92

IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 1, FEBRUARY 2022

Detection of Nonrandom Sign-Based Behavior for
Resilient Coordination of Robotic Swarms

Paul J Bonczek *?, Rahul Peddi

Abstract—Cooperative multirobot systems coordinate their mo-
tion by exchanging information through consensus schemes to
achieve a common goal. In the event of stealthy cyber attacks,
compromised measurements and communication broadcasts can
hijack a portion or the entire system toward undesired states.
However, in order for these attacks to be effective, they have to
exhibit nonrandom characteristics that contradict the expected
multirobot system behavior. To deal with these hidden attacks, we
propose a runtime monitoring framework that considers the signed
residual, defined as the difference between the expected and the
received information to identify and isolate unexpected nonrandom
behavior within the multirobot system. Specifically, the technique
that we propose—named Cumulative Sign detector—monitors and
compares changes in signed values of residual with their expected
occurrences to detect inconsistencies and trigger alarms when an
attack is discovered. Our results are validated theoretically by
providing detection bounds and are demonstrated with simulations
and experiments on swarms of unmanned ground vehicles under
different attacks in comparison with state-of-the-art residual-based
detection schemes.

Index Terms—Attack detection, distributed robot systems,
multirobot systems, swarms.

I. INTRODUCTION

ANY advancements in sensing, control, planning, mo-

bility, and networking have enhanced mobile robotic
systems allowing precise and robust autonomous operations that
were unthinkable until only recently. Within robotics, multiagent
system coordination and swarming have long been studied and
are gaining back attention, thanks to the many technological
advances, but this also brings upon security issues. Multia-
gent systems are typically used to perform coordinated tasks
in a distributed fashion. This collaborative nature allows for

Manuscript received July 28, 2021; accepted December 9, 2021. Date of pub-
lication January 19, 2022; date of current version February 8, 2022. This paper
was recommended for publication by Associate Editor A. Prorok and Editor P.
Robuffo Giordano upon evaluation of the reviewers’ comments. This work was
supported in part by the National Science Foundation under Grant 1816591
and in part by the Office of Naval Research under Grant N000141712012.
(Corresponding author: Paul J Bonczek.)

Paul J Bonczek, Shijie Gao, and Nicola Bezzo are with the Charles L. Brown
Department of Electrical and Computer Engineering and the Link Lab, Univer-
sity of Virginia, Charlottesville, VA 22904 USA (e-mail: pjb4xn@virginia.edu;
sg9dn@virginia.edu; nbezzo @virginia.edu).

Rahul Peddi is with the Department of Engineering Systems and Environment
and the Link Lab, University of Virginia, Charlottesville, VA 22904 USA
(e-mail: rp3cy @virginia.edu).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TR0O.2021.3139592.

Digital Object Identifier 10.1109/TRO.2021.3139592

, Shijie Gao

, and Nicola Bezzo

£
D\ Attack
/ Begins

Nominal Agent
Attacked Agent
o Spoofed Position
e Control Edge
= Goal Point

(a) (b)

Fig. 1. Pictorial motivation of the problem investigated in this article: in
nominal conditions, (a) and (b) i.e., with no attack, a multiagent system can
reach the desired goal (red “X’’), whereas in the presence of an attack [red disks
in (b)], the system is hijacked away.

numerous applications that would be more difficult or not
possible to perform with just a single agent, such as factory
and warehouse logistics [1], vehicle platooning [2], connected
vehicle-to-vehicle operations [3], [4], surveillance [5], disaster
relief [6], and exploration missions [7].

With such benefits in multirobot systems, however, comes the
risk of cyber attacks. In fact, all the aforementioned applications
are typically designed without considering cyber-security issues,
assuming that all the actors (i.e., other robots) in the multirobot
settings are cooperative. In the presence of a compromised robot
in the network, liveness (i.e., the ability to perform and complete
correctly a task) and safety (i.e., avoid collisions or reaching
undesired states) properties can be violated. The presence of ma-
licious actors in a network can potentially manipulate the entire
multirobot system, hijacking a mission and potentially leading
the system toward undesired states, as pictorially represented
in Fig. 1.

Such situations can be caused by compromised communica-
tions, which results in incorrect sharing of information between
robots, or by manipulated sensor measurements, leading com-
promised robots to react to altered on-board signals that are also
broadcast to surrounding neighbors. In a successful hijacking
attempt, an attacker is able to implement a stealthy attack
sequence to degrade system performance, all while remaining
hidden from detection. The term stealthy has been adopted in
a wide range of attack scenarios on stochastic systems, such
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as in zero-dynamics [8], replay [9], zero-alarm [10], and hid-
den [11] attack cases. In this article, the term stealthy indicates
an attack sequence that mimics normal (attack-free) behavior of
traditional detection schemes (i.e., a hidden attack [11]), where
attackers leverage the noise characteristics within a multirobot
system to evade detection during a hijacking attempt. To dis-
cover such attacks, the key principle that we leverage is that
an attacker attempting to hijack one or more robots within a
multirobot system via stealthy sensor and/or communication
attacks will inherently exhibit nonrandom/inconsistent behav-
iors in order to be effective, contradicting an expected behavior
of the system model. Specifically, in this article, we monitor
the residual—which is defined as the difference between a
measured/received value and the predicted/expected value—in
order to discover inconsistent behavior due to these hijacking
attempts. Our proposed monitoring scheme—which we name
the Cumulative Sign (CUSIGN) detector—differs from other
residual-based detectors [12]-[20] as its purpose is to monitor
for inconsistencies in signed behavior (i.e., nonrandomness) of
the residual in multirobot systems. Once an attack is discovered,
we propose a framework to 1) isolate the compromised robots
and 2) reconfigure the network to continue the desired task.

A. Related Work

The topic of resilience of multiagent systems has received
extensive consideration in the engineering and computer sci-
ence communities recently [21]. Much attention has gone into
resilience of these systems based on network connectivity, de-
termined by the underlying graph topology of the network [22].
A widely used method for multiagent resilience is through con-
sensus protocols that leverage the mean subsequence reduced
(MSR) algorithms [23]-[27], in which all vehicles in a network
come to an agreement on a global variable of interest (e.g.,
velocity, position, and heading angle). Such consensus protocols
are resilient to F' number of compromised (e.g., noncooper-
ative) agents, which rely on network topologies that satisfy
the (2F + 1) robustness properties, in which every agent in
the network follows the strategy of diminishing the effect of
potentially deceptive information due to cyber attacks or faults
by ignoring up to F' agents with shared values that contrast the
most from its own value of the global consensus variable. As
noted by Wang and Ishii [28], the purpose of MSR algorithms
is not to detect misbehaving (i.e., compromised) agents in a
network, but rather to simply leave out values consisting of the
greatest difference in magnitude.

An example of misbehaving agent detection in multiagent
networks was presented by Chen et al. [29] that propose the
Flag Raising Distributed Estimator such that each agent in
the network estimates an unknown parameter by an iterative
algorithm that leverages both its own sensor measurement and its
neighbor’s estimate of the parameter to detect the presence of ad-
versarial agents. As aneighbor’s parameter estimate differs from
an agent’s own parameter beyond a chosen threshold, the neigh-
bor is deemed adversarial, thus raising a flag. Zhao et al. [30]
utilize agents as mobile detectors that allow for isolation of any
malicious agents that collude with each other in an attempt to

take advantage of network connectivity constraints. Another ex-
ample can be found in [31], where every uncompromised agent
can detect and isolate misbehaving agents in leader—follower and
leaderless consensus networked systems. Each agent employs a
multiphase reputation-based protocol by relying on local obser-
vations and adaptive consensus weight updates on neighbors to
allow for resilient convergence of uncompromised agents in the
formation. Taking a different approach to detection, Khazraei et
al. [32] propose a network-wide shared watermarking signal that
is applied to control inputs of each agent in multirobot systems;
then, a residual-based anomaly detection scheme is used to
find any misbehaving agents. Lee and Min [33] leverage the
residual-based Cumulative Sum (CUSUM) anomaly detector,
first characterized in [34], to discover spoofs to on-board navi-
gation systems of robots in multirobot systems, thus allowing the
mobile robot team to arrive at its desired destination. Different
from the aforementioned works, our proposed decentralized
framework considers deceptive cyber attacks that intentionally
hide within the uncertainties to avoid detection from traditional
residual-based detection procedures in multirobot systems con-
sisting of stochastic linear time-invariant (LTIT) modeled agents.

This work builds on previous research considering deceptive
cyber attacks to systems by injecting false data while trying to re-
main undetected within system noise [12]. Previous works have
analyzed the effects of malicious sensor attacks on individual
systems leveraging the Kalman filter for state estimation [35].
Similarly, Kwon et al. [16] characterize how undetected attacks
compromise closed-loop systems that utilize the Kalman filter
in terms of state and system dynamic degradation.

