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Abstract— We propose novel sparse-graph-based transmis-
sion schemes and receiver algorithms for unsourced multiple
access (UMA) in MIMO channels. The channel coherence interval
is divided into a number of sub-slots and each active transmitter
selects certain sub-slots to repeatedly transmit its codeword
according to a sparse Tanner graph. We propose iterative receiver
algorithms that at each iteration decode either a single codeword,
or two or three codewords jointly, and then subtract the decoded
codewords from received signals during all sub-slots. The keys
to these decoders are novel blind channel estimation algorithms
when the received signal contains one, two, or three codewords.
We perform density evolution analysis on the proposed UMA
systems to obtain the asymptotic upper bounds on the maximum
achievable rates for different decoders under both regular and
irregular Tanner graphs. Extensive simulation results are pro-
vided to illustrate the performance of the proposed UMA systems,
and its advantages over existing compressed-sensing (CS)-based
UMA schemes.

Index Terms— Unsourced multiple access (UMA), sparse Tan-
ner graph, MIMO, blind channel estimation, clustering, density
evolution.

I. INTRODUCTION

THE anticipated proliferation of IoT devices and associ-
ated massive machine-type communications (mMTC) has

motivated the development of access protocols that cater to the
unique features of mMTC: massive and sporadic connectivity,
small data payloads, low power and low latency [1], [2].
Given that protocols for traditional high-throughput few-user
communication scenarios are not appropriate for mMTC, new
massive multiple access schemes have been developed in
recent years, which primarily fall into two categories: one is
pilot-based grant-free non-orthogonal transmission with joint
device activity detection and channel estimation [3], and the
other is pilot-free unsourced multiple access (UMA). In this
paper, we focus on UMA and propose transmission protocols
based on sparse Tanner graphs and efficient decoding algo-
rithms.
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Early works on UMA include information theoretic studies
in [4] and [5], and the T -fold ALOHA scheme [6] that
combines compute-and-forward and coding for a binary adder
channel. In UMA, all users share a same codebook and
at any given time, a small number of active users select
codewords from the common codebook to transmit. Hence
the decoding can be viewed as a compressed sensing (CS)
problem. That is, if each active transmitter wishes to transmit
n bits of information, then the total number of codewords is
2n and hence the common codebook, which in the CS setup,
corresponds to the dictionary matrix A, has a size of T × 2n,
where T is the size of each transmitted codeword vector.
The received signal is y = Ax + n, where n is the noise
vector, and x is a K-sparse vector whose non-zero elements
indicate the codewords that are transmitted by active users.
Since at any time, the number of active users K is small, i.e.,
K � 2n, this is a standard CS problem. However, even though
the data packet size is small, e.g., n = 100, the codebook
size, i.e., 2n, is still prohibitively large to be amenable to any
sparse recovery algorithm. Hence various divide-and-conquer
strategies are proposed by either dividing the information
bits into sub-blocks or dividing the transmission period into
sub-slots to reduce the dimension of the problem.

The existing low-complexity UMA schemes can be classi-
fied into two main categories. Methods in the first category
divide the information bits into J sub-blocks and the trans-
mission period into J sub-slots. Each encoded sub-block of
information bits is transmitted in only one sub-slot. In [7]–
[10], the j-th information sub-blocks of K active transmitters
are independently encoded using an outer tree encoder and
an inner CS encoder and transmitted in the j-th sub-slot.
The CS decoder runs on each sub-slot independently and
the tree decoder finds the dependence over sub-blocks to
obtain the complete estimation of the information bits for
each transmitter. In [11] each sub-block of information bits
is independently encoded using any channel code and an CS
encoder. In addition to CS decoding, the receiver resolves
the permutation of sub-blocks based on channel clustering
and a single-user decoding is applied to each transmitter to
obtain the information bits. Since the CS encoding is applied
to sub-blocks of size n/J , the codebook size is reduced to
2n/J and hence the decoding complexity can be controlled by
choosing proper value of J . On the other hand, the schemes in
this category can result in codeword collisions; that is, in the
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same transmission sub-slot, if the sub-blocks of more than
one transmitters are the same, they would share the same CS
codeword and lead to decoding error.

The second category of low-complexity UMA
schemes [12]–[14] are closely related to the graph-based
slotted ALOHA schemes in [15] and [16]. They divide the
transmission period into sub-slots, and each transmitter select
several sub-slots to repeatedly transmit its codeword. The
decoder performs successive interference cancellation (SIC);
that is, the decoded codeword in one sub-slot is subtracted
from all other sub-slots that contains it. However, a small
segment of the information bits are encoded using a small
CS codebook in [12] and [13], which still causes the problem
of codeword collision. Reference [14] also employs Tanner
graphs and a peeling decoder based on single-tons, but it
ignores the channel effect by adopting the unrealistic simple
adder channel model. Other related works include [17], which
makes use of pilot symbols, and [18], which makes use of
tensor decomposition but still needs pilot symbols to resolve
ambiguity. (Note that the special case of [18], i.e., matrix
decomposition, was treated in [19]).

Note that most of the existing works ignore the channel
effect in either CS decoding (first category) or SIC decoding
(second category) by assuming all user channels take the same
value of 1, which is unrealistic, with the exception of [9], [11]
and [20]. In [9] the channels are averaged out by assuming a
large number of receive antennas and performing CS decoding
on the covariance matrix of the received signal. Reference [11]
blindly estimates the channel and resolves the permutation
of sub-blocks by clustering the estimated channels. Refer-
ence [20] proposes a general sparse recovery algorithm based
on Tanner graph and peeling decoding. However, this method
is not well suited for UMA application due to the high
complexity at the transmitter side. In fact, channel estimation
in UMA systems is a fundamental issue given that no pilot
symbols are transmitted, which will be addressed in this paper.

In this paper, we propose a novel UMA system that falls
into the second category. The transmission is based on a
sparse Tanner graph where each transmitter transmits its
codeword either a fixed number of times (regular graph)
or variable number of times (irregular graph). We propose
peeling decoders that at each iteration decode either a single
codeword, or two or three codewords simultaneously. The key
ingredients of these peeling decoders are the corresponding
novel blind channel estimation algorithms. We then perform
density evolution analysis on the asymptotic upper bounds on
the maximum rates achievable by the proposed UMA systems,
for both regular and irregular Tanner graphs. Finally extensive
simulation results are provided to demonstrate the performance
of the proposed UMA systems, and to compare with existing
CS-based UMA schemes.

The remainder of this paper is organized as follows.
In Section II we describe the proposed UMA transmission
scheme based on sparse Tanner graphs. In Section III we
develop decoding algorithms for the proposed UMA systems
that perform blind channel estimation, symbol detection and
codeword subtraction. In Section IV we analyze the asymp-
totic performance upper bounds of the proposed UMA systems

Fig. 1. An example of a (2, 3) Tanner graph.

in terms of the maximum achievable rate, using density
evolution. Simulation results are provided in Section V. Finally
Section VI concludes the paper.

II. SPARSE GRAPH-BASED UMA TRANSMISSION SCHEME

Assume that there are totally Ktot transmitters in the
network, and only K (K � Ktot) of them are transmitting
data in any channel coherence time interval T using a com-
mon codebook. In particular, for a given coherence interval,
we index the K active transmitters as k = 1, 2, . . . , K. Each
transmitter transmits M bits. Let bk ∈ {0, 1}M denote the data
bit vector of transmitter k, which is mapped to the transmitted
signal xk ∈ CT through a modulation process.

