


to on-board navigation systems of robots in multi-vehicle

systems. In our previous work, we have characterized the

Cumulative Sign (CUSIGN) detector [17] on a single vehicle,

which is designed to detect non-random (i.e., inconsistent)

signed residual behavior. We demonstrated the effectiveness

of the randomness-based CUSIGN detector when compared

to the magnitude-based CUSUM in the presence of stealthy

sensor attacks that intentionally hide within noise profiles to

remain undetected. Moreover, the fundamental component

we want to convey is that noisy systems will follow an

expected model behavior under nominal conditions, whereas

systems that experience hijacking attempts from an attacker

will exhibit contradictory behavior.

In this work, we extend our recent randomness-based

detection techniques for sensor spoofing introduced in [17],

[18] to detect attacks and hidden signatures in multi-vehicle

systems. Specifically, each vehicle monitors the inter-vehicle

residual —defined as the difference between received infor-

mation and predicted values— using the CUSIGN detector to

determine whether nearby vehicles are behaving as expected

or not. Additionally, we propose a detection scheme to

monitor a residual sign switching rate (i.e., the frequency

of residual sign changes) to identify if nearby vehicles are

displaying hidden signature behavior, by leveraging known

stochastic properties of the system models.

To summarize, the objective of this work is: 1) to detect

stealthy MITM attacks on communication broadcasts that

leave behind inconsistent inter-vehicle residual behavior, and

2) to provide a method for the network to resiliently maintain

operations, while 3) using hidden side-channels to commu-

nicate the discovery of an object to nearby vehicles without

explicitly sending this information. The contribution of this

work is twofold: 1) a detector for discovering inconsistent

behavior from stealthy MITM communication attacks in

multi-vehicle systems, and 2) a ‘side-channel’-based scheme

to produce and detect a hidden signature to protect critical

information from being intercepted in communication broad-

casts by attackers in multi-vehicle operations.

II. PRELIMINARIES

Let us consider a multi-vehicle network of N homoge-

neous robots modeled as a directed graph G = (V, E), where

we denote V = {1, . . . , N} as the vehicle set and the edge

set E ⊂ V × V , such that an edge (i, j) ∈ E indicates a

connection from vehicle i ∈ V to vehicle j ∈ V . All vehicles

are considered to have second order dynamics that can be

represented in a linear time-invariant (LTI) state space form:

ẋi = Axi +Bui + νi, ∀i ∈ V, (1)

where A and B denote state and input matrices, the state

vector xi ∈ R
n consisting of positions pi and velocities

vi = ṗi, and νi ∈ R
n representing zero-mean Gaussian

process noise. Each vehicle i ∈ V within the vehicle network

is controlled by a virtual spring-damper physics model as,

ui = p̈i =

[ ∑

j∈Si

κv(lij − l0v)
~dij −

∑

o∈Oi

κo(lio − l0o)
~dio,

+ κglig ~dig

]
− γvṗi ∈ R

m, (2)

where Si ⊂ V is the neighbor set of a vehicle i, Oi

denotes the set of nearby obstacles, while l0v and l0o are

desired rest lengths between the vehicle i and its neighbors

and obstacles. The variables lij , lio, lig represent euclidean

distances (i.e., virtual spring lengths) and κv , κo, κg are

spring constants between neighboring vehicles, obstacles,

and the goal, respectively, while ~d denotes the unit vector

indicating direction of the forces. Given damping coefficients

that satisfy γv > 0, the multi-vehicle system emulates a true

spring-mass mesh where dissipating forces act against the

velocities, leading to an equilibrium state of zero velocity in

the absence of external forces. All vehicles are fitted with

a range sensor providing 360 degree field of view with a

limited range δr > 0 for obstacle avoidance. Any vehicle i
that comes within sensing range of an obstacle o ∈ Oi (with

position po) attaches a spring to it.

A. Connected Proximity-based Graph

In order for the vehicle network to cooperatively maintain

the desired proximity-based formation in (2), the vehicles

broadcast information that is received by any other vehicle

within a maximum communication range δc > 0.

