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Abstract— Cyber-attacks, failures, and implementation er-
rors inside the controller of an autonomous system can affect
its correct behavior leading to unsafe states and degraded per-
formance. In this paper, we focus on such problems specifically
on cyber-attacks that manipulate controller parameters like
the gains in a feedback controller or that triggers different
behaviors or block inputs based on specific values of the
state and tracking error. If such attacks are undetected, they
can lead to the partial or complete loss of system’s control
authority, resulting in a hijacking and leading the autonomous
system towards unforeseen states. To deal with this problem, we
propose a runtime monitoring and recovery scheme in which: 1)
we leverage the residual between the expected and the received
measurements to detect inconsistencies in the generated inputs
and 2) provide a recovery method for counteracting the mali-
cious effects to allow for resilient operations by manipulating
the reference signal and state vector provided to the system
to avoid the affected regions in the state and error space. We
validate our approach with Matlab simulations and experiments
on unmanned ground vehicles resiliently performing operations
in the presence of malicious attacks to on-board controllers.

I. INTRODUCTION

Present-day autonomous robotic systems possess increased
complexities to support an expanded array of computers and
sensors to assist in advanced capabilities such as navigation,
warehouse logistics, and industrial operations, towards truly
unmanned operations. With such complexity, however, comes
higher risks of malicious cyber attacks due to their unsu-
pervised, autonomous applications and the numerous entry
points to implement an attack.

While the vast majority of the literature in robotics and
cyber-physical systems security deal primarily with attacks
on the sensing and communication infrastructure of a system
[1], in this work we consider attacks that interfere with
the control logic to hijack a system. For this class of
attacks, controller parameter gains can be altered to trigger an
undesirable behavior under certain states or tracking errors.
For example, in Fig. 1 shows a motivational case in which
a robot needs to turn to the right but ends up turning to the
left, away from the desired trajectory and into an obstacle
when the tracking error is within a compromised region.

One of the key principles that we leverage in this work is
that such robotic systems, in nominal conditions, i.e., when
uncompromised, have well-designed dynamical models that
enable accurate predictions of output measurements from
their control input signals. A cyber attack on the on-board
controller can cause inconsistencies from the expectation of
this input-output model, leading to observable deviations
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Fig. 1. Pictorial representation of the problem investigated in this paper in
which a robot is tasked to navigate toward a goal under a controller attack
that gets activated only when the tracking error crosses a certain threshold
(red region in the figure).

from its nominal behavior. To this end, we consider a
residual-based monitoring approach that leverages the chi-
squared detection scheme to reduce the residual vector into
a scalar test measure to detect controller integrity incon-
sistencies. Regions of the state space or the tracking error
space that are deemed compromised are monitored for future
operations to avoid them. A compensator to alter information
provided to the controller (i.e., reference signal and state
vector) is built to avoid any compromised regions within the
state or tracking error spaces. Moreover, to deal with this
problem of maintaining desirable control performance during
operations, the altered information is designed to minimize
the difference in the compensated control input signal in
comparison to the originally intended (but compromised)
control input.

The contribution of this work is twofold: 1) a detection
framework to discover compromised regions of the state or
tracking error space within a controller that cause anomalous
system behavior and 2) a compensator that alters the refer-
ence signal and state information provided to the controller
in order to bypass compromised regions to achieve desired
control performance to resiliently continue operations.

A. Related Literature

The subject of security in autonomous systems has re-
ceived significant attention within the robotics and control
communities. Various well-studied areas within security have
presented frameworks to provide resilience to vulnerable
access points on a system that are susceptible to cyber
attacks that include: sensors, actuators, communication, and
on-board controllers [1]-[4].

