
Seamlessly Safeguarding Data Against
Ransomware Attacks

Abdulrahman Abu Elkhail ,Member, IEEE, Nada Lachtar ,Member, IEEE, Duha Ibdah ,Member, IEEE,

Rustam Aslam, Hamza Khan, Anys Bacha ,Member, IEEE, and Hafiz Malik ,Member, IEEE

Abstract—Encryption has become an indispensable technology for preserving confidentiality. Unfortunately, cybercriminals have re-

purposed this technology to deny users access to their data. This trend has sparked an onslaught of ransomware attacks, that resulted in

several victims being extorted to pay ransoms in return for restoring their maliciously encrypted data. In response to these challenges, we

propose a novel runtime solution that seamlessly defends against cryptographic ransomware. A key observationmade by thiswork is that

maliciously encrypted data is initially buffered in the OS’s page cache before it is flushed to the underlying storage device. Based on this

observation, we develop a solution that efficiently manages data synchronization between thememory and storage subsystems to

prevent maliciously encrypted data from being permanently committed to the underlying storage.We extensively validate the robustness

of this approach against more than one thousand ransomware samples and show that our design reliably restores all encrypted files.

Furthermore, our solution is resilient to ransomware that employ techniques includingmaster boot record infection andmulti-threaded

attacks. Finally, an evaluation of our proof-of-concept implementation showsminimal performance impact while running amix of compute

and I/O bound applications.

Index Terms—Ransomware, malware, data recovery, encryption, system security, intrusion detection system
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1 INTRODUCTION

OUR daily dependence on information requires protec-
tion. This necessary protection has made data encryp-

tion an indispensable technology for preserving the
confidentiality of today’s digital content. Unfortunately,
cybercriminals have discovered ways to re-purpose this
technology and deny users access to their data in return for
ransom. This trend has sparked an onslaught of ransom-
ware attacks in recent years, resulting in users, businesses,
and governments being extorted to pay ransoms in return
for restoring their maliciously encrypted data.

According to the U.S. Department of Homeland Security,
ransomware represents the fastest growing malware threat
to individuals and organizations [53]. Steve Morgan, the
founder of Cybersecurity Ventures, painted a grim picture
after his public announcement that future ransomware
attacks are slated to impact systems every two seconds [11].
To this end, a wide range of business segments incurred sig-
nificant damages as a result of ransomware, costing the
pharmaceutical, shipping services, and chip manufacturing
industries over $850 million, $400 million, and $250 million,
respectively [12], [47]. Recently, the energy sector has fallen
prey to such attacks after a major U.S. fuel pipeline was
taken down, prompting the company to make an immediate

ransom payment of $5 million in order to regain access to
their encrypted data [48]. Local governments have also
fallen victim to similar attacks, adding to ransomware
woes, including the City of Baltimore that has spent over
$18 million to date in order to recover from ransomware
that crippled various municipal operations [52]. Although
the cost of ransomware attacks in 2021 has already been esti-
mated to be $20 billion, future damages are projected to
reach $265 billion over the next decade [36]. This trend
makes it imperative to explore solutions that can seamlessly
recover from such attacks.

In response to these challenges, researchers have pro-
posed several defenses to safeguard systems against ran-
somware attacks that aim to maliciously encrypt user data
[8], [10], [16], [18], [19], [21], [26], [44]. A large portion of this
research focused on the detection of such malware. For
example, Kharraz et al. [21] employed a temporary environ-
ment designed to screen user programs. Other solutions
[18], [19], [44] proposed monitoring system parameters,
such as API calls, registry key operations, and file type
changes as features for detecting ransomware activity.
However, the response time of such solutions, from data
collection to detection, often results in partially encrypted
filesystems, leaving victims faced with ransom payment as
the only viable option.

The shortcomings of the aforementioned work prompted
the research community to investigate solutions that can
recover from cryptographic ransomware [10], [16], [26].
Huang et al. [16] explored re-purposing out-of-place writes
that are considered intrinsic to flash drives to retain transient
information that contain the original plaintext data. Unfortu-
nately, ransomware can overwrite such transient data by
duplicating previously encrypted data already present on
the drive. Furthermore, the solution is limited to solid state
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drives that employ flash technology. Other work [26] pro-
posed the use of function hooking to collect cryptographic
keys generated by the OS and saving them to a key escrow.
Such keys are retrieved in the event of a ransomware attack
to decrypt any impacted files. However, in addition to the
potential confidentiality violations this solution introduces,
ransomware can bypass this defense by using their own
crypto libraries over OS hosted services. In general, recovery
solutions such as [16], [26] require manual user intervention
where victims can experience long delays when restoring
compromised data. Similarly, recovery solutions that employ
backups [10] tend to incur non-trivial amounts of perfor-
mance overhead. Reclaiming compute resources in cloud-
based environments where performance overheads are
closely monitored to guarantee service level agreements, and
user environments where application responsiveness and
energy efficiency are treated as first order constraints for con-
sumers are major drawbacks of such systems.

This paper proposes a novel runtime solution that
autonomously defends against cryptographic ransom-
ware. Unlike prior work that can leave victims with par-
tially encrypted filesystems or costly downtimes that stem
from long data recovery periods, our solution seamlessly
preserves compromised data without having to undergo
an explicit recovery process. A key observation made by
this work is that maliciously encrypted data is initially
buffered in the operating system’s page cache before it is
flushed to the underlying storage device. Based on this
observation, we develop a solution that efficiently man-
ages data synchronization between the memory and stor-
age subsystems to prevent maliciously encrypted data
from being permanently committed to the underlying
storage. We extensively validate the robustness of this
approach against more than one thousand recently
released samples that span 18 ransomware families. We
show that our design reliably restores all encrypted files
initiated by the samples we tested. Furthermore, our solu-
tion is resilient to ransomware that employ techniques
including master boot record infection [17] and multi-
threaded attacks [31]. We demonstrate that our proof-of-
concept implementation incurs negligible overhead while
running a diverse set of realistic workloads commonly
used for measuring performance. Evaluation using a
range of benchmarks that include: PARSEC [6], SPLASH-3
[42], Flexible I/O [2], and Filebench [51], show an average
performance degradation that is less than 2% across both
compute and I/O bound workloads.

Overall, this paper makes the following contributions:

� Presents a novel defense that safeguards data against
cryptographic ransomware.

� Unlike prior work that leaves filesystems partially
encrypted or requires delays for recovering data, our
solution dynamically preserves user data without
additional backups or manual intervention.

� Makes the observation that page caches that are com-
monly employed by operating systems to buffer I/O
data can be harnessed for reliably preserving storage
devices against ransomware attacks.

� Proposes an efficient end-to-end runtime system
that incurs minimal overhead across a diverse set of

realistic workloads in the form of micro and macro
benchmarks.

� Extensively tests the robustness of our solution
against more than one thousand recently released
ransomware samples and demonstrates that our
work reliably restores all encrypted files while toler-
ating malicious techniques such as master boot
record infection and multi-threaded attacks.

The rest of this paper is organized as follows: Section 2
presents background information. Section 3 discusses the
threat model. Section 4 describes the design of the proposed
system. Section 5 presents the methodology and experimen-
tal framework used in this work. Section 6 discusses the
results of our evaluation. Section 8 details related work; and
Section 9 concludes.

2 BACKGROUND AND MOTIVATION

2.1 The Page Cache

Advances in process technology fueled by Moore’s law have
made significant strides in enabling larger memory devices
in today’s computer systems. However, despite such advan-
ces, designers still need to balance between the use of low
latency technology, storage capacity, and cost as part of pro-
ducing affordable, yet high performing computer systems.
This goal often necessitates designers to construct a hierar-
chy of memory devices from an eclectic mix of technologies
that possess different speed and capacity characteristics.
These devices are often interlinkedwith one another through
caches.

