methods. We then present a

decentralized framework, in which each robotic agent acts inde-

pendently by leveraging local information received from nearby

robots while employing the proposed detection scheme to enable

resilient control of the multirobot system during stealthy attacks

and reconfigure the network to maintain connectivity once one or

more compromised robots have been isolated from the network.

While we present the proposed framework in a general sense,

as a case study, we consider cooperative autonomous multirobot

applications that leverage virtual spring–damper mesh (VSDM)

physics for decentralized formation control [41]–[45]. Our pro-

posed framework, however, can be used in any proximity-based

consensus formation control (e.g., nearest neighbors [46]). Fi-

nally, we validate the proposed scheme on ample MATLAB and

Robot Operating System (ROS) simulations and experiments on

swarms of unmanned ground vehicles (UGVs).

The remainder of this article is organized as follows. In

Section II we begin by introducing the preliminaries and problem

formulation, followed by Section III, where we characterize the

residuals within a multirobot system and the CUSIGN attack

detector for detection of inconsistent (i.e., nonrandom) residual

behaviors. In Section IV, we describe the framework for resilient

coordination of the multirobot system against stealthy sensor and

communication attacks to maintain desired system performance.

Numerical simulations and experiment results using UGVs are

presented to verify our framework in Section V. Finally, Sec-

tion VI concludes this article.

II. PRELIMINARIES

Let us consider a multirobot system with N mobile robots

that maintains a proximity-based formation during a mission.

Such a system can be described using a directed graph, where

each directed edge represents the control influence on a robot

due to the proximity of a neighboring robot in the system. The

directed graph describing the multirobot system is modeled as

G = (V, E), where the set of vertices V = {1, 2, . . . , N} denote

the mobile robots and the set of edges E = {(i, j) | i, j ∈ V} are

control links between robots. An edge (i, j) ∈ E means that the

control input of robot i is affected by the state of robot j within

the proximity-based formation.

Each of the robots is modeled as an LTI dynamical agent as

follows:

ẋi = Axi +Bui + νi, i = 1, 2, . . . , N (1)

where xi ∈ R
n is the state vector, ui ∈ R

m is the control input,

A and B are state and input matrices with appropriate dimen-

sions, respectively, and νi ∈ R
n is the zero-mean Gaussian

process uncertainty. The robots successfully achieve tasks by

performing a proximity-based consensus protocolψ(·), in which

all robots i ∈ V agree on a decentralized control input ui ∈ R
m

that follows:

ui = ψ (xi,xj ,Oi) , i = 1, 2, . . . , N (2)

where xi is the state of robot i, xj represents the states of the

neighboring robots j, j �= i, and the set Oi denotes any nearby

obstacles of robot i that are utilized for obstacle avoidance.

To enable the robot network to satisfy the consensus-based

control protocol in order to accomplish tasks, the robots ex-

change necessary information (e.g., state vector) with each

other. The set I = {I1, I2, . . . , IN} describes the information

broadcast within the multirobot system that is available to any

robots within communication range δc > 0. When all robots are

cooperative, the mobile team is able to complete the desired

task at hand, where inputs are computed based on information

received from nearby robots.

Definition 1 (Communication graph): Given the N robots

in set V with a communication range δc, we define the graph

GC = (V, EC) with the edge set represented by

EC =
{
(i, j)

∣∣ ∥∥pi − pj

∥∥ ≤ δc, i, j ∈ V
}

(3)

as the communication graph of the robot set V , where pi and

pj are position coordinates (within the state vector) of robots

i, j ∈ V , i �= j.

The set of all neighboring robots within communication range

of a robot i, as defined by the communication graph, is repre-

sented by

Ci =
{
j ∈ V

∣∣ (i, j) ∈ EC
}
. (4)

Definition 2 (Control graph): Each robot i ∈ V leverages

the received information to form a neighbor set Si ⊆ Ci for

consensus control purposes to maintain a desired proximity from

other robots. We define the graph GU = (V, EU ) with the edge

set represented by

EU =
{
(i, j)

∣∣ j ∈ Si, ∀i ∈ V
}

(5)

as the control graph of the robot set V .

Given that the robot states are not directly available, each robot

i is equipped with Ns on-board sensors that provide sampled

state measurements every ts ∈ R+ seconds as indicated by the

output vector given by

y
(k)
i = Cx

(k)
i + η

(k)
i ∈ R

Ns (6)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 27,2023 at 14:31:34 UTC from IEEE Xplore.  Restrictions apply. 



BONCZEK et al.: DETECTION OF NONRANDOM SIGN-BASED BEHAVIOR FOR RESILIENT COORDINATION OF ROBOTIC SWARMS 95

Fig. 2. Classes of attacks considered in this article.

with the output matrix C and the measurement uncertainty

vector η
(k)
i at every time instant k ∈ N. The process and mea-

surement uncertainties of all robots are described in discrete

time as multivariate zero-mean Gaussian distributed noise with

covariance matrices Q and R, respectively. A Kalman filter,

with gain matrixK
(k)
i ∈ R

n×Ns , is implemented on-board each

robot i to provide discrete-time state estimates x̂
(k|k)
i ∈ R

n

using a discretized dynamical model of (1).

A. Attack Model

Summarized in Fig. 2 are the cyber attacks considered in this

article, which are a combination of on-board sensor and/or com-

munication spoofs that can maliciously affect any robot within

the multirobot system. Next, we provide a brief description for

each of the considered cyber attack scenarios.

(A1)—Communication attack: In this attack, an attacker in-

tercepts and replaces broadcast data such that the receiver and

sender data are different (e.g., a man-in-the-middle attack [47]).

We assume that an attacker is able to intercept communication

broadcasts replacing the message with modified, yet plausible

information. As an example, the sender of a communication

broadcast that is being attacked may not be aware of the attack

in which a receiver is obtaining falsified data. For the case

studies investigated in this article, the exchanged information

I(k) at each time instant k between robots is assumed to be

state estimates, inputs, and measurements. We will indicate the

spoofed broadcast information I
(k)
i → Ĩ

(k)
i from a robot i as

Ĩ
(k)
i =

{
x̂
(k|k)
i + ξ

(k)
i,x , u

(k)
i + ξ

(k)
i,u , y

(k)
i + ξ

(k)
i,y

}
(7)

where in the presence of an attack, at least one of the following

conditions is true: ξ
(k)
i,x �= 0 ∈ R

n, ξ
(k)
i,u �= 0 ∈ R

m, and ξ
(k)
i,y �=

0 ∈ R
Ns , resulting in I

(k)
i �= Ĩ

(k)
i .

(A2)—Sensor spoofing: The second attack that we consider

is sensor spoofing, in which an adversary manipulates on-board

sensor measurements as follows:

ỹ
(k)
i = y

(k)
i + ξ

(k)
i,y (8)

where ξ
(k)
i,y ∈ R

Ns is the attack vector that describes false data

injections to sensor measurements. An attacker manipulating on-

board sensor will be able to drive the state estimate of the robot

away from its true state, leading to unreliable on-board control

decisions and, consequently, diverting neighboring robots whose

control actions are based on inaccurate position information

received from the compromised robot.

(A3)—Coordinated attack: This is a combination of the previ-

ous two cases, in which attacks hide within the expected system

behavior acting and hiding in a coordinated way on both sensing

(A1) and communication (A2) constraints. The compromised

robot in this case is able to perform a completely different

operation while reporting plausible data to neighbor robots.

For each of the attack vectors (ξ
(k)
i,x , ξ

(k)
i,u , and ξ

(k)
i,y ), an at-

tacker is assumed to be capable of leveraging both process and

measurement uncertainties Q and R, to construct attacks that

emulate the expected behavior of measurements and communi-

cation broadcasts that can fool traditional residual-based attack

detection techniques.

B. Problem Formulation

In this work, we consider a typical scenario, in which robots

in a multirobot system coordinate their motion in a decentralized

fashion to maintain a desired formation while navigating toward

a given goal. The challenge is to provide a resilient approach

for the multirobot system to continue these operations in the

presence of cyber attacks that are intentionally hiding within

system noises while attempting to hijack the multirobot system.