CS-Based UMA Transmission Scheme: For example, in the
compressed-sensing (CS) mapping, the total coherence inter-
val T is divided into J sub-intervals of length T/J . The
data bit vector bk is also divided into J blocks, bk =
[bk(1)T , . . . , bk(J)T ]T , where bk(j) ∈ {0, 1}M/J . Each bit
block bk(j) is then mapped to a symbol vector xk(j) ∈ CT/J .
In particular, using a sensing matrix C = [c1, c2, . . . , cN ] ∈
C

T
J ×N with N = 2M/J , bk(j) is mapped to the nk(j)-

th column of C, where nk(j) is the integer whose binary
expansion is given by bk(j). Since a total of MK data bits
are transmitted in T channel uses, the transmission rate is
r = MK

T .
In this section, we propose a new UMA transmission

scheme based on the sparse Tanner graph. We first illustrate
the basic idea through a toy example. Then we describe the
proposed UMA transmission scheme.

A. An Illustrative Example

The encoding and decoding of the proposed UMA system
can be viewed from the angle of a sparse-graph code, which
is typically described by a Tanner graph. Recall that a (K, L)
Tanner graph consists of K variable nodes (VNs), L check
nodes (CNs) and some edges such that each edge connects a
VN and a CN. The parity check matrix H of a Tanner graph
is an L × K matrix where H(j, i) = 1 if the j-th CN is
connected to the i-th VN and H(j, i) = 0 otherwise.

To illustrate the idea more clearly, we consider a toy exam-
ple using a (2, 3) Tanner graph as shown in Figure 1. There
are two transmitted bit vectors represented by the two VNs,
and the coherence interval is divided into three sub-slots which
are represented by the three CNs. If the i-th VN is connected
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to the j-th CN, then the i-th bit vector is transmitted during
the j-th sub-slot. The binary bit vectors b1 and b2 are first
mapped to transmitted signals s1 and s2. Then si is repeatedly
transmitted in the j-th sub-slots such that H(j, i) = 1, i = 1, 2.
In this example, bit vector b1 is transmitted in the first and
the second sub-slots, and bit vector b2 is transmitted only in
the second sub-slot. The received noise-free signals during the
three sub-slots are given by

y[1] = s1, (1)

y[2] = s1 + s2, (2)

y[3] = 0, (3)

and the received signal during the entire coherence time is
denoted as y =

[
y[1]T y[2]T y[3]T

]T
. We call the sub-slot, i.e.,

the CN, that contains no useful signal a zero-ton, the sub-slot
that contains only a single signal a single-ton, and the sub-slot
that contains the superposition of multiple signals a multi-ton.
For example, in Figure 1, the three CNs are single-ton, multi-
ton and zero-ton, respectively.

Assume that the receiver is able to detect single-tons and
decode the information bits based on the received signals
in the single-tons. Then it first detects y[1] as a single-ton
and decodes the information bits of the bit vector b̂1 = b1.
Since the parity check matrix H is known to the decoder,
the decoder can then subtract ŝ1 = s1 from all CNs that
are connected to the first VN. In particular, the first and the
second CNs are updated by y[1] ← y[1] − ŝ1 = 0 and
y[2] ← y[2] − ŝ1 = s2 respectively. Note that y[1] becomes
a zero-ton and y[2] becomes a new single-ton that can be
detected and decoded in the next iteration. This way both
transmitted bit vectors b1 and b2 are decoded.

In this example, the two transmitted signals during the
coherence interval are given respectively by

x1 = [sT
1 , sT

1 ,0T ]T ∈ C
T , (4)

x2 = [0T , sT
2 ,0T ]T ∈ C

T , (5)

and the received signal is y = x1 + x2. The parity check
matrix is given by

H =

⎡
⎣ 1 0

1 1
0 0

⎤
⎦. (6)

Hence we have xk = hk ⊗ sk where hk is the k-th column
of H , and ⊗ denotes the Kronecker product. In general,
to specify the UMA transmission scheme, we need to design
the mapping from the bit vector bk to the transmitted signal
sk, as well as the parity-check matrix H , which is discussed
next.

B. UMA Transmission Based on Tanner Graph

In the proposed UMA scheme based on Tanner graph,
the total coherence interval T is divided into L sub-slots
of duration M + 1, i.e., T = (M + 1)L. Each VN in the
Tanner graph corresponds to a data bit vector b ∈ {0, 1}M ,
and each CN represents one transmission sub-slot. We will
specify the column h(b) ∈ {0, 1}L of the parity-check matrix

H corresponding to b in this section (see Eq. (9)). Then
during the �-th transmission sub-slot, messages in the set {b :
h(b)[�] = 1} are transmitted simultaneously, � = 1, . . . , L.

To transmit the data bit vector b ∈ {0, 1}M , we first convert
it to the antipodal form and then append an additional “1” to
form the transmitted signal

s(b) =
√

P [(2b− 1)T , 1]T ∈ {
√

P ,−
√

P}M+1, (7)

where P is the transmit power. The additional “1” appended
is to resolve the sign ambiguity that is inherent to any blind
receiver. That is, let g ∈ C be a scalar channel coefficient,
the receiver is able to tell between gs and −g(−s) using the
appended bit 1.

In the proposed UMA system, since the receiver only
decodes the transmitted messages without knowing the trans-
mitter IDs, the VNs in the Tanner graph correspond to dif-
ferent transmitted messages, rather than different transmitters.
We use a d-regular (K, L) Tanner graph where each VN has an
edge degree of d, i.e., it connects to d CNs which are selected
uniformly. Hence there are d entries being 1 and (L − d)
entries being 0 in each column of the parity-check matrix H .
Given a VN, i.e., a data bit vector b ∈ {0, 1}M , we need to
specify which d CNs it connects to. To that end, we enumerate
all distinct d-selections of indices from {1, 2, . . . , L} as I =
{I(i), i = 0, 1, . . . ,

(
L
d

)−1}. Each element of I is an instance
of the d-selection, e.g., I(0) = {1, 2, . . . , d}. Assume that the
data bit vectors b are equiprobable, then the elements of I
are uniformly distributed. Define p �

(
L
d

)
and denote dec(b)

as the decimal form of the binary vector b, i.e., the integer
whose binary expansion is b. Then the set of check nodes to
which bit vector b is connected, or equivalently, the set of
time sub-slots during which b is transmitted, is given by

I (dec(b) mod p). (8)

We further define a mapping from the set I(i) to a binary
vector e(I(i)) ∈ {0, 1}L, such that the �-th entry of e(I(i))
is 1 if � ∈ I(i), and zero otherwise, � = 1, . . . , L. Then the
column of the parity check matrix H corresponding to the bit
vector b is given by

h(b) = e (I(dec(b) mod p)). (9)

Then the transmitted signal during the coherence interval
corresponding to b is given by

x(b) = h(b)⊗ s(b) ∈ {−1, 0, 1}T , (10)

where T = L(M+1). Since a total of KM bits are transmitted
over the coherence interval T = (M + 1)L, the transmission
rate is r = KM

(M+1)L ≈ K
L .

