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Abstract— We propose new transmission schemes and receiver
algorithms for unsourced multiple access (UMA) in MIMO and
massive MIMO channels. Each active transmitter’s information
bits are first channel encoded. The coded bits are divided into
sub-blocks and each sub-block is modulated and transmitted.
For both MIMO and massive MIMO channels, the conventional
nonlinear modulation can be employed where each sub-block
of coded bits is mapped to a transmitted signal vector. For
the massive MIMO channel, we propose a new hybrid mod-
ulation scheme to reduce the receiver complexity, where the
first sub-block is nonlinearly modulated, and the subsequent
sub-blocks are linearly modulated and spread by the first sub-
block signal. We also propose sparsity-exploiting blind receiver
algorithms. Specifically, for the MIMO case, we exploit the
codeword sparsity inherent in the UMA system, and a channel
clustering technique, to estimate the channel and the transmitted
signal of each transmitter. For the massive MIMO, in addition
to the codeword sparsity, we further exploit the channel sparsity
and user sparsity in estimating the channel and transmitted
signal of each transmitter. The proposed receiver algorithms for
both MIMO and massive MIMO channels output either hard
or soft estimates of the coded bits, and therefore single-user
channel decoding of the information bits can be performed for
each transmitter. Extensive simulation results are provided to
demonstrate the performances of the proposed algorithms.

Index Terms— Unsourced multiple access (UMA), MIMO,
massive MIMO, codeword sparsity, channel sparsity, user spar-
sity, orthogonal matching-pursuit (OMP), matrix completion,
clustering, soft demodulation.

I. INTRODUCTION

WHILE the current cellular systems have been mainly
designed for wireless services for human users,

the notions of 5G and beyond incorporate fundamentally new
services such as Internet-of-Things (IoT) and machine-type
communications (MTC). A key requirement for future wireless
systems that aim to support IoT and MTC is massive device
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connectivity, where a large number of devices communi-
cate with a base-station (BS) in an uncoordinated manner.
Such a paradigm of communication is known as the massive
Unsourced Multiple Access (UMA) that is characterized by the
following features: 1) uncoordinated or grant-free: no resource
coordination or transmission scheduling is needed; 2) sporadic:
only a small portion of the large number of transmitters in
the network is active during any coherence time interval;
3) unsourced: the transmitters share a common codebook; and
4) small packet size and low data rate for each transmitter.
Note that the unsourced attribute of the UMA system dictates
that the transmitted signal from each transmitter depends only
on the information it wishes to send, but not on the identity
of the transmitter itself. This is in contrast to the traditional
pilot-based systems where each transmitter employs a distinct
pilot sequence for channel estimation. Hence in UMA systems
the receiver has to be “blind.” In MTC scenarios, using pilot
symbols in the small data packet can incur a significant loss in
spectral efficiency, which is one of the main motivation behind
the pilot-free UMA systems.

A. Prior Work

Information theoretic aspects of UMA systems have been
studied in [1] and [2], for the scenarios of infinite and finite
data block sizes, respectively. In [3], a low-complexity UMA
coding scheme, called T -fold ALOHA, is proposed based
on a combination of compute-and-forward and coding for
a binary adder channel. On the other hand, the design of
practical UMA systems is primarily based on exploiting the
inherent sparsity of the system, i.e., the number of active
transmitters is far less than the size of the common codebook.
However, the codebook size is usually extremely large and
divide-and-conquer strategies are adopted where a codeword
is split into multiple sub-blocks which effectively reduces the
codebook size. For example, in [4], sub-blocks of a codeword
are transmitted according to a Tanner graph and the decoding
is conducted by successive interference cancellation (SIC).
In [5]–[6], each sub-block of information data is encoded by
adding parity bits that are dependent on previous sub-blocks
and the decoding is facilitated by these parity bits.

On the receiver side, the decoding in UMA systems is typ-
ically cast as a compressed sensing (CS) problem and various
sparse recovery algorithms such as LASSO, OMP and AMP
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can be employed to recover the transmitted codewords. How-
ever, existing works [3]–[6] do not consider the channel state
information (CSI) and simply model the received signal as a
noisy sum of all transmitted signals. The scheme in [7] adopts
the transmission scheme in [5] and explores the statistical CSI,
i.e., the channel covariance, in the massive MIMO scenario.
In this paper, we propose new UMA decoding schemes that
exploit the instantaneous CSI for both conventional MIMO
and massive MIMO systems [8], [9].

B. Contributions

In this paper we propose new encoding and decoding
techniques for UMA systems under both conventional MIMO
block fading channels and millimeter-wave (mmWave) mas-
sive MIMO channels. In particular, we assume that the short
data packet of each active transmitter is encoded using an
arbitrary error-correction code and the coded bits are divided
into sub-blocks and transmitted. We develop receiver algo-
rithms that perform either hard or soft demodulation of the
coded bits of each active transmitter. Then the information bits
of each transmitter can be decoded using a single-user hard
or soft channel decoder. Although similar to the prior works
mentioned above, the data transmission is based on dividing
each data packet into sub-blocks, a distinguishing feature of
this work lies in the exploitation of the CSI and other types
of signal sparsity, such as channel sparsity and user sparsity
in mmWave massive MIMO systems. The main contributions
of this paper are summarized as follows:

• For MIMO UMA systems, we propose a novel decoding
algorithm that actively estimates the channel of each
transmitter, which not only serves as a tag of the trans-
mitter in order to properly assemble its sub-blocks at
the receiver, but also is essential in performing soft
demodulation. In our system, any channel code, such as
classical algebraic codes and modern codes like LDPC
or Polar codes, can be used to encode the information.

• For massive MIMO UMA systems, on the transmitter
side, we consider two modulation schemes: the non-
linear modulation is the traditional way of mapping
each sub-block of bits into a signal vector; and in the
hybrid modulation, only the first sub-block is nonlinearly
modulated, but each bit in all other sub-blocks are linearly
modulated. Such a hybrid modulation can significantly
reduce the receiver complexity. On the receiver side,
to reduce the hardware cost, we assume that the number
of RF chains is smaller than the number of antennas and
each RF chain can employ a low-resolution analog-to-
digital converter (ADC).

• For massive MIMO UMA systems, for both modula-
tion schemes, we develop novel receiver algorithms that
exploit the additional sparsities including the channel
sparsity and the user sparsity. Here channel estimation
is still the key step which is now facilitated by low-rank
matrix completion.

The remainder of this paper is organized as follows.
In Section II we describe the transmission schemes and the
signal models for the proposed MIMO UMA and massive

MIMO UMA systems. In Sections III and IV we develop
the receiver algorithms for the MIMO UMA and the massive
MIMO UMA systems, respectively. Simulation results are
provided in Section V. Finally concluding remarks are given
in Section VI.

II. SYSTEM DESCRIPTIONS

A. Transmitted Signals

Assume that there are totally Ktot transmitters in the
network, and only K (K � Ktot) of them are transmitting
data in any channel coherence time interval T using a com-
mon codebook. In particular, for a given coherence interval,
we index the K active transmitters as k = 1, 2, . . . , K . Each
transmitter transmits M bits of information using a common
codebook C. The encoding process at each transmitter is
illustrated in Fig. 1. Let dk ∈ {0, 1}M denote the information
bit vector of transmitter k which is first encoded into a
(possibly interleaved) code bit vector bk ∈ {0, 1}Mc using an
error-correction code with rate r. (The purpose of interleaving
the coded bits is to mitigate possible bursty channel errors.)
Hence Mc = M/r. Note that any classical or modern
channel code, such as algebraic codes, convolutional codes,
LDPC codes, or Polar codes, can be employed to encode
dk into bk.