Definition 1 (Communication Graph): Given the N vehi-

cles in set V with a maximum communication range δc, we

define the graph GC = (V, EC) with the following edge set,

EC =
{
(i, j)

∣∣ ∥∥pi − pj

∥∥ ≤ δc, i, j ∈ V
}
, (3)

as the communication graph of the vehicle set V .

Consequently, the set of all vehicles within communication

range of a vehicle i, denoted as Ci ⊆ V , follows,

Ci =
{
j ∈ V

∣∣ (i, j) ∈ EC
}
. (4)

All N vehicles are assumed to be equipped with localiza-

tion/pose sensors represented in the output vector y
(k)
i by,

y
(k)
i = Cx

(k)
i + η

(k)
i ∈ R

Ns , ∀i ∈ V, (5)

where C is the output matrix and η
(k)
i ∈ R

Ns denotes

zero-mean Gaussian measurement noise at every discrete

time iteration k ∈ N. A standard Kalman Filter with gain

K ∈ R
n×Ns provides a state estimate x̂

(k)
i ∈ R

n. To

enable proximity-based formation control, each vehicle i ∈ V
broadcasts its position estimate p̂

(k)
i (within the state estimate

vector) that is received by any nearby vehicles j ∈ Ci. The

neighbor set Si in (2) is used to control the motion of each

vehicle i and is computed following Gabriel Graph rule [20],

Si =
{
j ∈ V \ Ri

∣∣ îhj ≤ π/2, j, h ∈ Ci
}
, (6)

where îhj, i 6= j 6= h is the interior angle within a three

vehicle configuration obtained from the on-board position

estimate p̂
(k)
i and received position estimates p̂

(k)
j and p̂

(k)
h

from vehicles j, h ∈ Ci. The set Ri ⊂ V is a subset of

vehicles that are deemed compromised by vehicle i and not

included in the control graph.

Definition 2 (Control Graph): Given the vehicle set V
with each vehicle i ∈ V having a neighbor set for control

Si ⊆ Ci computed from the Gabriel Graph rule in (6), we

define the graph GU = (V, EU ) with the edge set,

EU =
{
(i, j)

∣∣ j ∈ Si, ∀i ∈ V
}
, (7)
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as the control graph of the vehicle set V .

Construction of the control graph by leveraging the

Gabriel Graph rule [20] allows for a connected graph without

crossing edges and a uniform coverage (while maintaining

desired distances between vehicles) of the network [7]–[10].

B. Attack Model

We assume the multi-vehicle network is navigating within

an adversarial environment, such that individual vehicles may

be subject to malicious communication attacks (e.g., MITM

attacks [5]). In the case of an attack on an unprotected

proximity-based formation, a single compromised vehicle

can affect the entire network of N vehicles as the effects of

the attack are propagated throughout the network. During a

persistent communication attack, we assume that an attacker

can continuously intercept and modify broadcast data with

stealthy (i.e., hidden within the system noise profile) infor-

mation in an attempt to intentionally fool (i.e., hijack) the

vehicle network. Each vehicle i exchanges state estimates,

nearby obstacle positions, and neighbor set information at

every time instance k such that nearby vehicles have knowl-

edge of its intended motion by construction of the network

model in (2). We indicate the spoofed broadcast information

from a vehicle i ∈ V that is received by other vehicles as:

x̂
(k)
i + ξxi −→ ˜̂x

(k)
i ,

po + ξoi −→ p̃o, ∀o ∈ Oi,

{Si \ S
ξ−

i } ∪ Sξ+

i −→ S̃i,

(8)

where ξxi ∈ R
n and ξoi ∈ R

2 denote the attack vectors on

state and obstacle positions, whereas the sets Sξ−

i ⊂ V and

Sξ+

i ⊂ V ,
{
Sξ−

i ∩ Sξ+

i

}
= ∅ are vehicle identifications that

are removed from and added to the original neighbor set Si,

respectively. For any attack vector ξxi 6= 0, ξoi 6= 0, ∀o, or

sets satisfying |Sξ+

i |, |Sξ−

i | > 0, an attacker is replacing the

original message such that the received information by any

nearby neighbors will differ from the intended broadcast.