A classic example of controller integrity issues are data
injection attacks described in [5], where the intended control
signal is replaced with an undesired signal by malicious
attackers. The authors characterize the detection limitations
of such attacks and quantified the performance degradation
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impacts. In [6], a reference governor-based defense mech-
anism that utilizes pseudorandom vectors was proposed to
detect malicious setpoints (i.e., references) received from a
command center to affect tracking performance. Authors in
[7] proposed a framework where an attacker gains knowledge
(i.e., obtain an estimate) of a reference signal within the on-
board controller by manipulating sensor measurements. The
proposed approach in [8] leveraged a bank of residual-based
monitors to detect when a malicious attacker implements
data injections attacks or has switched to a different control
model within a hybrid controller. Furthermore, encryption
techniques have been used to secure on-board controllers. For
example, a dynamic management approach for key switching
using public and private keys can be used as in [9] to detect
falsified inputs and replay attacks. Furthermore, homomor-
phic encryption techniques have been used to protect on-
board linear controllers [10] and state estimators [11].

Differing from the works previously mentioned, we design
a framework to detect and recover from anomalous system
behavior triggered by specific conditions of information pro-
vided to the on-board controller. We assume that anomalous
behavior can be caused by: i) malicious attackers that delib-
erately change control parameters and/or inject false data to
the control signal and ii) unintentional software related issues
(i.e., fault and code bugs) that compute undesired control
input signals for the autonomous system [12].

The remainder of this work is organized as follows: We
introduce the system and threat models in Section II and
the problem formulation in Section III. In Section IV we
characterize the attack detection method within the error
and/or state space, then describe the approach for system
recovery. In Section V we present simulations and experi-
ments on unmanned ground vehicles (UGVs) to validate our
framework. Finally, in Section VI we summarize our results
and discuss possible future directions for this work.

II. PRELIMINARIES
This work considers robotic systems modeled as discrete-
time linear time-invariant (LTT) systems of the form:
Tpy1 = Axy + Buy + v, (D
yr = Cxp + ny, 2
where x; € R™ denotes the state vector, ur € R™ is the
control input, and y, € R® represents the output vector at
every time instance k € N. The state, input, and output
matrices A, B, and C are of appropriate dimensions, while
v, ~ N(0,Q) € R" and g, ~ N(0,R) € R® are i.i.d.
Gaussian process and measurement uncertainties.

During operations, a Kalman Filter (KF) is implemented
to provide a state estimate &; € R™ in the form:

ﬁ:k+1 = Az, + Buy, + L(yk - Cii?k) 3)

where L = PCT(CPCT + R) ™! is defined as the Kalman
gain matrix which is solved by the algebraic Riccati equation.

A. Threat Model

We assume a general feedback controller with a nominal
control input signal that is described as

up = K (2" — &) = Kz, 4)

Controller

Fig. 2. A diagram describing altered control parameters and additive inputs
to result in undesired control behavior.

where z§ = x — &), is the tracking error between a ref-
erence signal (i.e., desired state) and the state estimate, while
K is a feedback gain to provide desired control performance
of the system. Additionally, we assume the true control inputs
to the system

—Umaz < U < Umar (5)

are constrained to due to actuation limitations.

We consider control inputs (4) that can be altered due to
undesired (and unknown) changes in controller parameters
and/or additive inputs, as depicted in Fig. 2. These changes
occur as signals fed to the controller satisfy specific compro-
mised ranges of tracking error £ and state X’ within a finite
tracking error space £ C £ and/or finite state space X C &.
Within these compromised regions, we consider scenarios
such as: i) cyber attacks that are able to maliciously modify
control parameters and/or introduce control signal biases at
runtime or ii) faulty code that is defined before operations
begin; resulting in undesirable control inputs provided to the
system.

The altered control inputs @y, # wuy are presented as

ay, = Kaf + i, € R™ (6)

with the feedback gain K # K and additive input signal
uy € R™ when the following condition is satisfied:

x, €&, @peX. @)

III. PROBLEM FORMULATION

An attack or fault to an on-board controller will con-
sequently result in anomalous behavior due to unreliable
control signals uy, being applied to the system. In this work,
we focus on discovering specific operating conditions (i.e.,
regions and ranges) from the information (i.e., reference
signal m}ff and state estimate ) provided to the controller
that cause undesired behaviors.