The code bit vector bk is then mapped to the transmitted
signal xk ∈ CT through a modulation process. In order to
reduce the complexity of the encoder and decoder, block
processing is employed, such that the total coherence interval
T is divided into J sub-intervals of length Ms = T/J , and in
the j-th sub-interval, transmitter k transmits a signal xk(j) ∈
C

Ms . Specifically, the code bit vector bk is divided into J
blocks bk = [bk(1)T , . . . , bk(J)T ]T , where bk(j) ∈ {0, 1}Mb

with Mb = Mc/J . Each code bit block bk(j) is then mapped
to a symbol vector xk(j) ∈ CMs . In this paper, we consider
two types of UMA systems: MIMO UMA, where a regular
MIMO receiver is employed at the BS, and massive MIMO
UMA, where a massive MIMO receiver is employed at the
BS. The modulation processes of mapping bk(j) to xk(j) for
the two UMA systems are as follows.

1) MIMO UMA Modulations: Using a sensing matrix C =
[c1, c2, . . . , cN ] ∈ CMs×N with N = 2Mb , bk(j) is mapped
to the nk(j)-th column of C, where nk(j) is the integer whose
binary expansion is given by bk(j). Examples of sensing
matrices include the Gaussian matrix, binary BCH matrix,
etc. [10]. Define γk(j) as an N × 1 vector with the nk(j)-th
entry being 1 and all other entries being 0. Hence there is a
one-to-one mapping between the code bit vector bk(j) and
the indicator vector γk(j). Then the transmitted signal by
transmitter k during the j-th sub-interval can be written as

xk(j) = Cγk(j), j = 1, . . . , J, k = 1, . . . , K. (1)

Clearly this is a nonlinear modulation scheme. Since K � N ,
we assume that {nk(j), k = 1, . . . , K} are different for each
k in the j-th block. This can be justified as follows. The
probability that two transmitters transmit the same informa-
tion packet of size M bits is very low (e.g., M = 70 in
our simulations. For two different information packets, after
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channel encoding, the probability that sub-blocks of the two
coded packets are the same is also very low. To prevent the
two information packets from being identical, one can embed
a few bits of ID information so that information packets from
different transmitters are always different and so are their
corresponding coded packets. Hence we assume that the coded
bit sequences from different transmitters in each sub-block are
different.

2) Massive MIMO UMA Modulations: For the massive
MIMO UMA system, we consider two modulation schemes.
The first one is the same nonlinear modulation scheme given
by (1). The second modulation scheme is a hybrid one, where
the first code bit block of each transmitter is modulated the
same way as described above, i.e., xk(1) = Cγk(1), k =
1, . . . , K . Then for the remaining code bit blocks, linear
modulation with symbol spreading is employed. Specifically,
the i-th bit of bk(j), denoted by [bk(j)]i, i = 1, . . . , Mb,

is spread by a sequence sk,i ∈ C
Ms
Mb . For each j = 2, . . . , J ,

the transmitted signal is given by

xk(j) =
[
[b̃k(j)]1sT

k,1, . . . , [b̃k(j)]Mb
sT

k,Mb

]T
∈ C

Ms , (2)

where b̃k(j) = 2bk(j) − 1 ∈ {+1,−1}Mb with 1 being
an all-one vector. Note that the rate of these blocks is the
same as that of the first block, which is Mb code bits
per sub-interval of duration Ms = T/J per transmitter.
The advantage of employing linear modulation is its simple
demodulation process. However, since no pilot symbols are
used, one block of nonlinear modulation is needed to enable
the fully blind receiver, as will be seen in Sec. IV. Moreover,
a blind receiver inherently has an ambiguity in associating
signals to transmitters, and hence the spreading sequence
sk = [sT

k,i, . . . , s
T
k,Mb

]T ∈ CMs should be chosen as data
dependent rather than transmitter dependant. To that end, for
each transmitter k, we use the transmitted signal in the first
block as the spreading sequence for subsequent blocks, i.e.,

sk = xk(1), (3)

or sk,i = xk(1)
(

(i− 1)Ms

Mb
+ 1 :

iMs

Mb

)
, i = 1, . . . , Mb.

(4)

To avoid two transmitters using the same spreading sequence,
we assume that the transmitted signals in the first block by
different transmitters are different, which can be realized by,
e.g., including the ID information using the first few bits in
each information bit vector dk. The receiver first estimates
xk(1) in the first block, based on which it then despreads the
subsequent blocks and demodulates the corresponding code
bits.

B. MIMO Channel Models

We consider an uplink system where each transmitter has
a single transmit antenna, and the base station employs Na

receive antennas. The Na × K channel matrix is denoted as
H = [h1, . . . , hK ], where hk is the channel response vector
between the k-th transmitter and the base station. For MIMO
UMA, H is an unknown matrix without additional structure.

Fig. 1. The block encoding scheme.

On the other hand, for massive MIMO UMA, we assume that
the system operates in the mmWave band and the channel
vector hk during the coherence interval T is described by the
geometric wide-band model [11]

hk =
L∑

l=1

αk,�aR(φk,�) ∈ C
Na×1, (5)

where L is the number of scatterers, αk,� ∼ CN (0, σ2
k,�)

is the complex gain of the �-th path of the k-th transmitter
with average power gain σ2

k,�. Assuming that the receive
antenna arrays are installed horizontally, let φk,� = sin(θk,�) ∈
[−1, 1] denote the direction of arrival (DoA) of the �-th path
of transmitter k, where θk,� is the physical azimuth. The
normalized receive antenna array response at the base station
is given by

aR(φ) =
1√
Na

[
1, ej 2π

λ dφ, . . . , ej(Na−1) 2π
λ dφ
]T
∈ C

Na×1,

(6)

where λ is the wavelength and d (d ≥ λ/2) is the inter-antenna
element spacing.

Define a channel dictionary matrix

ÃR =
[
aR(φ̃1), aR(φ̃2), . . . , aR(φ̃Ñ )

]
∈ C

Na×Ñ , (7)

where {φ̃1, φ̃2, . . . , φ̃Ñ} denotes a set of Ñ points uniformly
spaced in [−1, 1]. We set the value of Ñ sufficiently large
(Ñ � L) such that the real channel angles {φk,�} can be
well approximated by elements in the dictionary. Under this
assumption, the channel vector in (5) can be rewritten as

hk = ÃRα̃k, (8)

where α̃k ∈ CÑ×1 is an L-sparse vector, i.e., it has only
L non-zero elements corresponding to {αk,�, � = 1, . . . , L}
in (5).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 29,2021 at 18:30:41 UTC from IEEE Xplore.  Restrictions apply. 



8058 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

C. Received Signals

The signal arriving at the Na base station receive antennas
during the j-th sub-interval is given by

Y (j) =
K∑

k=1

hkxk(j)T + Z(j)

= HX(j) + Z(j) ∈ C
Na×Ms , j = 1, . . . , J, (9)

where Z(j) ∈ CNa×Ms is the additive white Gaussian
noise (AWGN) matrix, i.e., its elements are i.i.d. CN (0, σ2),

H = [h1, . . . , hK ] ∈ C
Na×K

= ÃR [α̃1, . . . , α̃K ] for geometric model, (10)

and X(j) = [x1(j), . . . , xK(j)]T ∈ C
K×Ms , (11)

where for nonlinear modulation, xk(j) is given by (1); and
for hybrid modulation, xk(1) is given by (1) with j =
1, and xk(j) is given by (2) for j = 2, . . . , J . Denote
X = [X(1), . . . , X(J)], Y = [Y (1), . . . , Y (J)] and Z =
[Z(1), . . . , Z(J)]. Then (9) can be rewritten as

Y = HX + Z ∈ C
Na×T . (12)

When there are a large number of receive antennas at the
base station, i.e., massive MIMO, typically an analog structure
with Nr (Nr < Na) RF chains is employed to combine the
incoming signal in the RF band. Define a connection matrix
E ∈ {0, 1}Na×T such that E(i, t) = 1, if the i-th antenna is
connected to an RF chain at time t, and E(i, t) = 0 otherwise.
Hence each column of E has exactly Nr 1’s. If the analog
combining is realized through antenna selection, i.e., at each
time, Nr out of Na antennas are randomly connected to RF
chains, then the observed received signal during the entire
coherence time interval is given by [12]

Y o = E ◦ Y = E ◦ (HX + Z) ∈ C
Na×T , (13)

where ◦ denotes the Hadamard product.
On the other hand, if the RF combing is realized through

DFT phase shifters, the observed received signal can be written
as [12]

Ỹ o = E ◦ (FY ) = E ◦ (H̃X + Z̃) ∈ C
Na×T , (14)

where H̃ = FH , Z̃ = FZ, and F is the Na × Na DFT
matrix with

F (m, n) =
1√
Na

e−j 2mnπ
Na , m, n = 0, . . . , Na − 1. (15)

Note that since F is unitary, Z̃ still contains i.i.d. CN (0, σ2)
samples.