Caches are designed to retain copies of fetched data
obtained from lower levels of the memory hierarchy under
the premise that recently used data will likely be re-used in
the near future. This allows upstream levels of the memory
hierarchy to minimize access to downstream devices that
are considered slow. To this end, virtually all modern oper-
ating systems rely on caching disk data into main memory
as a way of improving performance. This is primarily
driven by the fact that accessing main memory is several
orders of magnitude faster than accessing a disk drive
(nanoseconds versus milliseconds) [32].

Page caches consist of physical blocks of data that are
fetched from non-volatile storage media (backing store)
such as magnetic disks and solid state drives. Whenever a
process issues a read() system call, the kernel searches its
page cache for the data, if found, the present data is used to
service the calling process. However, in the event that the
data is not found within the cache, an I/O transaction is
issued to the backing store to obtain the requested blocks.
Once fetched, these blocks are populated as pages within
the cache in order to promote isolation between any active
processes through the use of virtual memory. Populating
the cache with this data obviates the need for making future
I/O requests to the backing store for subsequent transac-
tions to the same data.

Write Caching. In addition to servicing read requests,
page caches must efficiently handle write transactions with-
out invalidating present pages every time data is modified.
In order to address this issue, page caches often use a write-
back policy for synchronizing data to the backing store. In
other words, the backing store is not immediately updated.
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Instead, modified pages are marked dirty and synchronized
periodically to make the corresponding data in the backing
store up to date with the version present in the page cache.
Operating systems often dedicate one or more threads for
systematically scanning dirty pages and synchronizing
them with the backing store.

Cache Eviction. Main memory is a valuable resource that
running applications often contend over. As a result, the
page cache must dynamically adapt its footprint to make
room for incoming data when new entries are no longer
available or when the available memory of the overall sys-
tem is low. In order to achieve this, page caches implement
a cache eviction policy that determines which pages must
be removed from the cache. As a first step, OS’s target clean
pages for eviction. However, if more memory needs to be
freed, the operating system creates more clean pages by
writing dirty pages back to the disk then evicting them from
the cache. The OS chooses pages that are the least likely to
be used in the future. For this OS’s often use a least recently
used approach where pages are evicted according to their
timestamp.

2.2 Measuring Randomness

Cryptographically strong algorithms aim to promote two
fundamental properties: confusion and diffusion. Confu-
sion relates to an algorithm’s ability to obscure the relation-
ship between a cryptographic key k and the ciphertext C it
produces [39]. Diffusion, on the other hand, focuses on
obscuring the statistical properties of the plaintext message
M, making the produced ciphertext C appear random rela-
tive to its original data M. The aforementioned property
can also be harnessed to infer the presence of ciphertext C
within a stream of data. In other words, the amount of ran-
domness present in a given bytestream can serve as an indi-
cator for distinguishing plaintext from encrypted data.

Various methods have been proposed for assessing ran-
domness [5]. A commonly used algorithm for quantifying
the amount of randomness present in a block of data is the
information entropy test. A metric originally introduced by
the father of information theory, Claude Shannon, entropy
is concerned with measuring the degree of uncertainty in a
set of bytes. As such, digital content that undergoes encryp-
tion (ciphertext) tends to exhibit consistently high levels of
entropy. Our study makes use of this metric for detecting
encryption activity initiated by ransomware which is
described in equation (1).

In this equation, pðbiÞ denotes the probability of byte
value bi occurring in a given block of dataM consisting of n
bytes. This metric yields values HðBÞ 2 ½0; 8�, with 8 corre-
sponding to a stream of data that has a perfectly even distri-
bution of byte values. Since bytes within a ciphertext should
have a uniform probability of occurring, encrypted data
tends to approach the upper bound of this range.

HðBÞ ¼ �
Xn�1

i¼0

pðbiÞlog 2pðbiÞ (1)

In order to evaluate the suitability of using entropy as a
metric for classifying ransomware, we conducted a series of
experiments that measured the entropy of data written to the

diskwhile executing different programs. To this end, we first
launchedWannaCry, a ransomware program responsible for
$4 billion in damages to a wide range of industries aftermali-
ciously encrypting data on more than 230K computers [20].
We executed a sample of the aforementioned ransomware
and monitored its disk activity over a period of one minute.
We also examined the disk activity associatedwith two other
benign applications over the same period. We ran Angry
Birds, a popular gaming application, and Thunderbird,
another popular email client. The results of this experiment
are illustrated in Fig. 1.

We observe that on an x86 platform equipped with four
CPU cores, 8 GB of memory, and 1 TB of storage, an average
entropy of 7.4was recordedwhilemonitoring thewrite trans-
actions WannaCry issued to the disk. We find that this rate is
sustained over the entire one minute execution window. The
lowest entropy value that we recorded during this one min-
ute period was 7.3. We observe a different trend, on the other
hand, while running the gaming application, Angry Birds.
This application averaged an entropy value of 4.6. Further-
more, the entropy never exceeded 5.2 throughout the execu-
tion phase while actively playing games through this
program. We observe a similar trend while interacting with
the email client, Thunderbird. This application exhibited an
even lower average of 3.8 throughout its execution. Similar to
Angry Birds, the entropy value never peaked beyond 5.2.
This data illustrates the potential of thismetric in distinguish-
ing between ransomware and benign applications. We dis-
cussmore extensive results of thismetric in Section 6.

3 THREAT MODEL

Our design aims to safeguard computer systems against
cryptographic ransomware that is crafted to maliciously
encrypt data present on a victim’s filesystem. To this end, we
consider malware empowered with capabilities beyond tra-
ditional ransomware applications. Such capabilities include
the ability to infect the master boot record (MBR), as well as,
perform concurrent execution through multi-threading. To
this end, we assume an attacker can deploy ransomware that
belongs to any of the following categories:

� Standard Ransomware. Attackers launch ransomware
on a victim’s platform, typically by leveraging social
engineering techniques such as phishing. The mal-
ware is assumed to have basic ransomware capabili-
ties including the ability to scan a filesystem and
encrypt its data through a cryptographically strong
algorithm.

Fig. 1. Entropy of data written to storage as a function of time for Wanna-
Cry ransomware, Angry Birds, and Thunderbird.
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� MBR Infecting Ransomware. Similar to standard cryp-
tographic ransomware that can scan and encrypt
data on a filesystem, this form of malware also has
the ability to infect the master boot record, prevent
the OS from booting, and redirect the boot process to
a malicious bootloader that locks the victim out of
the system [27].

� Multi-Threaded Ransomware. Such ransomware har-
nesses the power of multi-core processing units com-
monly found in modern CPUs and other features
such as hyper-threading (HT). Attackers can lever-
age this technology for distributing ransomware
activity across multiple cores to evade detection, as
well as, speed up execution in order to outpace any
preventative response that a victim or system admin-
istrator may initiate [31], [38].

In addition to the above, we assume ransomware can
encrypt user data by directly overwriting existing files using
in-place writes or by creating encrypted copies of existing
files through out-of-place writes. We also assume that mali-
ciously encrypted copies of the user data can be followed by
the deletion of the associated original files. Our design also
assumes that ransomware can perform data encryption
using any cryptographic algorithm that is either directly
embedded within the malware or available through crypto
services that are provided by the OS. For instance, most ran-
somware employ the Advanced Encryption Standard (AES)
algorithm for encrypting user data. However, we assume
an attacker can employ other encryption algorithms beyond
AES including Rivest-Shamir Adleman (RSA), Elliptic-
curve cryptography (ECC), and Rivest Cipher 4 (RC4). Fur-
thermore, our solution is designed to restore encrypted files
irrespective of the underlying storage technology. As such,
our work is able to safeguard data present on a variety of
storage media including solid-state drives and magnetic
spin disks. Finally, we make the assumption that the OS is
trusted and free from any privilege escalations. Otherwise,
we argue that any in-host defense would be defeated
including anti-malware solutions. As such, we assume that
ransomware is executed in user-mode.

