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Abstract. The rise of on-demand mobility technologies over the past decade has sparked
interest in the integration of traditional transit and on-demand systems. One of the main rea-
sons behind this is the potential to address a fundamental trade-off in transit: the ridership ver-
sus coverage dilemma. However, unlike purely fixed systems or purely on-demand systems,
integrated systems are not well understood; their planning and operational problems are sig-
nificantly more challenging, and their broader implications are the source of a heated debate.
Motivated by this debate, we introduce the dynamicity gap, a general concept that quantifies
the attainable benefit of allowing (but not requiring) dynamic components in the response
strategy to a multistage optimization problem. Although computing the dynamicity gap
exactly may be intractable, we develop an analytical framework with which to approximate it
as a function of problem input parameters. The framework allows us to certify the value of
dynamism (i.e., a dynamicity gap greater than one) for certain combinations of problem input
parameters. We showcase our approach with two sets of computational experiments, from
which we gain both qualitative and quantitative insights about the settings in which the inte-
gration of transit and on-demand systems may certifiably be a worthwhile investment.
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1. Introduction
The design of transit systems is a classical yet persis-
tently challenging problem. Part of the difficulty stems
from the complexity of the application domain—it has
multiple interacting components such as the physical
infrastructure network (e.g., the network of bus lanes),
the operational network (e.g., the set of bus lines), time-
tables, and crew and fleet schedules. To add to this, there
may be multiple objectives and /or quality of service tar-
gets, often without a clear mathematical description and
in conflict with one another. As a result, there is no single
“global” optimization problem, and if there was, it
would not be tractable. Rather, the design of transit sys-
tems is typically decomposed into a sequence of steps,
starting from the bare bones—the design of the physical
infrastructure network—and continuing on toward
increasingly operational considerations. Even when the
process is decomposed, the optimization problems aris-
ing in each step are usually NP-hard (see Desaulniers
and Hickman 2007 and Schobel 2012 for an overview of
the transit system design process).

The rise of on-demand mobility technologies over
the past decade has sparked interest in the integration

of traditional transit and on-demand systems—the
number of microtransit (i.e., high-capacity on-demand
shuttles) pilot programs conducted by transit agencies
across the United States is a testament to this (see Wes-
tervelt et al. 2018 for a compilation of experiences). One
of the main reasons behind this is the potential for
microtransit to address a fundamental trade-off in tran-
sit: the ridership versus coverage dilemma. It is well
known that, given a limited budget, transit networks
that maximize ridership and transit networks that max-
imize coverage (e.g., the geographical service area) tend
to be vastly different (see Walker 2012 for a practitioner-
oriented discussion). Intuitively, integrated systems
may bridge this gap by letting each subsystem do what it
does best; transit should focus on ridership, microtransit
should extend coverage as a first/last mile service, and
the two should be jointly optimized.

However, unlike purely fixed systems or purely
on-demand systems, integrated systems are not well
understood; their planning and operational problems are
significantly more challenging, and their broader implica-
tions are the source of a heated debate. Some transporta-
tion researchers and practitioners have suggested that
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Table 1. Summary of Notation

Symbol Description

G=(V,E) Underlying graph topology

TeN Number of stages

0>0 Stage duration

T:={I,L,..., I} c2"" Possible input scenarios (also known as travel demand realizations)
LLeT ith possible input scenario

I'ez Input scenario during the tth stage

P, C{01)*" Set of integrated networks configurations that can serve I;
PLc{o1y” Set of integrated networks configurations that can serve I'
(x,z;) € P; Integrated static x and dynamic z; network that can serve I;
(x,z') e P! Integrated static x and dynamic z' network that can serve I'
D Probability distribution over Z

pi Prp[l' = I;] for every t € [T]

¢ 1= ¢5(0) € RYy
c1 = ¢y(0) € RY
ceRY,

n>0

0s>0

6d >0

a>1

0>0

0" = a(1)

Per-stage cost vector for static network (with usage duration 0)
Per-stage cost vector for dynamic network (with usage duration 6)
Cost vector for a single run of the static network

Surcharge coefficient

Transit headway

Microtransit batching interval

Dynamicity gap (see (2) for definition)

Relative cost coefficient (in Remark 1, let 6 := 6; and 6 =1 (65/04))
Dynamicity gap when 0 = 1 (see Theorem 1)

on-demand systems can complement traditional transit
(e.g., Feigon and Murphy 2016, Shaheen and Chan
2016, Alonso-Gonzalez et al. 2018, Hall, Palsson, and
Price 2018, Stiglic et al. 2018, Liu and Ouyang 2021). At
the same time, others have raised concerns about or
even flat-out dismissed the supposed benefits (e.g.,
Walker 2012, 2018; Rayle et al. 2016; Westervelt et al.
2018; Merlin 2019).