D. Overview of Proposed Algorithms

Our goal is to decode the information bit vectors dk, k =
1, . . . , K , based on the observed signal Y in (12) in MIMO
UMA, or Y o in (13) (Ỹ o in (14)) in massive MIMO UMA,
and the prior knowledge of the common code book (i.e.,
the channel code and the modulation scheme). Note that in
stark contrast to conventional communication systems, in the
system described above no pilot symbols are needed to esti-
mate the unknown channels H . In fact, H will be estimated

by exploiting various signal sparsity properties in this system.
In particular, in the next two sections, three types of signal
sparsities will be exploited leading to decoding algorithms for
both MIMO UMA and massive MIMO UMA. The following
is a brief overview.

1) For MIMO UMA, we exploit the codeword sparsity.
That is, the number of codewords in the sensing matrix
C ∈ C

Ms×N is much larger than the number of active
transmitters, i.e., N = 2Mb � K . The MIMO UMA
decoding algorithm (Alg. 1) exploits such codeword
sparsity and a clustering technique to decode all trans-
mitted codewords {d1, . . . , dK} based on the received
signal Y in (12).

2) For massive MIMO UMA, in addition to codeword
sparsity, we also exploit the channel sparsity exhibited
by the mmWave channel model given in (8). That is,
the vector α̃k ∈ CÑ satisfies ‖α̃k‖0 = L � Ñ .
Moreover, the third type of sparsity is user sparsity in
massive MIMO systems. That is, the number of active
transmitters is much less than the number of receive
antennas and the coherence time interval, i.e., K �
min{Na, T }. Then the signal component HX of the
received signal matrix Y in (12) is a low-rank matrix.
The massive MIMO UMA decoding algorithm (Alg. 2)
exploits all three types of sparsities to decode all trans-
mitted codewords {d1, . . . , dK} based on the partially
observed received signal Y o in (13) (Ỹ o in (14)).

III. MIMO UMA DECODING BASED ON CODEWORD

SPARSITY

In this section, we consider the problem of estimating
X(j) from Y (j) in (9), without assuming any structure on
the unknown channel matrix H . Note that since no pilot
symbols are used, any estimate has an inherent permutation
ambiguity. That is, for each j = 1, . . . , J , any algorithm can
only provide an estimate of a column-permuted channel matrix
H and the corresponding row-permuted codeword matrix X ,
i.e., Ĥ(j)Πj and ΠT

j X̂(j), where Πj is a K×K permutation
matrix that satisfies ΠjΠT

j = I . In order to estimate the
permutations Πj , j = 1, . . . , J , we make use of the fact that
for each true channel hk, each Ĥ(j)Πj contains one column
that corresponds to an estimate of hk; and therefore these J
columns corresponding to hk form a cluster in CNa that is
centered around hk. Then by applying a clustering algorithm
we can identify the permutations {Πj , j = 1, . . . , J} and
obtain the final channel estimate Ĥ .

A. Block CS Decoding

To proceed, we substitute (11) into (9), then the received
signal at the j-th sub-interval is given by

Y (j)T = X(j)T HT + Z(j)T ∈ C
Ms×Na

= C [γ1(j) · · ·γK(j)]

⎡
⎢⎣ hT

1
...

hT
K

⎤
⎥⎦

︸ ︷︷ ︸
Γ(j)∈CN×Na

+Z(j)T
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= CΓ(j) + Z(j)T . (16)

Note that Γ(j) is row sparse, i.e., it has K non-zero rows
corresponding to hT

k , k = 1, . . . , K . Hence by estimating the
row-sparse Γ(j), we obtain the estimates of both the channel
hk and the transmitted signal xk(j) = Cγk(j) of all active
transmitters k = 1, . . . , K . We use the Simultaneous Orthog-
onal Matching Pursuit (S-OMP) algorithm [13] to estimate
Γ(j), as summarized in Alg. 1(a).

In each iteration, it identifies one column of C that has the
largest contribution (inner product) to the current residual R,
and adds the column index n∗ to the index set I. It then
computes the corresponding coefficients Σ of the columns
indexed by I in C, i.e., C(:, I), and updates the residual R.
Note that Σ corresponds to an estimate of Γ(j) in (16). Hence
after the last iteration, the indices {n̂1(j), . . . , n̂K(j)} corre-
sponding to the rows of Σ with the largest norms are selected
as the estimates of the transmitted codeword indices, and the
corresponding channel estimates are {ĝ1(j), . . . , ĝK(j)}.

The computational complexity of Alg. 1(a) is dominated
by the pseudo-inverse operations, which is O (M3

s

)
in each

iteration. Hence the complexity of Alg. 1(a) is O (NM3
s

)
.

Algorithm 1(a): S-OMP for Estimating Γ(j) in (16)

Input: Received signal in the j-th block
Y (j) ∈ CNa×Ms , sensing matrix C ∈ CMs×N

Output: Estimated channels {ĝ1(j), . . . , ĝK(j)}, indices
of transmitted codewords
{n̂1(j), . . . , n̂K(j)}

Initialization: R = Y (j)T , I = ∅;
for t = 1, 2, . . . , N do

n∗ = argmaxn∈{1,...,N}
‖RHC(:,n)‖2
‖C(:,n)‖2

;
I ← I ∪ {n∗};
Σ = C(:, I)†Y (j)T , where † is the pseudo-inverse
operator ;
R = Y (j)T −C(:, I)Σ.

end
Find K rows of Σ with the largest �2 norm:
{ĝ1(j)T = Σ(n̂1(j), :), . . . , ĝK(j)T = Σ(n̂K(j), :)}
and their corresponding indices {n̂1(j), . . . , n̂K(j)}.

B. Resolving Permutation Ambiguity by Channel Clustering

After running the S-OMP algorithm for J blocks, we obtain
J permuted versions of estimates of true channels h1, . . . , hK ,
{ĝ1(j), . . . , ĝK(j), j = 1, . . . , J}. Let the transmitter ordering
be the one corresponding to j = 1, i.e.,

ĥk(1) = ĝk(1), (17)

x̂k(1) = C(:, n̂k(1)), k = 1, . . . , K. (18)

Let πj = [πj(1), . . . , πj(K)] denote the permutation corre-
sponding to block j ∈ {2, . . . , J} with respect to block j = 1.
Then we can write

ĥk(j) = ĝπj(k)(j) (19)

x̂k(j) = C(:, n̂πj(k)(j)), k=1, . . . , K; j=2, . . . , J. (20)

Fig. 2. An example of channel clustering when Na = 1, K = 4, J = 5.

Hence we must identify the permutations {πj, j = 2, . . . , J}
in order to form the estimate of the transmitted signal xk =[
xk(1)T , . . . , xk(J)T

]T
, i.e.,

x̂k =
[
x̂k(1)T , x̂π2(k)(2)T , . . . , x̂πJ (k)(J)T

]
, k=1, . . . , K.