Several attack detection techniques exist in the literature that
also analyze the residual and leverage an alarm-based procedure,
one of which is Bad Data (BD) detection [12] that monitors
each element within the residual vector and triggers an alarm
any time the residual element extends beyond a chosen thresh-
old value. Another popular method is compound scalar testing
(CST) [16] that reduces the residual vector into a scalar test
measure of chi-square distribution. An improvement of CST
in [17] is made by including a coding matrix to sensor outputs
that is unknown to attackers to improve detection capabilities
of stealthy attacks. Furthermore, Murguia and Ruths [13], [14]
formalize a model-based detector of the CUSUM algorithm
that is commonly used as a monitor for change detection, by
leveraging known characteristics of the system dynamical and
noise models to provide a desired alarm rate during operation.
While these traditional alarm-based detection methods offer
compelling performance for discovering attacks, an intelligent
attacker may be able to exploit system uncertainties (e.g., mea-
surement noises) to evade detection by emulating an expected
alarm-based behavior. In order for an attack to be effective
(e.g., degrade system performance) while hiding within system
uncertainties, it must inherently create inconsistent nonrandom
signed behavior of the residual.

In our recent work, we have presented techniques to detect
nonrandom residual behavior due to sensor spoofing attacks,
like in [36]—[38]. In [36], the Wilcoxon Signed Rank and Serial
Independence Runs statistical tests [39], [40] were leveraged
to find inconsistencies within a windowed sequence of residual
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data. Furthermore, we characterized the CUSIGN detector [37]
on a single system, inspired by the CUSUM procedure in [34],
with the purpose of finding nonrandom residual behavior by
checking for changes in occurrence of the signed measurement
residual values while leveraging a chi-square detection scheme.
Additionally, in [37], we demonstrated the detection capabili-
ties of CUSIGN when compared to the model-based CUSUM
procedure (also utilizing the chi-square scheme) [13] in the
presence of stealthy sensor attacks that intentionally hide within
system noises. In this transaction, we expand on these works by
further developing runtime techniques to monitor for nonrandom
residual behavior and detect inconsistencies within multirobot
systems due to cyber attacks.

B. Contribution

This article has the following contributions. We propose a
novel residual-based attack detection scheme for multirobot
systems to find nonrandom residual behaviors due to stealthy
communication and sensor attacks that are undetectable by cur-
rent state-of-the-art residual-based methods. We then present a
decentralized framework, in which each robotic agent acts inde-
pendently by leveraging local information received from nearby
robots while employing the proposed detection scheme to enable
resilient control of the multirobot system during stealthy attacks
and reconfigure the network to maintain connectivity once one or
more compromised robots have been isolated from the network.
While we present the proposed framework in a general sense,
as a case study, we consider cooperative autonomous multirobot
applications that leverage virtual spring—damper mesh (VSDM)
physics for decentralized formation control [41]-[45]. Our pro-
posed framework, however, can be used in any proximity-based
consensus formation control (e.g., nearest neighbors [46]). Fi-
nally, we validate the proposed scheme on ample MATLAB and
Robot Operating System (ROS) simulations and experiments on
swarms of unmanned ground vehicles (UGVs).

The remainder of this article is organized as follows. In
Section I we begin by introducing the preliminaries and problem
formulation, followed by Section III, where we characterize the
residuals within a multirobot system and the CUSIGN attack
detector for detection of inconsistent (i.e., nonrandom) residual
behaviors. In Section IV, we describe the framework for resilient
coordination of the multirobot system against stealthy sensor and
communication attacks to maintain desired system performance.
Numerical simulations and experiment results using UGVs are
presented to verify our framework in Section V. Finally, Sec-
tion VI concludes this article.

II. PRELIMINARIES

Let us consider a multirobot system with N mobile robots
that maintains a proximity-based formation during a mission.
Such a system can be described using a directed graph, where
each directed edge represents the control influence on a robot
due to the proximity of a neighboring robot in the system. The
directed graph describing the multirobot system is modeled as
G = (V, &), where the set of vertices V = {1,2,..., N} denote
the mobile robots and the set of edges & = {(4, j)| 4,7 € V} are
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control links between robots. An edge (7, j) € £ means that the
control input of robot ¢ is affected by the state of robot j within
the proximity-based formation.

Each of the robots is modeled as an LTI dynamical agent as
follows:

i=1,2,...,N (1

where x; € R" is the state vector, u; € R™ is the control input,
A and B are state and input matrices with appropriate dimen-
sions, respectively, and v; € R" is the zero-mean Gaussian
process uncertainty. The robots successfully achieve tasks by
performing a proximity-based consensus protocol ¢(+), in which
all robots ¢ € V agree on a decentralized control input u; € R™
that follows:

ut:¢(xl7mJ7OL)’ Z:172aaN (2)

where x; is the state of robot i, ; represents the states of the
neighboring robots j, j # 4, and the set O; denotes any nearby
obstacles of robot 7 that are utilized for obstacle avoidance.

To enable the robot network to satisfy the consensus-based
control protocol in order to accomplish tasks, the robots ex-
change necessary information (e.g., state vector) with each
other. The set Z = {Z,,Z5, ...,Zy} describes the information
broadcast within the multirobot system that is available to any
robots within communication range d. > 0. When all robots are
cooperative, the mobile team is able to complete the desired
task at hand, where inputs are computed based on information
received from nearby robots.

Definition 1 (Communication graph): Given the N robots
in set )V with a communication range J., we define the graph
Ge = (V, &) with the edge set represented by

& =1{0,3) | |lpi = pyl| < 6c, i.j €V} 3)

as the communication graph of the robot set )V, where p; and
p; are position coordinates (within the state vector) of robots
i,7 €V, i # .

The set of all neighboring robots within communication range
of a robot ¢, as defined by the communication graph, is repre-
sented by

Ci={jeV|(ije&}. 4)

Definition 2 (Control graph): Each robot ¢ € V leverages
the received information to form a neighbor set S; C C; for
consensus control purposes to maintain a desired proximity from
other robots. We define the graph G, = (V, &) with the edge
set represented by

&u=A{(i,j) | j € Si,Vie V} (5)

as the control graph of the robot set V.
Given that the robot states are not directly available, each robot
1 is equipped with N on-board sensors that provide sampled
state measurements every t; € R, seconds as indicated by the
output vector given by
ygk) _ le(_k’) + n(k) c RNV (©6)

i
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Fig. 2. Classes of attacks considered in this article.

with the output matrix C' and the measurement uncertainty
vector nl(-k) at every time instant £ € N. The process and mea-
surement uncertainties of all robots are described in discrete
time as multivariate zero-mean Gaussian distributed noise with
covariance matrices @ and R, respectively. A Kalman filter,
with gain matrix K¥) € R"*N:_is implemented on-board each
robot i to provide discrete-time state estimates :i'gk‘k) eR”

using a discretized dynamical model of (1).

A. Attack Model

Summarized in Fig. 2 are the cyber attacks considered in this
article, which are a combination of on-board sensor and/or com-
munication spoofs that can maliciously affect any robot within
the multirobot system. Next, we provide a brief description for
each of the considered cyber attack scenarios.

(A1)—Communication attack: In this attack, an attacker in-
tercepts and replaces broadcast data such that the receiver and
sender data are different (e.g., a man-in-the-middle attack [47]).
We assume that an attacker is able to intercept communication
broadcasts replacing the message with modified, yet plausible
information. As an example, the sender of a communication
broadcast that is being attacked may not be aware of the attack
in which a receiver is obtaining falsified data. For the case
studies investigated in this article, the exchanged information
T(*) at each time instant k between robots is assumed to be
state estimates, inputs, and measurements. We will indicate the
spoofed broadcast information Ii(k) — i’fk) from a robot ¢ as

B = (a1 w6y el 0

where in the presence of an attack, at least one of the following
conditions is true: fgkx) #0 e R", Egku) #0€R™, and 5512) #*
0 € R%, resulting in Ii(k) # fz(k)

(A2)—Sensor spoofing: The second attack that we consider

is sensor spoofing, in which an adversary manipulates on-board
sensor measurements as follows:

g =y + ") @®)

where 5512 € R™: is the attack vector that describes false data
injections to sensor measurements. An attacker manipulating on-
board sensor will be able to drive the state estimate of the robot
away from its true state, leading to unreliable on-board control
decisions and, consequently, diverting neighboring robots whose

control actions are based on inaccurate position information
received from the compromised robot.

(A3)—Coordinated attack: This is a combination of the previ-
ous two cases, in which attacks hide within the expected system
behavior acting and hiding in a coordinated way on both sensing
(A1) and communication (A2) constraints. The compromised
robot in this case is able to perform a completely different
operation while reporting plausible data to neighbor robots.