Problem 1 (Detection of inconsistencies in multirobot sys-

tems): Consider a set of N homogeneous robots V in a multi-

robot system. Design a decentralized policy for each robot i ∈ V
to detect at runtime inconsistencies from any neighbor j �= i due

to cyber attacks on: 1) sensor measurements, i.e., if the following

holds:

E[yj − ŷij ] �= 0 (9)

or 2) the communication channel when the received state from

j is different from the predicted state computed by i

E[xj − x̂ij ] �= 0 (10)

where ŷij and x̂ij are measurement and state predictions of j
made by robot i, respectively.

To detect inconsistent behavior of neighboring robots, we

employ an attack detection scheme that monitors inter-robot

residuals (i.e., the comparison between received and predicted

information) for unexpected behavior within the robot network.

Upon detection, the system needs to isolate and reconfigure to

continue its planned operation. Formally, we have the following.

Problem 2 (Multirobot system recovery): Find a decentral-

ized policy for each robot i ∈ V to isolate and remove any

maliciously attacked robot j from its neighbor set for control Si

that presents inconsistent behavior flagged by solving Problem 1,

i.e., to obtain

S ′
i = Si \ {j}. (11)

With the malicious robot j removed from any neighbor set S ′
i,

the robot j is no longer able to influence the control of i.

III. NONRANDOM BEHAVIOR DETECTION OF RESIDUALS

In this section, we first characterize both the on-board and

inter-robot residuals that are monitored for nonrandom (i.e.,
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inconsistent) behavior due to cyber attacks within multirobot

systems. We then formalize the detection procedure that searches

for nonrandom behavior in the residual sequences, before de-

scribing an attack sequence that an intelligent attacker must take

to avoid detection.

A. Residual Characterizations

In our proposed detection framework within multirobot sys-

tems, each robot i ∈ V monitors its on-board measurement

residual for discovery of sensor attacks as well as two types of

inter-robot residuals to identify inconsistent behavior of commu-

nication broadcasts or sensor information that are received from

neighboring robots j within the control graph, i.e., (i, j) ∈ EU .

Let us define the on-board measurement residual vector r
(k)
i on

a robot i as

r
(k)
i = y

(k)
i −Cx̂

(k|k−1)
i ∈ R

Ns (12)

to monitor for on-board sensor attacks, which has an expected

covariance matrix Σ
(k)
i = E[r

(k)
i (r

(k)
i )T] = CP

(k|k−1)
i CT +

R during attack-free conditions, with P
(k|k−1)
i denoting the

prediction error covariance. Each sth on-board measurement

residual element is normally distributed as follows:

E[r
(k)
i,s ] = 0, Var[r

(k)
i,s ] =

(
σ
(k)
i,s

)2

(13)

where (σ
(k)
i,s )

2 is the sth diagonal element of the on-board

measurement residual covariance matrix Σ
(k)
i .

In our proposed multirobot monitoring framework, each robot

i ∈ V monitors its neighbors for consistent behavior by comput-

ing state predictions of each neighbor j ∈ Si using their received

state x̂
(k|k)
j and input u

(k)
j information by

x̂
(k+1|k)
ij = Adx̂

(k|k)
j +Bdu

(k)
j ∈ R

n (14)

where Ad and Bd are discrete-time equivalents of the known

robot dynamical model in (1). A robot i leverages these state

predictions by comparing them to the received state and mea-

surement information from neighboring robots. Let us define the

inter-robot state residual by the following:

r̆
(k)
ij = x̂

(k|k)
j − x̂

(k|k−1)
ij ∈ R

n (15)

which enables a robot i to monitor for consistent state and input

information from a robot j. Each qth element q ∈ {1, . . . , n} of

the inter-robot state residual vector (15) is normally distributed

as follows:

E[r̆
(k)
ij,q] = 0, Var[r̆

(k)
ij,q] =

Ns∑

s=1

(
K

(k)
j,(q,s)σ

(k)
j,s

)2

(16)

with K
(k)
j,(q,s) representing the element at the qth row and the sth

column of the Kalman gain at time k on robot j. Additionally,

robots compute the inter-robot measurement residual

r
(k)
ij = y

(k)
j −Cx̂

(k|k−1)
ij ∈ R

Ns (17)

to discover sensor attacks that may be occurring on the neigh-

boring robot. The inter-robot measurement residual shares the

expected zero-mean normally distributed characteristics of the

on-board measurement residual in (13). Note that in order for

a robot i to compute inter-robot residuals of a robot j at a time

k in (15) and (17), a state prediction (14) must be made at the

previous time k − 1.

For ease of notation throughout the remaining of this section,

we exclude subscripts i on any on-board measurement residual

and ij for inter-robot residuals between robots i and j. More-

over, we further simplify notation by referring the on-board

and inter-robot residual vector elements s ∈ {1, . . . , Ns} and

q ∈ {1, . . . , n}, respectfully, as the variable r(k), as all residuals

are zero-mean normally distributed during nominal nonattacked

conditions.

A robot that is operating in normal conditions will have

an expected occurrence of signed residual characteristics over

time. With these considerations in mind, we propose a detector

to analyze the sign of incoming residuals within multirobot

systems to determine whether the residual behavior follows

the expected random behavior. This technique, which we name

the CUSIGN detector, is unique to previous state-of-the-art

residual-based detectors [12]–[20] in that instead of monitoring

for magnitude changes, it relies on the sign of a residual variable

within an expected distribution in order to discover stealthy

cyber attacks that may remain hidden within noisy systems.

Since the magnitude of a residual variable is overlooked, the

CUSIGN detector is nonparametric in nature and can be used

on any known distribution (see, e.g., [37]). Next, we briefly

introduce the technique used for alarm rate estimation before

characterizing our alarm-based attack detector.

The signed residual: In normal operating conditions, i.e., in

the absence of attacks defined in (A1)–(A3), the signed value

of both the measurement and state residuals have an expected

probability of being higher or lower than their expected values

E[r(k)] = 0. The signed residual probabilities Pr(·) are com-

puted based on the expected residual distributions characterized

in Section III-A by the following:

Pr
(
r(k) < E[r(k)]

)
= Φ

(
E[r(k)]

)

Pr
(
r(k) > E[r(k)]

)
= 1− Φ

(
E[r(k)]

)
(18)

whereΦ(·) is the cumulative distribution function of the standard

normal distribution [48]. The sign of r(k) with respect to the

reference E[r(k)] follows:

sgn(r(k)) =

⎧
⎨
⎩

1, if r(k) > E[r(k)]
0, if r(k) = E[r(k)]

−1, if r(k) < E[r(k)]

(19)

such that the probability of each scenario occurring is

Pr
(
sgn(r(k)) = 1

)
= p+

Pr
(
sgn(r(k)) = 0

)
= 0

Pr
(
sgn(r(k)) = −1

)
= p− = 1− p+ (20)
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where p+ = p− = 1
2 for a zero-mean normally distributed resid-

ual from (13) and (16), as the mean and median are equal.

The CUSIGN detector leverages the expected probabilities

Pr(r(k) > E[r(k)]) = p+ and Pr(r(k) < E[r(k)]) = p− in de-

termining nonrandom behavior in the presence of attacks.

Alarm rate estimation: In the design of the nonrandomness

detector, alarms are triggered during operation to aid in de-

termining if a system is behaving normally. In our case of a

multirobot network, the robots leverage this alarm-based method

for self-detection and to monitor the residual sequence of their

neighbors for inconsistent behaviors. Given a robot that is not

under attack, the frequency at which these alarms are triggered

should follow an expected alarm rate. We employ a windowless

method, which we name memoryless runtime estimator (MRE),

for computing the alarm rate estimate utilizing a “pseudo-

window” length �. The runtime update equation of the MRE

for alarm rate estimation follows:

Â(k) = Â(k−1) +

[
ζ(k) − Â(k−1)

]

�
(21)

where ζ(k) ∈ {0, 1} is the alarm, Â(k) ∈ [0, 1] is an estimated

alarm rate at every time instant k, and Â(0) = E[A] initially

at k = 0, where E[A] ∈ [0, 1] is the expected alarm rate (to be

characterized for CUSIGN in Section III-B). The resulting alarm

rate estimate can be approximated to a normal distribution when

� ≥ 10, as demonstrated in [37], with a resulting variance that

shares properties of the exponential moving average [49].