We consider an uplink system where each transmitter has
a single transmit antenna, and the base station employs Na

receive antennas. Denote gk ∈ CNa as the channel vector
between the k-th transmitter and the base station. The signal
arriving at the Na base station receive antennas during the
entire coherence interval is given by

Y = [Y 1, . . . , Y L] =
K∑

k=1

gkxT
k + Z ∈ C

Na×T , (11)
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where Z ∈ CNa×T is the additive white Gaussian
noise (AWGN) consisting of i.i.d.Nc(0, σ2) entries, and Y � ∈
CNa×(M+1) is the received signal during the �-th sub-slot.

In the next section, we propose novel algorithms that can
recover the transmitted bit vectors bk, k = 1, . . . , K of all
active transmitters based on the received signal Y . Note that
as typical in conventional communication systems, each bit
vector bk can be the output of some channel encoder, i.e., bk =
enc{dk} for some data vector dk. Then for each recovered
coded bit vector b̂k, by performing channel decoding, we can
obtain the information data d̂k.

III. PEELING UMA DECODERS

According to the proposed transmission scheme, Y � is
a noisy linear combination of signals transmitted in the �-
th sub-slots. Similarly to the example in Section II, the
decoder sequentially checks each signal sub-block to see if
the information can be decoded. First we need to check if
the sub-block is a zero-ton. Note that if the �-th sub-slot
is a zero-ton, then Y � contains (M + 1)Na i.i.d. complex
Gaussian noise Nc(0, σ2) samples, i.e., Y � = Z� and hence
2

σ2 �Y ��2F ∼ τ2
2(M+1)Na

, i.e., τ2 distribution with the degree
of freedom 2(M + 1)Na. If it is not a zero-ton, then each
element of Y � contains both the noise and signal samples.
Hence an energy threshold detector can be employed for zero-
ton detection, i.e., if

2
σ2
�Y ��2F ≤ τ, (12)

then sub-slot � is declared as a zero-ton. The threshold τ
should chosen such that the detection probability is high and
the false alarm probability is low. We specify the procedure
for choosing τ in Section V-A. If the sub-block is not a zero-
ton, we need to decide if it can be decoded as a single-ton,
a double-ton, or a triple-ton.

A. Peeling Decoding Based on Single-Tons

For each CN, i.e., the received signal in each sub-block,
we test whether or not it is a single-ton. If it is, then we
decode the transmitted signal s and estimate the corresponding
channel g. Specifically, if the �-th sub-block is a single-ton,
the received signal Y � is written as

Y � = gsT + Z� ∈ C
Na×(M+1), (13)

and each entry of Y � is given by

Y�[n, m] = g[n]s[m] + Z�[n, m],
n = 1, . . . , Na, m = 1, . . . , M, (14)

Y�[n, M + 1] =
√

Pg[n] + Z�[n, M + 1], n = 1, . . . , Na.

(15)

Hence we have

Y�[n, m] · Y�[n, M + 1]∗

=
√

P |g[n]|2s[m] +
√

Pg[n]∗Z�[n, m]
+ g[n]s[m]Z�[n, M + 1]∗ + Z�[n, m]Z�[n, M + 1]∗.

(16)

Algorithm 1 UMA Decoder Based on Single-Tons
Input: Received signal Y , number of sub-blocks L,

d-selection set I = {I(0), . . . , I(p− 1)}
Output: Set of estimated bit vectors B.
Initialization: B ← ∅;
repeat

for � = 1, . . . , L do
if Y � is not a zero-ton then

Compute the estimate ŝ, ĝ and b̂ using (17),
(18) and (19) respectively;
if (20) holds (i.e., Y� is a single-ton) then
B ← B ∪ {b̂};
Update Y using (21);

end
end

end
until no single-ton is detected;

Since s[m] is antipodal, its sign can be estimated as

ŝ[m] = sign

[
Na∑
n=1



{
Y�[n, m]Y�[n, M + 1]∗

}]
,

m = 1, . . . , M, (17)

where 
{·} is the real operator. Once ŝ is obtained, we then
estimate the effective channel

√
Pg as

ĝ =
1

(M + 1)
Y �ŝ ∈ C

Na , (18)

and the data bit vector b is estimated by

b̂ =
1
2
(ŝ[1 : M ] + 1) ∈ {0, 1}M . (19)

If Y � is indeed a single-ton, then by subtracting the estimated
signals from it, the residual signal becomes a zero-ton. Hence
we can determine that the �-th sub-block is a single-ton if

2
σ2
�Y � − ĝŝT �2F < τ. (20)

Using (10)-(11) the decoded signal can then be subtracted from
the received signal by

Y ← Y − ĝ
(
e(I(dec(b̂) mod p))⊗ ŝ

)T

. (21)

And the above single-ton detection and decoding process
repeats until no more single-ton is detected in all CNs. The
single-ton based UMA decoder is summarized in Alg. 1. Note
that the complexity of this decoding algorithm is O(KM),
i.e., linear in terms of both the number of active transmitters
K and the data packet size M . Note that in the CS-based
transmission scheme, the CS decoding of each sub-block has
a complexity of O(2

M
J ).

Remark: In order for the above UMA decoder to success-
fully decode all transmitted codewords, the original sparse
Tanner graph should be such that after subtracting each
decoded codeword, there is at least one single-ton. We next
show that this indeed holds with high probability.
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Recall that in our transmission scheme each transmit-
ter (VN) is connected to d sub-slots (CN), and each sub-slot
is randomly and independently selected by each transmitter
with probability d/L. Then the probability of each CN being
a single-ton before the decoding process starts is

β1 = K(d/L)(1− d/L)K−1. (22)

Therefore the probability that there is at least one single-ton
at the beginning is γ1 = 1 − (1 − β1)L. Similarly, after k −
1 codewords have been decoded and the corresponding VNs
are removed, the probability of each CN being a single-ton
becomes βk = (K−k +1)(d/L)(1−d/L)K−k and the prob-
ability that there is at least one single-ton before decoding the
k-th codeword is γk = 1− (1− βk)L, k = 1, . . . , K . Figure 2
shows the probability γk over k for different combinations of
d and K when we fix L = 40. It is seen that for a given d,
we should choose K properly to ensure that the probability γk

is always close to 1. For example, when d = 2, K = 80 leads
to γk > 0.95. But when d = 3, K = 80 leads to low values
of γk for k < 30, which means that Alg. 1 may fail to decode
all codewords because it may not be able to find a single-ton
for iterations k < 30. On the other hand, for small values of
K , e.g., K = 32, γk ≈ 1 for both d = 2 and d = 3.

B. Peeling Decoding Based on Double-Tons

In Alg. 1 at each iteration we only look for single-tons to
decode. For better decoding performance and at an increased
complexity, we can look for both single-tons and double-tons
to decode. In particular, if the �-th sub-block is a double-ton,
the received signal is written as

Y � = g1s
T
1 + g2s

T
2 + Z� ∈ C

Na×(M+1), (23)

and each column of Y � is given by

Y �[:, m] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
P (g1 + g2) + Z�[:, m]

if sign(s1[m]) = 1, sign(s2[m]) = 1,√
P (g1 − g2) + Z�[:, m]
if sign(s1[m]) = 1, sign(s2[m]) = −1,√
P (−g1 + g2) + Z�[:, m]
if sign(s1[m]) = −1, sign(s2[m]) = 1,√
P (−g1 − g2) + Z�[:, m]

if sign(s1[m]) = −1, sign(s2[m]) = −1,

m = 1, . . . , M, (24)

and

Y �[:, M + 1] =
√

P (g1 + g2) + Z�[:, M + 1]. (25)

Hence the columns of Y � form four clusters in CNa with
centers {c1 �

√
P (g1 + g2), c2 �

√
P (g1 − g2),−c1,−c2}.