Problem 1 (Anomalous Behavior Detection): Given the
nominal and altered control inputs represented in (4) and
(6), we want to detect compromised regions within the state
X and error £ spaces. Formally, the objective is to find
conditions of the reference signal and state information

Kt + iy, if {a, &} € X,€

()
Kz,

U =
otherwise
that trigger undesired control inputs which are sent to the
robot, hence resulting in undesired system behavior.
Upon detection of compromised regions of state X' C
X and tracking error £ C & spaces, the robot aims to
avoid triggering these undesired behaviors such that resilient
operation can continue. Formally:
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Problem 2 (System Recovery): Design a policy such that
the robot computes a compensated reference signal i and
state &, information for the controller, where ' # xef
and T # &y, in order to avoid malicious regions within
the state and error spaces to maintain desirable control
performance. Furthermore, the compensated input u;, which
is computed using the compensated reference signal and state
information, seeks to minimize the following:

uy, = {argmin(a; — uj) : (& &) & X, 5} 9)
Ak

where u;j, is the desired control input before compensation
and arg min(u, —u}) represents the objective to find a com-
pensated input with minimum difference from the desired.

IV. FRAMEWORK

In this section we describe the monitoring and recovery
framework to detect anomalous controller behavior during
specific ranges of information, then implement a recovery
mechanism for an autonomous robot to provide uncompro-
mised control inputs for motion. The overall control archi-
tecture is highlighted in Fig. 3 where a detector monitors the
residual vector to determine if anomalous system behavior is
occurring. This allows for compensation of information into
the controller (i.e., reference signal and state estimate vector)
to ensure uncompromised control inputs are sent to the robot.
Our focus is on attacks or faults taking place on the on-
board controller as specific ranges of input information fed
to the controller are provided. Within these ranges, unknown
controller parameter changes and/or additive control signals
are included to the control input, causing undesired behavior
of the robot.

A. Space Partitioning

In this work, we want to discover specific regions within
the error and state spaces that may be compromised due to
cyber attacks (or possibly faulty code) that alters the control
inputs computed by the on-board controller. To monitor
for compromised regions within tracking error space £ =
{&1,...,&,} or the state space X = {Xy,...,X,} for an
ith state, ¢ = 1,...,n, we first partition the spaces into a
finite number of bins.

For generalization, lets define any given space by the set
S ={S&1,...,8,}. An ith state in space S; to be monitored
is partitioned into N bins to check for inconsistent behavior
within each bin (i.e., partitioned region). The set of j =
1,..., Ny partitioned bins in an ith state are represented as
Bi = {bi1,...,bij,...,b;i n,} that span the entire space.
Each partitioned bin of arbitrary size is a subset of the set
of bins (i.e., b; ; C B;) within a space S; and described by:

zf

\I
1
e 1
u
Controller : £ Plant Y
1

_______________________ Estimator

Fig. 3. Overall detection and compensation architecture of our framework.
The compensator manipulates the reference and state estimate vectors to
compute a compensated input 4y when &5 € X' or &} € £ are satisfied.

The objective is to discover if specific regions within
a space lead to faulty/anomalous behavior due to a com-
promised on-board controller providing unknown, malicious
control signals to the system. For ease in the remainder of
this paper, we describe the bin subspaces of a state ¢ in
general terms that may be utilized for either the tracking error
or state space. At every time iteration, the system determines
which bin j the information that is monitored belongs to
(i.e., tracking error xf , € b;; or state Z; € b; ;). In the
next subsection, we describe how to monitor for anomalous
behavior within each bin b; ; in an ith state or error space.