4 DESIGN AND IMPLEMENTATION

We present a new runtime system that dynamically defends
against the effects of cryptographic ransomware. A key
approach to our design is that maliciously encrypted data is
initially buffered in the operating system’s page cache before
it is flushed to the underlying storage device. Starting from
this observation, we propose an end-to-end solution that effi-
ciently manages data synchronization between the memory
and storage subsystems to prevent maliciously encrypted
data from being permanently committed to the underlying
hard drive. To support this approach, we implement our
solution within the operating system through modifications
to the system call interface, scheduler, and page cache.

4.1 System Call Interface

Our solution is designed to track I/O transactions that
could result in the malicious modification of files present on
the system and prevent them from reaching the backing
store. To this end, we augment the system call interface to

monitor socket(), write(), and delete() operations
issued from user space.

Network Socket Requests. All user space processes are ini-
tially treated as benign until they are determined otherwise,
based on their system call activity. An important characteris-
tic of cryptographic ransomware is that it communicates
with a command and control (C&C) server in order to
exchange the key it will consume for encrypting the victim’s
data [7]. This encryption key is used later by the C&C server
to demand a ransom. As such, our design tracks processes
that attempt to communicate over the network. Whenever a
process issues a request to the kernel to create a network
socket via the socket_create() system call, our solution
updates a tgid_ransom_t data structure that we associate
with the requesting process. This structure is shown in List-
ing 1. More specifically, the tgid_ransom_t of the request-
ing process is updated to reflect that a socket is being created
using the socket_created field. Monitoring the sock-

et_create() system call, allows us to flag ransomware
that attempts to communicate with a C&C server over TCP
andUDP connections.

Write Requests. Whenever a process issues a write request
to the kernel via the write() system call, our solution com-
putes the entropy of the data that is to be written as a first
step. Further actions are then taken based on the outcome of
this computation. In the event that the entropy of the com-
puted data exceeds a programmable threshold, the system
proceeds to updating the tgid_ransom_t data structure
(Listing 1) associated with the requesting process. At this
point, the tgid_ransom_t of the requesting process is
updated to reflect the total number of bytes that have been
written using the written_bytes field. Similarly, we
update the information corresponding to the cumulative
entropy of the observed data using the cumulative_en-

tropy field. The cumulative_entropy and written_-

bytes fields are consumed later by the scheduler to
compute the overall average entropy exhibited by the given
process over a predefined execution period.

Listing 1. Data Structure for tracking a program’s detec-
tion features

struct tgid_ransom_t {

int periodic_cpu_time;

int cumulative_entropy;

int written_bytes;

int socket_created;

int delete_requested;

int tcount;

};

In addition to computing the entropy, our design also
tracks the files a given process has modified through
write transactions. We accomplish this through the use of
a radix tree. We choose this type of data structure in our
design primarily because of its fast access time and ability
to efficiently search data without the complexity of hav-
ing to maintain a balanced tree. We create a write-

radix-tree for each running process. Every time a pro-
cess initiates high entropy writes to a file, an entry that
points to the corresponding file’s data structure is added
to the tree.
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In addition to tracking the affected files, we augment
each entry within the tree with tags that denote specific
actions. These actions are executed by the system anytime a
tagged file is scheduled for synchronization to the backing
store. To this end, write transactions that exhibit high
entropy will result in the DELAY_SYNC tag being set. This
tag informs the rest of the I/O subsystem to delay synchro-
nizing the marked file to the disk until further assessment is
made about its corresponding process. In other words, the
I/O activity issued to this file is still under evaluation by
the defense system and could correlate to ransomware
activity. An example that details this process is shown in
Fig. 2a.

Delete Requests. Our solution enables the tracking of
delete requests made by a running process. This step is nec-
essary because not all ransomware perform in-place writes
for encrypting user files. Most ransomware families create
encrypted copies of the victim’s files instead. Once such
copies have been produced, the ransomware proceeds to
deleting the victim’s original data (files in plaintext). As
such, our design tracks processes that perform delete opera-
tions. Whenever a process issues a delete request to the ker-
nel via the delete() system call, our solution updates a
delete_requested field within the corresponding tgi-

d_ransom_t data structure to reflect this behavior.
Our design aims to prevent the deletion of files in the

event that the corresponding process is classified as ransom-
ware. Therefore, in addition to postponing written data, our
solution delays the deletion of files until a decision is made
about the associated process. Since delete is an operation
that is not frequently used by users, we add all the delete
requests a given process initiates to a dedicated delete-

radix-tree. Similar to the way our design handles write
operations, every time a delete request is made by the run-
ning process, an entry that points to the corresponding file’s
data structure is added to the tree. Furthermore, all the
delete requests that are recorded in the radix tree are
marked with the DELAY_SYNC tag. This informs the system
to not permanently delete the file from the backing store
until further analysis is made. An example of this process is
shown in Fig. 2b.

4.2 OS Scheduler

The OS scheduler represents a key component of our detec-
tion system. Its primary role entails periodically evaluating
active processes on the system and classifying them as either
benign, suspicious, or malicious. To this end, our scheduler
relies onmultiple features for classifyingworkloads. Such fea-
tures include network requests, delete operations, and

entropy measurements that are tracked by the system call
interface. More specifically, the scheduler examines the net-
work_created and delete_requested fields associated
with each process to determine if network communication
has been attempted and if any delete requests were issued. It
also monitors the overall entropy associated with each pro-
cess over a programmable execution window (e.g., 1 second).
The scheduler employs this approach in order to validate that
a process has sustained a sufficiently continuous stream of
high entropy transactions before it considers the associated
feature to be set. This method allows the detection system to
mitigate the possibility of falsely misclassifying applications
as a result of short-lived write transactions that may manifest
high entropy levels.

The scheduler carries out a few tasks upon every context
switch. This includes logging the amount of elapsed CPU
time a given process was allocated on the system (using the
periodic_cpu_time field). The scheduler uses this time
to determine how often a process must be evaluated for its
maliciousness. Once a process has executed for a predeter-
mined period (e.g., 1 second), the scheduler references the
cumulative_entropy and written_bytes fields that
were previously saved by the system call interface and com-
putes the average entropy of the write transactions the pro-
cess has exhibited. If the computed average exceeds a
predefined threshold, the process is considered to be suspi-
cious (potentially malicious). Therefore, as an additional
step, the scheduler checks the process’s socket_created

and delete_requested fields. If any of the aforemen-
tioned flags are set, in addition to the entropy exceeding a
predefined threshold, the process is no longer considered to
be suspicious, and is classified as malicious instead. Other-
wise, the execution period (periodic_cpu_time), the
cumulative entropy (cumulative_entropy), and the total
number of written bytes (written_bytes) associated with
the process are reset in preparation for a new evaluation
cycle. The socket_created and delete_requested

flags, on the other hand, are considered to be sticky. In other
words, once set, they are not cleared throughout the lifetime
of the process. An overview of this design is shown in Fig. 3.