If we define

Ỹ � = sign (
{Y �}) ◦ Y �, (26)

where ◦ is the Hadamard product operator, then the columns of
Ỹ � form two clusters with centers c̃1 = sign (
{c1})◦c1 and
c̃2 = sign (
{c2}) ◦ c2. We can use a clustering algorithm,
e.g., K-means, to partition the M + 1 columns of Ỹ � into

Fig. 2. The probability γk that there is at least one single-ton before decoding
the k-th codeword in Alg. 1.

two clusters. Let J1 and J2 be the index sets of the columns
that belong to clusters 1 and 2 respectively. From (25) we can
estimate sign (
{c1}) as sign (
{Y �[:, M + 1]}). Then the
estimate of c1 is given by

ĉ1 = sign (
{Y �[:, M + 1]}) ◦
⎛
⎝∑

j∈J1

Ỹ �[:, j]

⎞
⎠ /|J1|.

(27)

Next note that the columns of Y � indexed by J2, i.e., {Y �[:
, j], j ∈ J2} form two clusters centered at

√
P (g1 − g2) and√

P (g2 − g1). Then by adding c1 =
√

P (g1 + g2) to these
columns, the resulting set {Y �[:, j] + c1, j ∈ J2} forms two
clusters centered at 2

√
Pg1 and 2

√
Pg2. Hence by clustering

this set the estimates ĝ1 and ĝ2 of the two effective channels√
Pg1 and

√
Pg2 can be obtained.

Given the estimated channels ĝ1 and ĝ2, we can estimate
s1[m] and s2[m] as

(ŝ1[m], ŝ2[m])
= argmin(s1,s2)∈{−1,1}2 �Y �[:, m]− ĝ1s1 − ĝ2s2�2,

m = 1, . . . , M. (28)

Finally, the �-th sub-block is determined as a double-ton if

2
σ2
�Y � − ĝ1ŝ

T
1 − ĝ2ŝ

T
2 �2F < τ. (29)

The double-ton detection and decoding is summarized in
Alg. 2(a). The decoded double-ton can be subtracted from the
received signal by

Y ← Y − ĝ1

(
h(I(dec(b̂1) mod p))⊗ ŝ1

)T

− ĝ2

(
h(I(dec(b̂2) mod p))⊗ ŝ2

)T

, (30)

where the estimates of the bit vectors are obtained by

b̂i =
1
2
(ŝi[1 : M ] + 1), i = 1, 2. (31)

C. Peeling Decoding Based on Triple-Tons

For a triple-ton, the received signal is given by

Y � = g1s
T
1 + g2s

T
2 + g3s

T
3 + Z� ∈ C

Na×(M+1). (32)
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Algorithm 2(a) Detection and Decoding of a Double-Ton
Input: signal sub-block Y �

Output: Estimated signals ŝ1 and ŝ2, channels ĝ1 and
ĝ2, and bit vectors b̂1 and b̂2

Compute Ỹ � using (26) and partition the columns of Ỹ �

into two clusters with the corresponding index sets
J1 and J2;
Compute ĉ1 using (27);
Partition the columns of {Y �[:, j] + ĉ1, j ∈ J2} into two
clusters with centers 2ĝ1 and 2ĝ2;
Compute ŝ1 and ŝ2 using (28);
Compute b̂1 and b̂2 using (31).

The decoding of triple-tons is similar but more complex
compared with the decoding of double-tons. The columns of
Y � form eight clusters in C

Na with centers {c1 �
√

P (g1 +
g2 + g3), c2 �

√
P (−g1 + g2 + g3), c3 �

√
P (g1 − g2 +

g3), c2 �
√

P (g1+g2−g3),−c1,−c2,−c3,−c4}. Since each
two of the centers are opposite to each other, we can partition
the columns of Ỹ � in (26) into four clusters with centers
{c̃i = sign (
{ci}) ◦ ci, i = 1, 2, 3, 4}, and the corresponding
index sets {J1,J2,J3,J4}. Since Y �[:, M + 1] =

√
P (g1 +

g2 + g3) + Z�[:, M + 1], the estimate of c1 is given by

ĉ1 = sign (
{Y �[:, M + 1]}) ◦
(∑

i∈J1

Ỹ �[:, i]

)
/|J1|. (33)

The columns of Y � indexed by J2 form two clusters centered
at
√

P (−g1+g2+g3) and
√

P (g1−g2−g3). Then by adding
c1 to these columns, the resulting set {Y �[:, j] + c1, j ∈ J2}
forms two clusters centered at 2

√
Pg1 and 2

√
P (g2 + g3),

respectively. By clustering it we obtain a pair of estimates
Q1 = {ĝ1, ĝ2 + ĝ3} of

√
Pg1 and

√
P (g2 + g3) although

we cannot tell which one is ĝ1. Similarly, the set {Y �[:
, j] + c1, j ∈ J3} forms two clusters centered at 2

√
Pg2 and

2
√

P (g1 + g3), respectively, and {Y �[:, j] + c1, j ∈ J4}
forms two clusters centered at 2

√
Pg3 and 2

√
P (g1 + g2),

respectively. By clustering these two sets we obtain two more
pairs of estimates as Q2 = {ĝ2, ĝ1 + ĝ3} and Q3 = {ĝ3, ĝ1 +
ĝ2}.

To identify ĝ1 in Q1, we note that Q1 and Q2 + Q3 =
{ĝ2+ĝ3, ĝ1+2ĝ3, ĝ1+2ĝ2, 2ĝ1+ĝ2+ĝ3} share the common
element ĝ2+ĝ3. Hence we can identify ĝ2+ĝ3 as the element
in Q1 that has the minimum distance to the set Q2 +Q3, and
then ĝ1 is the other element of Q1, i.e.,

ĝ1 = Q1 − arg minq∈Q1
minp∈Q2+Q3 �q − p�2. (34)

Similarly we can identify ĝ2 and ĝ3 as

ĝ2 = Q2 − argminq∈Q2
minp∈Q1+Q3 �q − p�2, (35)

ĝ3 = Q3 − argminq∈Q3
minp∈Q1+Q2 �q − p�2. (36)

Given the estimated channels, the sign of the transmitted
signals can then be estimated as

(ŝ1[m], ŝ2[m], ŝ3[m])
= argmin(s1,s2,s3)∈{−1,1}3 �Y �[:, m]− ĝ1s1 − ĝ2s2

− ĝ3s3�2, m = 1, . . . , M. (37)

Algorithm 2(b) Detection and Decoding of a Triple-Ton
Input: signal sub-block Y �

Output: Estimated signals ŝ1,ŝ2 and ŝ3, channels ĝ1, ĝ2

and ĝ3, and bit vectors b̂1, b̂2 and b̂3

Compute Ỹ � using (26) and partition the columns of Ỹ �

into four clusters with the corresponding index sets J1,
J2, J3 and J4;
Compute ĉ1 using (33);
Partition the columns of {Y �[:, j] + ĉ1, j ∈ J2},
{Y �[:, j] + ĉ1, j ∈ J3} and {Y �[:, j] + ĉ1, j ∈ J4} into
two clusters each to obtain the corresponding sets of
centers Q1, Q2 and Q3 respectively;
Compute ĝ1, ĝ2 and ĝ3 using (34)-(36);
Compute ŝ1, ŝ2 and ŝ3 using (37);
Compute b̂1, b̂2 and b̂3 using (40).