B. Residual-based State and Error Consistency Monitoring

During an operation, the robot checks for anomalous
system behavior due to attacks or faults within the on-
board controller. In particular, each error/state subspace (i.e.,
denoted by the partitioned bins described in Section IV-A)
is monitored as the conditions of the reference and state
estimate information sent to the controller are met. If specific
subspaces during operations present anomalous behavior,
they are flagged as compromised regions. We leverage a
residual-based fault detection scheme to check for anomalous
system behavior at runtime. The idea behind this scheme is
to utilize the state predictions Zx41 in (3) to determine if
the system is responding to the computed control inputs wuy
accordingly. To monitor for inconsistent system behavior, we
compute the measurement residual vector

ry =y — Cxp € R? (12)

which is defined as the difference between sensor measure-
ments and the state prediction that was computed at the
previous time k — 1. The measurement residual is modeled
by a zero-mean Gaussian distribution 7, = A (0, ) with an
expected covariance matrix ¥ = E[ryr]] = CPCT+ R €
R**5, where P is the estimation error covariance matrix.
A system that is behaving in a consistent manner will
display residuals that follow this expected distribution, while
misbehaving systems violate this expectation. We utilize the

imin < bi i < S b, . if = . . .
Simin < bisg < 83 b5 ma) }fj. ! well-known chi-square detection scheme by reducing the
bij = q Sistbig-ram) <ij S iy ) HJ=200 Ny =1 residual vector into a scalar test measure [13]:
Sia(bi,j—l.max) < b'L’] S Si,max lf] :Nb '
' 10 _ Teed
such that (10) zp =T8T (13)
N N, S . L
¥ b — S and 3 b — 0 " which is chi-squared distributed that follows zj, ~ x(s).
U ij = < an ﬂ by an To determine if undesired control inputs uj are being
=t 7=l computed by the compromised controller in a specific bin
are satisfied. bi; C B;, we monitor for expected behavior of the test
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measure. Similar to our previous work [14], we monitor
for unexpected sign switching rates to detect inconsistent
behavior. The sign of each incoming test measure (13) with
respect to a user-defined reference value 2™ € Ry is
computed at every time k. Moreover, the signed test measure
value sgn(z;, —2"") is compared with the sign of the previous
signed test measure value when the system belonged to the
same jth bin in state 4, b; ; C B;, at time a k — Ty, ;. If the
test measure comparison is of opposite signs, then an alarm
is triggered, otherwise an alarm is not triggered. Formally,
the procedure to trigger an alarm follows:

ref)

1 if _orefy _ _
Ck_{ , if sgn(zy — 2™ sgn(z T, — % (14)

0, otherwise

where Ty, . € N denotes the number of time steps since the
jth bin in the space B; was entered. The alarm ¢; € {0,1}
signifies that the test measure at time k is of the opposite
sign (i.e., a sign switch) with respect to the previous test
measure within the same bin at time k — T, ; to trigger an
alarm (j, = 1, otherwise (; = 0. The alarm (j, is placed into
a runtime alarm rate estimator:

- Ch—Ar—1pp, if =
if j'#j
to compute an updated estimate for the jth bin within the set
B;, where { is a “pseudo-window” length. All other alarm
rate estimates corresponding to a bin j’ # j are carried over
from the previous time step, since they are unaffected as the
system did not belong to the space pertaining to the j'th bin.
All alarm rate estimates Vj € b; ; are initialized to Agpp, ; =
E[A] at time k = 0, and alarm rate estimates should follow

Ap =E[A] = P[¢, = 1]

15)

(16)

where [E[A] is the expected rate which alarms are triggered.
Bounds on the estimated alarm rates, denoted by [2_, Q4] €
(0,1) that satisfies _ < E[A] < Q, can be computed to
signify anomalous system behavior, which is discussed in
greater detail in [14]. To summarize, when the alarm (i.e.,
sign switching) rate for the detection of anomalous controller
behavior satisfies,

Ak|b,-,,j ¢ [, Q4] — Anomalous Behavior (17)

the robot detects anomalous behavior within bin j on an
tth state. The robot then places the bin j presenting the
anomalous behavior into a compromised bin set b; ; — B;,
where BVZ C B;, to allow for compensation to avoid this
region that results in undesired control performance.