For each of the attack vectors (EEZ), Sgku) , and Sgky) ), an at-
tacker is assumed to be capable of leveraging both process and
measurement uncertainties @@ and R, to construct attacks that
emulate the expected behavior of measurements and communi-
cation broadcasts that can fool traditional residual-based attack
detection techniques.

B. Problem Formulation

In this work, we consider a typical scenario, in which robots
in a multirobot system coordinate their motion in a decentralized
fashion to maintain a desired formation while navigating toward
a given goal. The challenge is to provide a resilient approach
for the multirobot system to continue these operations in the
presence of cyber attacks that are intentionally hiding within
system noises while attempting to hijack the multirobot system.

Problem 1 (Detection of inconsistencies in multirobot sys-
tems): Consider a set of N homogeneous robots V in a multi-
robot system. Design a decentralized policy for each roboti € V
to detect at runtime inconsistencies from any neighbor j # i due
to cyber attacks on: 1) sensor measurements, i.e., if the following
holds:

Ely; — 9] # 0 ©

or 2) the communication channel when the received state from
7 is different from the predicted state computed by

Elz; — 2] #0

where y,,; and &;; are measurement and state predictions of j
made by robot 7, respectively.

To detect inconsistent behavior of neighboring robots, we
employ an attack detection scheme that monitors inter-robot
residuals (i.e., the comparison between received and predicted
information) for unexpected behavior within the robot network.
Upon detection, the system needs to isolate and reconfigure to
continue its planned operation. Formally, we have the following.

Problem 2 (Multirobot system recovery): Find a decentral-
ized policy for each robot 7 € V to isolate and remove any
maliciously attacked robot j from its neighbor set for control S;
that presents inconsistent behavior flagged by solving Problem 1,
i.e., to obtain

(10)

Si=8\1{i} (1D
With the malicious robot j removed from any neighbor set S,
the robot j is no longer able to influence the control of 7.
III. NONRANDOM BEHAVIOR DETECTION OF RESIDUALS

In this section, we first characterize both the on-board and
inter-robot residuals that are monitored for nonrandom (i.e.,
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inconsistent) behavior due to cyber attacks within multirobot
systems. We then formalize the detection procedure that searches
for nonrandom behavior in the residual sequences, before de-
scribing an attack sequence that an intelligent attacker must take
to avoid detection.

A. Residual Characterizations

In our proposed detection framework within multirobot sys-
tems, each robot ¢ € V monitors its on-board measurement
residual for discovery of sensor attacks as well as two types of
inter-robot residuals to identify inconsistent behavior of commu-
nication broadcasts or sensor information that are received from
neighboring robots j within the control graph, i.e., (4, 7) € &y.
(

. k
Let us define the on-board measurement residual vector r; ) on

arobot 7 as

(k) (k) C:ﬁ(k\kfl) c RN:

T, =Y (12)

to monitor for on-board sensor attacks, which has an expected
covariance matrix Z,Ek) = E[rz(»k) (T‘,Ek))T] = C’nglk_l)cT +
R during attack-free conditions, with nglk_l) denoting the
prediction error covariance. Each sth on-board measurement
residual element is normally distributed as follows:

N2
EF =0, varr) = (o) (13)

where (O’EZ))Q is the sth diagonal element of the on-board

measurement residual covariance matrix 2§k).
In our proposed multirobot monitoring framework, each robot
7 € ¥V monitors its neighbors for consistent behavior by comput-

ing state predictions of each neighbor j € S; using their received
(klk) (k)

state ;" and input u;

information by

R Z 4600 4 BB crr (4)
where A, and B, are discrete-time equivalents of the known
robot dynamical model in (1). A robot 7 leverages these state
predictions by comparing them to the received state and mea-
surement information from neighboring robots. Let us define the
inter-robot state residual by the following:
7%5?) _ ﬁjgk\k) _ :&E?lk_l) cR"

(15)
which enables a robot ¢ to monitor for consistent state and input
information from a robot j. Each gth element ¢ € {1,...,n} of

the inter-robot state residual vector (15) is normally distributed
as follows:

s

2
o (k (K k k
E[rgjy)q] =0, Var[rl(j’)q] = Z (K§,(L7S)U§-75>) (16)
s=1
with K (%) representing the element at the gth row and the sth

3,(¢;3)
column of the Kalman gain at time & on robot j. Additionally,

robots compute the inter-robot measurement residual

ri) =y — gl e RY: (17)

ij
to discover sensor attacks that may be occurring on the neigh-
boring robot. The inter-robot measurement residual shares the
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expected zero-mean normally distributed characteristics of the
on-board measurement residual in (13). Note that in order for
a robot 7 to compute inter-robot residuals of a robot j at a time
k in (15) and (17), a state prediction (14) must be made at the
previous time k — 1.

For ease of notation throughout the remaining of this section,
we exclude subscripts ¢ on any on-board measurement residual
and ¢7 for inter-robot residuals between robots ¢ and j. More-
over, we further simplify notation by referring the on-board
and inter-robot residual vector elements s € {1,..., Ny} and
q € {1,...,n}, respectfully, as the variable r(*), as all residuals
are zero-mean normally distributed during nominal nonattacked
conditions.

A robot that is operating in normal conditions will have
an expected occurrence of signed residual characteristics over
time. With these considerations in mind, we propose a detector
to analyze the sign of incoming residuals within multirobot
systems to determine whether the residual behavior follows
the expected random behavior. This technique, which we name
the CUSIGN detector, is unique to previous state-of-the-art
residual-based detectors [12]-[20] in that instead of monitoring
for magnitude changes, it relies on the sign of a residual variable
within an expected distribution in order to discover stealthy
cyber attacks that may remain hidden within noisy systems.
Since the magnitude of a residual variable is overlooked, the
CUSIGN detector is nonparametric in nature and can be used
on any known distribution (see, e.g., [37]). Next, we briefly
introduce the technique used for alarm rate estimation before
characterizing our alarm-based attack detector.

The signed residual: In normal operating conditions, i.e., in
the absence of attacks defined in (A1)—(A3), the signed value
of both the measurement and state residuals have an expected
probability of being higher or lower than their expected values
E[r(*®)] = 0. The signed residual probabilities Pr(-) are com-
puted based on the expected residual distributions characterized
in Section III-A by the following:

Pr (’I‘(k) < E[T(k)]) = (]E[r(k)]>

Pr (r(k) > E[Mk)]) —1-0 (E[M’ﬂ) (18)
where ®(-) is the cumulative distribution function of the standard
normal distribution [48]. The sign of r(*) with respect to the
reference IE[r(®)] follows:

1, if () > E[r()]
0, if r*) = E[r()]
—1, if r®) < E[r(0]

sgn(r(k)) = (19)

such that the probability of each scenario occurring is

Pr (sgn(r(k)) = 1) =py

Pr (sgn(r(k)) = O) =0

(20)

Pr (sgn(r(k)) = —1) p-=1—py4
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wherepy = p_ = % for a zero-mean normally distributed resid-
val from (13) and (16), as the mean and median are equal.
The CUSIGN detector leverages the expected probabilities
Pr(r® > E[r®]) = p, and Pr(r® < E[r®)]) =p_ in de-
termining nonrandom behavior in the presence of attacks.

Alarm rate estimation: In the design of the nonrandomness
detector, alarms are triggered during operation to aid in de-
termining if a system is behaving normally. In our case of a
multirobot network, the robots leverage this alarm-based method
for self-detection and to monitor the residual sequence of their
neighbors for inconsistent behaviors. Given a robot that is not
under attack, the frequency at which these alarms are triggered
should follow an expected alarm rate. We employ a windowless
method, which we name memoryless runtime estimator (MRE),
for computing the alarm rate estimate utilizing a “pseudo-
window” length /. The runtime update equation of the MRE
for alarm rate estimation follows:

[((k) — A(H)]
_—

where ((¥) € {0,1} is the alarm, A%) € [0, 1] is an estimated
alarm rate at every time instant k, and A(®) = E[A] initially
at k = 0, where E[A] € [0, 1] is the expected alarm rate (to be
characterized for CUSIGN in Section III-B). The resulting alarm
rate estimate can be approximated to a normal distribution when
¢ > 10, as demonstrated in [37], with a resulting variance that
shares properties of the exponential moving average [49].

A — A1) 1)

B. CUSIGN Detector

To detect information inconsistencies (i.e., nonrandomness)
in multirobot systems due to cyber attacks, we leverage the
CUSIGN attack detector that analyzes residuals to determine
whether nonrandom behavior is occurring. The CUSIGN detec-
tor monitors the residual over the sequence of time and outputs
an alarm when a threshold is reached, which is then sent to the
MRE to provide an updated alarm rate estimate. For any given
user-defined threshold, an expected alarm rate can be found that
is independent of the system model.