The triple-ton detection and decoding is summarized in
Alg. 2(b). The �-th sub-block is determined as a triple-ton
if

2
σ2
�Y � − ĝ1ŝ

T
1 − ĝ2ŝ

T
2 − ĝ3ŝ

T
3 �2F < τ. (38)

Then the transmitted signal can be subtracted from the received
signal by

Y ← Y − ĝ1

(
h(I(dec(b̂1) mod p))⊗ ŝ1

)T

− ĝ2

(
h(I(dec(b̂2) mod p))⊗ ŝ2

)T

− ĝ3

(
h(I(dec(b̂3) mod p))⊗ ŝ3

)T

, (39)

where the estimates of the bit vectors are given by

b̂i =
1
2
(ŝi[1 : M ] + 1), i = 1, 2, 3. (40)

Finally a general UMA decoder based on detecting and
decoding single-tons, double-tons and triple-tons is shown in
Alg. 2. Note that in this algorithm, if the detection and decod-
ing of double-tons and triple-tons (lines 9-16 ) is disabled, then
it becomes Alg. 1 that is based on single-tons only; and if the
detection and decoding of triple-tons (lines 13-16) is disabled,
then the decoder is based on single-tons and double-tons.

IV. RATE ANALYSIS AND OPTIMIZATION

Density evolution is a powerful tool in coding theory that
has been widely used in the analysis of LDPC codes by
tracking the probability density function (pdf) of the extrinsic
messages passed on Tanner graphs [21]. The pdf is updated
based on the edge degrees over the decoding iterations to
derive thresholds for successful decoding. In this section,
following the similar idea of density evolution, we derive the
probability of an edge still remains in the Tanner graph after
i decoding iterations. We note that for the single-ton-based
peeling decoder, our analysis is similar to that in [16] and [20],
which are in turn the special case of the general design
in [15] where all the component codes used are repetition
codes. However here we provide analysis for our proposed new
peeling decoders based on double-tons and triple-tons, and
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Algorithm 2 UMA Decoder Based on Single-Tons,
Double-Tons and Triple-Tons
Input: Received signal Y , number of sub-blocks L,

d-selection set I = {I(0), . . . , I(p− 1)}
Output: Set of estimated bit vectors B.
Initialization: B = ∅;
repeat

for � = 1, . . . , L do
if Y � is not a zero-ton then

Compute the estimate ŝ, ĝ and b̂ using (17),
(18) and (19);
if (20) holds (i.e., Y � is a single-ton) then

Update Y using (21); B ← B ∪ {b̂};
else

Run Alg. 2(a);
if (29) holds (i.e., Y � is a double-ton) then

Update Y using (30); B ← B ∪ {b̂1, b̂2};
else

Run Alg. 2(b);
if (38) holds (i.e., Y � is a triple-ton)
then

Update Y using (39);
B ← B ∪ {b̂1, b̂2, b̂3};

end
end

end
end

end
until no single-ton/double-ton/triple-ton is detected;

show their performance gains over the traditional single-ton
based decoder. Recall that in the Tanner graph each edge
between a VN and a CN represents the information bit vector
that is originated from the transmitter corresponding to the
VN and transmitted during the sub-slot corresponding to the
CN. During the peeling decoding process, if this bit vector is
decoded at certain iteration, then the edge is pruned from the
Tanner graph. Denote zi as the probability that an edge in the
Tanner graph is not pruned after the i-th decoding iteration.
Through the density evolution analysis, we would like to find
conditions on r = K/L and d such that zi → 0 as i → ∞,
i.e., all bit vectors are successfully decoded. The analysis is
based on the following two assumptions: 1) The numbers of
VNs and CNs in the Tanner graph both approach infinity, i.e.,
K → ∞, L → ∞, and the Tanner graph is cycle-free (tree
like) [21]; 2) In the peeling decoder, the single-tons, double-
tons and triple-tons can be perfectly detected and decoded.
We consider two cases. For the case of regular Tanner graph,
each VN has a constant degree of d and our goal is to find the
maximum transmission rate r = K/L such that zi → 0. For
the case of irregular Tanner graph, the VNs can have different
degrees and we aim to find the optimal degree distribution to
achieve the maximum rate. Hence the analysis in this section
provides asymptotic upper bounds on achievable rates using
regular and irregular Tanner graphs.

A. Regular Tanner Graph

For a regular Tanner graph each VN has a degree d, i.e.,
it is connected to d uniformly selected CNs. That is, each
bit vector is transmitted in d out of L sub-slots. Define the
right edge degree distribution ρj as the proportion of edges
connected to CNs that have degree j, j = 1, . . . , K , and we
have

∑K
j=1 ρj = 1. Define the CN degree distribution Πj as

the fraction of CNs that have degree j, j = 1, . . . , K . We have

ρj =
ΠjLj

Kd
=

jrΠj

d
. (41)

Since each VN uniformly selects d out of L CNs to
connect, the CN degree follows the binomial distribution
Binomial(K, d

L ). It is known that when n → ∞, π → 0,
nπ → a constant λ, then Binomial(n, π) → Poisson(λ).
In our case, we have K → ∞, d

L → 0, K d
L = dr. Therefore

as K → ∞, L → ∞, the CN degree follows Poisson(dr),
i.e.,

Πj =
(dr)je−dr

j!
. (42)

Substituting (42) into (41), we have

ρj =
(dr)j−1e−dr

(j − 1)!
. (43)

To derive the probability zi that an edge in the Tanner graph
is not pruned after i decoding iterations, we first consider
the peeling decoder that can only detect and decode single-
tons. Since we assume that the decoder perfectly detects and
decodes single-tons, if at an iteration a CN is detected as a
single-ton, the edge that is connected to it is pruned from
the graph. Let z0 = 1 because no edge is pruned before the
decoding starts. In the i-th iteration, a CN that has degree j
is detected as a single-ton if j − 1 edges that are connected
to it have been pruned. Hence the probability that at the i-th
iteration an edge is connected to a CN is a single-ton is given
by

qi(1) =
K∑

j=1

ρj(1− zi−1)j−1. (44)

Next a VN is removed from the graph if at least one of its
d edges is connected to a single-ton CN, since by perfectly
decoding the single-ton, the bit vector represented by the VN
is decoded and removed. An edge originated from a VN is not
pruned if all other d− 1 edges connected to the same VN are
not pruned, i.e.,

zi = (1− qi(1))d−1 =

⎛
⎝1−

K∑
j=1

ρj(1− zi−1)j−1

⎞
⎠

d−1

,

(45)

which is the recursive equation of zi for the ideal peeling
decoder based on single-tons.