C. State and Reference Compensation

The goal for the compensator is to provide compensated
values of the reference signal ' and state @j to the
controller in order to avoid any compromised regions within

the error £ and/or state X’ space. We define the control input
u, = K (2" — 2;) = Kz, (18)

as the computed input that utilizes the compensated reference
and state vectors. Additionally, when providing compensated

)

bi; & B; (&

7jk}

Bins bi, € B;

{mref ij Find RUfpdate Controller .
k1 k Nearest Bin eference "
and State K —

[N, |

—

Fig. 4. The compensation process to provide altered references and states
to the controller to avoid compromised regions (red) within an ith statee.

information {Z%", 7 ;} on an ith state to the controller,
our objective is to update the information in a manner to
minimize the difference in compensated control input signal
from the nominal (i.e., desired) input

uj, = argmin (a; — uj) = argmin (K (zf — xf)) (19)
where z§ = ' — 2z, and x§ = ¢ — 3.

In Fig. 4 we show a high-level view of the compensa-
tion approach to satisfy (19). The compensator determines

whether the incoming information (i.e., the reference Tl]::fz and

state estimate £, ;) belong to any compromised bins B; C B;
(highlighted by the red bins in Fig. 4) within an ith state/error
space. If the information belongs to a compromised bin,
then the compensator chooses the nearest uncompromised
bin (colored in orange) from the current state/error, which
is leveraged to compute a compensated reference signal :E?ffl
and state estimate Ty ;, respectively. Next, we provide the
compensation procedure for the cases when an attack to
the controller affects regions within the state X; C &; and
tracking error &; C &; spaces.

1) Compromised State Space: In this subsection, we de-
scribe compensation that occurs as one or more bins within
the state space X; of any ith state are deemed compromised.
The compensation occurs only when the ¢th state estimate
element is within a compromised jth bin £ ; € b; ; where

bi; C B;. The objective is to find a compensated state
Thi = {T,i € by : min(dn; — Tri),biy € By \ Bi} (20)

that is provided to the controller which belongs to an uncom-
promised bin b; ; C B; \ B;. To maintain desired reference
tracking performance, we also compensate the reference

signal Z%% by the same amount as the state compensation

21

such that the tracking error remains unchanged, where
Axy; = (Tg,; — ;) is the change in state.

Lemma 1: Given the compensated state estimation and
reference signal that is provided to the controller to_avoid
compromised regions in an ith state space Zj; ¢ &j, the
computed control input @y, is equal to the desired input uj,.

Proof: We observe that the difference in tracking error

(22)

between the compensated and uncompensated information
of an ¢th state that is provided to the controller is zero. The
resulting tracking error vector &j, = x{, remains unchanged,
thus the control input signal to the system is the same (i.e.,
Kz = Kz — u, = uj). ]

—ref ref
T, =g, + Azyy

(TR — Tra) — (257 — dn) = Th; — 2k = 0
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2) Compromised Error Space: Next, we describe the
scenario where compensation occurs to avoid regions that
are within the compromised tracking error space which result
in undesired control performance of the system. Similar to
the previous subsection for anomalies in the state space, we
characterize the compensation effort that occurs as anoma-
lous behaviors are detected within any jth bin of the error
space xf, ; = i — @i € bij , where b; j C B;. However,
attackers may reduce the usable tracking errors to a much
smaller subset of the original error space &;.

Depending on feasible control
inputs (5) for a given system (1),
we can describe the tracking er-
ror space for these suitable states
as a loop, as depicted in Fig. 5.
In particular, reference signals for
these states can be switched to
the opposite sign (i.e., reverse di-
rection) to enable the robot to
reach specific positions within the
environment. Furthermore, a user-
defined buffer region between bins
1 and Np may be included to any suitable ith error element
whose state can leverage the loop method to control when
a switching (i.e., reversal) of reference signals is applied. In
Fig. 6, we provide two examples of this method for both
the velocity and heading angle of a robot. The examples
depict: 1) a robot navigating with a negative velocity (i.e.,
velocity reference signal is of the opposite sign) and 2) a
robot turning in the opposite direction by creating a loop
(i.e., heading angle reference is shifted by =+2m). These
scenarios can be exploited such that a robot can reach desired
positions within the environment when certain control input
conditions cannot be attained due to compromised regions
within the error space. If the current tracking error satisfies
zy,; € b;j C B; and the nearest tracking error Iy ; # xj ;
within an uncompromised bin

Fig. 5. Viewing bins within
an ith error space as a loop.