(21)

Then x̂k will be used to decode the transmitted information
bit vector dk. In order to identify the permutations {πj, j =
2, . . . , J}, we note that for a given k, {ĝk(1), ĝπj(k)(j), j =
2, . . . , J} is a set of J estimates of the same channel vector
hk, and therefore it forms a cluster in the Na-dimensional
space CNa centered at hk. Fig. 2 shows an example of the
true and estimated channels when Na = 1, K = 4, J = 5,
where each square represents a true channel and each circle
represents an estimated channel; and different colors represent
different transmitters. It is seen that there are K = 4 clusters;
and each cluster contains J = 5 points corresponding to the
estimated channels, {ĥk(1), . . . , ĥk(5)} that are centered at
the true channel hk. Consequently the JKa channel estimates
{ĝk(j), k = 1, . . . , K, j = 1, . . . , J} output by Alg. 1(a) form
K clusters in C

Na , each consisting of J points centered at
hk. Then by applying a clustering algorithm, summarized as
Alg. 1(b), we can identify the permutations.

In Alg. 1(b), let columns of Ĥ denote the centers of the K
clusters, which are initialized by the estimated channels of the
first block ĝk(1), k = 1, . . . , K . At the j-th outer iteration,
j = 2, . . . , J , it computes a K ×K distance matrix D with
each element denoting the Euclidean distance between any
one of the current K cluster centers and any one of the K
estimated channels ĝk(j) in the j-th block. Then in the k-th
inner iteration, k = 1, . . . , K , it picks one element ĝq∗(j) in
{ĝ1(j), . . . , ĝK(j)} that has not been assigned to a cluster and
has the minimum distance to its cluster center H(:, p∗), and
assigns πj(p∗) = q∗. It then updates the center of cluster p∗

by

Ĥ(:, p∗) = ((j − 1)Ĥ(:, p∗) + ĝq∗(j))/j, (22)

which is the mean of j estimated channel vectors in one
cluster. It also sets the p∗-th row and the q∗-th column of
D to infinity to avoid them being selected again. Note that
Alg. 1(b) returns both the permutations {πj , j = 2, . . . , J}
and the final channel estimate Ĥ =

[
ĥ1, . . . , ĥK

]
, where ĥk
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is the mean of the estimates of hk in J blocks, i.e.,

ĥk =
1
J

⎛
⎝ĝk(1) +

J∑
j=2

ĝπj(k)(j)

⎞
⎠ . (23)

Algorithm 1(b): Identifying Permutations {πj, j =
2, . . . , J} by Clustering

Input: JK channel estimates from Algorithm 1(a)
{ĝk(j), k = 1, . . . , K; j = 1, . . . , J}

Output: Permutations πj , j = 2, . . . , J ,

Ĥ =
[
ĥ1, . . . , ĥK

]
Initialization: D = 0K×K , Ĥ = 0Na×K ,
Ĥ(:, k) = ĝk(1) for k = 1, 2, . . . , K;

for j = 2, . . . , J do
D(k1, k2) = ‖Ĥ(:, k1)− ĝk2

(j)‖2 for all
k1, k2 = 1, . . . , K;
for k = 1, . . . , K do

p∗, q∗ = argminp,q=1,...,K D(p, q);
πj(p∗) = q∗;
Update the center of cluster p∗ according to (22);
D(p∗, :) =∞, and D(:, q∗) =∞;

end
end

The computational complexity of Alg. 1(b) isO (JK2 Na

)
.

Given the permutations {πj , j = 2, . . . , J}, the estimate of
the transmitted signal x̂k is then given by (18) and (20)-
(21), based on which demodulation and decoding can be
performed to obtain the transmitted data dk. On the other hand,
the estimated channel Ĥ will be used by the soft demodulator
in (27)-(28).

C. Single-User Demodulation and Decoding

For each transmitter k, based on the recovered transmitted
signal x̂k in (21), we can then perform either hard or soft
demodulation and decoding to obtain an estimate of its infor-
mation bit vector dk. In particular, for hard decision, we first
perform demapping to obtain the estimated code bits b̂k as
follows:

b̂k(1) = binary expansion of n̂k(1), (24)

b̂k(j) = binary expansion of n̂πj(k)(j), j =2, . . . , J, (25)

b̂k =
[
b̂k(1)T , . . . , b̂k(J)T

]T
∈ {0, 1}Mc. (26)

Note that the complexity of the above hard demodulation is
linear in terms of the total number of code bits, i.e., O (Mb)
per block per transmitter. Then we perform hard channel
decoding using b̂k to obtain the estimated information bit
vector d̂k.

On the other hand, for soft decision, we need the log-
likelihood ratio (LLR) of each bit of bk and then decode dk

using a soft channel decoder. To compute the LLR of each
code bit, we first form the noisy received signal from the k-th

transmitter by subtracting from the received signal Y (j) the
signal components from all other transmitters, i.e.,

Y k(j) = Y (j)−
∑
k′ �=k

ĥk′ x̂k′(j)T

≈ ĥkxk(j)T + Z(j) ∈ C
Na×Ms . (27)

Then the probability that the transmitted signal xk(j) equals
to the n-th column of the codebook C can be written as

P
(
xk(j) = C(:, n) | Y k(j)

)
∝ exp

⎛
⎜⎜⎝−‖Y k(j)− ĥkC(:, n)T ‖2F

σ2︸ ︷︷ ︸
βk,j,n

⎞
⎟⎟⎠ ,

n = 1, . . . , N = 2Mb , (28)

where ‖ · ‖2F denotes the Frobenius norm. Denote [b]i as the
i-th element of the vector b, and bin(n, i) as the i-th bit of
the binary expansion of integer n. Then the LLR of the i-th
bit of bk(j) can be computed as

LLRk(j, i) � log
P
(
[bk(j)]i = 0 | Y k(j)

)
P
(
[bk(j)]i = 1 | Y k(j)

)
= log

∑
n:bin(n,i)=0 exp (βk,j,n)∑
n:bin(n,i)=1 exp (βk,j,n)

≈ max
n:bin(n,i)=0

βk,j,n − max
n:bin(n,i)=1

βk,j,n,

i = 1, . . . , Mb, j = 1, . . . , J. (29)

And the LLRs for all code bits in bk are

LLR(bk) = [LLRk(1, 1), . . . , LLRk(1, Mb),
LLRk(2, 1), . . . , LLRk(J, Mb)]T ∈ R

Mc , (30)

based on which a soft channel decoder can then compute
the LLRs of the information bits LLR(dk). Note that the
above soft demodulator has a computational complexity of
O (2Mb

)
= O (N) per block per transmitter.

Finally the MIMO UMA decoding algorithm is summarized
in Alg. 1. Note that its total computational complexity consists
of three parts: the complexity of decoding all J blocks using
Alg. 1(a), which is O (J2MbM3

s

)
; the complexity of identify-

ing the permutations using Alg. 1(b), which is O (JK2Na

)
;

and the complexity of single-user demodulation for all K
transmitters, which is O (JKMb) for hard demodulation and
O (JK2Mb

)
for soft demodulation.

D. Discussions

Our approach to resolving different permutations over
codeword blocks resulted from the CS decoding is through
simple channel matching, and Alg. 1(b) has a complexity of
O(JK2Na). Moreover, since the entire transmitted signal xk

is recovered prior to decoding data, single-user decoding can
be performed for each active transmitter k independently.