The CUSIGN procedure is an accumulation of signed residual
values by two CUSIGN test variables .S (*):+ and S*)>— where
each signifies a test variable at time instant k. Each test variable
checks for changes in the probability for the signed residual
value: one for positive and the other for negative changes. The
following procedure summarizes the CUSIGN detector for both
positive and negative cases:

S®)F = max (0, S*D+ 4+ sgn(r)) |

S+ = 0 and Alarm )+ =1, if SF)t=r
S(*):— = min (O, Stk=1)— 4 sgn(r(k)))
S(#):= =0 and Alarm ¢(®)— = if SF)h-= — 7

(22)

The working principle of CUSIGN test variable sequences is
to accumulate the signed residual value sgn(r*)) € {-1,0,1}
and trigger an alarm (%)t ¢(F).— ¢ {0, 1} when the test vari-
ables reach their corresponding threshold values 7 € N,. As

CUSIGN Transitions

._._/._//D /@/\_/

e e
e o o

0 1 2 3 1 ] 6 7 8 9 10 11 12 13 14 15
time (k)

2

\A)Jr

Fig. 3. Example of transitions for the CUSIGN test variable S (k)% with a
threshold 7 = 2 given a sequence of data.

Fig. 4. Markov chain for both positive (top) and negative (bottom) cases of
the CUSIGN test variable sequence with triggering threshold states in red.

either of the test variables reach their respective thresholds, then
the test variable is reset to zero. An example of the CUSIGN
detection procedure (22) is shown in Fig. 3, where an incoming
data sequence of residuals transition the positive and negative
CUSIGN test variables S()t and S(*):~. When either test
variable reaches the threshold, for this example 7 = 2, an alarm
is triggered (indicated by the red circles) and a reset-to-zero con-
dition occurs. The CUSIGN detector monitors the occurrence
of triggered alarms as the CUSIGN test variables reach their
respective thresholds, where irregular occurrences indicated an
attack may be happening.

Similar to the implementation in [13], the transition of the
CUSIGN test variable sequences can be constructed as a Markov
chain with a transition matrix modeled from the probabilities p
and p_ computed in (20). Consisting of a user-defined threshold
7 to trigger an alarm, we show the transitions of S*):* with a
Markov chain diagram in Fig. 4.

Given a chosen threshold value 7 € N, as a value that
triggers an alarm when |S(*)-*| = 7, we describe the Markov
chain in Fig. 4 in the form of a Markov transition matrix
T+ € RUHDX(7+1) denoted for both the positive and negative
transition matrices, 7 and 7 —. The CUSIGN Markov chain,
occurring in a discrete manner, contains 7 + 1 states denoted
as M = {My, My, ..., M,}, where M, is an absorbing state
that is equal to the threshold, causing the CUSIGN test sequence
S(E)% to reset to M. The CUSIGN Markov transition matrix
for the positive 7+ with a probability distribution of sgn (r(*))
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is written as

_p, py O 0 ... 0]
p— 0 py O ... O
_— 0 p. 0 py 0 _[Q* *]
- B . e Oy 1)
0O ... 0 p- 0 py
o ... 0 0 O I
(23)

The transition matrix 7+ structure remains the same on any
system, where the matrix size depends only on the value of the
threshold 7. Transition probabilities for transient states in 7+
adhere to the following:

Pr(Mj—>Mj+1):p+, fOI'j:{O,...,T—l}
PI‘(Mj*)Mj_l):p_, fOI'j:{].,...,Tfl}
PT(M0—>M0) =p—

(24)

and the final row represents an absorbing (i.e., triggering)
state containing elements equal to 0, besides the last element
equaling 1.

We define O € R™*7 as the fundamental matrix obtained
from 7 T with its last row and column removed (i.e., the absorb-
ing state at threshold 7 is removed), representing the transition
probabilities to and from the transient states. Elements of O
are all nonnegative, and row sums are equal to or less than 1,
while the eigenvalues satisfy p[QF] < 1 such that (QF)* — 0
ask — ooand Y, (QF)* = (I, — QF)~1, where p[] is the
spectral radius and I is the identity matrix of size 7. Leveraging
the fundamental matrix Q, we can compute an expected alarm
rate as indicated in the following lemma.

Lemma 1: Given a system with a CUSIGN detector (22) with
auser-defined threshold 7 € N that is not affected by cyber at-
tacks such that the residual sequence satisfies %) ~ N (0, o(¥)),
then the inverse of the first element of the following vector:

l'l'+ = (IT— Q+)_11‘r><1 = (MT""?Mj)T (25)
is the expected alarm rate, i.e., E[A] = (u]) L.

Proof: Given the Markov chain containing 7 + 1 states de-
noted by M = {My, M, ..., M,}, a fundamental matrix Q"
is taken from a designed Markov transition matrix (23) to
satisfy the transition probabilities (24). Leveraging the theory
of average run length (ARL) introduced in [50], the ARL is
defined as the average length of time for the test sequence to
reach the threshold 7 to trigger an alarm, determined by the
fundamental matrix QT containing the transient states within
T . By definition, the inverse of the ARL to observe an alarm
results in the average frequency of obtaining an alarm, known as
the alarm rate. The ARL can be found by computing (25); then,
by inverting the first element of pt, ie., (,uf)‘l, we finally
obtain the expected alarm rate E[A] = (u]) L.

Remark 1: The design of transition matrix 7~ with subse-
quent fundamental matrix @~ and expected alarmrate E[A~] =
(puy) ! for the negative case is computed by (23)—(25) with
transition probability (p4 and p_) signs inverted.
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TABLE I
EMPIRICAL VALUES FOR THE SCALING VALUE 6 GIVEN 7 = 1,2,3,4

Threshold 7
0 1

T=3
0.74 0.7

T=4
0.69

T=1 T=2

The expected variance of estimated alarm rates A%)* using
MRE for runtime estimation have been found through empir-
ical results in [37]. A scaling factor 6 € Ry is found to be
dependent on the chosen threshold 7. The observed MRE scaling
factor approximates of 6 are presented in Table I for thresholds
T=1,2,3,4and ¢ > 10 (see [37]).

Proposition 1: Assuming that a residual is not affected by a
cyber attack while using (21) for alarm rate estimation, the alarm
rate is normally distributed by the following:

F /\/<E 44, QE[AﬂQ(;_—lE [Ai])), (26)

By leveraging the expected distribution of the estimated alarm
rate in (26), bounds of the alarm rate can be made. The following
corollary provides alarm rate detection bounds for the CUSIGN
detector.

Corollary 1: Given aresidual 7(*) monitored by the CUSIGN
detector (22) consisting of a threshold 7 € N, detection of
cyber attacks occurring for a given level of significance o €
(0,1) when Q_ < A®)* < Q. is no longer satisfied.

Proof: With the CUSIGN detector consisting of a threshold
7, an expected alarm rate E[A*] found in (25), and leveraging
(21) with a pseudo-window of length /¢, the distribution of the
estimated alarm rate follows the normally distributed properties
from (26). Detection bounds 24 = [2_, Q] of a user-defined
level of significance « € (0, 1) (i.e., the probability that a false
detection occurs in nominal conditions) follow:

E[4*] [ () ’\/GE[AHQ(EI_—;E[AH) < A

<t +fon (5) ) EEG D

27)

where ®~1(.) is the inverse cumulative distribution function of
a standard normal distribution [48], thus satisfying Corollary 1
and concluding the proof.

In summary, with the CUSIGN detection procedure, we can
monitor and detect nonrandom behavior in residual data. Under
a worst-case scenario (i.e., assuming an attacker has full knowl-
edge of the system model and detection procedure), an intelligent
attacker could remain hidden by triggering alarms at rates that do
not travel beyond detection bounds while maintaining an attack
vector. However, the CUSIGN detector’s attack deterring effects
will be limited, and one could implement multiple detectors in
parallel with different threshold values 7 to further impair an at-
tacker’s ability to remain hidden. For a more detailed discussion
about undetectable attacks, the reader can check Appendix A.

In the next section, we expand these thoughts and show how to
deploy the proposed technique on the multirobot problem under
the attacks presented in Section II-A.
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Fig.5. Overall architecture describing our resilient robotic framework executed by each robot ¢ € ) in the network. Both the multirobot detection on its neighbors

j € S; and self-detection on itself are performed to find stealthy attacks that exhibit nonrandom residual behavior.

IV. MULTIROBOT SYSTEM ATTACK DETECTION AND
RECOVERY

In this section, we show how to deploy the proposed CUSIGN
technique on a multirobot system to detect nonrandom (i.e.,
inconsistent) residual behavior due to cyber attacks and to
recover/reconfigure the system. Our scheme is leveraged to
monitor and detect if neighboring robots are compromised, as
well as to perform self-monitoring for discovering inconsis-
tencies to on-board sensor measurements due to cyber attacks.
Fig. 5 summarizes the high-level procedure in a block diagram
that is executed by each robot in the network to monitor for
cyber attacks and locally recover the system when attacks have
been detected. As a running case study for the remainder of
this article, we employ a VSDM with the Gabriel graph (GG)
rule for proximity-based formation control [51] to demonstrate
our detection and recovery approach on multirobot system for-
mations. However, our approach is valid for any cooperative
proximity-based formation control for multirobot systems (e.g.,
nearest neighbor [46]).