¥4, = argmin(af,; — 5 ,), 5, €bi; CBi\B; (23)
crosses over the buffer region (i.e., 1 — N or Ny — 1), we
update the ith reference signal to the opposite direction with
the function f : R +— R defined by

sref f —ref N
7:1 = f(T;fez) = Tk i T;:,z — Lk, (24)

and then the tracking error zj, ; is updated accordingly.

Reverse Forwa.rd
Goal
= |
vef = 1m/s
(@) (b)
Fig. 6. Examples of system states such as (a) velocity and (b) heading

angle that are capable of providing an “opposite” reference signal.

From the given tracking error z7, ;, the objective is to find

the nearest tracking error to provide to the controller
— Th), big C Bi\ Bi}

(25)
which belongs to an uncompromised bin b; ; C B; \B such
that 7}, ; ¢ £;. We compensate the reference signal :Lref by

Ty, ={Tk, €bij: argmln(xk i

zy

xﬁffl =Tk, + xk i (26)

to achieve the compensated tracking error in (25).

After compensation for an ith reference signal has oc-
curred, the compensated control input is no longer equal to
the desired control input w), # uj as Kxf # Kxf. The
goal is to find a feasible solution to update reference signals
for any state i’ # i, ¢/ = {1,...,n} \ ¢ to minimize the
difference between the compensated control input u; with
compensated reference signals and the desired control input
uy. To minimize the difference in control input to the system,
the following objective function is solved

J(ZF) —argmln(HKwk—uk—i—kamH) 27

zy

where K is the feedback control matrix with the ith column
removed, &7, is the tracking error vector with the ith element
removed, and K is the 7th column in the feedback matrix K.
To satisfy the compensated tracking error vector in (27) that
minimizes the change in the control input, we compensate
the reference signals elements ¢’ for any altered tracking error
Vi’ # . (28)

~ref

e
T = xk o+ (T — Thir)s

The following Lemma provides details to show that the
true system state converges to the desired reference signal,
even as the reference signal is being compensated.

Lemma 2 (System Stability): Given the compensated ref-
erence signals in (26) and (28) to minimize (27) in order
to avoid any compromised regions within the tracking error
space xj ¢ £ with control input u, = Kf, the reference
tracking closed-loop system is asymptotically stable.

Proof: We omit the full proof due to page limitations.
However, Lemma 2 can be proved via Lyapunov stability to
show that reference tracking is globally asymptotically stable
such that the system state converges toward any desired
bounded reference signal mgf during attacks/faults to the
tracking error space (i.e., £ # ). In other words, the
expectation of the true tracking error x} = @ — ), is
always converging (i.e., E[x} , — x}] — 0 as k — oco) for
any compensated reference signal a:ﬁff and compensated state
), computed in (24)—(28). ]

We note that when the compensator is providing compen-
sated signals to the controller {wref &} — Uy, the resulting
computed compensated control input uy is utilized in the
state estimation process in (3).

V. RESULTS

Our framework is validated with Matlab simulations and
lab experiments using a Husarion Rosbot 2.0 robot that
performs go-to-goal operations. To highlight the generality
and applicability of our proposed scheme, we consider at-
tacks that maliciously affect the velocity and heading angle
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of the robots. In both case studies, the robots are subject
to on-board controller attacks that maliciously alter control
parameters and/or adds control input biases with the intention
to degrade system performance. Videos for the simulation
and experiments are provided in the supplemental material.

A. Simulation

We present here one of the simulation case studies that
considers a differential drive UGV dynamical model [15]:

1
v =—(F, + F, — Bv),
m
1
L.
& = wvcos(h),

O = (29)

w .
(5F - F) - Bw), §=w,
U = vsin(6),

where v, 0, and w denote velocity, vehicle heading angle,
and angular velocity, along with the position coordinates x
and y to form the state vector © = [z,y,v,0,w|". F; and
F,. describe the left and right input forces from the wheels,
w is the vehicle width, while B,. and B; are resistances due
to the wheels rolling and turning. We perform linearization
and assume the sensor sampling rate is t; = 0.05s to satisfy
the system model in (1) and (2).