C. Problem Formulation

Given the network described by the virtual spring model

(2) and the control graph GU (V, EU ), we are interested in

solving the following problems:

Problem 1 (Vehicle Inconsistency Detection): Create a

decentralized detection policy Pd such that a vehicle j ∈ V
that is experiencing inconsistent behavior can be discovered

and isolated by any vehicle i ∈ V such that,

(i, j) /∈ EU , i 6= j, (9)

to prevent undesirable effects to the multi-vehicle network.

A second problem that we explore in this work is to enable

indirect exchange of information by leveraging signature mo-

bility behaviors of the agents of the swarm. While navigating

through an adversarial environment, vehicles that come into

sensing range of an object of interest desire to notify the

remaining vehicles in the network of their discovery without

revealing explicitly the identification and position of the

object to maintain secrecy from adversaries.

Problem 2 (Hidden Signature Detection): Given a vehi-

cle i ∈ V that has found an object of interest while navigating

within an environment, find a control policy Pu to covertly

provide an identifiable hidden signature uH
i ∈ R

m for any

nearby vehicles j ∈ Ci ⊂ V to detect without explicitly

sending information of the discovered object through com-

munication broadcasts.

Upon recognizing a signature behavior, neighbors of the

vehicle will estimate the position of the object based on the

same signature and switch toward that object.

III. FRAMEWORK

In this section we describe the decentralized monitoring

framework for detection and isolation of inconsistently be-

having vehicles in the network, while allowing each vehicle

to provide a hidden signature for nearby vehicles. The

diagram in Fig. 2 summarizes our proposed scheme in which

each vehicle follows the primary or hidden control model,

as well as detects whether neighboring robots have expected

behavior according to the primary or hidden models.

Fig. 2. Overall framework architecture followed by each vehicle i ∈ V .

A. Monitoring Vehicles for Consistency

During operations, each vehicle monitors nearby vehicles

for consistent behavior according to the network model de-

scribed in (2). Each vehicle i receives broadcast information

from any nearby vehicle j ∈ Ci as represented in (4). This

vehicle i is able to make state evolution predictions of a

nearby vehicle j ∈ Si such that the neighbor set of vehicle j
satisfies Sj ⊂ Ci. The inclusion of the neighbor set Sj ⊂ Ci
is needed in order for vehicle i to predict the future state

of the system using (2). The state prediction of a vehicle j
computed by a vehicle i is computed as,

x̄
(k+1)
ij = Ax̂

(k)
j +Bu

(k)
ij ∈ R

n, (10)

where u
(k)
ij ∈ R

m is the estimated input for vehicle j
that is computed by vehicle i which follows the primary

network model (2). At every kth time iteration, a vehicle

i compares the inter-vehicle residual r
(k)
ij —defined as the

difference between the received state information x̂
(k)
j and

the computed state prediction of a vehicle j ∈ Si— by,

r
(k)
ij = x̂

(k)
j − x̄

(k)
ij ∈ R

n. (11)

If a vehicle j is attack-free and is following the primary

network model while monitored by a vehicle i, each ele-

ment q ∈ {1, . . . , n} of the inter-vehicle residual vector is

normally distributed r
(k)
ij,q ∼ N

(
0, σ2

r,q

)
described as follows,

E[rij,q] = 0, Var[rij,q] =

Ns∑

s=1

(
K(q,s)σz,s

)2

, (12)

where K(q,s) represents the element of the qth row and sth
column of the steady state Kalman gain K discussed in
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Section II-A. The variable σ2
z,s is the sth diagonal element of

the measurement residual covariance matrix Σz ∈ R
Ns×Ns

from the on-board state estimation process with Ns sensors

(see works [16]–[18] for details of the measurement residual

characteristics). Since the network consists of N homoge-

neous vehicles, then all vehicles share the same values K

and Σz . Each qth element of r
(k)
ij is a zero-mean normally

distributed variable that is characterized as:

Pr
(
r
(k)
ij,q < E[r

(k)
ij,q]

)
= p− = 0.5,

Pr
(
r
(k)
ij,q > E[r

(k)
ij,q]

)
= p+ = 0.5,

(13)

during nominal (i.e., no attack) conditions.

