

environment faster than state of the art frontier-based explo-
ration methods. We also propose a breadcrumbing method
to facilitate exploitation of these explored environments.
Specifically in this work we focus on breadcrumbing to
increase visibility and propose a solution to solve the so
called watchman tour problem, where a shortest route is
found such that every point in the environment is visible
from at least one point along the route [4]. Our approach
solves this problem online by utilizing a greedy maximum
coverage algorithm based on the geometry of saved sensor
data at strategic positions during exploration.

The contribution of this work is two-fold: 1) Explo-
ration: a robust occlusion-based exploration path planner
that enables a robot to quickly map an unknown, cluttered
environment by leveraging occluded regions of space, and 2)
Exploitation: a maximization algorithm for the online gen-
eration of approximate watchman tours of an environment.

The remainder of this paper is organized as follows: in
Section II, we provide an overview of related work in both
exploration path planning and watchman tour generation.
In III we outline the mathematical notation used in this
work and formulate the problem of map coverage and
watchman tour generation. The proposed path planner and
tour generation frameworks are presented in Section IV and
V respectively and are tested with extensive simulations
and experiments in Sections VI and VII. Lastly, we draw
conclusions and discuss future work in Section VIII.

II. RELATED WORK

A large body of work is available on autonomous explo-
ration of unknown environments. Over the years, two popular
strategies have been developed: frontier-based and sampling-

based navigation.

The first approach utilizes the notion of frontiers, which
are intermediate regions between known and unknown spaces
in a map. At each map update, a detection algorithm is run
to detect new frontiers for use in the next planning step. In
the formative work of [5], frontiers are detected within an
occupancy grid map, and the closest is targeted as the next
waypoint for the vehicle. In contrast, [6] aims to maximize
velocity by selecting frontiers closest to the camera frustum.

In sampling based exploration frameworks, the goal is to
sample poses which could grow the known regions of a map.
A major benefit in using such sampling based approaches
is that they remove the need to perform expensive global
frontier detection algorithms at every map update and allow
any desired utility definition to be used for pose selection
[7]. [8] leverages the Next-Best-Views (NBV) model [9]
to sample views which aim to maximize a utility function
based on volumetric gain and time-of-flight for the vehicle.
The NBV waypoints are generated by growing a Rapidly-
exploring Random Tree (RRT) to sample positions and yaws
from the configuration space of the vehicle [10]. [11] and
[12] combine both sampling and frontier based approaches
to rapidly map an environment. Despite the success of
sampling-based techniques, they can still get stuck in lo-
cal minima (e.g., dead-ends). [13] provides a history-based
technique to mitigate these limitations.

Despite the accomplished work in exploration path plan-
ning, less progress has been made on occlusion-based naviga-
tion. [14] discusses optimal path planning when obstacles in

the environment are occluded by other closer or larger obsta-
cles. Similarly, [15] and [16] utilize occluded lidar regions to
generate gaps to assist in navigation through unknown, clut-
tered environments. Given that these approach only consider
static obstacles, [17] leverages an MPC-based approach for
safe navigation in cluttered environments in which dynamic
obstacles may be occluded by other obstacles. While these
works consider the occlusions within unknown environments,
they only focus on goal-to-goal settings and don’t attempt to
solve the problem of map coverage.

In this paper we also propose a breadcrumbing technique
for path planning as an environment is explored. Related
to this topic, we find a few works mostly centered on
increasing wireless connectivity. [18] uses wireless beacons
as breadcrumbs, allowing a UAV to localize itself during
navigation to goal locations within an environment. However,
the breadcrumbs must be placed manually by a human prior
to navigation. [19] deploys wireless communication nodes
autonomously in GPS denied underground environments
by leveraging convolutional neural networks to assist in
optimal placement for maximum coverage, allowing nearly
full network coverage with a minimal number of nodes.
While both of these works leverage breadcrumbs to assist in
navigation, they don’t use them for the purpose of speeding
up map coverage. Lastly, [2] uses their City-CNN approach
to find vantage points for area coverage, but their approach is
not easily transferable to vehicles with limited FOV sensors
and they don’t generate shortest paths to navigate between
vantage points.