In contrast, in existing works [5], [6], [14], the effect of
channel is ignored; in fact, a unit scalar channel gain is
assumed for all active transmitters, i.e., hk = 1, k = 1, . . . , K .
Then in order to decode the data of all active transmitters
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Algorithm 1: MIMO UMA Decoding Algorithm Based
on Codeword Sparsity
Input: Received signals in a coherence time interval Y ,

sensing matrix C
Output: Decoded information bits of all active

transmitters d̂k or LLR(dk), k = 1, . . . , K
Run Alg. 1(a) to obtain {ĝ1(j), . . . , ĝK(j)},
{n̂1(j), . . . , n̂K(j)}, j = 1, . . . , J ;

Run Alg. 1(b) to obtain πj , j = 2, . . . , J and Ĥ ;
for k = 1, . . . , K do

Hard decoder: perform hard demodulation according
to (24)-(26) to obtain b̂k, and then perform hard
decoding to get d̂k;
Soft decoder: perform soft demodulation according
to (20), (27)-(30) to obtain LLR(bk), and then
perform soft decoding to get LLR(dk).

end

in the presence of different permutations of the transmitted
signals, joint decoding must be performed that has a very
high complexity. In [5], the channel code is the simple
parity-check code. Each dk is first divided into J blocks,
i.e., dk =

[
dk(1)T , . . . , dk(J)T

]T
, where dk(j) ∈ {0, 1}mj ,∑J

j=1 mj = M . Then parity check bits pk(j) ∈ {0, 1}�j are
formed based on all the data bits prior to the j-th block and
appended to dk(j) to obtain bk(j) = [dk(j)T , pk(j)T ]T ∈
{0, 1}Mb, j = 2, . . . , J , where Mb = mj + �j , j = 1, . . . , J .
Finally the Mb coded bits for each block are mapped to
an Ms-dimensional symbol vector with a sensing matrix
C ∈ CMs×N , where N = 2Mb . The CS decoder outputs
K decoded binary vectors for each block. To resolve the
permutation ambiguity, multi-user joint decoding is employed,
where a tree with J stages is built to search for K valid
paths that satisfy the parity check constrains. The number of
parity check computations can be up to KJ during the search
process. On the other hand, if general channel codes such as
turbo codes or LDPC codes are employed, then effectively
all possible permutations have to be enumerated, and for
each possibility, we need to perform channel decoding for all
transmitters, resulting in a prohibitively high complexity of
O((K!)J ).

IV. MASSIVE MIMO UMA DECODING BASED ON

CODEWORD, CHANNEL AND USER SPARSITIES

A. Exploiting User Sparsity by Matrix Completion

In this section, we consider the massive MIMO scenario
discussed in Sec. II. Recall the received signal given by (9)-
(12). In the massive MIMO scenario, we assume that K �
Na, and K � T . Hence the signal component of the signal Y
in (12) is low-rank, i.e., rank(HX) ≤ K . In hybrid massive
MIMO systems, where the number of RF chains is less than
the number of antennas, i.e., Nr < Na, such a low-rank
structure can be exploited to recover the missing entries of
the observed signal Y o in (13) (Ỹ o in (14)) [12]. That is,
given Y o, E and σ2, we would like to find U ∈ CNa×K and

V ∈ C
K×T , such that

Y = UV + Z, (31)

where U and V are of the same dimensions as H and X ,
respectively, such that they provide a rank-K factorization of
the signal component of Y , i.e., UV = HX , and the ele-
ments of Z are i.i.d. CN (0, σ2). The alternating minimization
approach to low-rank matrix completion can be formulated as
follows. For fixed U and for each t = 1, . . . , T , we solve
the following regularized least-squares problem to obtain the
estimate of V (:, t):

V̂ (:, t)
= argmin

V (:,t)

‖Y o(:, t)−E(:, t) ◦ (UV (:, t))‖2F +λ‖V (:, t)‖2F

=
(
UH(diag[E(:, t)])U +λI

)−1
UH(diag[E(:, t)])Y o(:, t),

(32)

where diag[e] denotes a diagonal matrix with the elements
of vector e on the main diagonal, and λ is a small constant
introduced to avoid singularity in solving the least-squares
problems. Then for fixed V and for each n = 1, . . . , Na,
we solve the following regularized least-squares problem to
obtain the estimate of U(n, :):

Û(n, :)
= argmin

U(n,:)

‖Y o(n, :)−E(n, :)◦(U(n, :)V )‖2F +λ‖U(n, :)‖2F

= Y o(n, :)(diag[E(n, :)])V H
(
V (diag[E(n, :)])V H+λI

)−1
.

(33)

Starting from randomly initialized Û and V̂ , we then
compute (32) and (33) alternatively until convergence. The
low-rank matrix completion algorithm is summarized in
Alg. 2(a), whose computational complexity is dominated by
the matrix inversions and products in (32) and (33) and on the
order of O (K3T + KTN2

a + KT 2Na

)
.

Note that such a low-rank factorization is not unique, e.g.,
for any invertible matrix P ∈ CK×K ,

U = HP , (34)

and V = P−1X (35)

is a valid decomposition.

Algorithm 2(a): Alternating Least-Squares for Matrix
Completion

Input: Partially observed received signal Y o, sampling
pattern E, parameter λ

Output: Low-rank factors Û ∈ CNa×K , V̂ ∈ CK×T

Initialize U and V with entries sampled from
distribution CN (0, 1);

repeat
Compute V (:, t), t = 1, . . . , T according to (32) ;
Compute U(n, :), n = 1, . . . , Na according to (33);

until convergence;
Û ← U , V̂ ← V .
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Given Û and V̂ , in order to estimate the transmitted signals
X , we need to estimate the ambiguity matrix P in (34)-(35).
In [12], P is estimated by making use of the pilot symbols
in X . In this paper, no pilot symbol is transmitted and we
estimate P based on the demodulated signal of the first block.

In particular, using Û and V̂ , we obtain an estimate of the
complete received signal Y (1) during the first block as

Ŷ (1) = Û V̂ (:, 1 : Ms). (36)

Recall that in massive MIMO UMA, the first block is
always nonlinearly modulated, i.e., xk(1) = Cγk(1), k =
1, . . . , K . Then by applying Alg. 1(a) to Ŷ (1), we will
obtain an estimate of the transmitted signal X̂(1) =
[C(:, n̂1(1)), . . . , C(:, n̂K(1))]T . From (35), assuming that
K < Ms, the ambiguity matrix can then be estimated as

P̂
−1

= V̂ (1)X̂(1)† = V̂ (1)X̂(1)H(X̂(1)X̂(1)H)−1, (37)

where V̂ (1) = V̂ (:, 1 : Ms) ∈ CK×Ms is the first block of
V̂ . Then, using (34), we obtain the estimate of the channel as

Ĥ = ÛP−1. (38)

Note that even though the estimate of P−1 in (37) is based
on the signals in the first block, the channel estimate in (38)
is based on the received signals over the entire coherence
time interval, i.e., J blocks, since Û is obtained from Y o ∈
CNa×T .

B. Refined Channel Estimate by Exploiting Channel Sparsity

Recall that the massive MIMO UMA system is assumed
to operate in the mmWave band and therefore the channels
exhibit the sparse structure described in Sec. II-B, which
however, is not exploited by the channel estimator given
by (38). We next enhance the channel estimation accuracy by
exploiting such channel sparsity structure, which will in turn
lead to more accurate estimate of the ambiguity matrix P , and
consequently more accurate estimate of the transmitted signal
X .

In the mmWave channel model (10) each α̃k ∈ CÑ has L
non-zero entries, with L� Ñ . Hence estimating the channel
H = [h1, . . . , hK ] is equivalent to estimating the sparse
vectors α̃k, k = 1, . . . , K . To that end, we apply the OMP
to the estimate given by (38) to refine the channel estimates
by assuming that ĥk ≈ ÃRα̃k for each k = 1, . . . , K .
The massive MIMO UMA channel estimation algorithm is
summarized in Alg. 2(b). The computational complexity of
this algorithm is dominated by the pseudo-inverse calculation
and on the order of O (KL4

)
.