Discarding Malicious I/O Requests. Further action is taken
by the scheduler whenever a process is deemed malicious.
As previously stated, a process is classified as malicious if
the entropy of its written data has exceeded a predefined
threshold and at least one additional feature has been
detected (network or file deletion request). Once a process
is classified as malicious, the scheduler updates the tags of
all previously marked files that are present in the process’s
radix trees. For instance, files that have been recorded in the

Fig. 2. Overview of the system call interface and how different system calls update the tags of their radix trees.
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write-radix-tree and delete-radix-tree struc-
tures are updated to include a DISCARD_DATA tag. Unlike
the DELAY_SYNC tag that results in written data being post-
poned for synchronization, the DISCARD_DATA tag informs
the I/O subsystem to discard data. It prompts the page
cache to discard any memory pages that correlate to I/O
data written by the malicious process. It also induces the I/
O subsystem to permanently discard any file deletion
requests. The scheduler concludes by sending an alert to the
user and consequently terminates the corresponding pro-
cess. In the event that a process is only deemed suspicious
(entropy threshold exceeded, but no other features
detected), an alert is sent to inform the user about the abnor-
mal activity. In addition, the user is prompted to either
allow the process to continue running and be treated as a
benign workload or terminate its execution and discard any
delayed I/O requests. On the other hand, a process that is
classified as benign (no features detected) results in its
write-radix-tree being deleted. This in turn informs
the page cache, that previously buffered write operations,
can now be synchronized to the backing store. Furthermore,
the design processes all of the previously buffered delete
requests by permanently removing all of the files that have
been tagged within the delete-radix-tree. The afore-
mentioned tree is also destroyed once all of the delete
requests have been successfully completed.

Detecting Multi-Threaded Ransomware. Cybercriminals are
constantly seeking ways to make their attacks more profit-
able.With this objective inmind, designing high performance
programs that can outpace human response and evade detec-
tion systems is paramount. To this end, sophisticated forms
of ransomware that pack multi-threaded support [9], [31],
[38] have recently emerged into the malware landscape, pos-
ing a significant threat to both businesses and end users alike.
Although this approach is typically aimed at defenses that
rely on performance counters, it is conceivable that an

attacker could harness this technique to evade our detection
mechanism. For example, a malicious program could distrib-
ute its encryption activity across multiple threads such that
the entropy of data written by each thread falls below our
predefined threshold. To address such concerns, our system
monitors the aggregated entropy that spans all write opera-
tions a given application issues. We achieve this by associat-
ing the tgid_ransom_t data structure with the program’s
main process (parent process) that each created thread (child
process) can share.

The tgid_ransom_t structure shown in Listing 1 is
designed for integration into different operating systems
including popular ones, such as Linux and Windows. For
instance, in Linux, threads that are spawned from a single
program are assigned a common group ID (tgid). Our
design uses this field as the basis for sharing the tgid_ran-
som_t structure across all downstream threads that share the
same tgid. Since threads on this platform are also treated as
processes, we augment Linux’s standard process structure,
task_struct, with an additional pointer (ransom_ptr).
The scheduler and other parts of our design use this pointer
for accessing tgid_ransom_t. Additionally, to ensure
proper sharing of the tgid_ransom_t structure across the
different threads associatedwith a given program, wemodify
the kernel’s clone() system call. This enables our design to
examine the corresponding tid of every newly created pro-
cess before it is activated. If the new process shares the same
tgid as its parent, then we simply set the ransom_ptr field
in the task_struct to point to the parent’s existing tgi-

d_ransom_t structure. On the other hand, if the parent and
the child have different tgid values, then a new tgid_ran-

som_t is allocated and initialized. Once a tgid_ransom_t

structure has been allocated, all subsequent accesses to this
resource are arbitrated for atomicity in order to prevent possi-
ble race conditions. Finally, our design keeps track of the
number of threads that are referencing the tgid_ransom_t
structure through a tcount field. This field is used to
determine when the associated tgid_ransom_t structure
for a given program needs to be deallocated. As such, when-
ever tcount is reduced to zero, the structure is deallocated
implying that all of the program’s threads have been
terminated.

The Windows operating system uses a simpler support
model for managing multi-threaded programs. On this plat-
form, a multi-threaded application is conveniently repre-
sented by a single process by default. Windows uses a so-
called Executive Process (EPROCESS data structure) for
tracking such programs. Any subsequent threads that are
instantiated from the executive process are allocated their
own data structures (an ETHREAD structure for each thread).
Although each ETHREAD is considered to be a separate
structure, they are linked back to the program’s executive
process (EPROCESS). To this end, our design for Windows
platforms entails adding the ransom_ptr field to the
EPROCESS, which by default, is visible to all the associated
ETHREADs. Similar to the Linux design, the ransom_ptr

field would point to the same tgid_ransom_t shown in
Listing 1. As such, whenever a given thread is dispatched,
the Windows scheduler would simply examine the ETH-

READ structure, point back to the ransom_ptr in the corre-
sponding EPROCESS, and take the necessary action.

Fig. 3. Overview of the OS scheduler design.
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4.3 The Page Cache Subsystem

The page cache module is responsible for preventing mali-
cious data from reaching the backing store. As a result,
before this subsystem designates any of its pages for syn-
chronization or eviction from its cache, it first determines if
the associated file has been tagged. This prompts the system
to look up the file and owning process of each memory
page that is under consideration for commitment to the
backing store. More specifically, the design uses a (file, pro-
cess) tuple to determine if the file exists within the corre-
sponding radix tree. If that file is found within the process’s
radix tree, then we proceed to examining the associated
tags. On the other hand, if the file doesn’t exist, we allow
the respective pages to be committed.

In most cases, files that are written by user applications
will not be recorded in the write-radix-tree since the
entropy of such data is typically low. Under such circum-
stances, the ransom_ptr within the process’s tgid_ran-
som_t would simply point to NULL implying that no radix
tree exists. On the other hand, a file that exists within the
radix tree and has the DELAY_SYNC tag set, as a result of
write or delete operations, would result in the associated
page to remain in the page cache until the scheduler classi-
fies the associated process and updates the corresponding
radix tree. In the event that the scheduler declares a process
as malicious, the DISCARD_DATA tag would be set. This in
turn results in the associated page being freed and its entry
removed from the cache without being committed to the
backing store. In other words, the underlying file will retain
its original content on the backing store and ignore any
write or delete transactions initiated by ransomware. There-
fore, the next time the file is opened by the user, the original
data will be seamlessly mapped into memory without any
impact.

Unfortunately, some ransomware families [27] can have
adverse consequences on computer systems that are well
beyond encrypting user files. Such behavior includes
destructively overwriting the master boot record (MBR) in
order to redirect the boot process to a malicious boot loader.
This type of ransomware is difficult to detect because it
postpones its encryption activity until the system is
rebooted, giving full control to the malware. In other words,
the encryption process does not start until the attacker’s
boot loader has overtaken the system. Since in this case, no
high entropy would be detected due to the lack of encryp-
tion activity while the OS is running, our design addition-
ally monitors write transactions that could impact the MBR.
In most cases, the MBR, which corresponds to the first sec-
tor of a given storage device, is not overwritten by runtime
applications. Instead, writes to this sector are typically
restricted to OS installation activities. To address this issue,
our design denies any access to the MBR while the OS is
actively running. To achieve this, our solution examines the
addresses of all blocks that are destined for storage devices.
Any writes to the first sector of the device are denied fol-
lowed by an alert being sent to the end user.

5 METHODOLOGY

We conducted ransomware experiments using the Cuckoo
sandbox [43]. We chose this framework due to the various

services it offers for testing malware, managing virtual
machines, and performing analysis. We configured Cuckoo
to run with a Windows 7 virtual machine that was launched
on an Ubuntu 16.04 host. The Windows image was pre-
loaded with commonly used files, such as, PDF documents,
Word documents, Excel spreadsheets, and PowerPoint pre-
sentations, in addition to standard text files. We also pro-
vided regulated Internet access to the virtual machine
through a filtered host-only adapter. This was setup to
restrict any network activity to DNS, IRC, and HTTP traffic
only. We allowed such basic networking activity purely for
the purpose of enabling ransomware to communicate with
their respective command and control (C&C) servers in
order to facilitate key exchanges. For some ransomware
samples, the encryption process was dependent on such
exchanges before any malicious activity could be initiated.