III. PRELIMINARIES

A. Notation

In this paper we denote vectors with bold, italic letters
(e.g., x) and sets with upper case greek and calligraphic
letters (e.g, Ω and S). We use the indicator IS(b(s)) to denote
if there exists s ∈ S which satisfies the boolean condition
b. Given a set S denoting a region of space, we use |S|
to denote the area of S . A ∧ symbol on top of a variable
represents its estimated value (e.g. x̂). || · || represents the
Euclidean norm and the robot state is denoted by x = (pu, θ)
where pu = [x, y]′ ∈ R

2 refers to the position. z denotes
the sampled point cloud distances and is indexed as zi. The
corresponding point to zi is referred to as pi ∈ R

2. poly(z)
takes in point cloud data and returns the polygon defined by
those points. Lastly, abs(·) denotes the absolute value.

B. Problem Formulation

The research discussed in this work can be split into two
main problems:

Problem 1: Fast Map Coverage: Given an a priori un-
known cluttered environment W with N obstacles in which
a region M ⊆ W is traversable by a robot, the problem of
map coverage is a multi objective optimization problem to
find a policy which completely covers M while also trying
to minimize the time needed to cover and mapM. Formally,
let x denote the pose state of the robot (e.g., x = (x, y, θ),
the positions and angles for a ground vehicle configuration)
and M(t) be the map covered by the robot at time t. The fast
map coverage problem is then defined as finding the control

6325

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 27,2023 at 14:28:50 UTC from IEEE Xplore. Restrictions apply.

The second criterion deals with safety and is considered
for both old and new waypoints. If any waypoint w ∈ W ∪
Wt is within a minimum distance threshold δs to an obstacle,
it is discarded as a valid waypoint

The last criterion dictates that, if a new occlusion wn ∈
Wt is created within distance δd to any old occlusions
wo ∈ W , the old occlusions are removed. More formally,
the update to W is as follows

W ← {wo | ||wn −wo|| > δd ∀wo ∈ W} (9)

Once all criteria have been checked for the current timestep,
the final set of waypoints W ∪Wt is generated.

E. Goal Selection

Provided with the waypoints in the occlusion manager, at
each time step the planner generates a cost for each waypoint
w based on the vehicle’s position pu and heading θ

Γ(w) = τD ∗ ||pu−pw||+ τH ∗ abs(θ−ϕ(pu−pw)) (10)

where ϕ(·) is a function which gives the angle γ ∈ [−π, π]
from the origin of a passed in vector. Together with the tuning
parameter τD, the distance term penalizes the waypoints
which may be far away from the robot, therefore encouraging
local exploration of a region before navigating elsewhere.
Due to the distance between waypoints constantly changing
as the robot navigates, it becomes possible for a different
waypoint to be selected as the new goal at every time step,
causing sporadic navigation. To mitigate this, the heading
term, defined as the angle between the robot heading and
a straight line connecting the robot and waypoint, was
introduced along with its tuning parameter τH . This term
provides incentive for the planner to select waypoints that
minimize the need to turn.

Once navigation to all waypoints is complete, our ap-
proach will have left breadcrumbs which can be leveraged
for future missions. The next section discusses the proposed
breadcrumbing process in detail.

V. BREADCRUMBING

In this section, we describe our framework for generating
watchman tours at runtime during an exploration mission.
Our proposed approach has three steps: 1) breadcrumbing,
2) max coverage optimization, and 3) tour generation. In the
first step, the robot saves its position and sensor readings
periodically during navigation as a breadcrumb. As these
breadcrumbs are stored, a maximum coverage solver is run
to find the approximately smallest set of breadcrumbs that
cover the observed environment. Once the coverage set has
been generated, an approximate traveling salesman algorithm
is run to get a shortest-path order to visit the points.