To monitor whether the incoming information from nearby

vehicles is behaving in an expected random manner with

respect to the primary network model (2), we employ the

Cumulative Sign (CUSIGN) detector [17] to check for ran-

domness with the following procedure:

CUSIGN Detector

Initialize: S
(0),+
ij,q = S

(0),−
ij,q = 0, ∀i, j, q

S
(k),+
ij,q =max

(

0, S
(k−1),+
ij,q + sgn(r

(k)
ij,q)

)

,

S
(k),+
ij,q =0 and Alarm ζ

(k),+
ij,q = 1, if S

(k−1),+
ij,q = τ,

S
(k),−
ij,q =min

(

0, S
(k−1),−
ij,q + sgn(r

(k)
ij,q)

)

,

S
(k),−
ij,q =0 and Alarm ζ

(k),−
ij,q = 1, if S

(k−1),−
ij,q =−τ.

(14)

The multi-vehicle detection procedure on a vehicle i
accumulates the signed values of the inter-vehicle residual

in the CUSIGN test variables for a vehicle j and triggers an

alarm ζ
(k),±
ij,q = 1 when a user-defined threshold τ ∈ N is

reached, otherwise ζ
(k),±
ij,q = 0. As either of the test variables

reach their respective thresholds, the test variable is then reset

back to zero. The alarms for each qth element are then sent

to a Memoryless Runtime Estimator (MRE) [17] to provide

a run-time update for alarm rates Â
(k),−
ij,q and Â

(k),+
ij,q , for

simplicity denoted as Â
(k),±
ij,q , at a time k by the following,

Â
(k),±
ij,q = Â

(k−1),±
ij,q +

[
ζ
(k),±
ij,q − Â

(k−1),±
ij,q

]

`
, (15)

where ζ
(k)
ij,q is the alarm, ` ≥ 10 is a “pseudo-window” length,

and Â
(0)
ij,q = E[A±] is the expected alarm rate. The following

lemma provides an expected alarm rate for a vehicle that is

free from attacks (i.e., behaving nominally).

Lemma 1: Given a vehicle i ∈ V with a CUSIGN detector

(14) with a threshold τ ∈ N that is monitoring a vehicle

j ∈ V during attack-free conditions , then the inverse of the

first element of the following vector,

µ+ = (Iτ −Q+)−1
1τ×1 = (µ+

1 , . . . , µ
+
τ )

T, (16)

is the expected alarm rate E[A+], and Q+ ∈ R
τ×τ represents

the transient states of a designed Markov transition matrix.

Proof: See [17] for a similar proof.

Remark 1: The previous lemma describes the expected

rate E[A+] at which the CUSIGN test variable S
(k),+
ij,q reaches

the defined threshold value τ to trigger an alarm ζ
(k),+
ij,q = 1.

Similarly, the design of a transition matrix with fundamental

matrix Q− and expected alarm rate E[A−] = (µ−

1 )
−1 for the

negative case is computed with transition probability (p+ and

p−) signs inverted. For construction of Q+ and Q−, see [17].

Proposition 1: Assuming a vehicle j ∈ V is not expe-

riencing MITM attacks while being monitored by a vehi-

cle i ∈ V and using the MRE algorithm (15) for alarm

rate estimation, the alarm rate is normally distributed by

Â±

ij,q ∼ N
(
E[A±], θE[A

±](1−E[A±])
2`−1

)
, where θ ∈ R+ is

a scaling constant (see [17]).

By leveraging E[A±] in Lemma 1, the following corollary

provides detection bounds for the CUSIGN alarm rate.