B. CUSIGN Detector

To detect information inconsistencies (i.e., nonrandomness)

in multirobot systems due to cyber attacks, we leverage the

CUSIGN attack detector that analyzes residuals to determine

whether nonrandom behavior is occurring. The CUSIGN detec-

tor monitors the residual over the sequence of time and outputs

an alarm when a threshold is reached, which is then sent to the

MRE to provide an updated alarm rate estimate. For any given

user-defined threshold, an expected alarm rate can be found that

is independent of the system model.

The CUSIGN procedure is an accumulation of signed residual

values by two CUSIGN test variables S(k),+ and S(k),−, where

each signifies a test variable at time instant k. Each test variable

checks for changes in the probability for the signed residual

value: one for positive and the other for negative changes. The

following procedure summarizes the CUSIGN detector for both

positive and negative cases:

S(k),+ = max
(
0, S(k−1),++ sgn(r(k))

)
,

S(k),+ = 0 and Alarm ζ(k),+ = 1, if S(k),+= τ

S(k),− = min
(
0, S(k−1),−+ sgn(r(k))

)

S(k),− = 0 and Alarm ζ(k),− = 1, if S(k),−= − τ
(22)

The working principle of CUSIGN test variable sequences is

to accumulate the signed residual value sgn(r(k)) ∈ {−1, 0, 1}
and trigger an alarm ζ(k),+, ζ(k),− ∈ {0, 1} when the test vari-

ables reach their corresponding threshold values τ ∈ N+. As

Fig. 3. Example of transitions for the CUSIGN test variable S(k),± with a
threshold τ = 2 given a sequence of data.

Fig. 4. Markov chain for both positive (top) and negative (bottom) cases of
the CUSIGN test variable sequence with triggering threshold states in red.

either of the test variables reach their respective thresholds, then

the test variable is reset to zero. An example of the CUSIGN

detection procedure (22) is shown in Fig. 3, where an incoming

data sequence of residuals transition the positive and negative

CUSIGN test variables S(k),+ and S(k),−. When either test

variable reaches the threshold, for this example τ = 2, an alarm

is triggered (indicated by the red circles) and a reset-to-zero con-

dition occurs. The CUSIGN detector monitors the occurrence

of triggered alarms as the CUSIGN test variables reach their

respective thresholds, where irregular occurrences indicated an

attack may be happening.

Similar to the implementation in [13], the transition of the

CUSIGN test variable sequences can be constructed as a Markov

chain with a transition matrix modeled from the probabilities p+
and p− computed in (20). Consisting of a user-defined threshold

τ to trigger an alarm, we show the transitions of S(k),± with a

Markov chain diagram in Fig. 4.

Given a chosen threshold value τ ∈ N+ as a value that

triggers an alarm when |S(k),±| = τ , we describe the Markov

chain in Fig. 4 in the form of a Markov transition matrix

T ± ∈ R
(τ+1)×(τ+1), denoted for both the positive and negative

transition matrices, T + and T −. The CUSIGN Markov chain,

occurring in a discrete manner, contains τ + 1 states denoted

as M = {M0,M1, . . . ,Mτ}, where Mτ is an absorbing state

that is equal to the threshold, causing the CUSIGN test sequence

S(k),± to reset to M0. The CUSIGN Markov transition matrix

for the positive T + with a probability distribution of sgn(r(k))
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is written as

T + =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p− p+ 0 0 . . . 0

p− 0 p+ 0 . . . 0

0 p− 0 p+ 0
...

. . .
. . .

...

0 . . . 0 p− 0 p+

0 . . . 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
Q+ ∗

01×τ 1

]
.

(23)

The transition matrix T + structure remains the same on any

system, where the matrix size depends only on the value of the

threshold τ . Transition probabilities for transient states in T +

adhere to the following:

⎧
⎨
⎩
Pr(Mj →Mj+1) = p+, for j = {0, . . . , τ −1}
Pr(Mj →Mj−1) = p−, for j = {1, . . . , τ −1}
Pr(M0 →M0) = p−

(24)

and the final row represents an absorbing (i.e., triggering)

state containing elements equal to 0, besides the last element

equaling 1.

We define Q+ ∈ R
τ×τ as the fundamental matrix obtained

from T + with its last row and column removed (i.e., the absorb-

ing state at threshold τ is removed), representing the transition

probabilities to and from the transient states. Elements of Q+

are all nonnegative, and row sums are equal to or less than 1,

while the eigenvalues satisfy ρ[Q+] < 1 such that (Q+)k → 0
as k → ∞ and

∑∞
k=0 (Q

+)k = (Iτ −Q+)−1, where ρ[·] is the

spectral radius and Iτ is the identity matrix of size τ . Leveraging

the fundamental matrix Q+, we can compute an expected alarm

rate as indicated in the following lemma.

Lemma 1: Given a system with a CUSIGN detector (22) with

a user-defined threshold τ ∈ N+ that is not affected by cyber at-

tacks such that the residual sequence satisfies r(k) ∼ N (0, σ(k)),
then the inverse of the first element of the following vector:

µ+ = (Iτ −Q+)−1
1τ×1 = (µ+

1 , . . . , µ
+
τ )

T (25)

is the expected alarm rate, i.e., E[A+] = (µ+
1 )

−1.

Proof: Given the Markov chain containing τ + 1 states de-

noted by M = {M0,M1, . . . ,Mτ}, a fundamental matrix Q+

is taken from a designed Markov transition matrix (23) to

satisfy the transition probabilities (24). Leveraging the theory

of average run length (ARL) introduced in [50], the ARL is

defined as the average length of time for the test sequence to

reach the threshold τ to trigger an alarm, determined by the

fundamental matrix Q+ containing the transient states within

T +. By definition, the inverse of the ARL to observe an alarm

results in the average frequency of obtaining an alarm, known as

the alarm rate. The ARL can be found by computing (25); then,

by inverting the first element of µ+, i.e., (µ+
1 )

−1, we finally

obtain the expected alarm rate E[A+] = (µ+
1 )

−1.

Remark 1: The design of transition matrix T − with subse-

quent fundamental matrix Q− and expected alarm rate E[A−] =
(µ−

1 )
−1 for the negative case is computed by (23)–(25) with

transition probability (p+ and p−) signs inverted.

TABLE I
EMPIRICAL VALUES FOR THE SCALING VALUE θ GIVEN τ = 1, 2, 3, 4

The expected variance of estimated alarm rates A(k),± using

MRE for runtime estimation have been found through empir-

ical results in [37]. A scaling factor θ ∈ R+ is found to be

dependent on the chosen threshold τ . The observed MRE scaling

factor approximates of θ are presented in Table I for thresholds

τ = 1, 2, 3, 4 and � ≥ 10 (see [37]).

Proposition 1: Assuming that a residual is not affected by a

cyber attack while using (21) for alarm rate estimation, the alarm

rate is normally distributed by the following:

Â(k),± ∼ N

(
E[A±],

θE[A±](1− E[A±])

2�− 1

)
. (26)

By leveraging the expected distribution of the estimated alarm

rate in (26), bounds of the alarm rate can be made. The following

corollary provides alarm rate detection bounds for the CUSIGN

detector.

Corollary 1: Given a residual r(k) monitored by the CUSIGN

detector (22) consisting of a threshold τ ∈ N+, detection of

cyber attacks occurring for a given level of significance α ∈
(0, 1) when Ω− ≤ Â(k),± ≤ Ω+ is no longer satisfied.

Proof: With the CUSIGN detector consisting of a threshold

τ , an expected alarm rate E[A±] found in (25), and leveraging

(21) with a pseudo-window of length �, the distribution of the

estimated alarm rate follows the normally distributed properties

from (26). Detection bounds Ω± = [Ω−,Ω+] of a user-defined

level of significance α ∈ (0, 1) (i.e., the probability that a false

detection occurs in nominal conditions) follow:

E[A±]−
∣∣∣Φ−1

(α
2

) ∣∣∣
√

θE[A±](1− E[A±])

2�− 1
≤ Â(k),±

≤ E[A±] +
∣∣∣Φ−1

(α
2

) ∣∣∣
√

θE[A±](1− E[A±])

2�− 1
(27)

where Φ−1(·) is the inverse cumulative distribution function of

a standard normal distribution [48], thus satisfying Corollary 1

and concluding the proof.