A. Virtual Spring—Damper Mesh

In this article, we consider VSDMs alongside the use of the
GGrrule [52], [53] for proximity-based control of multirobot sys-
tems performing coordinated operations. Given that all agents
are cooperative, this method allows for a decentralized algo-
rithm, where agents are required to leverage local (proximity-
based) interactions that result in a desired global behavior of the
system. Furthermore, systems that leverage VSDMs incorporate
favorable characteristics that include scalability, efficiency, and
known stability properties such that all decentralized agents
converge to a global consensus [41], [54]. Numerous works
have leveraged VSDMs for various applications [42]-[45], [51],
[55], [56], where all of these works did not consider security
issues. A single compromised agent affected by cyber attacks can
hijack the entire multirobot system to an undesirable state due to
the control interconnections that are propagated throughout the
robot network, as demonstrated in Fig. 1. In a decentralized
manner, our work allows the agents to identify and remove
nearby agents from the network (i.e., the control graph) that
could potentially cause undesired behavior.

The objective of the multirobot system is to navigate to a
goal location while maintaining a desired distance between

neighboring robots. Furthermore, the multirobot system must
be resilient to stealthy communication and sensor cyber attacks.
In addition, we make the assumption that the robot network is
navigating in an unknown cluttered environment: to this end,
all robots are fitted with a range sensor providing 360° field
of view (FOV) (e.g., a lidar) with limited range 4, < d. for
obstacle/collision avoidance.

Each robot 7 is controlled to follow the VSDM network
dynamics by leveraging a virtual spring—damper physics model

u; =p; = [Z Kij(lij — l?)c_iij + Z Kio(lio — lS)tZo

JES; 0€0;

+ Higligc_iig] —vp; € R™ (28)
where S; is the neighbor set of robot ¢ € V in the control graph
G and O; is the set of obstacles within the FOV of robot i. Given
the use of a virtual spring model, ! denotes the spring length
between a robot ¢ and neighboring robots j (I;;), obstacles (/;,),
and the goal g (l;4), while 19 are the desired virtual spring rest
lengths, x represents the spring constants, and d is a unit vector.
Given damping coefficients that satisfy ; > 0, the multirobot
system leveraging the VDSM emulates a true spring—damper
mesh, where dissipating forces act against the velocities, leading
to an equilibrium state of zero velocity in the absence of other
external forces.

Given the set of robots ), each robot ¢ € V computes its
neighbor set for control S; C C; from the received information of
nearby robots (4) in the communication graph G¢ by following
the GG rule [52], [53]. A GG is constructed in the following
way: a robot j belongs to the neighbor set S; of a robot i (i.e.,
a directed control edge is formed between ¢ and j) if and only
if there are no other robots h € C; within the circle of diameter
ij [571:

8= {jec\Ve | ihj <2} (29)
where z'/h\j, i # j # h, is the interior angle of the three robot
positions’ configuration from the on-board position estimate

ﬁgk) of robot ¢ and position estimates f)gk) and f)glk) from received

information of nearby robots j and h. The set VZC C Vin (29)
denotes robots that are deemed compromised by robot 7, such
that control edges are not constructed to remove compromised
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Fig. 6. (a)-(d) Sequence of snapshots with a robotic swarm consisting of
N = 15 robots navigating toward a goal region (in green) using the VSDM
network model (28) in the absence of cyber attacks.

robots from the network for resilient control. The determination
of the compromised set V' is discussed in Section IV-B. As a
side note, the utilization of the GG rule allows for connected
graphs with no crossing edges and, hence, an increased and
uniform coverage as opposed to other graph techniques [58].

In Fig. 6, we show a sequence of snapshots for a simulation
of a swarm of 15 robots deployed using the virtual spring model
with GG in (28) and (29) to navigate toward a desired goal region
while avoiding any obstacles in the environment.

B. Attack Detection and Reconfiguration

Robots within the multirobot system monitor for inconsis-
tent behavior of their neighboring robots to avoid stealthy at-
tacks from hijacking uncompromised robots and, potentially,
the entire robot network. Each robot i € ) leverages received
information I](.k) from any neighboring robot j € C; to perform
attack detection by monitoring elements within the inter-robot
measurement (17) and inter-robot state (15) residual vectors, as
characterized in Section III-A.

To indicate that a robot ¢ € V) is monitoring an sth inter-robot
measurement residual element and the qth inter-robot state
residual element on a robot j € 1V, we denote the alarm rates
as Agf)f = {Az(f):', Agf)&_} and Az(f)[]i = {/All(f)qﬂflgf)q_},
respectively. If an alarm rate no longer satisfies detection bounds
in Corollary 1 (i.e., suggesting inconsistent behavior), a robot ¢
deems the monitored robot j compromised. Once inconsistent
behavior is detected, the robot ¢ then isolates and removes
the compromised robot j by placing it in its compromised set
V¢ C V. By placing robot j in its compromised set, robot i
performs a local reconfiguration of the network topology using
the GG rule on the communication graph presented in (29),
hence forming a new control neighbor set S} =S, \ {j}. A
previously found compromised robot j is allowed re-entry into
the robot network, and the control graph, in the event that the
attack disappears and j behaves as expected again (i.e., the
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. Uncompromised Robot
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Compromised Robot

Fig. 7. Example of a network reconfiguration where uncompromised robots
isolate and remove compromised robots that are sending spoofed position
broadcasts during a communication attack.
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Fig. 8.  (a)—(d) Swarm with four robots (red) that are experiencing malicious
sensor attacks, causing their state estimates (white disks) to diverge from their
true state. In turn, the network is dragged away from its intended goal (green).

residuals follows the expected distribution). In this case, a local
reconfiguration is again invoked using GG to compute S,.

Fig. 7 shows a pictorial example of the scheme in which
compromised robots 4 and 5 are broadcasting spoofed posi-
tion information [i.e., communication attack (A1)] to the robot
network: the empty disks represent the spoofed broadcast po-
sition coordinates of the true positions of the compromised
robots (red disks). The uncompromised robots (blue disks)
detect nonrandom (i.e., inconsistent) behavior occurring from
received information of robots 4 and 5, resulting in removal of
any control edge connections that could affect the multirobot
system performance, where (i,7) ¢ &, ¢ € V, and j = {4, 5}.
After removing the malicious nodes, the remaining seven nodes
reconfigure using the formation rules presented in Section IV-A.

Fig. 8 shows, as an example, the effect of a stealthy on-board
sensor attack (A2 on an unprotected swarm with the same
task in Fig. 6. The attack begins at time step £ = 400 on four
robots, dragging the entire multirobot system away from the
desired goal. In this example, the empty red disks represent the
unreliable on-board state estimates of the compromised robots
that are used for on-board control and are also broadcast to
nearby agents in the robot network, whereas the red disks denote
the true positions of the compromised robots. The unreliable
states that are broadcast to nearby robot are then leveraged
by the uncompromised robots (denoted by blue disks), which
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propagates the attack effects throughout the entire robot network
affecting the overall mission.

C. Self-Detection

Similarly, each robot ¢ € V performs self-monitoring by
leveraging the on-board measurement residual to search for
stealthy on-board attacks on its sensors. As shown in Fig. 5,
the CUSIGN detector is placed in the feedback of the traditional
control loop to monitor the on-board measurement residual for
potential attacks. As a sensor’s measurements no longer satisfy
an expected random behavior (i.e., alarm rates travel outside
detection bounds), a robot ¢ places itself into its compromised
seti € VE C V.

In this article, the self-detected compromised robot isolates
itself from the rest of the network by cutting any communication
broadcasts to the network (i.e., (i,7) ¢ &y, Vj € V) and also
stops moving toward the goal; formally, it will remove the
first and third terms from (28), leaving any control effort only
toward obstacle and other robot avoidance. While we decided
to implement such a law for ease, different behaviors can be
considered as we will discuss in more detail in Section VI.

D. System Stability

The multirobot system that leverages a VSDM with the GG
rule for formation control, together with the attack detection
scheme presented in Section III, creates a switching hybrid
system, in which edges construct and deconstruct as the robots
move through the environment. Past works have proved the static
(i.e., fixed topology) and dynamic (i.e., switching topology) sta-
bility of this time varying switching system by using Lyapunov
theory [41], [43].