In the simulation, the robot is tasked to visit a series of
waypoints (i.e., goals) within an obstacle filled environment
while maintaining a velocity v™ = 0.15m/s. We present a
scenario where attacks occur within the error space when
velocity information provided to the controller is within a
compromised region 05, € £. Three simulations are provided
that highlight the Nominal (i.e., no attack), Uncorrected, and
Corrected scenarios where attacks start at k = 2700 and the
robot begins from the same initial state o = [0, 1.5,0,0,0]"

In Fig. 7, we highlight the case study where attacks occur
as the velocity tracking error is any positive value, causing
feedback gains for velocity to be reduced by 90% and an
input bias of wr = —0.08. Shown in Fig. 7(a), when
not monitoring for malicious behavior in the Uncorrected
scenario, the robot continues to attempt a forward (positive)
velocity and is driven away from its next intended goal point.
In the Corrected scenario, the robot discovers anomalous
behavior in bins b; ; C B; corresponding to positive velocity
tracking errors (Fig. 7(c)). This allows the robot to recover
by updating its reference velocity to the opposite direction
to navigate the environment in reverse to resiliently maintain
the operation.

B. Experiments

Experimental validations are implemented on Husarion
Rosbot 2.0 robots performing a go-to-goal operation within a
lab environment. We show two case studies where attacks are
triggered based on information from the heading angle this
time; the first with an attack scenario within the state space
and the second within the error space. For each experiment
case study, we provide results where the robot is: a) unpro-
tected from attacks/faults, b) protected from attacks/faults
while leveraging our compensation framework for recovery,
and c) a Matlab representation of the robot positions during
both the unprotected and protected experiments.
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Fig. 7. The compromised tracking error space case study displaying: (a)

the resulting robot trajectories, (b) velocity tracking error, (c) alarm rates
for the NV}, = 20 bins, and (d) distance to the next goal/waypoint.

Snapshots of the first case study experiment are presented
in Fig. 8, which captures the robot navigating to a series of
goals. The malicious threat to the controller occurs when the
robot heading angle (in degrees) satisfies 6 € [140, 245] or
6 € [—75,30]. Without our detection and recovery being
performed, shown in Fig. 8(a), the control signal to the
system is compromised and eventually the robot crashes into
a wall. We see in Fig. 8(b) where our framework is leveraged,
the robot compensates the information to the controller upon
discovering anomalous regions within the state space to allow
for continued navigation to each of the goal points.

Our second case study demonstrates the robot that is
subject to attacks in the heading angle error space, as shown
in Fig. 9. The attack occurs at any instance the robot
desires to turn left (i.e., negative tracking error), but instead
the attack causes a turning action to the right. When our
framework is not implemented (Fig. 9(a)), the robot fails to
complete the operation due to continued circling motion. As
shown in Fig. 9(b), since the robot is not able to turn left, the
compensator alters the reference signal such that the robot
performs a “looping” action by always turning right (i.e.,
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positive tracking error) as this is the only possible action
that the robot can do to avoid the compromised tracking
error space to continue the operation.

VI. CONCLUSION & FUTURE WORK

In this paper we have proposed a detection and recovery
framework for autonomous mobile robots to maintain un-
compromised control actions to resiliently perform a desired
operation. The robot is able to identify attacks/faults to its
on-board controller within specific regions of the state and
tracking error spaces by leveraging a residual-based attack
detection scheme within the partitioned spaces. Furthermore,
the robot uses a compensator to alter reference signal and
state estimation information which is fed into the controller
to maintain desired performance while avoiding any compro-
mised regions in the state/tracking-error spaces. Our future
plans include extending the current framework to trigger
replanning operations (e.g., changes in mission goals and
trajectories) in the event that control recovery is not possible.
Further implementation on different vehicles such as aerial
robots and multi-robot systems are also in our agenda.
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