Given the refined channel estimate H̃ , we then obtain the
refined estimates of the ambiguity matrix, and the transmitted
signals respectively as

P̃ = H̃
†
Û = (H̃

H
H̃)−1H̃

H
Û , (39)

X̃(j) = [x̃1(j), . . . , x̃K(j)]T = P̃ V̂ (j), j=1, . . . , J, (40)

where V̂ (j) = V̂ (:, (j − 1)Ms + 1 : jMs) is the j-th block
of V̂ .

Algorithm 2(b): Massive MIMO UMA Channel Estimator
Input: Initial channel estimate

Ĥ = [ĥ1, . . . , ĥK ] ∈ CNa×K given by (38),
the channel dictionary ÃR ∈ CNa×Ñ

Output: Refined channel estimate H̃
for k = 1, . . . , K do

Initialize r = ĥk, J = ∅ ;
while |J | < L do

ñ∗ = argmaxñ∈{1,...,Ñ}
rHÃR(:,ñ)

‖ÃR(:,ñ)‖2
;

J ← J ∪ {ñ∗};
δ = ÃR(:,J )†ĥk;
r = ĥk − ÃR(:,J )δ;

end
h̃k = ÃR(:,J )δ;

end

H̃ =
[
h̃1, . . . , h̃K

]
.

C. Single-User Demodulation and Decoding

Given the estimated transmitted signals x̃k(j) in (40)
of transmitter k for j = 1, . . . , J , we can then perform
single-user demodulation and decoding to obtain the estimate
of its information bits dk. When nonlinear modulation is
employed, i.e., xk(j) = Cγk(j), j = 1, . . . , J , the hard
demodulation is given by

n̂k(j) = arg minn=1,...,N‖x̃k(j)−C(:, n)‖2, (41)

b̂k(j) = binary expansion of n̂k(j), j = 1, . . . , J. (42)

Similar to (27)-(29), the soft demodulation is performed
according to the following

Ŷ k(j) = Ŷ (j)−
∑
k′ �=k

h̃k′ x̃k′(j)T

≈ h̃kxk(j)T + Z(j) ∈ C
Na×Ms , j = 1, . . . , J, (43)

where Ŷ (j) = Û V̂ (:, (j − 1)Ms + 1 : jMs),

P
(
xk(j) = C(:, n) | Ŷ k(j)

)

∝ exp

⎛
⎜⎜⎝−‖Ŷ k(j)− h̃kC(:, n)T ‖2F

σ2︸ ︷︷ ︸
βk,j,n

⎞
⎟⎟⎠ ,

n = 1, . . . , N = 2Mb , (44)

and LLRk(j, i) � log
P
(
[bk(j)]i = 0 | Ŷ k(j)

)
P
(
[bk(j)]i = 1 | Ŷ k(j)

)
≈ max

n:bin(n,i)=0
βk,j,n − max

n:bin(n,i)=1
βk,j,n,

i = 1, . . . , Mb, j = 1, . . . , J. (45)

On the other hand, when hybrid modulation is employed,
the code bits of the first block, i.e., bk(1), is nonlinearly
modulated. Then n̂k(1) and the hard demodulation b̂k(1) is
given by (41)-(42) for j = 1. For soft demodulation, the LLRs
of the code bits of bk(1), i.e., LLRk(1, i), i = 1, . . . , Mb, are
given by (43)-(45) for j = 1.
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For the rest of the blocks, j = 2, . . . , J , the code bits
bk(j) are linearly modulated with the spreading sequence
sk = xk(1) = C(:, nk(1)) as in (2)-(4), where recall that
b̃k(j) = 2bk(j)−1. We denote the segments of x̃k(j), Ŷ k(j)
and Z(j) in (40) and (43) corresponding to the i-th bit of
bk(j) (denoted by [bk(j)]i) respectively as

[x̃k(j)]i = x̃k(j)
(

(i− 1)Ms

Mb
+ 1 :

iMs

Mb

)
∈ C

Ms
Mb , (46)

[Ŷ k(j)]i = Ŷ k(j)
(

:,
(i− 1)Ms

Mb
+ 1 :

iMs

Mb

)
∈ C

Na×Ms
Mb ,

(47)

[Z(j)]i = Z(j)
(

:,
(i− 1)Ms

Mb
+ 1 :

iMs

Mb

)
∈ C

Na×Ms
Mb ,

i = 1, . . . , Mb (48)

Moreover, the estimated spreading sequence for [b̃k(j)]i is

ŝk,i = C

(
(i− 1)Ms

Mb
+ 1 :

iMs

Mb
, n̂k(1)

)
∈ C

Ms
Mb ,

i = 1, . . . , Mb. (49)

Then the hard demodulation of [b̂k(j)]i is given by

[b̂k(j)]i =
1
2

[
sign(�{ŝH

k,i[x̃k(j)]i}) + 1
]
,

i = 1, . . . , Mb, j = 2, . . . , J, (50)

where �(·) is the real operator. The above linear hard demod-
ulator has a complexity of O (Mb) per block per transmitter,
which is the same as that of the nonlinear hard demodulator.

For soft decision, (43) can be rewritten as

[Ŷ k(j)]i ≈ [b̃k(j)]ih̃kŝT
k,i + [Z(j)]i, i = 1, . . . , Mb. (51)

Hence the LLR of [bk(j)]i can be computed as

LLRk(j, i) = log
P
(
[b̃k(j)]i = −1 | [Ŷ k(j)]i

)
P
(
[b̃k(j)]i = 1 | [Ŷ k(j)]i

) (52)

= − 4
σ2
�
{
tr
(
[Ŷ k(j)]Hi h̃kŝT

k,i

)}
,

i = 1, . . . , Mb, j = 2, . . . , J, (53)

where tr(·) is the trace operator. Hence the soft linear demod-
ulator also has a complexity of O (Mb) per block per trans-
mitter, which is much simpler than the O (2Mb

)
complexity

of the soft nonlinear demodulator.
The massive MIMO UMA decoding algorithm is summa-

rized in Alg. 2. Note that unlike Alg. 1 which runs the S-OMP
algorithm (Alg. 1(a)) on each block for a total of J times
followed by the clustering algorithm (Alg. 1(b)), Alg. 2 runs
the S-OMP algorithm only once on the first block and no
clustering algorithm is needed. This is because in additional
to the codeword sparsity, it further exploits channel sparsity
and the signal correlation among different blocks due to the
low-rank structure caused by the user sparsity.

The computational complexity of Alg. 2 consists of four
parts: the complexity of matrix completion using Alg. 2(a),
which is O (K3T + KTN2

a + KT 2Na

)
; the complexity of

decoding {n̂k(1)} for the first block using Alg. 1(a), which
is O (2MbM3

s

)
; the complexity of refining channel estimates

using Alg. 2(b), which is O (KL4
)
; and the complexity of

Algorithm 2: Massive MIMO UMA Decoding Based on
Codeword Sparsity, Channel Sparsity and User Sparsity

Input: Partially observed received signal Y o, sampling
pattern E, channel noise variance σ2, sensing
matrix C, channel dictionary ÃR

Output: Decoded information bits of all active
transmitters d̂k or LLR(dk), k = 1, . . . , K

Run Alg. 2(a) to obtain Û , V̂ ; Obtain Ŷ (1) in (36);
Run Alg. 1(a) for j = 1 to obtain n̂k(1), k = 1, . . . , K;

Compute P̂
−1

in (37) and Ĥ in (38);

Run Alg. 2(b) to obtain H̃ =
[
h̃1, . . . , h̃K

]
;

Compute X̃(j) using (39)-(40) for j = 2, . . . , J ;
For nonlinear modulation:
for k = 1, . . . , K do

Hard decoder:
Perform hard demodulation according to (41)-(42) to
obtain b̂k and then perform hard decoding to get d̂k;
Soft decoder:
Perform soft demodulation according to (43)-(45), and
then perform soft decoding to get LLR(dk).

end
For hybrid modulation:
for k = 1, . . . , K do

Hard decoder:
Perform hard demodulation using (41)-(42) for j = 1,
and (46), (49)-(50) for j = 2, . . . , J to obtain b̂k and
then perform hard decoding to get d̂k;
Soft decoder:
Perform soft demodulation for the first block
using (43)-(45) with j = 1 and for the rest of blocks
using (47)-(49) and (52) to obtain LLR(bk), then
perform soft decoding to get LLR(dk).

end

single-user demodulation for nonlinear and hybrid demodu-
lator for all K transmitters, which is O (JKMb) for hard
nonlinear demodulation and hard and soft linear demodulation,
and O (JK2Mb

)
for soft nonlinear demodulation. Note that

the matrix completion step of Alg. 2 not only estimates the
missing received signals in a hybrid massive MIMO systems,
more importantly, it also significantly simplifies the subsequent
decoding processes. In particular, it completely eliminates the
CS decoding processes for J − 1 blocks and the channel
clustering process in Alg. 1. Moreover, the hybrid modulation
further leads to much simpler single-user soft demodulation
processes compared with the nonlinear modulation.