Here, we extend some of these results and provide a stability
proof also considering the cyber-security detection and isolation
procedures described in the previous sections. As compromised
robots are subject to cyber attacks that present detectable nonran-
dom behavior, certain directed edges (i.e., virtual springs used
for control) from compromised robots are eliminated, while oth-
ers between the remaining uncompromised robots may appear
for network reconfiguration. Assuming that cyber attacks are
detected using the proposed CUSIGN method, the multirobot
system is guaranteed to reconverge to a new equilibrium af-
ter network reconfiguration occurs due to compromised robots
being removed from the system, as formally described in the
following theorem.

Theorem 1: The hybrid system in (28) with switching dynam-
ics imposed by the GG rule (29), the CUSIGN (22) detector,
and the network reconfiguration scheme, as discussed in Sec-
tions IV-B and IV-C, is stable (i.e., an equilibrium rest state can
be reached).

Proof: See Appendix B.

V. RESULTS

The proposed framework was validated with extensive MAT-
LAB simulations as well as various ROS experiments on a swarm
of TurtleBot UGVs and also Clearpath Jackal UGVs in Gazebo

to cover different attack scenarios illustrated in Section II-A.
Next, we present a few representative cases. While in this
article, we showcase a few representative examples, extensive
simulations and experiments under more attacks can be found
in the provided supplemental material.'

Our proposed CUSIGN detector is compared with a BD
detector [12] and a model-based CUSUM detector [13], whose
detection procedures leverage alarm triggering based on thresh-
olding magnitude values of the residual (see [13] for details on
how to determine model-based BD and CUSUM thresholds). In
comparison to BD and CUSUM detectors, our nonrandomness
detector is nonparametric and only considers the signed value
of the residual, while the residual magnitude is ignored. As we
will see, certain attacks are undetectable by the BD and CUSUM
detectors; however, a more resilient approach would be to de-
ploy these magnitude-based detectors alongside the CUSIGN
detector. Throughout the simulations and experiments in this
section, all detectors use a level of significance v = 0.0004
(i.e., ~ 3.30) for detection bounds, which are represented as
dashed red lines in the figures displaying results for detector
alarm rates. Additionally, BD and CUSUM detectors are tuned
for a user-defined expected alarm rate A% and their alarm rate
detection bounds are chosen by assuming a normal approxima-
tion of the binomial alarm rate value (i.e., {0, 1}) using MRE
(21) for alarm rate estimation.

A. MATLAB Simulations

For the MATLAB simulations, we considered double-
integrator point mass dynamics for /N = 15 robots in the swarm
represented with the virtual spring model in (28) with each
robot i € V having a state vector z; = [p?,p?,v¥, v/]T € R"
consisting of positions and velocities in the xy plane. Through-
out all simulations, the set of point mass robots V shares a
maximum communication range é, = 15 m, maximum range
sensing distance &, = 3 m, virtual spring rest lengths [ = 4 m
and [0 = 3 m, damping constant ; = 3, and spring constants
kij = 15, ki, = 40, and k;; = 5. A pseudo-window of length
¢ =50 for MRE alarm rate estimation (21) is used by all
detectors. Additionally, the CUSIGN test variable threshold
is chosen to be 7 = 2 such that the expected CUSIGN alarm
rates are E[A*] = %. Each robot i € V measures the = and
y positions with a sampling time ¢, = 0.05 s, with measure-
ment and process noise covariances R = diag(0.05,0.05) and
Q = diag(le—3,1le—3,le—5, le—>5). During all simulations,
the CUSIGN detector is compared to the BD and CUSUM detec-
tors, which monitor both the measurement and state residuals of
the position for all robots ¢ € V, which have thresholds tuned for
an alarm rate of A% = (.15. Additionally, the CUSUM detector
uses a bias of b, = 1.1b, (see [13] for further details on tuning
of the BD and CUSUM detectors).

Two case studies are presented next: 1) a man-in-the-middle
communication attack and 2) a sensor spoofing attack. In both
cases, we consider the multirobot operation presented previously

![Online]. Available: https://www.bezzorobotics.com/tro21
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Fig. 9. (a) and (b) Robotic swarm navigating toward a goal point (in green)  Fig. 11. (a) and (b) Robotic swarm navigating toward a goal point (in green)
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Fig. 10.  Resulting alarm rates of robot 2 performing multirobot detection on
any neighboring robots j € Ss from the case depicted in Fig. 9 for inter-robot (a)
measurement and (b) state residuals. The state residual is able to detect stealthy
communication attacks that are not detected by the measurement residual from
robots j = {4,13}.

in Fig. 6 with robots ¢ = {4,5,7,8} under attack from time
instant £ = 500.

Communication attack: Our first case study involves a stealthy
man-in-the-middle communication attack (A1), as discussed in
Section II-A, in which position measurement data from com-
promised robots are intercepted and replaced with incorrect
data before broadcasting to the rest of the swarm while slowly
ramping the position in the (—xz)-direction. Fig. 9 shows the
behavior of the swarm once we deploy our framework, in which
the compromised robots are detected in this case through the
CUSIGN (22) detector and isolated by their neighbors.

Fig. 10 shows the evolution of the alarm rate from the per-
spective of robot 2 monitoring robots j = {2,3,4,5,7,8,9, 11}
that belong to its neighbor set Sy at some point in time £ > 0
during the stealthy communication attack case study presented
in Fig. 9. For multirobot detection, robot 2 monitors both the
inter-robot measurement and state residuals of its neighboring
robots j € Sy. As shown in Fig. 10(a), the CUSIGN detector
of robot 2 that monitors the measurement residual 'rgk-) of its
neighboring robots j € Sy does not detect the attack, while in
Fig. 10(b), the detectors that are monitoring the inter-robot state

residual %g’;) find the inconsistent behavior as the attacker is
pushing the state estimate slowly to one side.

Sensor attack: Our second case study involves stealthy on-
board sensor measurement attacks (A2) described in (8), at-
tempting to hijack compromised robots to an undesired state.

Similar to our simulation case of a communication attack, an

while protected from stealthy attacks to on-board sensor measurements.
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Fig. 12.  Alarm rates comparison between (a) CUSIGN, (b) CUSUM, and (c)
BD for the case study shown in Fig. 11 for self-detection while monitoring the
on-board measurement residual for position in the z-direction as stealthy cyber
attacks affect sensors on-board robots ¢ = {4, 5,7, 8}.

attack is slowly ramping the position measurement in the (—x)-
direction, while remaining hidden from previously state-of-the-
art detection schemes. Fig. 11 displays the detection results
against stealthy sensor attacks, where uncompromised robots
isolate and remove malicious robots from the network while
maintaining the desired task of navigating to the goal point. The
sensor spoof considered deliberately hides within the noise to
evade detection from the CUSUM and BD detectors, as shown
in Fig. 12(b) and (c), but the attacker leaves trails of nonrandom
residual behavior, which is detected by the CUSIGN detector
[see Fig. 12(a)].

B. TurtleBot Experiments

Experimental validations are performed on N = 5 TurtleBot2
differential-drive robots performing a go-to-goal operation
within a laboratory environment. The hardware used is a Lenovo
P51 Workstation equipped with an Intel Core i7-6820HQ
processor at 2.7-GHz running Linux with ROS enabled. The
controller for each robot and the attacks are implemented in
MATLAB interfaced with ROS through the Robotic Systems
Toolbox, and the operation is executed at 100 Hz. In this
experiment case study, the network of UG Vs is tasked to navigate
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(a)—(e) Robotic swarm attempting to navigate toward a goal region (in green) while unprotected from stealthy attacks on communication broadcasts.
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(a)—(e) Robotic swarm attempting to navigate toward a goal region (in green) while protected from stealthy attacks on communication broadcasts. False

broadcast information of the robot positions are discovered, and the swarm is able to isolate and remove any robots with spoofed communication broadcasts.

to a goal region (in green) while resiliently maintaining a desired
network topology that satisfy edges by the GG rule (29).

Two different cases are implemented: 1) communication
attack without detection and 2) communication attack with
detection, with robots ¢ = {3,5} € V subject to attacks. For
both cases, we use the following system parameters: J. = 3 m,
§ = 0.6m,% =0.7m, 1% = 0.5 m, and y; = 0.5. Measurement
noise covariance follows R = diag(0.01,0.01,0.002,0.0004)
on positions, velocity, and heading angle states, while a

pseudo-window length ¢ = 40 for MRE alarm rate estimation
(21) is used for all detectors. We begin with the case where
no detection occurs in Fig. 13, showing how a stealthy com-
munication attack is able to drive the network of UGVs to an
undesirable state, away from the intended goal region. Fig. 14
shows the case where we have the CUSIGN detector moni-
toring the inter-robot state residual from information received
from neighboring robots. The communication attacks on robots
{3, 5} are discovered by the remaining uncompromised robots,
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0.6 Robot 1 Monitoring Inter-robot Measurement Residuals
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Fig. 15. Resulting alarm rates from the perspective of robot 1 for the experi-

mentin Fig. 14 while monitoring the inter-robot residuals. (a) Robot 1 monitoring
inter-robot measurement residuals. (b) Robot 1 monitoring inter-robot state
residuals.

resulting in a network reconfiguration to remove the attacked
robots. Fig. 15 displays the detector results from the perspective
of robot ¢ = 1 from Fig. 14, where in Fig. 15(a), the stealthy
communication attack is not detectable on the inter-robot mea-
surement residual, but in Fig. 15(b), it leaves traces of nonran-

dom behavior in the state residual fy;)q for the position in the
x-direction Vj € V \ {1}.