A. Dropping Breadrumbs

A breadcrumb bt is defined as a tuple of the robot’s pose
and the corresponding sensor readings at time t, as shown
in Fig. 6. At each time step, the approach saves bt into a
breadcrumb set B if it satisfies two conditions. The first is
a safety measure, where breadcrumbs are only recorded if
they are farther than some minimum safe distance δo from
an obstacle

CA1: zi > δo ∀i ∈ [1,#z] (11)

The second condition prevents B from being flooded while
the robot is navigating in a small region of space. Formally,
breadcrumb bt with position pt must be a minimum distance,
δb, from all recorded breadcrumbs bi ∈ B,

CA2: ||pi − pt|| < δb ∀bi ∈ B (12)

If the new breadcrumb bt is within δb of a crumb bi, then
the one with highest sensor coverage is kept.

Given both conditions are satisfied, the breadcrumb bt is
ready to be added to B after a sensor reduction stage. Since
the number of samples in z is large, recording it for every
breadcrumb has high memory cost. Thus, the approach treats
z as a visibility polygon P = poly(z). P is sent through a
point reduction algorithm described in [21] to generate an

estimate P̂ with less samples, thus saving memory space
at the cost of reducing measurement fidelity. The final

breadcrumb bt = (pu, P̂) is saved to B. In order to keep

Fig. 6. Example of a breadcrumb. The pose is shown as a red arrow and
the reduced sensor visibility is shown in yellow.

from running out of memory during large scale explorations,
we limit the size of B to some maximum value N . To decide
which breadcrumbs are removed when at capacity, we treat B
as a cache with temporal locality. Deletion occurs at the end
of B, and any breadcrumb that was chosen for the optimal
coverage set, B∗t , is moved to the front of B. The assumption
driving this decision is that a breadcrumb frequently used in
B∗t offers high area coverage or visibility into a secluded
region and thus should be favored. In the following section,
we discuss how B∗t is found.

B. Finding Approximately Optimal Breadcrumbs

Since B contains all breadcrumbs recorded by the robot,
the total explored region Me can be defined as the union of

polygons P̂ of all breadcrumbs in B

Me =
⋃

(pi,P̂i)∈B

P̂i (13)

Whenever a new breadcrumb is recorded, the approach
recomputes the approximately minimal cardinality set of
breadcrumbs B∗t ⊆ B such that

∣∣∣∣∣∣
⋃

(pi,P̂i)∈B∗

t

P̂i

∣∣∣∣∣∣
= ζ|Me| (14)

That is, the area covered by B∗t should be equal to a per-
centage ζ of the total explored area |Me|. We use ζ because,
due to the complexity of environments, it may be that every
breadcrumb in B is required to achieve full coverage, but

6328

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 27,2023 at 14:28:50 UTC from IEEE Xplore. Restrictions apply.

only a fraction are required to reach an acceptable coverage
percentage.

In order to solve this problem, we leverage the fact that
finding B∗t is a maximum coverage problem where area
coverage is to be maximized and the candidate sets are

the visibility polygons P̂ of each breadcrumb. Given that
max coverage is an intractable problem, we use an approx-
imate greedy algorithm which leverages the submodular,
monotonic properties of area coverage. Doing so provides a
solution where |B∗t | is no larger than e

e−1 times the optimal,
where e is the Euler’s number [22].

The greedy algorithm works by starting with B∗t = ∅ and
adding the breadcrumb bi ∈ B which generates the highest
increase in coverage of B∗t as computed in (14). Once |B∗t | >
ζ ∗ |Me|, the algorithm terminates and a tour of the crumbs
in B∗t is ready to be generated.

C. Watchman Tour Generation

Provided with B∗t , the objective is to generate a tour
through these breadcrumbs such that the robot achieves full
coverage faster than during exploration. To accomplish this,
1) we cast the tour as a solution to a traveling salesman
problem to determine the visiting order of breadcrumbs and
2) perform a route simplification to remove unnecessary
points along the path

Since traveling salesman is an intractable problem, an
approximation algorithm called two-opt [23] is used to
compute the shortest route R which has path length no
longer than

√
2 times the optimal. Once R is found, it is

reduced by removing breadcrumbs deemed redundant. The
reduction works by removing breadcrumbs that the robot will
reach by navigating to other breadcrumbs. Let bi−1 and bi+1

denote the breadcrumbs before and after bi inR respectively.
There are three conditions that must be satisfied in order for
bi = (pi, P̂i) to be considered redundant. The first criterion
checks if bi−1, bi, and bi+1 form roughly a straight line,
meaning that the robot will pass close to bi while navigating
from bi−1 to bi+1. This is formulated as

CC1: π − arccos

(
u · v
||u|| ||v||

)
< η1 (15)

where u = pi − pi−1, v = pi − pi+1 and η1 is a tunable
threshold for the angle between u and v.