We developed a proof of concept of our design using the
Linux v5.10.4 kernel. This kernel was used to run the Ubuntu
16.04 host which in turn ran the Windows 7 image coupled
with Cuckoo. We evaluated the robustness of our defense
against 18 ransomware families. This resulted in the execu-
tion of 1324 real world samples, that were obtained from the
VirusTotal [1] repository. Our dataset included both MBR
and multi-threaded ransomware. The samples we used, their
families, and respective capabilities are listed in Table 1.
Each one of these samples was executed on the Windows 7
guest using Cuckoo for a minimum of 10 minutes or until
files were encrypted. The Windows image was rolled back to
a clean state every time a ransomware sample was executed.
This was done in order to mitigate any lingering effects pre-
viously executed malware may have on future runs.

In addition to ransomware samples from VirusTotal, we
executed 261 benign applications to evaluate the suitability
of our design against false positives where each application
was also executed for a period of 10 minutes. More specifi-
cally, we considered applications that spanned different cat-
egories including news, education, web browsing, social,
communication, productivity, travel and local, health and
fitness, and entertainment. This included the Office suite,
video editing tools, compression utilities, and cryptographic
applications to name a few. The aforementioned categories
and their corresponding applications are summarized in
Table 7 which can be found in the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2022.3214781.

In order to evaluate the robustness of our solution
against false positives, we downloaded and installed com-
monly used applications for each category including pro-
ductivity programs such as Office suite, Android Studio,
and Eclipse that were configured to run on Linux. Each
application was used interactively for at least 10 minutes
while tracking the kernel alert messages. In addition, we
launched common web services such as Google Maps, and
TripAdvisor through Google Chrome. Furthermore, in
order to evaluate our solution against applications that
share ransomware-like features, we executed a variety of
benign applications that span audio and video editing tools,
compression utilities, and cryptographic applications.

We evaluated the overhead of our proof-of-concept using
an HP laptop that was equipped with an 8 core Intel Core i7
2670QM processor, 16 GB of memory, and 1 TB of storage. We
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ran a diverse set of realistic workloads commonly used for
measuring performance directly on the Linux host. This
entailed using a range of multi-threaded workloads from
PARSEC [6] and SPLASH-3 [42] in order to characterize the
design’s sensitivity to compute-bound workloads. We also
examined the overhead of our prototype in the context of I/O
bound workloads through the Flexible I/O [2] and Filebench
[51] benchmarks. This enabled us to systematically assess the
performance overhead of our I/O subsystem when exposed
to a large amount of sequential and random read/write opera-
tions on files and directories in the form of micro benchmarks.
We also ran full fledged I/O centric applications (macro
benchmarks) including various servers. The aforementioned
benchmarks are listed in Table 2. The configuration of the
respective I/O benchmarks is outlined in Tables 3 and 4.

6 EVALUATION

6.1 Ransomware Analysis

6.1.1 Feature Set Characterization

Our system relies on measuring the amount of entropy
inherent in write operations as a primary detection feature.

To this end, we conducted experiments across several pro-
grams in order to determine a suitable threshold for detecting
ransomware activity. In particular, we characterized a total of
18 ransomware samples that belonged to different families
(one sample from each family). In addition, we characterized
several multi-threaded benchmarks from the PARSEC 3.0
and SPLASH-3 suites. The entropy of each running program
wasmeasured over a period of one second. The results of this
experiment are illustrated in Fig. 4.

TABLE 2
Summary of Performance Benchmarks

Suite Benchmark

PARSEC3 blackscholes, bodytrack, canneal, dedup,
facesim, ferret, freqmine, fluidanimate,
raytrace, streamcluster, swaptions, vips, x264

SPLASH3 barnes, cholesky, fft, fmm, lu, ocean, radiosity,
radix, volrend, water_nsquared, water_spatial

Filebench varmail, fileserver, webserver,
(Macro) videoserver, webproxy, mongodb
Filebench openfiles, createfiles, copyfiles, deletefiles,
(Micro) listdirs, makedirs, removedirs
FIO seqread, seqwrite, seqreadwrite, randomread,

randomwrite, randomreadwrite

TABLE 1
Summary of Ransomware Families and Their Capabilities

Family Samples Algorithm Backup Spoliation MBR Multi-threaded Defeated Discovered Month

7ev3n 9 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-4
Cerber 46 RSA+RC4-256 ✓ ✗ ✓ ✓ 2016-3
Conti 57 RSA+AES-256 ✓ ✗ ✓ ✓ 2019-12
Crypmod 132 RSA+AES-256 ✓ ✗ ✗ ✓ 2018-2
Crypren 5 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-1
CryptoWall 158 RSA+AES-256 ✓ ✗ ✗ ✓ 2013-12
DeriaLock 2 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-12
Dharma 3 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-1
InfinityCrypt 2 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-9
Locky 351 RSA+AES-128 ✓ ✗ ✗ ✓ 2016-1
Maktub 3 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-3
Rapid 4 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-12
Petya 4 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-3
RedEye 2 RSA+AES-256 ✓ ✗ ✗ ✓ 2018-6
Shade 13 RSA+AES-256 ✓ ✗ ✗ ✓ 2014-12
SporaRansomware 6 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-1
TeslaCrypt 501 ECC+AES-256 ✓ ✗ ✗ ✓ 2016-1
WannaCry 26 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-5
Total Samples 1324

TABLE 3
Configuration Parameters of the FIO Workloads

Workload Configurations

seqread 4K sequential read, iodepth=1, numjobs=8
seqwrite 4K sequential write, iodepth=1, numjobs=8
seqrw 4K sequential rw (50%) each, iodepth=1, numjobs=8
randomread 4K random read, iodepth=1, numjobs=8
randomwrite 4K randomwrite, iodepth=1, numjobs=8
randomrw 4K random rw (50%) each, iodepth=1, numjobs=8

TABLE 4
Configuration of the Filebench Workloads

Workload Thread File File R/W Append

Count Count Size Size Size

varmail 8 30K 16KB 1M 16KB
fileserver 8 10K 128KB 1M 16KB
webserver 8 50K 64KB 1M 8KB
videoserver 8 - 64KB 1M -
webproxy 8 30K 16KB 1M 16KB
mongodb 8 10K 128KB 1M 16KB
openfiles 8 50K - 1M -
createfiles 8 30K 16KB 1M -
copyfiles 8 10K 128KB 1M -
deletefiles 8 50K 64KB 1M -
listdirs 8 50K - 1M -
makedirs 8 50K - 1M -
removedirs 8 50K - 1M -
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On average, we observed a relatively low entropy
value across all benign workloads from the PARSEC and
SPLASH-3 suites. These values ranged from 2.3 in the
case of cholesky, to 4.3 while executing fluidanimate,
with an overall average of 3.5. Furthermore, we found
that multi-threaded programs, despite their low entropy,
tended to issue write transactions that contained higher
amounts of randomness when compared to single-
threaded workloads. For instance, benchmarks from the
SPEC2K6 [13] suite yielded a significantly lower average
of 1.4.

On the other hand, we observed a drastic difference
when comparing the aforementioned workloads to ransom-
ware programs. The overall average across ransomware
programs from the different families was 7.2. This figure
correlates to a 2x increase relative to what was observed
with benign programs. We found that the entropy of the
tested malware ranged between 7 to 7.6 with ransomware
from the Cerber family having the lowest value. To put
things in perspective, Cerber’s entropy value was 60%
higher than fluidanimate, a workload that had the highest
entropy amongst all benign applications. Based on such
experiments, we concluded that using an entropy value of 6
represents a reliable threshold for distinguishing between
benign and malicious activity.