C. Gazebo Experiments

To further reinforce these results, a case study on sensor
spoofing was demonstrated with an experiment in Gazebo with
N = 10 Clearpath Jackal Robots performing a go-to-goal op-
eration in a larger environment with more obstacles, as demon-
strated in Figs. 16 and 17. We leverage Gazebo because it allows
us to run longer experiments with more robots, larger spaces,
and considering even stealthier attacks than experiments in our
laboratory space. In addition, in this case study, we decided to
use the Jackal robots to show the flexibility of our framework to
deal with different dynamical models.

In the case of sensor attacks, the objective of an attacker is
to slowly push a sensor measurement (e.g., positions) to one
side, resulting in hijacking of the true state of the robot that
diverges from the on-board state estimate. With this in mind, a
larger environment is needed to perform a truly and effective
stealthy attack. The robots share a maximum communication
and sensing range of 6, = 15 m and §, = 3 m, with virtual
spring rest lengths [0 = 4 m and [ = 3 m. Sensor measurement
noise covariance follows R = diag(0.05,0.05,0.002,0.0004)
on the N, sensors receiving measurements of the robot position,
velocity, and heading angle. A pseudo-window of length ¢ = 40
for MRE alarm rate estimation (21) is used for all detectors.
Additionally, the BD detector is tuned for an expected alarm
rate A% = 0.15, while CUSUM is tuned for A9 = 0.1 (with
bias by = 1.05b,).

In Fig. 16, we show the sequence of snapshots for the robot
network while experiencing stealthy on-board sensor attacks
on robots {7,8,10} beginning at k£ = 200 and robots {4,6}
beginning at k£ = 400. During the attack, compromised robots
have their position measurements slowly ramped away in the
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(—x)-direction with the intention of driving the swarm away
from the desired goal. Avoidance actions are required from
nearby robots that leverage their on-board range sensors to
prevent collisions. A comparison between detectors—CUSIGN,
BD, and CUSUM—during the stealthy sensor spoof from Fig. 16
is shown in Fig. 18, with their on-board alarm rates displayed
over the entire length of the case study. The CUSUM and BD
detectors on-board the robots fail to detect the stealthy sensor
attacks, while the CUSIGN detector is able to identify that the
compromised robots are presenting inconsistent information,
which allows the compromised robots to safely remove them-
selves from the formation.

VI. CONCLUSION

This article presented a resilient approach to detect and de-
fend against stealthy sensor and communication attacks that
cause nonrandom behavior within homogeneous multirobot sys-
tems. The CUSIGN detector was introduced to counteract these
stealthy attacks by monitoring alarm rates triggered by resid-
ual changes over time. Upon detection, the multirobot system
reconfigures to isolate the malicious robots in a decentralized
fashion. The proposed scheme is scalable since each robot only
relies on the local information received from its neighbors to
assess security issues. Finally, in our extensive simulations and
experiments, we showed how our framework can outperform
well-known residual-based detection schemes such as BD and
CUSUM detectors. Assembling together these magnitude-based
detection schemes with our proposed approach would increase
the overall resilience of the system.

In the simulation and experiment demonstrations, we con-
sidered double integrator, differential drive, and skid-steering
dynamics to show the generality and flexibility of our frame-
work. The main assumption for our framework is to have a priori
knowledge about the vehicle dynamics and the noise models.
Currently, we have assumed that communication within the
network is ideal, such that synchronization errors, time delays,
and communication failures are negligible. Future efforts ex-
panding on this work could include and leverage more accurate
communication models with uncertainties as introduced in [59]
and [60] to further increase resilience, for example, by using
the dependencies between communication quality and distance
between two communicating agents (i.e., as a side-channel de-
tection scheme). Expanding the proposed work to heterogeneous
robotic systems with different classes of vehicles and sensing
capabilities is also another aspect that could be investigated in
the future.

From a recovery/reconfiguration perspective, we believe that
an important direction forward would be on how to deal with the
robots that are found compromised. In this article, compromised
robots were isolated and removed from the network, to avoid
their malicious effect on the coordination of the rest of the
uncompromised robots. However, more complicated approaches
can be considered to stop the malicious robots, such as surround-
ing or dragging them toward a safe state. In order to enable such
behaviors, it is necessary to predict the state of the compromised
vehicles. One possibility here is to research checkpointing and
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(a)—(d) Robotic swarm attempting to navigate toward a goal region (in green) while protected from stealthy attacks on sensor measurements. False data

injections to the robot position measurements are discovered, and the swarm is able to resiliently isolate and remove any robots under attack to reach the goal.

Fig. 17. Initial positions of the N = 10 Clearpath Jackal UGVs within a
cluttered environment for the experiments using Gazebo.

recovery methods, inspired by traditional software engineering,
by rolling back to reliable states of the compromised system to
predict forward its possible states after it was compromised.
Predicting the intention of an attacker is also in our agenda
since this will further increase resilience to better recover a
system. The inclusion of learning-enabled components such as
regression and classification techniques could further improve
the on-board computation for detection. Furthermore, we plan
to investigate the effects of worst-case attack sequences that an
attacker can perform while evading detection from the CUSIGN
detector to characterize the maximum damage in terms of the
resulting true state divergence from the on-board state estimate.

APPENDIX A
CHARACTERIZATION OF UNDETECTABLE ATTACKS

In this appendix, we discuss attack sequences that an attacker
can take to remain hidden from detection from the CUSIGN

0.6 CUSIGN

Alarm Rates

Alarm Rates

Alarm Rates

Fig. 18.  Alarm rate results from the experiment in Fig. 16 for robots 7 € V
performing self-detection while monitoring the on-board measurement residuals
as stealthy cyber attacks affect sensors on-board robots ¢ = {4, 6, 7,8,10}. The
CUSIGN detector detects nonrandom behavior of the sth measurement residual
(affecting the x position) as alarm rates travel outside of detection bounds. The
CUSUM and BD detectors do not recognize the stealthy attacks. (a) CUSIGN.
(b) CUSUM. (c) BD.

detection scheme for both sensor and communication attacks.
In order to evade detection from CUSIGN, an attacker must be
mindful of both the positive and negative test variables S(*)-+
and S(*):~ with their respective alarm rates A+ and AK).—
To maximize damage in a hijacking attack, a smart attacker
would want to manipulate a variable of choice (e.g., sensor
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measurement) to push the system in a specific direction with
maximum effect, without passing alarm rate detection bounds
Q. defined in (27). As a result of maximizing the effects of
an attack, one alarm rate is driven toward the maximum alarm
rate threshold €2, and the other alarm rate is pushed toward the
minimum threshold €2_.

Assumption 1: Under a worst-case scenario, an attacker has
knowledge of the robot dynamical model (1), the network model
(e.g., proximity-based consensus protocol), and the state estima-
tion procedure (e.g., Kalman filter). Furthermore, a malicious
attacker has the ability to manipulate any sth on-board sensor
measurement yfks) and/or any information within Ii(k)
1 € V through communication broadcasts.

On-board sensor attack: The first case considered is in the

event that an attacker can inject false data to sensor measure-

on a robot

ments on-board a robot ¢, where é‘ = (. Utilizing the spoofed
output vector in (8) combined w1th the on-board measurement
residual defined in (12), we can rewrite the on-board measure-
ment residual vector on an ith robot as

rgk) _ g Cigk\kq)

=cz” + 0" + ") — calth Y

=cel D 1M 4 e (30)

where e(k‘k D= wz(-k) — € R™ is the state prediction
error. Each sth on-board measurement residual element, s €
{1,..., N}, is defined as

ﬁjgkuc—n

r®) = Ce™* Y 1 g® 1 e CeRr G1)

4,y,(s)

where C is the sth row of the output matrix C and &, (k) vi(s) € R
is the sth element of the sensor measurement attack vector An
intelligent attacker can manipulate the measurement residual
sign by constructing a suitable attack signal to create an attack
sequence that avoids the CUSIGN detection bounds. An attacker
can manipulate the residual sign by choosing an attack vector
element s of the sensor measurement to satisfy

sgn( (k>) 1’if££,k) 5> —C sei ) —
Tis _Lifgl(k ) < -C,e (k|k 1)

We first examine the scenario when elther of the est1mated
alarm rates monitoring the positive A or negative A
residual sign occurrences approach the maximum detectlon
boundary threshold €2 on arobot i. The objective of the attacker
is to drive the alarm rate of the desired sign as close to the
maximum threshold without crossing it. The following equation

(k)
ils (32)

is arestriction on the attack signal fi(lz) (s) for a sensor s on-board

arobot ¢, for both alarm rates denoted as AEZ) -

cross the maximum threshold:

k K o x k k
Enis) = {fz(y)@ ~Coel =)

, such that neither
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The constraint in (33) determines if the detection threshold
will be broken if an alarm is triggered at the time instant k.
This forces an attack signal &; (k )( ) to result in a desired residual
element sign, such that an alarm is not triggered.