In summary, with the CUSIGN detection procedure, we can

monitor and detect nonrandom behavior in residual data. Under

a worst-case scenario (i.e., assuming an attacker has full knowl-

edge of the system model and detection procedure), an intelligent

attacker could remain hidden by triggering alarms at rates that do

not travel beyond detection bounds while maintaining an attack

vector. However, the CUSIGN detector’s attack deterring effects

will be limited, and one could implement multiple detectors in

parallel with different threshold values τ to further impair an at-

tacker’s ability to remain hidden. For a more detailed discussion

about undetectable attacks, the reader can check Appendix A.

In the next section, we expand these thoughts and show how to

deploy the proposed technique on the multirobot problem under

the attacks presented in Section II-A.
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Fig. 5. Overall architecture describing our resilient robotic framework executed by each robot i ∈ V in the network. Both the multirobot detection on its neighbors
j ∈ Si and self-detection on itself are performed to find stealthy attacks that exhibit nonrandom residual behavior.

IV. MULTIROBOT SYSTEM ATTACK DETECTION AND

RECOVERY

In this section, we show how to deploy the proposed CUSIGN

technique on a multirobot system to detect nonrandom (i.e.,

inconsistent) residual behavior due to cyber attacks and to

recover/reconfigure the system. Our scheme is leveraged to

monitor and detect if neighboring robots are compromised, as

well as to perform self-monitoring for discovering inconsis-

tencies to on-board sensor measurements due to cyber attacks.

Fig. 5 summarizes the high-level procedure in a block diagram

that is executed by each robot in the network to monitor for

cyber attacks and locally recover the system when attacks have

been detected. As a running case study for the remainder of

this article, we employ a VSDM with the Gabriel graph (GG)

rule for proximity-based formation control [51] to demonstrate

our detection and recovery approach on multirobot system for-

mations. However, our approach is valid for any cooperative

proximity-based formation control for multirobot systems (e.g.,

nearest neighbor [46]).

A. Virtual Spring–Damper Mesh

In this article, we consider VSDMs alongside the use of the

GG rule [52], [53] for proximity-based control of multirobot sys-

tems performing coordinated operations. Given that all agents

are cooperative, this method allows for a decentralized algo-

rithm, where agents are required to leverage local (proximity-

based) interactions that result in a desired global behavior of the

system. Furthermore, systems that leverage VSDMs incorporate

favorable characteristics that include scalability, efficiency, and

known stability properties such that all decentralized agents

converge to a global consensus [41], [54]. Numerous works

have leveraged VSDMs for various applications [42]–[45], [51],

[55], [56], where all of these works did not consider security

issues. A single compromised agent affected by cyber attacks can

hijack the entire multirobot system to an undesirable state due to

the control interconnections that are propagated throughout the

robot network, as demonstrated in Fig. 1. In a decentralized

manner, our work allows the agents to identify and remove

nearby agents from the network (i.e., the control graph) that

could potentially cause undesired behavior.

The objective of the multirobot system is to navigate to a

goal location while maintaining a desired distance between

neighboring robots. Furthermore, the multirobot system must

be resilient to stealthy communication and sensor cyber attacks.

In addition, we make the assumption that the robot network is

navigating in an unknown cluttered environment: to this end,

all robots are fitted with a range sensor providing 360◦ field

of view (FOV) (e.g., a lidar) with limited range δr < δc for

obstacle/collision avoidance.

Each robot i is controlled to follow the VSDM network

dynamics by leveraging a virtual spring–damper physics model

ui = p̈i =

[∑

j∈Si

κij(lij − l0r)
�dij +

∑

o∈Oi

κio(lio − l0o)
�dio

+ κiglig�dig

]
− γiṗi ∈ R

m (28)

where Si is the neighbor set of robot i ∈ V in the control graph

GU andOi is the set of obstacles within the FOV of robot i. Given

the use of a virtual spring model, l denotes the spring length

between a robot i and neighboring robots j (lij), obstacles (lio),

and the goal g (lig), while l0 are the desired virtual spring rest

lengths, κ represents the spring constants, and �d is a unit vector.

Given damping coefficients that satisfy γi > 0, the multirobot

system leveraging the VDSM emulates a true spring–damper

mesh, where dissipating forces act against the velocities, leading

to an equilibrium state of zero velocity in the absence of other

external forces.

Given the set of robots V , each robot i ∈ V computes its

neighbor set for controlSi ⊂ Ci from the received information of

nearby robots (4) in the communication graph GC by following

the GG rule [52], [53]. A GG is constructed in the following

way: a robot j belongs to the neighbor set Si of a robot i (i.e.,

a directed control edge is formed between i and j) if and only

if there are no other robots h ∈ Ci within the circle of diameter

ij [57]:

Si =
{
j ∈ Ci \ V

C
i

∣∣ îhj ≤ π/2
}

(29)

where îhj, i �= j �= h, is the interior angle of the three robot

positions’ configuration from the on-board position estimate

p̂
(k)
i of robot i and position estimates p̂

(k)
j and p̂

(k)
h from received

information of nearby robots j and h. The set VC
i ⊂ V in (29)

denotes robots that are deemed compromised by robot i, such

that control edges are not constructed to remove compromised
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Fig. 6. (a)–(d) Sequence of snapshots with a robotic swarm consisting of
N = 15 robots navigating toward a goal region (in green) using the VSDM
network model (28) in the absence of cyber attacks.

robots from the network for resilient control. The determination

of the compromised set VC
i is discussed in Section IV-B. As a

side note, the utilization of the GG rule allows for connected

graphs with no crossing edges and, hence, an increased and

uniform coverage as opposed to other graph techniques [58].

In Fig. 6, we show a sequence of snapshots for a simulation

of a swarm of 15 robots deployed using the virtual spring model

with GG in (28) and (29) to navigate toward a desired goal region

while avoiding any obstacles in the environment.

B. Attack Detection and Reconfiguration

Robots within the multirobot system monitor for inconsis-

tent behavior of their neighboring robots to avoid stealthy at-

tacks from hijacking uncompromised robots and, potentially,

the entire robot network. Each robot i ∈ V leverages received

information I
(k)
j from any neighboring robot j ∈ Ci to perform

attack detection by monitoring elements within the inter-robot

measurement (17) and inter-robot state (15) residual vectors, as

characterized in Section III-A.

To indicate that a robot i ∈ V is monitoring an sth inter-robot

measurement residual element and the qth inter-robot state

residual element on a robot j ∈ V , we denote the alarm rates

as Â
(k),±
ij,s = {Â

(k),+
ij,s , Â

(k),−
ij,s } and Â

(k),±
ij,q = {Â

(k),+
ij,q , Â

(k),−
ij,q },

respectively. If an alarm rate no longer satisfies detection bounds

in Corollary 1 (i.e., suggesting inconsistent behavior), a robot i
deems the monitored robot j compromised. Once inconsistent

behavior is detected, the robot i then isolates and removes

the compromised robot j by placing it in its compromised set

VC
i ⊂ V . By placing robot j in its compromised set, robot i

performs a local reconfiguration of the network topology using

the GG rule on the communication graph presented in (29),

hence forming a new control neighbor set S ′
i = Si \ {j}. A

previously found compromised robot j is allowed re-entry into

the robot network, and the control graph, in the event that the

attack disappears and j behaves as expected again (i.e., the

Fig. 7. Example of a network reconfiguration where uncompromised robots
isolate and remove compromised robots that are sending spoofed position
broadcasts during a communication attack.

Fig. 8. (a)–(d) Swarm with four robots (red) that are experiencing malicious
sensor attacks, causing their state estimates (white disks) to diverge from their
true state. In turn, the network is dragged away from its intended goal (green).

residuals follows the expected distribution). In this case, a local

reconfiguration is again invoked using GG to compute Si.