In addition to entropy, our system treats network activity
and file deletion requests as additional features for finger-
printing ransomware. Similar to the entropy experiment,
we characterized a total of 18 ransomware samples that
belonged to different families. Each sample was executed
on an instrumented kernel that was designed to record high
entropy writes, network activity, and file deletion requests,
along with their respective timestamps. Overall, we found
that all of the samples attempted to communicate with a
C&C server after being launched on the system irrespective
of whether the encryption key was generated locally or
remotely. For example, although ransomware families, such
as Conti, SporaRansomware, and WannaCry, are designed
to receive their encryption keys from a C&C server, other
families that produce their encryption keys directly on the
victim’s machine, including Cerber, Locky, and TeslaCrypt,

still exchanged data over the network. We believe such traf-
fic includes sharing the encryption key for data recovery
purposes. In terms of delete requests, we observed that
such operations were promptly issued after every newly
encrypted file was generated. In other words, a file deletion
request was issued to the filesystem immediately after an
encrypted version of the associated file was produced.
These results underscore the practicality of leveraging the
aforementioned features for fingerprinting ransomware
activity in addition to entropy measurements.

6.1.2 Detection and Filesystem Recovery

Our evaluation encompassed carrying out a large scale
test effort in order to properly validate the ability of our
design to detect and recover from ransomware. Our
dataset consisted of more than one thousand ransomware
samples and over 200 benign applications. The ransom-
ware families and their respective families are shown in
Table 1.

Overall, our results show that our solution is effective in
dynamically distinguishing between ransomware and
benign activity. Our design was able to successfully detect
all the malicious samples that we executed, including multi-
threaded and MBR-based ransomware. Similarly, our solu-
tion demonstrated robustness against misclassifying benign
applications as ransomware. Our solution was able to cor-
rectly classify all standard benign workloads without pro-
ducing any false positives. For instance, programs such as
Office suite, Visual Studio, and the Chrome browser were
classified correctly without yielding any misclassification.

Fig. 4. A comparison of write entropy measurements across PARSEC, SPLASH-3, and ransomware families over a one second execution period.

TABLE 5
Summary of False Positive and Negative Results

Evaluation Results

Total Samples 1585
Ransomware Samples 1324
Benign Applications 261
False Positives 0.0%
False Negatives 0.0%
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In the case of compression and cryptographic utilities, the
user was prompted to either approve or terminate the pro-
gram. The results of this experiment are summarized in
Table 5.

Our evaluation of the file recovery process entailed popu-
lating the system under test with several personal files that
conformed to different formats including .pptx, .docx, and .
txt. The filesystem had a total of 2700 files with different sizes
ranging from 1KB to 22MB that were distributed across three
folders: Documents, Downloads, andDesktop. Each directory
contained approximately 2 GB worth of data. We observed
that themajority of ransomware samples that we launched on
the system would spend their first two minutes setting up
their execution environment while attempting to communi-
cate with a C&C server. The encryption process usually
started immediately after ransomware had successfully
obtained a key from its corresponding server. In all cases, our
solution was able to detect such activity within one second of
the encryption process. Upon detection, our system would
restore all of the affected files within the aforementioned
period, send an alert to the enduser, and terminate the offend-
ing process. In addition, we observed that some ransomware
samples did not perform in-place writes of encrypted data.
Instead, new copies were produced, encrypted, and then
renamed to include a new extension. For instance, ransom-
ware from the 7ev3n family added a .R5A extension while
samples from InfinityCrypty appended a .enc extension.
Once the newly created files have been produced on the sys-
tem, the original files would then get deleted. Although our
defense would simply leave the newly created files (with .
R5A and .enc extensions) on the system, any attempt to delete
the original files from the filesystem would be prevented
through the use of a delete-radix-tree.

6.2 Performance Overhead

6.2.1 Compute-Bound Workloads

Our runtime system has two main sources of overhead. The
cost of context switching processes, and the cost of resource
contention that stems from the execution of multiple threads.
To this end, our evaluation focused on the use of multi-
threaded benchmarks in order to accurately measure the
overhead of our design on compute-bound workloads. The
current version of our prototype implementation was geared
towards collecting profiling information for the purpose of
this study. Despite this, our solution is considered to be light-
weight and incurs insignificant overhead.

Fig. 5 summarizes the performance impact of our solution
on compute-bound benchmarks from PARSEC and SPLASH-
3. On average, we observed a performance reduction that was

less than 2%. With the exception of a few programs, most
benchmarks experienced an overhead that was well below
this average. An exception to this trend, however, was Fer-
ret which had an 11% reduction in performance. We attri-
bute this overhead to the amount of context switches this
process experienced relative to other workloads. For instance,
Ferret had a 2x context switch rate relative to Radixwhich
had the second highest overhead. Given that our scheduler
requires additional processing every time a program is con-
text switched, having a process undergo excessive context
switching will naturally lead to more overhead over time.
Radix, a program that is designed to sort integers, exhibited
similar delays, but to a lesser extent. Given that these work-
loads are calibrated to promote parallelism through multi-
threading, we believe that the threads of these programs con-
tended with one another over the shared tigd_ransom_t

structure which contributed to an increase in the overall over-
head. For example, we observed a relatively high amount
of calls to locking constructs while executing the Radix

workload.

6.2.2 I/O-Bound Workloads

We conducted a variety of experiments that were designed
to characterize the performance impact of our solution on I/
O bound workloads. Our test coverage encompassed both
macro and micro benchmarks from the Filebench and FIO
suites. These suites allowed us to adequately exercise the I/
O subsystem and measure its overhead in terms of both
throughput and latency.

I/O Throughput.We first discuss the throughput of our
solution and how it compares to an unsecured baseline
design that uses a stock kernel. The results of this experi-
ment are summarized in Fig. 6. We observed that most of
the applications from the Filebench suite experienced a
slight decrease relative to the original design after being
configured with the parameters shown in Table 4. Although
a slight decrease was recorded, the overall impact was mini-
mal. On average, we observed a 6.4 Mb/s decrease in
throughput across the various applications shown in Fig. 6a
which corresponds to a mere 0.2% reduction in perfor-
mance. Overall, the webserver application experienced
the most impact to throughput. This application observed a
31.6 Mb/s reduction in throughput relative to the baseline
which started out with 1872 Mb/s. The Filserver appli-
cation, on the other hand, experienced the second highest
decrease after citing a 10.5 Mb/s reduction in throughput.
We attribute this decrease to having more pages buffered in
the page cache which in turn reduced the number of entries
available for caching new data. This approach created
unnecessary pressure on the overall page cache system
which resulted in pages being evicted more often in order
to accommodate newly fetched data. As a result, less I/O
requests could be serviced out of the page cache and had to
incur the additional penalty of fetching fresh pages from
the backing store.

In addition to executing full fledged applications, we
conducted various experiments that involved the use of
microbenchmarks. We leveraged such benchmarks to exer-
cise different file and metadata operations including open,
copy, and delete, as well as commonly used directory

Fig. 5. Performance impact of our design on compute-bound workloads
relative to an unsecured baseline.
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operations. These are shown in Fig. 6b. In general, we
observed a similar trend while testing the aforementioned
operations. This trend was also seen when our design was
evaluated against a series of sequential and random read/
write operations. On average, our design observed a 12%
reduction in throughput relative to the baseline with this
reduction ranging between 0.5 Mb/s to 26.6 Mb/s. For the
most part, we found that operations involving write trans-
actions experienced the most reduction. For instance, opera-
tions such as random read and sequential read observed a
mere 0.5 Mb/s and 5.2 Mb/s reduction, respectively. On the
other hand, the remaining transactions that involved differ-
ent write operations ranged between 10 Mb/s to 26.6 Mb/s.
This is primarily due to the fact that our system call inter-
face performs additional steps on all write transactions that
include entropy computations and radix tree updates. The
aforementioned throughput results have almost a one-to-
one correlation to data shown in Fig. 7. In other words, simi-
lar trends can be derived when looking at this data from an
I/O operations per second (IOPS) perspective.