A similar restriction for both alarm rates is necessary as either
one (i.e., alarm rate for the opposite sign that approaches the
maximum bound) nears the minimum threshold bound, 2_. An
attacker must ensure that an alarm is triggered before the given
alarm rate for an sth residual element falls below the minimum
detection bound, such that the sth attack signal element satisfies

k KoL k
Enis) = {5( o = ~Csel =]

‘ (Q SAL sl “i|>vi) >0}

(34)
such that
0 X A(_k’fl),i
Af)* = AU - (35)
where VE' = k(T - Sfi_l)’ﬂ — 1) denotes the

number of time instants needed for the CUSIGN test variable
Si(ks) to reach the CUSIGN threshold 47 in order to trigger
an alarm.

Communication attacks: In this article, we assume that an
attacker can manipulate any information IZ-( sent from com-
munication broadcasts from a robot 7 € V, which contains the
robot’s state estimate, input, and measurements. For the case of
a communication attack, we provide a worst-case scenario when
the broadcast state estimate 1nformat10n from a robot ; is altered
by a malicious attacker (i.e. 5 # 0). The neighboring robots
J € C; monitor for inconsistent 1nf0rmat10n received from robot
1, as it would be unaware of an attacker maliciously altering its
information via communication broadcasts. The objective for
an attacker is to avoid detection from the neighbors that are
monitoring robot .

The state prediction on-board a neighboring robot 7 monitor-

ing a robot 7 is a function of the information Ii(kfl) sent at the
previous time instant k — 1:
s%;l:\kfl) —f (i§k71|k—1)7u5k71|k—1)7££’ ,E (k— 1))
— Ay ( (k—=1[k=1) +€(k 1))
1 B, <u§k71\k 1) £(k 1)) (36)

where A, and B are discrete-time equivalents of A and B in

(1) such that the inter-robot residual on robot j to monitor robot

1 follows:
;.(k) _

W) _ G0 | @

d( (k=1]k— 1)+£k 1))
— B, (ul(_kfl\kfl) n £1(713:1))

(klk) | ¢(k=1) . (klk—1)
( + 5 ) —xy; e R.
! (37)
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An attacker can manipulate the gth inter-robot state residual
element sign by choosing an attack vector element of the broad-
cast state estimate to satisfy

(k) A~ (k[k—1) A(k\k)
(ke 1,if fl - > Ty, -
Sgn( J()Q) = i Afkﬁc RN SR L)
L& ) <Tjig  ~Tig

Similar to (33) and (34), an attack can manipulate the qth

element of the sent state estimate signal {1(11) (@ in order to
maximize the alarm rates for state residual by

®  _few () _ 40610
Siw) = {5m (@S < 1D -5
1- A D>
’(m AleDx - Tt ><0}

(39)

and, similarly, to ensure the alarm rate never reaches the lower
bound, the attack signal needs to satisfy

€0, = {6 & a9 —ay
‘ (Q_ B A§I;q1+’i7' sk D |),¢> - O} 40)
where
e =D
AT = AN - @1
and k' = k,....k+ (| £7 - S50 - 1),

We note that since the CUSIGN attack detector monitors only
the signed values of the residual elements (i.e., magnitude is
overlooked), it is not possible to quantify the worst-case effects
of the cyber attack in terms of true system state deviation with
CUSIGN operating as the lone on-board detector. However,
when augmented in parallel with a traditional magnitude-based
detector [12]-[20], the impact on state deviation due to a cyber
attack may be quantified.

APPENDIX B
PROOF OF THEOREM 1

Proof: To prove Theorem 1, we use a similar argument as
in [43] and [54]. We first derive the potential energy of the
system considering the removal of nodes due to detection of
cyber attacks and then show that the energy of the system after
detection converges to a rest state. The stored potential energy
of each robot ¢ in the network V is described as

20 5] ORI R PRt

j€V LheAh

where Ah C S\ {i} represents the change in neighboring
robots for a robot j contained in the set S; due to the removal of
robot ¢. The assumption in (42) is that, because of the GG rule, by
removing a robot 7, new connections may appear between the
remaining uncompromised robots. The total system potential
energy U is then the sum of the stored potential energy of each

robot ¢ € V:

U=> U;.

Y

(43)

Similarly, if a robot ¢ is included into the system, the stored
potential energy is described as

Ur=>" l > wnllin —19)°

jev Lhean

]7 iFj#Fh (44)

Let V4 C V be the set of detected compromised robots. Given
an instant of time when a robot ¢ is removed due to an attack or
introduced into the network, any uncompromised robots j € V' \
V4 reconverge to a new network equilibrium due to the changed
number of uncompromised robots in the network, denoted by
[V \ V4|. In the case of the removal of robot i, the remaining
uncompromised robots j € V \ {i} converge to the new network
equilibrium by first removing edges to robot i, i.e., (4,7) & Ey.
Thereafter, the robots j € V' \ {i} construct edges to the new
neighbors h € Ah C §;, such that (4, h) € &, to dissipate any
stored energy U, that belonged to robot 7 after it is removed.
Conversely, when 7 is introduced to the network, the robots j € V
update their virtual spring edges by (29) considering that robot
i is now joining the system, i.e., V U {i}, to converge to a new
equilibrium.

As edge switching occurs due to network reconfiguration, the
uncompromised robots j € V' \ VA dissipate the stored potential
energy U; (or Uf) of robot i € VA in order to converge to
an equilibrium (i.e., rest state). Next, we prove stability of
the system assuming that a reconfiguration of the system has
happened (i.e., by removing or adding a node to the network).

Static stability: Let us consider the scenario, in which the
network topology is not switching after the removal of a com-
promised robot in V4 or introducing a robot, as described in (42)
and (44). We let the total energy function of the system, including
any remaining available potential energy from the removal or
introduction of a robot, be described as

V=3 ;[Z kij(lij — 17)?

SANGS JES;
+ Z ’ﬂo i0 T + qulz ( )sz . (45)
0€0;

By taking the first-order derivative of the total energy in (45),
the time derivative becomes

% = - Z (%‘ (i]i)Tpi)

iev\vA

(46)

in which because v; > 0, Vi € V, we obtain that the total
energy dissipation is negative semidefinite. Taking the sec-
ond derivative of the total system energy, we obtain d;%

=23 ievya (i (p;)"D;), which is bounded and finite if robot
19)and (I;, — 19),Vi,j € V

velocities and the differences (;; —
are finite.

Dynamic stability: For the purpose of proving dynamic sta-
bility, we follow similar techniques to those in [41] and [43] that
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introduce an energy reserve variable A E that cancels switching
effects of the network topology. Included in the switching topol-
ogy of this proof are effects from robots removing or introducing
other robots to the network, as described in (42) and (44). Given
an interval of time At such that a switch occurs to create a
different topology for uncompromised robots without network
reconfiguration, the energy functions rate of variation is

AV 1 1
=2 |z lvty D L
iev\va L7 hean JEAS;
1 1 2 Pi\T ADi
+3 > Lo+ Shigli = %(AF)TAL (47)
0eAO;
where LU = Kih(lih — l?)z, LT = ’iij(lij — 12)2, LO =

Kio(lio — 19)%, AS; and AQ; are switches in the network
topology (i.e., construction or deconstruction of edge
connections), and AP' = 5Pt

Next, we build a modified potential function V' =V + E,

where FE is the global energy reserve by the following:

AE 1
=5 2 | T LD L

1EV\VA heAh JEAS;

— Y Lo —kigly, + m(AP)TAP | (48)

0eAO;

that is dependent on changes to S; and O; Vi € V. Including the
expressions (47) and (48) with the first derivative of the mod-
ified potential function V' =V + E, we obtain the following
negative-semidefinite expression:

av' dv  dE 1 LT .
WiﬂJrEiii,z (%‘(Pz‘) pi)'
ieV\ VA

(49)

Again, by taking the second derivative of V/, we obtain djl;V L =

=2 ieva (i (p;)"D;), which is bounded and finite.

The modified energy function contains the following prop-
erties: V' is positive definite, V' is negative semidefinite, and
V' is bounded and finite. Therefore, by Barbalat’s lemma, we
can conclude that the virtual spring network considering the
modified energy function has stable dynamics.
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