Fig. 7 shows a pictorial example of the scheme in which

compromised robots 4 and 5 are broadcasting spoofed posi-

tion information [i.e., communication attack (A1)] to the robot

network: the empty disks represent the spoofed broadcast po-

sition coordinates of the true positions of the compromised

robots (red disks). The uncompromised robots (blue disks)

detect nonrandom (i.e., inconsistent) behavior occurring from

received information of robots 4 and 5, resulting in removal of

any control edge connections that could affect the multirobot

system performance, where (i, j) /∈ EU , i ∈ V , and j = {4, 5}.

After removing the malicious nodes, the remaining seven nodes

reconfigure using the formation rules presented in Section IV-A.

Fig. 8 shows, as an example, the effect of a stealthy on-board

sensor attack (A2 on an unprotected swarm with the same

task in Fig. 6. The attack begins at time step k = 400 on four

robots, dragging the entire multirobot system away from the

desired goal. In this example, the empty red disks represent the

unreliable on-board state estimates of the compromised robots

that are used for on-board control and are also broadcast to

nearby agents in the robot network, whereas the red disks denote

the true positions of the compromised robots. The unreliable

states that are broadcast to nearby robot are then leveraged

by the uncompromised robots (denoted by blue disks), which
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propagates the attack effects throughout the entire robot network

affecting the overall mission.

C. Self-Detection

Similarly, each robot i ∈ V performs self-monitoring by

leveraging the on-board measurement residual to search for

stealthy on-board attacks on its sensors. As shown in Fig. 5,

the CUSIGN detector is placed in the feedback of the traditional

control loop to monitor the on-board measurement residual for

potential attacks. As a sensor’s measurements no longer satisfy

an expected random behavior (i.e., alarm rates travel outside

detection bounds), a robot i places itself into its compromised

set i ∈ VC
i ⊂ V .

In this article, the self-detected compromised robot isolates

itself from the rest of the network by cutting any communication

broadcasts to the network (i.e., (i, j) /∈ EU , ∀j ∈ V) and also

stops moving toward the goal; formally, it will remove the

first and third terms from (28), leaving any control effort only

toward obstacle and other robot avoidance. While we decided

to implement such a law for ease, different behaviors can be

considered as we will discuss in more detail in Section VI.

D. System Stability

The multirobot system that leverages a VSDM with the GG

rule for formation control, together with the attack detection

scheme presented in Section III, creates a switching hybrid

system, in which edges construct and deconstruct as the robots

move through the environment. Past works have proved the static

(i.e., fixed topology) and dynamic (i.e., switching topology) sta-

bility of this time varying switching system by using Lyapunov

theory [41], [43].

Here, we extend some of these results and provide a stability

proof also considering the cyber-security detection and isolation

procedures described in the previous sections. As compromised

robots are subject to cyber attacks that present detectable nonran-

dom behavior, certain directed edges (i.e., virtual springs used

for control) from compromised robots are eliminated, while oth-

ers between the remaining uncompromised robots may appear

for network reconfiguration. Assuming that cyber attacks are

detected using the proposed CUSIGN method, the multirobot

system is guaranteed to reconverge to a new equilibrium af-

ter network reconfiguration occurs due to compromised robots

being removed from the system, as formally described in the

following theorem.

Theorem 1: The hybrid system in (28) with switching dynam-

ics imposed by the GG rule (29), the CUSIGN (22) detector,

and the network reconfiguration scheme, as discussed in Sec-

tions IV-B and IV-C, is stable (i.e., an equilibrium rest state can

be reached).

Proof: See Appendix B.

V. RESULTS

The proposed framework was validated with extensive MAT-

LAB simulations as well as various ROS experiments on a swarm

of TurtleBot UGVs and also Clearpath Jackal UGVs in Gazebo

to cover different attack scenarios illustrated in Section II-A.

Next, we present a few representative cases. While in this

article, we showcase a few representative examples, extensive

simulations and experiments under more attacks can be found

in the provided supplemental material.1

Our proposed CUSIGN detector is compared with a BD

detector [12] and a model-based CUSUM detector [13], whose

detection procedures leverage alarm triggering based on thresh-

olding magnitude values of the residual (see [13] for details on

how to determine model-based BD and CUSUM thresholds). In

comparison to BD and CUSUM detectors, our nonrandomness

detector is nonparametric and only considers the signed value

of the residual, while the residual magnitude is ignored. As we

will see, certain attacks are undetectable by the BD and CUSUM

detectors; however, a more resilient approach would be to de-

ploy these magnitude-based detectors alongside the CUSIGN

detector. Throughout the simulations and experiments in this

section, all detectors use a level of significance α = 0.0004
(i.e., ∼ 3.3σ) for detection bounds, which are represented as

dashed red lines in the figures displaying results for detector

alarm rates. Additionally, BD and CUSUM detectors are tuned

for a user-defined expected alarm rate Ades and their alarm rate

detection bounds are chosen by assuming a normal approxima-

tion of the binomial alarm rate value (i.e., {0, 1}) using MRE

(21) for alarm rate estimation.

A. MATLAB Simulations

For the MATLAB simulations, we considered double-

integrator point mass dynamics for N = 15 robots in the swarm

represented with the virtual spring model in (28) with each

robot i ∈ V having a state vector xi = [pxi , p
y
i , v

x
i , v

y
i ]

T ∈ R
n

consisting of positions and velocities in the xy plane. Through-

out all simulations, the set of point mass robots V shares a

maximum communication range δc = 15 m, maximum range

sensing distance δr = 3 m, virtual spring rest lengths l0r = 4 m

and l0o = 3 m, damping constant γi = 3, and spring constants

κij = 15, κio = 40, and κig = 5. A pseudo-window of length

� = 50 for MRE alarm rate estimation (21) is used by all

detectors. Additionally, the CUSIGN test variable threshold

is chosen to be τ = 2 such that the expected CUSIGN alarm

rates are E[A±] = 1
6 . Each robot i ∈ V measures the x and

y positions with a sampling time ts = 0.05 s, with measure-

ment and process noise covariances R = diag(0.05, 0.05) and

Q = diag(1e−3, 1e−3, 1e−5, 1e−5). During all simulations,

the CUSIGN detector is compared to the BD and CUSUM detec-

tors, which monitor both the measurement and state residuals of

the position for all robots i ∈ V , which have thresholds tuned for

an alarm rate ofAdes = 0.15. Additionally, the CUSUM detector

uses a bias of bs = 1.1b̄s (see [13] for further details on tuning

of the BD and CUSUM detectors).

Two case studies are presented next: 1) a man-in-the-middle

communication attack and 2) a sensor spoofing attack. In both

cases, we consider the multirobot operation presented previously

1[Online]. Available: https://www.bezzorobotics.com/tro21
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Fig. 9. (a) and (b) Robotic swarm navigating toward a goal point (in green)
while protected from stealthy ramp attacks on communication broadcasts.

Fig. 10. Resulting alarm rates of robot 2 performing multirobot detection on
any neighboring robots j ∈ S2 from the case depicted in Fig. 9 for inter-robot (a)
measurement and (b) state residuals. The state residual is able to detect stealthy
communication attacks that are not detected by the measurement residual from
robots j = {4, 13}.

in Fig. 6 with robots i = {4, 5, 7, 8} under attack from time

instant k = 500.

Communication attack: Our first case study involves a stealthy

man-in-the-middle communication attack (A1), as discussed in

Section II-A, in which position measurement data from com-

promised robots are intercepted and replaced with incorrect

data before broadcasting to the rest of the swarm while slowly

ramping the position in the (−x)-direction. Fig. 9 shows the

behavior of the swarm once we deploy our framework, in which

the compromised robots are detected in this case through the

CUSIGN (22) detector and isolated by their neighbors.