I/O Latency. In addition to throughput, we evaluated the
amount of latency our design introduces when accessing a
single block of data. The results of this experiment are sum-
marized in Fig. 8. Similar to the previous throughput and
IOPS experiments, we examined the impact of our design
on latency across macro and micro benchmarks. From a
macrobenchmark point of view, we found that varmail

experienced the most overhead. This application had a 1.2%
increase in latency relative to the baseline design. Also simi-
lar to previously reported throughput results, we found
that operations that involved writing data tended to exhibit

higher latencies. For instance, the latency of write operations
observed increases that ranged between 0.4% to 1.1%. On the
other hand, the overhead for read operations remained
between 0.1% and 0.13%.

Overall, our results show that the performance impact to
the I/O subsystem is minimal. Even when considering vari-
ous metrics, our overhead remained well below the 1%
mark. Such low overheads underscore the efficiency of our
proposed approach.

7 DISCUSSION AND LIMITATIONS

A primary detection feature that our proof of concept
involves relates to measuring the amount of entropy inher-
ent in write transactions. Although our evaluation shows
that the aforementioned metric is effective in distinguishing
between ransomware and most benign applications, it still
suffers from misclassifying a small set of workloads. For
instance, compressed data tends to exhibit entropy levels
that are comparable to information that undergoes encryp-
tion. A user may also choose to encrypt a set of personal files
on the systemwhich would naturally trigger a false positive.
As such, the entropy metric alone is not sufficient for differ-
entiating between ransomware and compression utilities.
Consequently, our design harnesses other features that
include the monitoring of network activity and file deletion
requests as a means of reducing the number of false posi-
tives. Our evaluation shows that while considering the afore-
mentioned supplemental features, our design did not
classify any of the 32 cryptographic and compression appli-
cations listed in Table 7 as malicious. However, as a

Fig. 6. Summary of throughput experiments as a function of macro and micro benchmarks from Filebench and FIO.

Fig. 7. Summary of IOPS experiments as a function of macro and micro benchmarks from Filebench and FIO.

Fig. 8. Summary of latency experiments as a function of macro and micro benchmarks from Filebench and FIO.
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conservative measure, we still inform the user when such
utilities are running and present it with the option to
approve or deny their execution. The user can also white-list
such applications, so future runs do not prompt the user for
action.

Multiple studies explored different features that could also
be used for fingerprinting ransomware activity [10], [21], [22],
[35], [44]. Such features include the use of decoy files [10],
[35], the monitoring of directory traversal patterns [22], file
type conversions [44], in addition to entropy levels of written
data [21]. However, unlike prior detection mechanisms that
leave filesystems partially encrypted or require delays for
recovering data, our solution dynamically preserves user
data without additional backups or manual intervention. As
such, our work complements these detection-based studies
by focusing on the restoration aspect of data already impacted
by ransomware. Although our solution accommodates the
integration of the aforementioned features, we leverage
entropy, network requests, and delete operations as features
for detecting maliciously encrypted data as part of our proof
of concept design. We believe our end-to-end solution signifi-
cantly raises the bar for attackers. For instance, our evaluation
demonstrates that harnessing entropy, network requests, and
delete operations as features resulted in our solution detecting
all ransomware programswithin our dataset, which included
over one thousand samples. Most importantly, our design
was able to reliably restore all impacted files while tolerating
malicious techniques, such as master boot record infection
and multi-threaded attacks. Furthermore, our proof-of-con-
cept implementation shows that our solution introducesmini-
mal performance impact while running amix of compute and
I/O bound applications.

Despite the robustness of our solution against more than
one thousand ransomware samples, its ability to reliably
restore impacted files, as well as tolerate malicious techni-
ques, such as master boot record infection attacks, attackers
may attempt to evade our defense through smart ransom-
ware. Therefore, to understand the limitations of our solu-
tion in this context, we developed a synthetic workload that
encrypted files in a throttled fashion. We found that our
solution was able to detect throttled write operations that
employed data rates as low as 512 B/s. Although smart ran-
somware may attempt to evade our defense by writing data
using rates that are well below 512 B/s, we argue that ran-
somware often aims for speed when encrypting files in
order to outpace any human response. For instance, our
experiments show that write transactions issued by ransom-
ware sustained data rates that ranged between 41 MB/s –
147 MB/s. This is 8:4 � 104x – 3 � 105x higher than the rate
our solution was able to detect. To address such throttling
attacks, our defense buffers written data until a minimum
of 512 bytes have been issued, after which the entropy is
computed. Meanwhile, the process is periodically evaluated
by the scheduler. Once a minimum of 512 bytes have been
written by a given process, the scheduler examines the proc-
ess’s socket_created and delete_requested fields in
conjunction with the computed entropy to classify the run-
ning process as either benign, malicious, or suspicious.
Additionally, ransomware may choose to overwrite the files
with null bytes or shuffle their content and make them
unreadable [37]. Although we haven’t encountered any

samples that performed the aforementioned actions, design-
ing ransomware with such characteristics is still possible
and would evade our system.

In addition to throttling write transactions, ransomware
may evade detection by distributing its execution across
multiple cores using different threads [31], [38]. Our design
can detect such attacks since it uses an application granular
approach. For instance, all of the entropy, network, and
deletion information is aggregated into a common data
structure (tgid_ransom_t) irrespective of how many
threads the ransomware uses. Furthermore, ransomware
may employ delayed attacks through the insertion of stall-
ing code [25]. Our design can defend against such attacks
since every running process is periodically evaluated for
maliciousness through the OS scheduler. If a process is ini-
tially classified as benign during a given evaluation cycle,
the scheduler will continue to periodically monitor the pro-
cess and flag it in the cycle that correlates to the malware
disclosing its malicious activity. Finally, sophisticated forms
of ransomware may exploit system level vulnerabilities and
carry out a privilege escalation attack prior to encrypting
the victim’s data. Although our design can still detect mali-
cious processes that run as root, once a process gains root
access, it could disable our defense through a newly
installed kernel and in turn compromise the victim’s data.
However, we argue that any in-host defense would be
defeated under such assumptions. Furthermore, most ran-
somware nowadays run in user mode since this is sufficient
to encrypt the victim’s data [31].

8 RELATED WORK

Ransomware Detection.A large body of research [8], [19], [21],
[30], [44], [55] explored various detection techniques that are
aimed at defending against cryptographic ransomware. For
example, Kharraz et al. [21] proposed a dynamic analysis
framework that used an artificial environment for identify-
ing ransomware activity. Other work explored the use of
decoy files as a feature for detecting malicious accesses to
the filesystem [10], [23], [35]. More recent work [22], [33]
expanded on the aforementioned approach by monitoring a
range of content and behavior-based features for finger-
printing ransomware activity. Other work by Scaife et al.
[44] focused on the use of an early-warning detection sys-
tem that was designed to notify users whenever a process
appeared to tamper with large amounts of data. Other solu-
tions [18], [19] proposed monitoring system parameters,
such as API calls, registry key operations, and file type
changes as features for detecting suspicious activity. On the
other hand, Moore [35] et al. explored the use of honeypots.
The authors achieved this by developing a system that
tracked changes to a honeypot folder that was designed to
lure ransomware into disclosing its runtime behavior. Other
work by Continella et al. [10] proposed a system known as
ShieldFS. The system leveraged an add-on driver to enable
monitoring low-level filesystem activity. The activity was
then logged and fed into a model that was tuned to classify
ransomware activity.