Corollary 1: Given the qth element of the inter-vehicle

residual (11) being monitored by CUSIGN (14), detection

of attacks occur for a chosen level of significance α ∈
(0, 1) when the alarm rate no longer satisfies detection

bounds (i.e., Â
(k),±
ij,q 6∈ [Ω−,Ω+]) where Ω± = E[A±] ±

Φ−1
(
α/2

)√
Var[A±], such that Φ−1(·) is the inverse cu-

mulative distribution function of a normal distribution.

Proof: See [17] for a similar proof.

A vehicle i that detects non-random (i.e., inconsistent)

inter-vehicle residual behavior from a vehicle j, responds by

placing vehicle j in its compromised set j ∈ Ri, Ri ⊂ V ,

hence removing it from the control graph (i.e., (i, j) 6∈ EU ).

B. Hidden Signature Detection

During operations, vehicles are tasked to converge to

observed objects of interest while navigating through the

environment. As an ith vehicle comes within sensing distance

δr of the on-board range sensor with respect to an object,

lip = ‖pi − pp‖ ≤ δr, (17)

where pp is the position of an object of interest, the vehicle

will notify neighboring vehicles by creating a detectable

hidden signature. To achieve this, the vehicle switches to

a hidden virtual spring-damper model described by,

uH
i = p̈i =

[
κh(lip − l0h)

~dip − γhṗi

]
∈ R

m, (18)

where the virtual spring-damper parameters κh 6= κv and/or

γh 6= γv are distinct from the primary network model

in (2) to enable an identifiable dynamical signature. A

vehicle i that follows the hidden model (18) removes all

virtual spring interactions to neighboring vehicles and the

goal from the primary network model that affect its control

input. To maintain secrecy from attackers (with regards to

the observance of the object of interest), a vehicle i will

continue to broadcast state, observed obstacle positions, and

its neighbor set information to nearby vehicles as it would

in nominal conditions. In this way, a malicious agent who is

listening will continue to see the same type of information

as before. Any manipulation of such information that does

not conform with the new hidden model (18) or with the

primary model in (2) will be considered a cyber-attack.

The challenge that arises is that the object position pp

remains unknown to the other vehicles in the network. In

comparison to the primary model (2), nearby vehicles do not

receive all necessary information when a vehicle i follows

the hidden model (18) to monitor for consistency. This is due

to constraints set in Problem 2, that information regarding
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a discovered object of interest can not be explicitly shared

with the network to protect from interception by attackers.

Given that the hidden model (18), vehicle dynamics (1),

and maximum sensing range δr are known by all vehicles,

an expected vehicle velocity behavior can be leveraged as a

vehicle converges toward an object (i.e., a decaying velocity

magnitude). More specifically, any vehicle i can recognize

the hidden signature by monitoring the received velocity

estimate v̂
(k)
j behavior from a vehicle j and compare it to

the expected velocity decay behavior from the hidden model.

Shown in Fig. 3(a) is an example of the differing expected

velocity behavior between springs of the primary and hidden

models with the corresponding distances to the object.

(a) (b)

Fig. 3. Differing expected behavior of the (a) velocity decay, and (b)
distance to the object for the two different virtual spring-damper models.

Given that each vehicle i is making state predictions of

any neighboring vehicle j according to the primary network

model (2), an alternative action by this vehicle (i.e., utilizing

the hidden model) would result in an unexpected behavior.

Alarm rates from CUSIGN (14) on-board a vehicle i that is

monitoring vehicle j, in turn, go beyond detection bounds

due to the unexpected behavior and vehicle j is placed in

the compromised vehicle set Ri ⊂ V . Next, vehicle i would

begin to monitor the received velocity information of vehicle

j to determine if its behavior follows the hidden model (18).