Remark 1: Note that we can also apply Alg. 1 to the
completed signal Ŷ from Alg. 2(a) if the signals are non-
linearly modulated. However, such an approach has two
drawbacks. One is that for nonlinear modulated sub-blocks,
such an approach incurs a much higher complexity than the
method in Alg. 2 that exploits the low-rank decomposition.
In particular, the steps of running Alg. 1(a) for the first sub-
block (O (2MbM3

s

)
) and computing (37)-(40) (O (K3

)
) in

Alg. 2 are replaced by running Alg. 1(a) (O (2MbM3
s J
)
) and
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Alg. 1(b) (O (K2NaJ
)
) for all sub-blocks, and computing (20)

(O (JK)). And the second drawback is that Alg. 1 cannot be
used to demodulate linearly modulated sub-blocks.

D. Extension to Systems With Quantized Received Signals

A hybrid massive MIMO system may still require a large
number of RF chains, with high power consumption and hard-
ware complexity. In particular, within an RF chain, the power
consumption of the high-resolution analog-to-digital convert-
ers (ADCs) increases exponentially with the number of bits per
sample and linearly with the sampling rate [15]. To reduce the
power consumption and hardware complexity, low-resolution
ADCs can be employed by quantizing the received signal using
a few bits. We next discuss the extension of Alg. 2 to the case
when the partially observed received signals Y o ∈ CNa×T are
quantized.

We define a quantization function Qb,Δ(·) that applies to
a complex scalar y, where parameter b is the resolution of
ADCs in terms of number of bits and Δ is the quantization
step-size. As in [12], the value of Δ is picked based on the
optimal values of stepsize Δb that achieves the minimal NMSE
when the input signal is distributed as i.i.d. N (0, 1) (Table I
in [12]). We then obtain the stepsize Δ =

√
Py/2 · Δb,

where Py = E
[|y|2] is the average power of y. Then

according to Bussagang’s theorem [12], when Qb,Δ(·) is
applied element-wisely to the received signal Y ∈ CNa×T ,
the resulting quantized signal Q after normalization can be
written as

Q̃ � 1
g
Qb,Δ(Y ) = HX + Ψ̃, (54)

where g is the scaling constant and Ψ̃ is the scaled noise
that contains i.i.d. Gaussian elements CN (0, ν2

g2 + σ2) with
the noise scaling factor ν. Hence when Alg. 2 is applied to
a hybrid massive MIMO system with low-resolution ADCs,
we make the following two changes (g and ν2 are given
by (56) and (57) respectively in Section V-B):

• The partially observed received signal Y o is replaced by
its quantized and scaled version 1

gQb,Δ(Y o).
• The channel noise variance σ2 is replaced by ν2

g2 + σ2.

V. SIMULATION RESULTS

In this section, we present simulation results to illustrate
the performances of the proposed sparsity-exploiting blind
receiver algorithms for channel estimation, demodulation and
decoding in both MIMO UMA and massive MIMO UMA
systems. The common system parameters of the two systems
are: the number of information bits per transmitter in each
coherence time interval M = 70, the length of a coherence
time interval T = 1430, the code rate r = 7/11, and the
number of sub-intervals J = 11. Hence the length of each
block is Ms = T/J = 130, the total number of code
bits is Mc = M/r = 110, the number of code bits per
block is Mb = Mc/J = 10, and the number of columns
in the sensing matrix is N = 2Mb = 1024. For channel
codes, we use the CRC-Aided Polar (CA-Polar) code [16]
with 11 CRC bits because Polar codes are well suited for

short data packets. Both the CA-Polar encoder and decoder
are implemented using MATLAB’s Communication Toolbox.
To mitigate the burst error across different blocks of each
transmitter’s demodulated coded bits, each transmitter ran-
domly interleaves the coded bits before dividing them into
blocks. The sensing matrix C is an Ms × N = 130 ×
1024 normalized complex Gaussian matrix consisting of i.i.d.
CN (0, 1) elements, i.e., each column is normalized to have
unit norm. The performance of channel estimation is measured
by the normalized mean-squared error (NMSE) defined as
NMSE(Ĥ) = E{‖H − Ĥ‖2F}/E{‖H‖2F}. The bit error
rates (BERs) of demodulation and decoding are defined as
P ([b̂k]i �= [b̂k]i) and P ([d̂k]i �= [d̂k]i), respectively. Similarly,
the frame error rates (FERs) are defined as P (b̂k �= b̂k) and
P (d̂k �= d̂k).

A. Performance of Alg. 1 in MIMO UMA Systems

For MIMO UMA systems, we set the number of antennas
Na = 4 and consider two types of channel models: for the
i.i.d. channel, the channel vectors are generated according
to hk ∼ CN (0, I), k = 1, . . . , K; and for the geometric
wideband channel, the channel vectors are generated according
to (8), with antenna spacing d/λ = 1/2, the number of scatters
L = 4, and αk,� ∼ CN (0, 1). The DoA range is divided
into Ñ = 96 grids and hence the dimension of the channel
dictionary matrix AR is Na × Ñ = 4 × 96. The channel
quality is measured by the signal-to-noise ratio (SNR) per
channel tap per transmitter given by SNR = E{‖hk‖2}/Naσ2.
We first compare our proposed MIMO UMA decoding algo-
rithm (Alg. 1) with the tree decoder in [5] that is specifically
designed for parity check codes. To obtain the parity bits, 70
information bits are divided into 11 blocks of sizes m1 = 10
and mj = 6, j = 2, . . . , 11. For the j-th block, �j parity bits
are appended to the mj information bits such that all blocks
have equal length, where �1 = 0 and �j = 4, j = 2, . . . , 11.
Denote the information bits and parity check bits in the j-
th block as dk(j) ∈ Cmj and pk(j) ∈ Clj , j = 1, . . . , J .
Specifically, the �j parity check bits in the j-th block are gen-
erated by the mod-2 multiplication of all the information bits in
the preceding blocks and a Rademacher matrix, i.e., pk(j) =
[dk(1)T , . . . , dk(j − 1)T ]T G, j = 2, . . . , J where the entries

of G ∈ {0, 1}
��j−1

j′=1
mj′

�
×lj are uniform Bernoulli trials.

In Alg. 1, hard demodulation and hard decoding are employed
for parity-check codes.