In addition, multiple bodies of work examined the use of
machine learning as a defense against ransomware [4], [14],
[28], [29], [41], [45], [46], [50], [54], [56]. For example,
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EldeRan [45], a solution proposed by Sgandurra et al. lever-
aged machine learning to infer ransomware activity based
on early actions taken during the installation process. On
the other hand, work by Takeuchi et al. [50] and Vinayaku-
mar et al. [54] proposed a detection scheme that used API
calls as features. More recent work [4], [56], on the other
hand, considered the use of opcode sequences, instead, as
features for performing the detection. Although high detec-
tion rates have been reported for many of these solutions,
the response time of the aforementioned solutions, from
data collection to detection, often results in partially
encrypted filesystems. Therefore, leaving victims faced with
ransom payment as the only viable option. Unlike prior
work, however, our solution goes beyond ransomware
detection. It instead focuses on undoing the effects of ran-
somware attacks after a system has been infected.

Data Recovery. To address the shortcomings of prior work,
various researchers proposed different data recovery techni-
ques as a solution against encryption ransomware [3], [15],
[16], [24], [26], [34], [40], [49]. For instance, Kolodenker et al.
[26] proposed a framework that relied on a key vault
designed to retain all cryptographic keys produced on the
system. Such keys are then retrieved to decrypt any affected
files in the event that a system becomes infected. Other work
by Subedi et al. [49] proposed isolating backup data away
from the device’s standard volume and making it inaccessi-
ble to ransomware in order to mitigate backup spoliation
attacks. Finally [3], [15], [16], [34], [40], focused on harnessing
the intrinsic properties of flash drives. For example, work by
Huang et al. [16] proposed a framework that leveraged out-
of-place writes that are inherent in solid-state-drives to
recover encrypted data. However, such recovery solutions
require manual user intervention where victims can experi-
ence long delays when restoring compromised data. Simi-
larly, recovery solutions that employ backups [10] tend to
incur non-trivial amounts of performance overhead. Unlike
prior work that can leave victims with costly downtimes that
stem from long data recovery periods, our solution seam-
lessly preserves compromised data without having to
undergo an explicit recovery process. Furthermore, our
work does not require retaining any confidential data in
order to undo the effects inflicted by ransomware.

Comparison to Existing Defenses.We compared our solution
against eight notable defenses that represent the state-of-the-
art in ransomware detection and recovery. The differences in
terms of dataset size, detection metrics and capability, fea-
tures, real-time recovery, and performance overhead are out-
lined in Table 6. In general, our evaluation consisted of

executing a larger number of cryptographic ransomware sam-
ples relative to other work [10], [21], [22], [26], [33], [44], [45].
With the exception of [16], our dataset size for cryptographic
ransomware is 2� – 12� larger than what was considered in
the other studies. Although FlashGuard [16] used a slightly
larger dataset size of 1,477 samples, the study only covered a
total of 13 ransomware families. Unlike Flashguard [16], our
work considers samples across 18 recently released ransom-
ware families. For example, our evaluation included testing
NoMoreRansom, a variant of the Rapid family that was
released in 2020. Furthermore, in terms of detection rates,
our work yielded no false positives or negatives throughout
the evaluation. The only work that had similar results is
UNVEIL [21]. However, unlike UNVEIL [21], our work con-
siders over 4� the amount of cryptographic ransomware
samples and covers more than 2� the number of families.
The remaining studies [10], [22], [33], [44], [45] exhibited a
combination of false positives and negatives. These results
demonstrate the practicality of our solution and its ability to
distinguish between benign and malicious workloads. We
attribute this to the diverse set of feature classes our study
relies on for detection. For instance, our work uses features
that include monitoring activity at the filesystem, process,
and network levels. Although other work considered using a
combination of filesystem and process activity monitoring
for detecting ransomware, none of the studies listed in
Table 6 considered network activity as a detection feature.

Another aspect we examined in our comparison relates
to the ability to detect master boot record (MBR) infecting
ransomware. In addition to detecting standard and multi-
threaded ransomware, our solution was able to detect MBR-
based ransomware. However, unlike our work, none of the
other defenses listed in Table 6 demonstrated the ability to
protect against such malware. In addition to MBR infecting
ransomware, we compared our solution to other defenses in
terms of file recovery capability. Our defense was able to
seamlessly restore all impacted files in real-time without
requiring the user to undergo an explicit recovery process.
Our solution was able to achieve this across 1,324 ransom-
ware samples obtained from 18 families. This was accom-
plished while demonstrating robustness against evasion
techniques that include MBR infecting ransomware, multi-
threaded ransomware, as well as smart ransomware.
Although solutions, such as RWGuard [33] and PayBreak [26]
offer file recovery, this recovery is dependant on ransomware
using the Microsoft CryptoAPI. As such, the aforementioned
solutions cannot recover files that are encrypted by ransom-
ware that employ custom-written cryptographic libraries.

TABLE 6
Comparison of Our Solution With Existing Ransomware Defense Systems

Solution Dataset Size
(Crypto Families)

FP FN Filesystem
Activity

Network
Activity

Process
Activity

MBR Detection
Capability

File
Recovery

Real-time
Recovery

I/O Performance
Overhead

UNVEIL [21] 319 (8) 0.0% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ -
Redemption [22] 677 (29) 0.8% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ 5.6%
CryptoDrop [44] 492 (15) 3% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ -
EldeRan [45] 582 (11) 1.6% 3.7% ✗ ✗ ✓ ✗ ✗ ✗ -
RWGuard [33] 261 (14) 0.1% 0.0% ✓ ✗ ✓ ✗ ✓ (partial) ✗ 1.9%
ShieldFS [10] 305 (11) 0.0% 2% ✗ ✗ ✓ ✗ ✓ ✗ 30%�380%
PayBreak [26] 107 (20) - - ✗ ✗ ✗ ✗ ✓ (partial) ✗ 150%
FlashGuard [16] 1,477 (13) - - ✗ ✗ ✗ ✗ ✓ ✗ < 6%
Our Work 1,324 (18) 0.0% 0.0% ✓ ✓ ✓ ✓ ✓ ✓ < 1%
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Solutions, such as ShieldFS [10] and FlashGuard [16], on the
other hand, offer full recovery of impacted files. However, the
aforementioned defense incur a non-trivial amount of perfor-
mance overhead. They also require the system to undergo an
explicit recovery process. This manual user intervention can
result in victims experiencing long delays before any
impacted files are restored. Finally, the performance overhead
introduced by our solution to the I/O subsystem is negligible
compared to other defenses. Our solution incurs less than 1%
overhead to I/O transactions. This is significantly less than
what was reported for the studies listed in Table 6. In addition
to I/O overhead, our solution characterizes the computation
overhead associated with our defense. This is important since
any code that analyzes ongoing system activity in order to
make timely decisions, requires appropriating CPU cycles
from compute bound applications. Similar to I/O transac-
tions, our computation overhead is relatively small (less than
2%). Other studies, on the other hand, do not explicitly evalu-
ate such overhead. Therefore,wedo not discuss this in Table 6.
However, we note that multiple studies including [10], [33],
[45] employ machine learning algorithms as part of their
detection. Such algorithms typically involve a non-trivial
amount of computation.

9 CONCLUSION

This paper presents a novel runtime defense against crypto-
graphic ransomware. We develop a solution that efficiently

manages data synchronization between the memory and
storage subsystems to prevent maliciously encrypted data
from being permanently committed to the underlying stor-
age. We extensively validate the robustness of this approach
against more than one thousand ransomware samples that
span 18 ransomware families. Furthermore, we demonstrate
that our solution is resilient to ransomware that employ
techniques including master boot record infection and
multi-threaded attacks. Finally, we show that our proof-of-
concept implementation incurs negligible overhead while
running a diverse set of workloads.

APPENDIX

See Table 7.
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