Fig. 10 shows the evolution of the alarm rate from the per-

spective of robot 2 monitoring robots j = {2, 3, 4, 5, 7, 8, 9, 11}
that belong to its neighbor set S2 at some point in time k > 0
during the stealthy communication attack case study presented

in Fig. 9. For multirobot detection, robot 2 monitors both the

inter-robot measurement and state residuals of its neighboring

robots j ∈ S2. As shown in Fig. 10(a), the CUSIGN detector

of robot 2 that monitors the measurement residual r
(k)
2j of its

neighboring robots j ∈ S2 does not detect the attack, while in

Fig. 10(b), the detectors that are monitoring the inter-robot state

residual r̆
(k)
2j find the inconsistent behavior as the attacker is

pushing the state estimate slowly to one side.

Sensor attack: Our second case study involves stealthy on-

board sensor measurement attacks (A2) described in (8), at-

tempting to hijack compromised robots to an undesired state.

Similar to our simulation case of a communication attack, an

Fig. 11. (a) and (b) Robotic swarm navigating toward a goal point (in green)
while protected from stealthy attacks to on-board sensor measurements.

Fig. 12. Alarm rates comparison between (a) CUSIGN, (b) CUSUM, and (c)
BD for the case study shown in Fig. 11 for self-detection while monitoring the
on-board measurement residual for position in the x-direction as stealthy cyber
attacks affect sensors on-board robots i = {4, 5, 7, 8}.

attack is slowly ramping the position measurement in the (−x)-

direction, while remaining hidden from previously state-of-the-

art detection schemes. Fig. 11 displays the detection results

against stealthy sensor attacks, where uncompromised robots

isolate and remove malicious robots from the network while

maintaining the desired task of navigating to the goal point. The

sensor spoof considered deliberately hides within the noise to

evade detection from the CUSUM and BD detectors, as shown

in Fig. 12(b) and (c), but the attacker leaves trails of nonrandom

residual behavior, which is detected by the CUSIGN detector

[see Fig. 12(a)].

B. TurtleBot Experiments

Experimental validations are performed onN = 5TurtleBot2

differential-drive robots performing a go-to-goal operation

within a laboratory environment. The hardware used is a Lenovo

P51 Workstation equipped with an Intel Core i7-6820HQ

processor at 2.7-GHz running Linux with ROS enabled. The

controller for each robot and the attacks are implemented in

MATLAB interfaced with ROS through the Robotic Systems

Toolbox, and the operation is executed at 100 Hz. In this

experiment case study, the network of UGVs is tasked to navigate
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Fig. 13. (a)–(e) Robotic swarm attempting to navigate toward a goal region (in green) while unprotected from stealthy attacks on communication broadcasts.

Fig. 14. (a)–(e) Robotic swarm attempting to navigate toward a goal region (in green) while protected from stealthy attacks on communication broadcasts. False
broadcast information of the robot positions are discovered, and the swarm is able to isolate and remove any robots with spoofed communication broadcasts.

to a goal region (in green) while resiliently maintaining a desired

network topology that satisfy edges by the GG rule (29).

Two different cases are implemented: 1) communication

attack without detection and 2) communication attack with

detection, with robots i = {3, 5} ∈ V subject to attacks. For

both cases, we use the following system parameters: δc = 3 m,

δr = 0.6m, l0r = 0.7m, l0o = 0.5m, and γi = 0.5. Measurement

noise covariance follows R = diag(0.01, 0.01, 0.002, 0.0004)
on positions, velocity, and heading angle states, while a

pseudo-window length � = 40 for MRE alarm rate estimation

(21) is used for all detectors. We begin with the case where

no detection occurs in Fig. 13, showing how a stealthy com-

munication attack is able to drive the network of UGVs to an

undesirable state, away from the intended goal region. Fig. 14

shows the case where we have the CUSIGN detector moni-

toring the inter-robot state residual from information received

from neighboring robots. The communication attacks on robots

{3, 5} are discovered by the remaining uncompromised robots,
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Fig. 15. Resulting alarm rates from the perspective of robot 1 for the experi-
ment in Fig. 14 while monitoring the inter-robot residuals. (a) Robot 1 monitoring
inter-robot measurement residuals. (b) Robot 1 monitoring inter-robot state
residuals.

resulting in a network reconfiguration to remove the attacked

robots. Fig. 15 displays the detector results from the perspective

of robot i = 1 from Fig. 14, where in Fig. 15(a), the stealthy

communication attack is not detectable on the inter-robot mea-

surement residual, but in Fig. 15(b), it leaves traces of nonran-

dom behavior in the state residual r̆
(k)
1j,q for the position in the

x-direction ∀j ∈ V \ {1}.

C. Gazebo Experiments

To further reinforce these results, a case study on sensor

spoofing was demonstrated with an experiment in Gazebo with

N = 10 Clearpath Jackal Robots performing a go-to-goal op-

eration in a larger environment with more obstacles, as demon-

strated in Figs. 16 and 17. We leverage Gazebo because it allows

us to run longer experiments with more robots, larger spaces,

and considering even stealthier attacks than experiments in our

laboratory space. In addition, in this case study, we decided to

use the Jackal robots to show the flexibility of our framework to

deal with different dynamical models.

In the case of sensor attacks, the objective of an attacker is

to slowly push a sensor measurement (e.g., positions) to one

side, resulting in hijacking of the true state of the robot that

diverges from the on-board state estimate. With this in mind, a

larger environment is needed to perform a truly and effective

stealthy attack. The robots share a maximum communication

and sensing range of δc = 15 m and δr = 3 m, with virtual

spring rest lengths l0r = 4 m and l0o = 3 m. Sensor measurement

noise covariance follows R = diag(0.05, 0.05, 0.002, 0.0004)
on the Ns sensors receiving measurements of the robot position,

velocity, and heading angle. A pseudo-window of length � = 40
for MRE alarm rate estimation (21) is used for all detectors.

Additionally, the BD detector is tuned for an expected alarm

rate Ades = 0.15, while CUSUM is tuned for Ades = 0.1 (with

bias bs = 1.05b̄s).

In Fig. 16, we show the sequence of snapshots for the robot

network while experiencing stealthy on-board sensor attacks

on robots {7, 8, 10} beginning at k = 200 and robots {4, 6}
beginning at k = 400. During the attack, compromised robots

have their position measurements slowly ramped away in the

(−x)-direction with the intention of driving the swarm away

from the desired goal. Avoidance actions are required from

nearby robots that leverage their on-board range sensors to

prevent collisions. A comparison between detectors—CUSIGN,

BD, and CUSUM—during the stealthy sensor spoof from Fig. 16

is shown in Fig. 18, with their on-board alarm rates displayed

over the entire length of the case study. The CUSUM and BD

detectors on-board the robots fail to detect the stealthy sensor

attacks, while the CUSIGN detector is able to identify that the

compromised robots are presenting inconsistent information,

which allows the compromised robots to safely remove them-

selves from the formation.

VI. CONCLUSION

This article presented a resilient approach to detect and de-

fend against stealthy sensor and communication attacks that

cause nonrandom behavior within homogeneous multirobot sys-

tems. The CUSIGN detector was introduced to counteract these

stealthy attacks by monitoring alarm rates triggered by resid-

ual changes over time. Upon detection, the multirobot system

reconfigures to isolate the malicious robots in a decentralized

fashion. The proposed scheme is scalable since each robot only

relies on the local information received from its neighbors to

assess security issues. Finally, in our extensive simulations and

experiments, we showed how our framework can outperform

well-known residual-based detection schemes such as BD and

CUSUM detectors. Assembling together these magnitude-based

detection schemes with our proposed approach would increase

the overall resilience of the system.

In the simulation and experiment demonstrations, we con-

sidered double integrator, differential drive, and skid-steering

dynamics to show the generality and flexibility of our frame-

work. The main assumption for our framework is to have a priori

knowledge about the vehicle dynamics and the noise models.

Currently, we have assumed that communication within the

network is ideal, such that synchronization errors, time delays,

and communication failures are negligible. Future efforts ex-

panding on this work could include and leverage more accurate

communication models with uncertainties as introduced in [59]

and [60] to further increase resilience, for example, by using

the dependencies between communication quality and distance

between two communicating agents (i.e., as a side-channel de-

tection scheme). Expanding the proposed work to heterogeneous

robotic systems with different classes of vehicles and sensing

capabilities is also another aspect that could be investigated in

the future.