Fig. 3 and Fig. 4 show the decoding FER and BER
performances of parity check codes using tree decoder and
Alg. 1. We can see that Alg. 1 significantly outperforms the
tree decoder for different values of K and SNR conditions.
In particular, the tree decoder has reasonable decoding per-
formance only when K is very small, e.g., K < 10, while
Alg. 1 is able to decode successfully for a much larger range
of K . Moreover, as SNR increases, the FER and BER curves
of Alg. 1 exhibit a steeper slope than those of the tree decoder.
Note that both methods perform the CS decoding on each
block. Their performance differences result from how they
assemble the J partially decoded signal segments for each
transmitter. For random parity check codes, the tree decoder
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Fig. 3. Decoding error rates for parity check codes in MIMO UMA systems.
Na = 4, SNR = 0 dB.

usually finds more than one path that satisfy the parity checks
for each root of the tree, so decoding error occurs quite often.
On the other hand, Alg. 1 exploits the estimated channel state
at each block, which is ignored by the tree decoder. The
channel state is transmitter specific and essentially serves as
a tag for the signal from that transmitter. Hence the proposed
channel clustering method (i.e., Alg. 1(b)) is a simpler yet
more accurate way of resolving the permutation ambiguity
than the tree search. We can also observe that the tree decoder
has similar performances in i.i.d. and geometric channels while
Alg. 1 performs better in i.i.d. channels.

Fig. 5 and Fig. 6 show the hard/soft demodulation and
decoding FER performances using the proposed Alg. 1 when
the CA-Polar code is employed. We can observe that soft
demodulation and decoding exhibit a significant performance
gain over hard demodulation and decoding for different value
of K and SNR conditions; and such a gain increases as K
decreases or SNR increases. Moreover, both hard and soft
decoders achieve a higher coding gain under better channel
conditions, i.e., higher SNR or smaller K . For both hard
and soft demodulation and decoding, the performance in i.i.d.
channels is better than that in geometric channels. Further-
more, comparing Fig. 3 and Fig. 5, we see that by employing
the CA-Polar code rather than the parity check code, a much
larger number of active transmitters can be accommodated.

Fig. 7 shows the channel estimation performance of
Alg. 1(b) under different number of active transmitters and
SNR. We observe that the performance of channel estimation
improves as SNR increases and the number of active trans-
mitters decreases.

B. Performance of Alg. 2 in Massive MIMO UMA Systems

For the massive MIMO UMA, we adopt the mmWave
channel model in (8) with Na = 64 receive antennas, Nr = 32
RF chains, and αk,� ∼ CN (0, 16). Other parameters are the
same as that of the MIMO UMA systems in Section V-A
hence the dimension of the channel dictionary matrix AR

is Na × Ñ = 64 × 96. For low-resolution ADC scenarios,
we consider 2-bit resolution, i.e., b = 2. The quantization

Fig. 4. Decoding error rates for parity check codes in MIMO UMA systems.
Na = 4, K = 15.

Fig. 5. Demodulation and decoding error rates for CA-Polar codes in MIMO
UMA systems. Na = 4, SNR = 0 dB.

Fig. 6. Demodulation and decoding error rates for CA-Polar codes in MIMO
UMA systems. Na = 4, K = 25.

function is defined as

Qb,Δ(y)

= sign (�{y})
(

min
{⌈ |�{y}|

Δ

⌉
, 2b−1

}
− 1

2

)
Δ

+ i sign (�{y})
(

min
{⌈ |�{y}|

Δ

⌉
, 2b−1

}
− 1

2

)
Δ. (55)
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Fig. 7. Channel estimation performance in MIMO UMA systems. Na = 4.

Fig. 8. Channel estimation performance in massive MIMO UMA systems.
Na = 64, Nr = 32, SNR = −5 dB.

Fig. 9. Channel estimation performance in massive MIMO UMA systems.
Na = 64, Nr = 32, K = 25.

The parameters in model (54) are given by

g =
Δ√
πPy

+
2b−1−1∑

�=1

2Δ√
πPy

exp(− (Δ�)2

Py
), (56)

and

ν2 = 4[(2b−1 − 0.5)Δ]2
(

1− Φ

(√
[(2b−1 − 1)Δ]2

Py/2

))

+ 4
2b−1−1∑

�=1

[(�− 0.5)Δ]2Φ

(√
(�Δ)2

Py/2

)

Fig. 10. Demodulation and decoding FER in massive MIMO UMA systems.
Na = 64, Nr = 32, SNR = −5 dB.

Fig. 11. Demodulation and decoding FER in massive MIMO UMA systems.
Na = 64, Nr = 32, K = 25.

− 4
2b−1−1∑

�=1

[(�− 0.5)Δ]2Φ

(√
[(�− 1)Δ]2

Py/2

)
− g2Py,

(57)

where Φ(x) = 1√
2π

∫ x

−∞ e−t2/2dt is the cumulative distribu-
tion function of the standard normal distribution.

Since the performances of analog combining based on
switches and phase shifters are almost the same, here we
present the results for switch-based combining method only.
For the t-th column of the connection matrix E in (13),
we randomly generate Nr distinct indices It ⊂ {1, . . . , Na}
and set the elements with row index in It as 1, and set
others as 0, t = 1, . . . , T . Both the nonlinear modulation and
the hybrid modulation are considered, and soft demodulation
and decoding are employed. Note that they have the same
channel rate of Mb/Ms = 1/13 code bits per channel use
per transmitter. Since the receiver uses only Nr out of Na

antennas, the SNR per channel tap per transmitter in the
massive MIMO system is defined as SNR = E{‖hk‖2}Nr

N2
aσ2 .

In Alg. 2(a), we set λ = σ2.
Fig. 8 and Fig. 9 show the channel estimation performance

under different modulations and resolutions. We compare the
initial estimate Ĥ in (38) and the refined estimate H̃ given by
Alg. 2(b). It is seen that the performance of channel estimation
improves as the resolution and SNR increase and K decreases.
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The two modulation schemes have almost the same channel
estimation performance. By exploiting the channel sparsity,
Alg. 2(b) significantly improves the accuracy of the initial
channel estimate given by (38).

Fig. 10 and Fig. 11 show the demodulation and decoding
error rates for different modulations and resolutions. In gen-
eral, both demodulation and decoding performances improve
as the resolution and SNR increase and K decreases for all
methods. Comparing the nonlinear modulation and the hybrid
modulation, we observe that after demodulation, the nonlinear
modulation tends to have less erroneous frames, but more
erroneous bits within an erroneous frame; whereas the hybrid
modulation tends to have more erroneous frames, but less
erroneous bits in each frame. This is because the nonlinear
demodulator finds the best codeword corresponding to a code
bit sequence block; whereas the linear demodulator finds
the best estimate of each code bit. Hence we can see from
Fig. 10 and Fig. 11 that the demodulation FER performance
of the hybrid demodulation is worse than that of the nonlinear
demodulation while the decoding FER performances of the
two modulation schemes are similar.

VI. CONCLUSION

We have proposed new transmission schemes and blind
receiver algorithms for unsourced multiple access over both
MIMO and massive MIMO channels. Each transmitter’s infor-
mation bits are encoded by a channel code and the coded bits
are divided into sub-blocks, and each sub-block is modulated
and then transmitted. For the MIMO channel, the conventional
nonlinear modulation is employed where each sub-block of
coded bits is mapped to a transmitted signal vector. We have
proposed a receiver algorithm that exploits the codeword
sparsity using the S-OMP algorithm to estimate the channels
and the transmitted signals in each sub-block; it then properly
assembles the estimates of each transmitted codeword using
a channel clustering algorithm. For the massive MIMO chan-
nel, in addition to the nonlinear modulation, we have also
proposed a hybrid modulation that adopts linear modulation
and spreading for all sub-blocks except for the first one,
to reduce the receiver complexity. The proposed massive
MIMO receiver algorithm exploits codeword sparsity, channel
sparsity and user sparsity, and it can handle both missing
and quantized received signals, caused by lower number of
RF chains than the number of antennas and low-resolution
ADCs, respectively. Both receiver algorithms can output soft
information of the coded bits facilitating single-user decoding
of advanced channel codes, such as Polar codes.
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