Next, given the heading θi of bi, the second criterion
checks if the robot will likely achieve that heading while
navigating from pi−1 to pi+1. That is,

CC2: θi − arctan

(
w2

w1

)
< η2 (16)

where w = pi+1 − pi−1 and η2 a threshold parameter. This
constraint can be ignored if the vehicle has a 360◦ point
cloud sensor, since the orientation of the breadcrumb no
longer effects the sensor measurements.

The last condition is that the line l from pi−1 to pi+1

should not intersect any obstacles in M. More formally, let
M∩ l denote all occupancy map cells mi ∈ M along line
l, the criterion is

CC3: mi < .5 ∀mi ∈M∩ l (17)

Given that all three conditions are true, the breadcrumb bi is
redundant and thus removed as a waypoint from the path. The

process is repeated until no three consecutive breadcrumbs
satisfy all three conditions, giving the final order to navigate
through each breadcrumb.

The overall runtime for this breadcrumbing depends on
both the number of breadcrumbs Nb in B and the number
of samples Ns in the point cloud data z. The bottleneck
of this process is the unary union of visibility polygons.
For worst case analysis, assume that each visibility polygon

could not be reduced, meaning P̂ has Ns vertices. Also
assume that all Nb breadcrumbs were required to coverMe.
The union is performed on the order of N2

b times and each
union takes O(Ns logNs) time, giving a final runtime of
O(N2

bNs logNs). Since a theoretical upper bound is still
unknown for two-opt, the tour generation is omitted from
this runtime discussion.

VI. SIMULATIONS

Our approach was evaluated in simulation using three case
studies: 1) a warehouse, 2) a large cluttered environment, and
3) a bookstore. All simulated experiments were performed
in Gazebo using Ubuntu 16.04 and ROS Kinetic. The UGV
testbed used in simulation is the Clearpath Jackal equipped
with a 270◦ lidar with maximum range of 30m. For path
planning, the move base1 navigation stack was used along
with GMapping2 for SLAM. A maximum speed of 2 m/s
and acceleration of 5 m/s2 were set for the planner param-
eters. In all simulations, the watchman tour coverage was
set to 99% and each breadcrumb could only use a truncated
lidar scan with max range of 5m. This was done because
the map update was only performed in a 5m radius around
the UGV. Finally, simulations were only terminated when
no reachable waypoints are left. In the case of breadcrumb
based navigation, the simulations were terminated once the
UGV had navigated through all breadcrumbs in the tour.

A. Warehouse Case Study

Several simulations were performed in the Warehouse
environment depicted in Fig. 7, where our approach was
compared with a frontier-only exploration algorithm. From
Table I, it can be observed that our occlusion-based frame-
work can explore the environment significantly faster than
the frontier-only approach over 3 runs. Furthermore, when
navigating through the space utilizing breadcrumbs collected
during initial exploration, we observe an additional reduction
in distance traveled with no drop in exploration speed, giving
large improvements to exploration time. In Fig. 8, it can be
seen that our approach achieves a faster rate of exploration
on average at all points of time when compared with frontier-
only exploration.

TABLE I. WAREHOUSE EXPLORATION RESULTS

Approach
avg. speed

(m/s)
avg. distance

(m)
avg. time

(s)
frontiers 0.4 108.45 235.3

occlusions (ours) 0.45 83.37 171.3
breadcrumbs (ours) 0.45 64.46 140.0

1see http://wiki.ros.org/move base
2see http://wiki.ros.org/gmapping

6329

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 27,2023 at 14:28:50 UTC from IEEE Xplore. Restrictions apply.