From a recovery/reconfiguration perspective, we believe that

an important direction forward would be on how to deal with the

robots that are found compromised. In this article, compromised

robots were isolated and removed from the network, to avoid

their malicious effect on the coordination of the rest of the

uncompromised robots. However, more complicated approaches

can be considered to stop the malicious robots, such as surround-

ing or dragging them toward a safe state. In order to enable such

behaviors, it is necessary to predict the state of the compromised

vehicles. One possibility here is to research checkpointing and
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Fig. 16. (a)–(d) Robotic swarm attempting to navigate toward a goal region (in green) while protected from stealthy attacks on sensor measurements. False data
injections to the robot position measurements are discovered, and the swarm is able to resiliently isolate and remove any robots under attack to reach the goal.

Fig. 17. Initial positions of the N = 10 Clearpath Jackal UGVs within a
cluttered environment for the experiments using Gazebo.

recovery methods, inspired by traditional software engineering,

by rolling back to reliable states of the compromised system to

predict forward its possible states after it was compromised.

Predicting the intention of an attacker is also in our agenda

since this will further increase resilience to better recover a

system. The inclusion of learning-enabled components such as

regression and classification techniques could further improve

the on-board computation for detection. Furthermore, we plan

to investigate the effects of worst-case attack sequences that an

attacker can perform while evading detection from the CUSIGN

detector to characterize the maximum damage in terms of the

resulting true state divergence from the on-board state estimate.

APPENDIX A

CHARACTERIZATION OF UNDETECTABLE ATTACKS

In this appendix, we discuss attack sequences that an attacker

can take to remain hidden from detection from the CUSIGN

Fig. 18. Alarm rate results from the experiment in Fig. 16 for robots i ∈ V
performing self-detection while monitoring the on-board measurement residuals
as stealthy cyber attacks affect sensors on-board robots i = {4, 6, 7, 8, 10}. The
CUSIGN detector detects nonrandom behavior of the sth measurement residual
(affecting the x position) as alarm rates travel outside of detection bounds. The
CUSUM and BD detectors do not recognize the stealthy attacks. (a) CUSIGN.
(b) CUSUM. (c) BD.

detection scheme for both sensor and communication attacks.

In order to evade detection from CUSIGN, an attacker must be

mindful of both the positive and negative test variables S(k),+

and S(k),− with their respective alarm rates Â(k),+ and Â(k),−.

To maximize damage in a hijacking attack, a smart attacker

would want to manipulate a variable of choice (e.g., sensor
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measurement) to push the system in a specific direction with

maximum effect, without passing alarm rate detection bounds

Ω± defined in (27). As a result of maximizing the effects of

an attack, one alarm rate is driven toward the maximum alarm

rate threshold Ω+, and the other alarm rate is pushed toward the

minimum threshold Ω−.

Assumption 1: Under a worst-case scenario, an attacker has

knowledge of the robot dynamical model (1), the network model

(e.g., proximity-based consensus protocol), and the state estima-

tion procedure (e.g., Kalman filter). Furthermore, a malicious

attacker has the ability to manipulate any sth on-board sensor

measurement y
(k)
i,s and/or any information within I

(k)
i on a robot

i ∈ V through communication broadcasts.

On-board sensor attack: The first case considered is in the

event that an attacker can inject false data to sensor measure-

ments on-board a robot i, where ξ
(k)
i,y �= 0. Utilizing the spoofed

output vector in (8) combined with the on-board measurement

residual defined in (12), we can rewrite the on-board measure-

ment residual vector on an ith robot as

r
(k)
i = ỹ

(k)
i −Cx̂

(k|k−1)
i

= Cx
(k)
i + η

(k)
i + ξ

(k)
i,y −Cx̂

(k|k−1)
i

= Ce
(k|k−1)
i + η

(k)
i + ξ

(k)
i,y (30)

where e
(k|k−1)
i = x

(k)
i − x̂

(k|k−1)
i ∈ R

n is the state prediction

error. Each sth on-board measurement residual element, s ∈
{1, . . . , Ns}, is defined as

r
(k)
i,s = Cse

(k|k−1)
i + η

(k)
i,s + ξ

(k)
i,y,(s) ∈ R (31)

where Cs is the sth row of the output matrix C and ξ
(k)
i,y,(s) ∈ R

is the sth element of the sensor measurement attack vector. An

intelligent attacker can manipulate the measurement residual

sign by constructing a suitable attack signal to create an attack

sequence that avoids the CUSIGN detection bounds. An attacker

can manipulate the residual sign by choosing an attack vector

element s of the sensor measurement to satisfy

sgn
(
r
(k)
i,s

)
=

{
1, if ξ

(k)
i,y,(s) > −Cse

(k|k−1)
i − η

(k)
i,s

−1, if ξ
(k)
i,y,(s) < −Cse

(k|k−1)
i − η

(k)
i,s

. (32)

We first examine the scenario when either of the estimated

alarm rates monitoring the positive Â
(k),+
i,s or negative Â

(k),−
i,s

residual sign occurrences approach the maximum detection

boundary thresholdΩ+ on a robot i. The objective of the attacker

is to drive the alarm rate of the desired sign as close to the

maximum threshold without crossing it. The following equation

is a restriction on the attack signal ξ
(k)
i,y,(s) for a sensor s on-board

a robot i, for both alarm rates denoted as Â
(k),±
i,s , such that neither

cross the maximum threshold:

ξ
(k)
i,y,(s) =

{
ξ
(k)
i,y,(s)

+

≶
−
−Cse

(k)
i −η

(k)
i,s

∣∣∣∣
(
Ω+− Â

(k−1),±
i,s −

1−Â
(k−1),±
i,s

�

)
< 0

}
.

(33)

The constraint in (33) determines if the detection threshold

will be broken if an alarm is triggered at the time instant k.

This forces an attack signal ξ
(k)
i,y,(s) to result in a desired residual

element sign, such that an alarm is not triggered.

A similar restriction for both alarm rates is necessary as either

one (i.e., alarm rate for the opposite sign that approaches the

maximum bound) nears the minimum threshold bound, Ω−. An

attacker must ensure that an alarm is triggered before the given

alarm rate for an sth residual element falls below the minimum

detection bound, such that the sth attack signal element satisfies

ξ
(k)
i,y,(s) =

{
ξ
(k)
i,y,(s)

+

≷
−
−Cse

(k)
i −η

(k)
i,s

∣∣∣∣
(
Ω−− Â

(k−1+
∣∣±τ−S

(k−1),±
i,s

∣∣),±
i,s

)
> 0

}

(34)

such that

Â
(k′),±
i,s = Â

(k′−1),±
i,s −

Â
(k′−1),±
i,s

�
(35)

where ∀k′ = k, . . . , k + (
∣∣± τ − S

(k′−1),±
i,s

∣∣− 1) denotes the

number of time instants needed for the CUSIGN test variable

S
(k)
i,s to reach the CUSIGN threshold ±τ in order to trigger

an alarm.

Communication attacks: In this article, we assume that an

attacker can manipulate any information I
(k)
i sent from com-

munication broadcasts from a robot i ∈ V , which contains the

robot’s state estimate, input, and measurements. For the case of

a communication attack, we provide a worst-case scenario when

the broadcast state estimate information from a robot i is altered

by a malicious attacker (i.e., ξ
(k)
i,x �= 0). The neighboring robots

j ∈ Ci monitor for inconsistent information received from robot

i, as it would be unaware of an attacker maliciously altering its

information via communication broadcasts. The objective for

an attacker is to avoid detection from the neighbors that are

monitoring robot i.
The state prediction on-board a neighboring robot j monitor-

ing a robot i is a function of the information I
(k−1)
i sent at the

previous time instant k − 1:

x̂
(k|k−1)
ji = f

(
x̂
(k−1|k−1)
i ,u

(k−1|k−1)
i , ξ

(k−1)
i,x , ξ

(k−1)
i,u

)

= Ad

(
x̂
(k−1|k−1)
i + ξ

(k−1)
i,x

)

+Bd

(
u
(k−1|k−1)
i + ξ

(k−1)
i,u

)
(36)

where Ad and Bd are discrete-time equivalents of A and B in

(1) such that the inter-robot residual on robot j to monitor robot

i follows:

r̆
(k)
ji = x̂

(k|k)
i + ξ

(k)
i,x −Ad

(
x̂
(k−1|k−1)
i + ξ

(k−1)
i,x

)

−Bd

(
u
(k−1|k−1)
i + ξ

(k−1)
i,u

)

=
(
x̂
(k|k)
i + ξ

(k−1)
i,x

)
− x̂

(k|k−1)
ji ∈ R.