Similarly, an edge is connected to a double-ton CN that has
degree j if among the other j − 1 edges that are connected
to the same CN, j − 1 have been pruned and one has not.
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Therefore the probability that an edge is connected to a
double-ton CN in the i-th iteration is given by

qi(2) =
K∑

j=1

ρj

(
j − 1

1

)
zi−1(1− zi−1)j−2. (46)

An edge originated from a VN is not removed in the i-th
iteration if all other d − 1 edges connected to the same VN
are not connected to single-ton or double-ton CNs. Hence we
obtain the recursive equation of zi when the peeling decoder
is based on both single-tons and double-tons as

zi = (1− qi(1)− qi(2))d−1

=

⎛
⎝1−

K∑
j=1

ρj

[
(1− zi−1)j−1 +

(
j − 1

1

)
zi−1

× (1− zi−1)j−2
]⎞⎠

d−1

. (47)

Moreover, the probability that an edge is connected to a
triple-ton CN in the i-th iteration is given by

qi(3) =
K∑

j=1

ρj

(
j − 1

2

)
z2

i−1(1− zi−1)j−3, (48)

and the recursive equation of zi when the peeling decoder is
based on single-ton, double-ton and triple-tons is given by

zi =

⎛
⎝1−

K∑
j=1

ρj

[
(1− zi−1)j−1 +

(
j − 1

1

)
zi−1

× (1−zi−1)j−2 +
(

j−1
2

)
z2

i−1(1−zi−1)j−3

]⎞⎠
d−1

.

(49)

Typically for a given d, there is a threshold rth(d) such that
zi converges to zero if r ≤ rth(d) and zi does not converge to
zero if r > rth(d). Given a maximum VN degree dv, we can
find the maximum achievable rate for the regular Tanner graph
by searching the threshold rth(d) for each d = 1, . . . , dv,
as follows: We initialize r = δ and set the rate increment δ =
0.01. We repeatedly evaluate zi using (45), (47) or (49) until
convergence, i.e., zi < � = 10−5, or the number of iterations
reaches N0 = 100. If zi reaches convergence with rate r,
then the rate is increased by δ until we find the maximum
convergence rate rth(d). The maximum achievable rate for a
specific type of decoder is r∗ = maxd∈{1,...,dv} rth(d), and the
corresponding VN degree is d∗ = argmaxd∈{1,...,dv}rth(d).

Figures 3 and 4 show the evolution of zi for different
decoders in (45), (47) and (49) over iterations and the threshold
behavior, for d = 2 and d = 3 respectively. The threshold
behavior is clear except for the decoder based on single-tons
and d = 2. For example, in Figure 3, for the decoder based
on single-tons and double-tons, when r = 1.67 zi converges
to 0 but when r = 1.68, zi converges to 0.58. Hence we
have rth(2) = 1.67. Moreover, by decoding double-tons and
triple-tons, the thresholds increase and hence the system can
accommodate more users by employing more sophisticated

Fig. 3. The evolution of zi and threshold behavior for different decoders
when d = 2.

Fig. 4. The evolution of zi and threshold behavior for different decoders
when d = 3.

decoding algorithms. With the maximum possible VN degree
dv = 5, the maximum achievable rates for the three decoders
using regular Tanner graph are given in Table I.

B. Irregular Tanner Graph

For an irregular Tanner graph, the VNs have different
degrees. We define the left edge degree distribution λj as
the proportion of edges connected to VNs with degree j, j =
1, . . . , dv, where dv is the maximum degree of all VNs. A VN
with degree j is connected to j (out of L) uniformly selected
CNs. Denote Γj as VN degree distribution, i.e., the proportion
of VN that has degree j. The number of VNs with degree j is
KΓj = λjE/j, where E is the total number of edges. Hence
we obtain

Γj =
λj/j∑dv

i=1 λi/i
, j = 1, . . . , dv. (50)

Define the average VN degree as

d̄ �
dv∑

j=1

jΓj =
1∑dv

i=1 λi/i
. (51)

For a regular Tanner graph, the probability of each CN being
selected by a VN is d/L. Similarly, for an irregular graph with
VN degree distribution Γj , j = 1, . . . , dv , the probability of
each CN being selected by a VN with degree j is j/L. Then
the average probability of each CN being selected by a VN is∑dv

j=1 Γjj/L = d̄/L. Hence the right edge degree distribution
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of an irregular Tanner graph is given by

ρj =
(d̄r)j−1e−d̄r

(j − 1)!
. (52)

A VN that have degree t is removed from the graph if at
least one of its t edges is connected to a single-ton, a double-
ton, or a triple-ton. Therefore the recursive equation of zi for
the ideal peeling decoder based on single-tons on an irregular
Tanner graph is given by

zi =
dv∑
t=1

λt(1− qi(1))t−1

=
dv∑
t=1

λt

⎛
⎝1−

K∑
j=1

ρj(1− zi−1)j−1

⎞
⎠

t−1

. (53)

Similarly, if the ideal decoder can decode double-tons,
or triple-tons, the recursive equations of zi are given respec-
tively by

zi =
dv∑

t=1

λt

⎛
⎝1−

K∑
j=1

ρj

[
(1− zi−1)j−1 +

(
j − 1

1

)
zi−1

× (1− zi−1)j−2

⎤
⎦
⎞
⎠

t−1

, (54)

and

zi =
dv∑
t=1

λt

⎛
⎝1−

K∑
j=1

ρj

[
(1− zi−1)j−1 +

(
j − 1

1

)
zi−1

× (1−zi−1)j−2 +
(

j−1
2

)
z2

i−1(1−zi−1)j−3

⎤
⎦
⎞
⎠

t−1

.

(55)

1) Rate Optimization: Similar to the case of regular Tanner
graph, for a given {λj}, we can find the threshold rth({λj})
such that zi converges to zero if r < rth({λj}) and otherwise
zi does not converge to zero. We can then search over the left
edge degree distribution {λj} to find the maximum achievable
rate r∗, using the differential evolution algorithm, which
is a combination of hill-climbing algorithm and a genetic
algorithm for multivariate function optimization [22]. This is
similar to optimizing the degree profiles of an irregular LDPC
code to approach the channel capacity [23]. The procedure
for computing the maximum achievable rate for irregular
Tanner graph and the corresponding VN degree distribution
is as follows: We set the number of iterations as Nt. In each
iteration we compute the rate threshold for the current edge
distribution {λj} and then the new distribution for the next
iteration is given by the differential evolution algorithm.
Within each iteration, we gradually increase the rate r by
δ and find the maximum of rate rth({λj}) that satisfies
zN0 < � using (53), (54) or (55). The maximum achievable rate
is r∗ = max{λj} rth({λj}), and the corresponding optimal
degree distribution is {λj}∗ = arg max{λj}rth({λj}).

We set the maximum VN degree as dv = 5, and let Nt = 70,
N0 = 100, � = 10−5 and δ = 0.01. Table I compares

the maximum achievable rate r∗ obtained for regular Tanner
graphs and irregular Tanner graphs for different decoders. The
corresponding optimal VN degree distributions for irregular
Tanner graphs are shown in Table II. Recall that r∗ is
essentially an upper bound on the achievable rate under ideal
decoders in the asymptotic regime of K, L→∞. We see that
even though irregular graphs offer higher rates than regular
graph for all three decoders, the gaps are relatively small.

2) Transmission Scheme Based on Irregular Tanner Graph:
In Section II we presented the transmission scheme based on
the regular Tanner graph with VN degree d. Next we present
the transmission scheme based on the irregular Tanner graph
with VN degree distribution Γj , j = 1, . . . , dv .