A velocity prediction of vehicle j by a vehicle i given j ∈ Ri

is made from the received velocity estimate ‖v̂
(k)
j ‖ by,

v̄
(k+1)
ij = h

(
‖v̂

(k)
j ‖

)
, (19)

where the function h(·) represents the expected velocity

behavior according to the hidden spring model (18), as shown

in Fig. 3(a). At each time iteration k, the hidden velocity

residual r̆
(k)
ij — the difference between received velocity

magnitudes and velocity predictions using the hidden model

— of vehicle j is computed by the following,

r̆
(k)
ij = ‖v̂

(k)
j ‖ − v̄

(k)
ij ∈ R, (20)

to monitor whether vehicle j is following the hidden model in

(18). We leverage the known zero-mean Normally distributed

velocity estimate provided by vehicle j (see estimation error

covariance in [16]–[18]) when characterizing the hidden

velocity residual. An assumption can be made such that

the received velocity estimate information from vehicle j is

also approximately zero-mean Normally distributed around

the expected velocity decay behavior in h
(
‖v̂

(k)
j ‖

)
, only if

vehicle j is following the hidden model. In this scenario,

the hidden velocity residual (20) is expressed as a random

variable that presents the following characteristics:

Pr
(
r̆
(k)
ij < 0

)
= p̆− = 0.5,

Pr
(
r̆
(k)
ij > 0

)
= p̆+ = 0.5,

(21)

where the probability of the hidden velocity residual being

greater or less than zero is equal. A random variable with

characteristics that follow (21) should present an expected

sign switching rate behavior (i.e. how frequently r̆
(k)
ij changes

signs) in accordance to the probabilities in (21). To capture

the rate of sign switching, we leverage an alarm that is

triggered (i.e., ψ
(k)
ij = 1) when a sign switch occurs at a time

k. The procedure to trigger a sign switching alarm follows:

ψ
(k)
ij =

{
1, if sgn

(
r̆
(k)
ij

)
= −sgn

(
r̆
(k−1)
ij

)
,

0, otherwise.
(22)

The sign switching alarm ψ
(k)
ij ∈ {0, 1} is then sent into

the MRE algorithm (15) to provide an updated run-time

estimate of the hidden signature sign switching alarm rate

Ĥ
(k)
ij ∈ [0, 1] at time instance k.
Lemma 2: Given a vehicle j that is following the hidden

model (18) while being monitored by vehicle i, the expected

sign switching rate to signify random behavior is E[H] = 1
2 .

Proof: We first examine the asymptotic distribution of

the expected number of observed runs E[U ] from the Wald-

Wolfowitz runs test [21]. Then, we convert E[U ] over a

defined sequence length to a rate described by how frequently

runs should occur (i.e., how often sign switching occurs)

by leveraging the known characteristics of the probabilities

p̆+ and p̆−, such that the random variable follows E[H] =
2p̆+p̆− = 1

2 , thus concluding the proof.
Lemma 3: The expected variance of the sign switching

rate Ĥ
(k)
ij for a vehicle j that follows the hidden model (18)

while monitored by vehicle i ∈ V is Var[H] = 1
4(2`−1) .

Proof: Let the expectation of a sign switch be modeled

by a Binomial distribution where the probability of success

(i.e., sign switch) is E[H]. By normal approximation and

utilizing MRE (15) for sign switching rate estimation, the

random variable follows a normal distribution with variance

Var[H] = E[H](1−E[H])
2`−1 = 1

4(2`−1) , concluding the proof.

The following corollary provides bounds of Ĥ
(k)
ij to satisfy

an expected behavior to detect the hidden model signature.
Corollary 2: Given the sequence of hidden velocity resid-

uals r̆
(k)
ij , hidden signature detection occurs by the sign

switching alarm rate when Ψ− ≤ Ĥ
(k)
ij ≤ Ψ+ is satisfied.

Proof: A proof can be obtained by leveraging confi-

dence intervals within a Normal Distribution. Due to page

limitations, we omit the proof.
To summarize Corollary 2, when the sign switching alarm

rate for the detection of the hidden signature satisfies,

Ĥ
(k)
ij ∈ [Ψ−,Ψ+] −→ Signature Detection, (23)

vehicle i detects a hidden signature behavior in j. Vehicle i
reacts by estimating the position of the object by leveraging

the training set (i.e., expected hidden model behavior) map-

ping f : R2 → R in Fig. 3 that maps the received velocity

estimate of vehicle j to its distance to the object by,

d̂
(k)
p,ij = f(‖v̂

(k)
j ‖). (24)
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