

of the robots. In both case studies, the robots are subject

to on-board controller attacks that maliciously alter control

parameters and/or adds control input biases with the intention

to degrade system performance. Videos for the simulation

and experiments are provided in the supplemental material.

A. Simulation

We present here one of the simulation case studies that

considers a differential drive UGV dynamical model [15]:

v̇ =
1

m
(Fl + Fr −Brv),

ω̇ =
1

Iz

(w
2
(Fl − Fr)−Blω

)
, θ̇ = ω,

ẋ = v cos(θ), ẏ = v sin(θ),

(29)

where v, θ, and ω denote velocity, vehicle heading angle,

and angular velocity, along with the position coordinates x

and y to form the state vector x = [x, y, v, θ, ω]T. Fl and

Fr describe the left and right input forces from the wheels,

w is the vehicle width, while Br and Bl are resistances due

to the wheels rolling and turning. We perform linearization

and assume the sensor sampling rate is ts = 0.05s to satisfy

the system model in (1) and (2).

In the simulation, the robot is tasked to visit a series of

waypoints (i.e., goals) within an obstacle-filled environment

while maintaining a velocity vref = 0.15m/s. We present a

scenario where attacks occur within the error space when

velocity information provided to the controller is within a

compromised region v̂ek ∈ Ẽ . Three simulations are provided

that highlight the Nominal (i.e., no attack), Uncorrected, and

Corrected scenarios where attacks start at k = 2700 and the

robot begins from the same initial state x0 = [0, 1.5, 0, 0, 0]T.

In Fig. 7, we highlight the case study where attacks occur

as the velocity tracking error is any positive value, causing

feedback gains for velocity to be reduced by 90% and an

input bias of ŭk = −0.08. Shown in Fig. 7(a), when

not monitoring for malicious behavior in the Uncorrected

scenario, the robot continues to attempt a forward (positive)

velocity and is driven away from its next intended goal point.

In the Corrected scenario, the robot discovers anomalous

behavior in bins bi,j ⊂ B̃i corresponding to positive velocity

tracking errors (Fig. 7(c)). This allows the robot to recover

by updating its reference velocity to the opposite direction

to navigate the environment in reverse to resiliently maintain

the operation.

B. Experiments

Experimental validations are implemented on Husarion

Rosbot 2.0 robots performing a go-to-goal operation within a

lab environment. We show two case studies where attacks are

triggered based on information from the heading angle this

time; the first with an attack scenario within the state space

and the second within the error space. For each experiment

case study, we provide results where the robot is: a) unpro-

tected from attacks/faults, b) protected from attacks/faults

while leveraging our compensation framework for recovery,

and c) a Matlab representation of the robot positions during

both the unprotected and protected experiments.

(a)

(b)

(c)

(d)

Fig. 7. The compromised tracking error space case study displaying: (a)
the resulting robot trajectories, (b) velocity tracking error, (c) alarm rates
for the Nb = 20 bins, and (d) distance to the next goal/waypoint.

Snapshots of the first case study experiment are presented

in Fig. 8, which captures the robot navigating to a series of

goals. The malicious threat to the controller occurs when the

robot heading angle (in degrees) satisfies θ ∈ [140, 245] or

θ ∈ [−75, 30]. Without our detection and recovery being

performed, shown in Fig. 8(a), the control signal to the

system is compromised and eventually the robot crashes into

a wall. We see in Fig. 8(b) where our framework is leveraged,

the robot compensates the information to the controller upon

discovering anomalous regions within the state space to allow

for continued navigation to each of the goal points.

Our second case study demonstrates the robot that is

subject to attacks in the heading angle error space, as shown

in Fig. 9. The attack occurs at any instance the robot

desires to turn left (i.e., negative tracking error), but instead

the attack causes a turning action to the right. When our

framework is not implemented (Fig. 9(a)), the robot fails to

complete the operation due to continued circling motion. As

shown in Fig. 9(b), since the robot is not able to turn left, the

compensator alters the reference signal such that the robot

performs a ªloopingº action by always turning right (i.e.,

1746

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 27,2023 at 14:28:23 UTC from IEEE Xplore. Restrictions apply.