We define dv index set Ii by enumerating all i-selections
of {1, 2, . . . , L}, for i = 1, . . . , dv, then the size of Ii is(
L
i

)
. The 2M equiprobable bit vectors b are divided into dv

non-overlapping sets. The bit vector b falls into the α-th
set Iα if

∑α−1
i=1 Γi < (dec(b) + 1) /2M ≤ ∑α

i=1 Γi, where
α = 2, . . . , dv , and the nonzero entries of h is selected from
Iα. We extend the mapping in Section II from the set Iα(i)
to a binary vector e(Iα(i)) ∈ {0, 1}L, such that the �-th
entry of e(Iα(i)) is 1 if � ∈ Iα(i), and zero otherwise,
α = 2, . . . , dv, � = 1, . . . , L. Then the column of the parity
check matrix H corresponding to b is given by

h(b) = e

(
Iα

((
dec(b)− ⌊

Γα−12M
⌋ )

mod
(

L

α

)))
.

(56)

The transmitted signal x(b) is still given by (10).

V. SIMULATION RESULTS

In this section we present simulation results to illustrate
the performance of the proposed sparse graph-based UMA
systems. For simplicity we number the decoders based on
single-tons, single-tons + double-tons, and single-tons +
double-tons + triple-tons as 1, 2 and 3, respectively. The
number of bits transmitted by each transmitter in each coher-
ence interval is M = 70. The number of receive antennas
at the BS is Na = 4 and the channel vector of each
transmitter is generated as g ∼ CN (0, INa). The signal-
to-noise ratio (SNR) per codeword is defined as SNR =
E{‖gsT ‖2}d

NaTσ2 = Pd
σ2L for a regular Tanner graph with VN

degree d, and SNR = Pd̄
σ2L for an irregular Tanner graph with

average VN degree d̄. In each coherence interval, K bit vectors
b1, . . . , bK are transmitted. For each decoded bit vector b̂ and
the corresponding channel estimate ĝ, if b̂ /∈ {b1, . . . , bK},
then b̂ corresponds to a decoding error, and the decoding
performance metric – the frame error rate (FER) is the ratio
between the total number of decoding errors and the total
number of transmitted bit vectors. On the other hand, for
each channel estimate ĝ, since we do not know which real
channel in {g1, . . . , gK} it corresponds to, we choose the
one that is the closest to ĝ and calculate the normalized
squared error as NSE(ĝ) = �√Pg − ĝ�2F/�√Pg�2F where
g = arg ming′∈{g1,...,gK} �

√
Pg′ − ĝ�2F . Then by averaging

over all channel estimates, we obtain the channel estimation
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TABLE I

MAXIMUM ACHIEVABLE RATE r∗ OF REGULAR AND IRREGULAR TANNER GRAPHS WITH dv = 5

TABLE II

OPTIMAL Γ∗
j FOR DIFFERENT IDEAL DECODERS OBTAINED BY DIFFERENTIAL EVOLUTION

performance metric – the normalized mean-squared error
(NMSE).

A. Performance of Proposed UMA Systems

We first consider the performance of the zero-ton detector
in (12) and specify the procedure of choosing the threshold τ .
Denote the decision statistic v � 2

σ2 �Y ��2F . Recall that when
Y � is a zero-ton, v ∼ τ2

2(M+1)Na
. It is known that when k is

large, the τ2
k distribution can be approximated by a Gaussian

distribution N (k, 2k). Therefore the detection probability can
be approximated as

PD = P (v ≤ τ | Y � is a zero-ton)

≈ Φ

(
τ − 2(M + 1)Na

2
√

(M + 1)Na

)
, (57)

where Φ(·) is the CDF of a standard Gaussian N (0, 1)
variable. Next we consider the false alarm probability. First
if Y � is a single-ton, then E{Y�[n, m]2} = P + σ2, we have

2
P+σ2 �Y ��2 = 1

1+P/σ2 v ∼ τ2
2(M+1)Na

. Hence the distribu-
tion of the decision statistic v in this case is approximated as
N (2(M +1)Na(1+P/σ2), 4(M +1)Na(1+P/σ2)2). Since
P/σ2 = SNR L

d , an upper bound on the false alarm probability
is given by

PFA ≤ P (v ≤ τ | Y � is a single-ton)

≈ Φ

(
τ − 2(M + 1)Na(1 + SNRL

d )

2(1 + SNRL
d )

√
(M + 1)Na

)
, (58)

since when Y � contains more signals, its power increases and
the probability of v ≤ τ decreases. Letting L = 40 and d = 3,
in Figure 5 we plot PD in (57) and PFA in (58) versus τ for
SNR = −5 dB and 0 dB. We see that the zero-ton detector
in (12) has a near-ideal performance in the sense that across a
wide range of τ , e.g., τ ∈ [1000, 2000] for SNR = −5 dB, and
τ ∈ [1000, 6000] for SNR = 0 dB, it achieves PD ≈ 1 and
PFA ≈ 0. In subsequent simulations, we set the detection
threshold in (12), (20), (29) and (38) as τ = 4(M + 1)Na =
1136.

We fix the number of sub-slots L = 40, hence the total
coherence interval is T = (M + 1)L = 2840. Figures 6

Fig. 5. PD and PF A versus τ of the zero-ton detector for different SNRs.

and 7 show the decoding and channel estimation performance
versus the number of active transmitters K when SNR = 0 dB.
We plot the results of the three decoders using regular Tanner
graphs with d = 2 and d = 3 as well as the irregular
Tanner graph given in Table II. It is seen that more sophis-
ticated decoder can sustain more active transmitters, under
the same decoding and channel estimation performance, i.e.,
decoder 3 > decoder 2 > decoder 1. For example, for a target
FER value of 0.01, decoder 1 can support K = 20 (with d =
3), decoder 2 can support K = 40 (with d = 3) and decoder
3 can support K = 56 (with d = 3). Moreover, the actual
decoding performance with finite K, L and practical decoders
may not be in line with the asymptotic rate upper bound
obtained by density evolution in Section IV. For example, for
decoder 2, density evolution analysis yields rth(2) > rth(3)
whereas in practice d = 3 outperforms d = 2. Further, the
irregular code in practice does not outperform regular code.
Nevertheless, the performance upper bounds provided by the
density evolution analysis motivate future work on developing
more powerful decoding schemes to reduce the gap between
practically achievable performance and these bounds.

Figures 8 and 9 show the decoding and channel estimation
performance of the three decoders versus SNR per codeword
for fixed rate and d = 2, 3. We see that for decoder 1, the
performance for d = 3 is significantly better than that for
d = 2; whereas for decoder 2 and 3, the performances for
d = 2 is better than that for d = 3 when SNR is low, and the
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Fig. 6. Decoding performance versus number of active transmitters for the
three proposed decoders with different VN degrees. L = 40 and SNR =
0 dB.

Fig. 7. Channel estimation performance versus number of active transmitters
for the three decoders with different VN degrees. L = 40 and SNR = 0 dB.

other way when SNR is high. For example, the decoder 3 with
d = 2 has lower FER than d = 3 when SNR ≤ −1 dB and has
higher FER when SNR > −1 dB. The reason is that when the
channel condition is poor, the estimates of signal and channel
are less accurate. Consequently, more edges in the graph would
lead to more pruning and therefore more errors. Moreover, for
each of the three decoders, the slope of d = 3 is steeper than
that of d = 2.