(37)
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An attacker can manipulate the qth inter-robot state residual

element sign by choosing an attack vector element of the broad-

cast state estimate to satisfy

sgn
(
r̆
(k)
ji,q

)
=

{
1, if ξ

(k)
i,x,(q) > x̂

(k|k−1)
ji,q − x̂

(k|k)
i,q

−1, if ξ
(k)
i,x,(q) < x̂

(k|k−1)
ji,q − x̂

(k|k)
i,q

. (38)

Similar to (33) and (34), an attack can manipulate the qth

element of the sent state estimate signal ξ
(k)
i,x,(q) in order to

maximize the alarm rates for state residual by

ξ
(k)
i,x,(q) =

{
ξ
(k)
i,x,(q)

+

≶
−
x̂
(k|k)
i,q − x̂

(k|k)
ji,q

∣∣∣∣
(
Ω+− Â

(k−1),±
ji,q −

1−Â
(k−1),±
ji,q

�

)
< 0

}

(39)

and, similarly, to ensure the alarm rate never reaches the lower

bound, the attack signal needs to satisfy

ξ
(k)
i,x,(q) =

{
ξ
(k)
i,x,(q)

+

≷
−
x̂
(k|k)
i,q − x̂

(k|k)
ji,q

∣∣∣∣
(
Ω− − Â

(k−1+
∣∣±τ−S

(k−1),±
ji,q

∣∣),±
ji,q

)
> 0

}
(40)

where

Â
(k′),±
ji,q = Â

(k′−1),±
ji,q −

Â
(k′−1),±
ji,q

�
(41)

and ∀k′ = k, . . . , k + (
∣∣± τ − S

(k′−1),±
ji,q

∣∣− 1).
We note that, since the CUSIGN attack detector monitors only

the signed values of the residual elements (i.e., magnitude is

overlooked), it is not possible to quantify the worst-case effects

of the cyber attack in terms of true system state deviation with

CUSIGN operating as the lone on-board detector. However,

when augmented in parallel with a traditional magnitude-based

detector [12]–[20], the impact on state deviation due to a cyber

attack may be quantified.

APPENDIX B

PROOF OF THEOREM 1

Proof: To prove Theorem 1, we use a similar argument as

in [43] and [54]. We first derive the potential energy of the

system considering the removal of nodes due to detection of

cyber attacks and then show that the energy of the system after

detection converges to a rest state. The stored potential energy

of each robot i in the network V is described as

U−
i =

∑

j∈V

[ ∑

h∈∆h

κjh(ljh − l0r)
2

]
, i �= j �= h. (42)

where ∆h ⊂ Sj \ {i} represents the change in neighboring

robots for a robot j contained in the set Sj due to the removal of

robot i. The assumption in (42) is that, because of the GG rule, by

removing a robot i, new connections may appear between the

remaining uncompromised robots. The total system potential

energy U is then the sum of the stored potential energy of each

robot i ∈ V:

U =
∑

i∈V

U−
i . (43)

Similarly, if a robot i is included into the system, the stored

potential energy is described as

U+
i =

∑

j∈V

[ ∑

h∈∆h

κjh(ljh − l0r)
2

]
, i �= j �= h. (44)

LetVA ⊂ V be the set of detected compromised robots. Given

an instant of time when a robot i is removed due to an attack or

introduced into the network, any uncompromised robots j ∈ V \
VA reconverge to a new network equilibrium due to the changed

number of uncompromised robots in the network, denoted by

|V \ VA|. In the case of the removal of robot i, the remaining

uncompromised robots j ∈ V \ {i} converge to the new network

equilibrium by first removing edges to robot i, i.e., (j, i) /∈ EU .

Thereafter, the robots j ∈ V \ {i} construct edges to the new

neighbors h ∈ ∆h ⊂ Sj , such that (j, h) ∈ EU , to dissipate any

stored energy U−
i that belonged to robot i after it is removed.

Conversely, when i is introduced to the network, the robots j ∈ V
update their virtual spring edges by (29) considering that robot

i is now joining the system, i.e., V ∪ {i}, to converge to a new

equilibrium.

As edge switching occurs due to network reconfiguration, the

uncompromised robots j ∈ V \ VA dissipate the stored potential

energy U−
i (or U+

i ) of robot i ∈ VA in order to converge to

an equilibrium (i.e., rest state). Next, we prove stability of

the system assuming that a reconfiguration of the system has

happened (i.e., by removing or adding a node to the network).

Static stability: Let us consider the scenario, in which the

network topology is not switching after the removal of a com-

promised robot inVA or introducing a robot, as described in (42)

and (44). We let the total energy function of the system, including

any remaining available potential energy from the removal or

introduction of a robot, be described as

V =
∑

i∈V\VA

1

2

[∑

j∈Si

κij(lij − l0r)
2

+
∑

o∈Oi

κio(lio − l0o)
2 + κigl

2
ig + (ṗi)

Tṗi

]
. (45)

By taking the first-order derivative of the total energy in (45),

the time derivative becomes

dV

dt
= −

∑

i∈V\VA

(
γi (ṗi)

T
ṗi

)
(46)

in which because γi > 0, ∀i ∈ V , we obtain that the total

energy dissipation is negative semidefinite. Taking the sec-

ond derivative of the total system energy, we obtain d2˜V
dt2

=

−2
∑

i∈V\VA(γi(ṗi)
Tp̈i), which is bounded and finite if robot

velocities and the differences (lij − l0r) and (lio − l0o), ∀i, j ∈ V
are finite.

Dynamic stability: For the purpose of proving dynamic sta-

bility, we follow similar techniques to those in [41] and [43] that
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introduce an energy reserve variable ∆E that cancels switching

effects of the network topology. Included in the switching topol-

ogy of this proof are effects from robots removing or introducing

other robots to the network, as described in (42) and (44). Given

an interval of time ∆t such that a switch occurs to create a

different topology for uncompromised robots without network

reconfiguration, the energy functions rate of variation is

∆V

∆t
=

∑

i∈V\VA

[
1

2

∑

h∈∆h

LU +
1

2

∑

j∈∆Si

Lr

+
1

2

∑

o∈∆Oi

Lo +
1

2
κigl

2
ig − γi(∆

pi

t )T∆pi

t

]
(47)

where LU = κih(lih − l0r)
2, Lr = κij(lij − l0r)

2, Lo =
κio(lio − l0o)

2, ∆Si and ∆Oi are switches in the network

topology (i.e., construction or deconstruction of edge

connections), and ∆pi

t = ∆pi

∆t
.

Next, we build a modified potential function V ′ = V + E,

where E is the global energy reserve by the following:

∆E

∆t
=

1

2

∑

i∈V\VA

[
−

∑

h∈∆h

LU −
∑

j∈∆Si

Lr

−
∑

o∈∆Oi

Lo − κigl
2
ig + γi(∆

pi

t )T∆pi

t

]
(48)

that is dependent on changes to Si and Oi ∀i ∈ V . Including the

expressions (47) and (48) with the first derivative of the mod-

ified potential function V̇ ′ = V̇ + Ė, we obtain the following

negative-semidefinite expression:

dV ′

dt
=

dV

dt
+

dE

dt
= −

1

2

∑

i∈V\VA

(
γi (ṗi)

T
ṗi

)
. (49)

Again, by taking the second derivative of V ′, we obtain d2˜V ′

dt2
=

−
∑

i∈V\VA(γi(ṗi)
Tp̈i), which is bounded and finite.

The modified energy function contains the following prop-

erties: V ′ is positive definite, V̇ ′ is negative semidefinite, and

V̈ ′ is bounded and finite. Therefore, by Barbalat’s lemma, we

can conclude that the virtual spring network considering the

modified energy function has stable dynamics.
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