B. Comparison With CS-Based UMA

We now compare the CS-based schemes in [7], [9], and [11]
with our proposed sparse graph-based UMA with different
decoders. In the UMA system, each transmitter transmits
M = 70 bits during the coherent interval T . In the CS-based
schemes, the M = 70 bits are divided into J = 11 blocks of
sizes m1 = 10 and mj = 6, j = 2, . . . , 11. For the j-th block,
�j parity bits are appended to the mj information bits such that
all blocks have equal length, where �1 = 0 and �j = 4, j =
2, . . . , 11. Denote the information bits and parity check bits
in the j-th block as b(j) ∈ {0, 1}mj and p(j) ∈ {0, 1}lj , j =
1, . . . , J . Specifically, the �j parity check bits in the j-th block
are generated by the mod-2 multiplication of all the informa-
tion bits in the preceding blocks and a Rademacher matrix, i.e.,
p(j) = [b(1)T , . . . , b(j − 1)T ]T G, j = 2, . . . , J where the

entries of G ∈ {0, 1}
��j−1

j′=1
mj′

�
×lj are uniform Bernoulli

trials. Then according to the CS-based UMA transmission

Fig. 8. Decoding performance versus SNR per codeword for the three
decoders with different number of active transmitters and VN degrees.
L = 40.

scheme described in Section II, each 10 bits of coded data
[b(j)T , p(j)T ]T in one block is mapped to a Ms-dimensional
signal using a sensing matrix C ∈ CMs×1024 that contains
CN (0, P ) elements. We consider two coherent intervals with
Ms = 130 and Ms = 260, corresponding to T = Ms × J =
1430 and 2860 respectively. Note that even though the channel
model in [7] is a simple noisy superposition of all received
codewords, the method in [7] can be easily modified to account
for the channel effects. In particular, instead of using the
non-negative least squares (NNLS) algorithm as in [7], the
modified decoder first performs the Simultaneous Orthogonal
Matching Pursuit (S-OMP) [24] for each sub-block of the
received signal to obtain the K channel estimates and K
decoded bit sequences. Then the tree decoder in [7] is applied
over J sub-blocks to decode K blocks of information bits.
On the other hand, [9] essentially averages out the channel
effect by forming the covariance matrix of the received signal
and assuming a large number of receive antennas, i.e., Na →
∞, and the CS decoding is based on the outer product model
Σ(j)

y =
∑2Mb

r=1 γ
(j)
r crc

H
r where Σ(j)

y is the covariance matrix of
the received signal in the j-th sub-slot and γ(j) is the activity
vector in [9]. We simulated the algorithm in [9] for both the
ideal case, i.e., Na →∞ and the case of Na = 4. Moreover,
the blind receiver method Alg. 1 in [11] is also simulated.
The SNR per codeword for the CS-based scheme is given by
SNR = JE{‖gcT ‖2}

NaTσ2 = P
σ2 . For our proposed scheme, we set

L = 20 and 40 corresponding to T = L(M + 1) = 1420 and
2840. All the three proposed decoders uses regular Tanner
graph with d = 3.

The performance comparisons are shown in Figure 10.
It is seen that even decoder 1 that is based on single-tons
outperforms the three CS-based decoders – recall that the
former has a linear complexity in M whereas the latter has
an exponential complexity in M . Moreover, at the increased
complexity, decoder 2 and decoder 3 offer substantially better
performances. Moreover, when the coherence interval T is
doubled, the performance of the CS-based decoders improves
only marginally, whereas that of the proposed three decoders
significantly improves. This is because by increasing L, the
proposed decoders are based on more sparse Tanner graphs
with more CNs and therefore more active users can be
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Fig. 9. Channel estimation performance versus SNR per codeword for the
three decoders with different number of active transmitters and VN degrees.
L = 40.

Fig. 10. Decoding error performance comparison between proposed decoders
and the CS-based decoder. SNR = 0 dB.

accommodated. On the other hand, increasing Ms can decrease
the error of the sparse recovery in the CS-based decoder, but
the problem of codeword collisions still remains and is the
main cause of decoding errors.

C. Throughput Analysis

Next following [15] we present the throughput comparison
between the theoretical analysis and simulation results under
several assumptions. The system throughput is defined as the
average number of information packets successfully decoded
per sub-slot. We consider the following four cases:

• The ideal case: K, L→∞ with fixed rate r = K/L and
perfect peeling decoding. Since this is the assumption of
the density evolution analysis, the throughput is computed
by T (r) = r(1 − zN0(r)) where zN0(r) is computed
using (45), (47) and (49) for different peeling decoders.

• The finite-size case: We fix L = 40, and K = rL.
We randomly generate regular (K, L) Tanner graphs
with VN degree d and perform perfect peeling decoding
on each of them. Let K̃ be the average number of
information packets decoded by a specific decoder, the
throughput is given by T (r) = K̃(r)/L.

• The practical case: We fix L = 40, and K = rL. We set
SNR = 0 dB and use the same simulation setup as

Fig. 11. Throughput comparison of proposed decoders under different
assumptions. d = 2.

Fig. 12. Throughput comparison of proposed decoders under different
assumptions. d = 3.

described in Section V-A and measure the FER(r) for rate
r. The throughput is computed as T (r) = r(1−FER(r)).

• The known channel case: This is the same as the practical
case except that the channel vectors are assumed perfectly
known to the receiver. The throughput is also computed
as T (r) = r(1 − FER(r)).

Fig. 11 and Fig. 12 show the throughput T versus trans-
mission rate r of the three decoders for the four cases using
regular Tanner graphs with d = 2 and d = 3, respectively.
Consistently, we see that the proposed double-ton-based and
triple-ton-based decoders offer significantly higher through-
put than the traditional single-ton-based decoder, under each
scenario, namely, the ideal case, the finite-size case and the
practical case. When SNR = 0 dB the practical case of decoder
1 can achieve the performance of the finite case. However,
there are gaps between the practical case and the finite case
of decoder 2 and decoder 3, because double-ton and triple-ton
based decoders are more sensitive to decoding errors. For the
practical decoders, the decoders with blind channel estimation
perform similarly to those with perfect channel estimation.
Moreover, it is seen that the asymptotic analysis provides a
good performance approximation for the proposed practical
decoders in low-rate regions.

VI. CONCLUSION

In this paper, we have proposed a new UMA transmission
scheme based on the sparse Tanner graph and corresponding
receiver algorithms in MIMO channels. During the trans-
mission, the channel coherence interval is split into several
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sub-slots and each active transmitter selects a few sub-slots
to transmit its data repeatedly according to the given sparse
Tanner graph, which can be either regular or irregular. Three
iterative receiver algorithms are proposed each detecting and
decoding different number of codewords in each iteration.
The key ingredient of these decoders are the corresponding
clustering-based blind channel estimators. We also present the
density evolution analysis for both regular and irregular Tanner
graphs to obtain the asymptotic upper bound on the maximum
achievable rate. Simulation results show that among the three
proposed decoders, the ones that perform joint decoding of
two or three codewords offer better performance. Compared
with the existing CS-based UMA systems, the proposed
sparse graph-based UMA transmission and the corresponding
receiver algorithms offer better performance and lower receiver
complexity. Finally, the density evolution analysis provides
accurate throughput predictions for practical decoders in the
low-rate regime.
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