Motivated by this debate, we introduce the dynamicity
gap, a general concept that quantifies the attainable bene-
fit of allowing (but not requiring) dynamic components
in the response strategy for a multistage optimization
problem. We study the dynamicity gap within the con-
text of the strategic planning of transit infrastructure net-
works: the first step in the transit system design process
and arguably, the most decisive one because all subse-
quent steps depend on it. However, we note that the con-
cept is more generally applicable in domains where
goals can be met through a combination of static and
dynamic (i.e., stage-specific) decisions. Our contribu-
tions are threefold.

1. As a conceptual contribution, we introduce the
dynamicity gap.

2. Computing the dynamicity gap exactly may be
intractable. Therefore, as a methodological contribu-
tion, we develop an analytical framework with which
to approximate it as a function of the problem input
parameters. The framework allows us to certify the
value of dynamism (i.e., a dynamicity gap greater than
one) for certain combinations of input parameters.

3. We study the dynamicity gap within the context of
the strategic planning of transit infrastructure networks.
We pose the design of integrated transit networks as a

multistage network design problem and showcase our
analytical framework with two sets of computational
experiments. As a scientific contribution, we provide
both qualitative and quantitative insights about the set-
tings in which the integration of transit and on-demand
systems may certifiably be a worthwhile investment.

As we formalize our study, we point to Table 1 for a
summary of notation.

1.1. Design of Transit Networks

We study the dynamicity gap within the context of cen-
trally designed integrated transit networks. To this end,
we first describe the Steiner forest problem, the prototypi-
cal problem in network design. We focus on this abstrac-
tion because it lends itself to mathematical analysis and
comprehensive experimentation that we believe to be
useful at the level of the strategic planning of transit
infrastructure networks. One can in principle enhance it
with operational features such as capacity constraints,
detour constraints (i.e., ensuring travel demand is met
through relatively direct routes), fleet rebalancing con-
straints, pricing, and consumer choice models; by ex-
tending the notion of picking edges to picking “lines”
(i.e., picking paths in G); by limiting the number of line
transfers passengers can take; and so on. However, we
note that producing and efficiently solving the resulting
models are research areas in and of themselves (see Bert-
simas, Ng, and Yan 2020, 2021; Luo, Samaranayake, and
Banerjee 2021 for some recent representative work).

In the Steiner forest problem, we are given a connected
graph G = (V,E) with costs ¢ : E — Ry and a collection
I CV XV of origin-destination pairs. The problem is to
find a minimum cost subset X C E of edges supporting a
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path between each origin-destination pair. In the context
of transit, G represents the underlying graph topology
(e.g.,aroad network), I represents the travel demand, and
X represents the installed network. More generally, we
aim to distinguish between two types of installed net-
works: a transit network and a microtransit network.
Therefore, we extend the Steiner forest abstraction by
allowing us to pick two subsets X,Z C E of edges such
that (s.t) XU Z supports a path between each origin-
destination pair. We treat X as a transit network and Z as a
microtransit network so that X U Z is an integrated net-
work—this distinction becomes much more meaningful in
Section 1.2 and beyond, where we consider a multistage
version of the problem. Going forward, we represent sub-
sets X, Z C E of edges by their characteristic vectors x, z €
{0,1}" wherem = |E|.

1.2. Dynamicity Gap

We consider a multistage version of the design of inte-
grated transit networks, wherein the transit network is
static, whereas the microtransit network is dynamic.
The temporal planning horizon is partitioned into T €
N stages indexed by [T]:={1,2,...,T}. Itis implicit that
each stage has a (say uniform) duration 6 > 0; we elabo-
rate on this shortly. Let 7 :={I},I,,...,I;} €2"*V be
the collection of possible travel demand realizations
(i.e., the collection of possible sets of origin-destination
pairs), which we also refer to as input scenarios. For
each t € [T], let I' € T be the travel demand during the
tth stage and P’ be the finite and nonempty set of inte-
grated network configurations that can serve it. Let x €
{0, 1}" be decision variables corresponding to the static
network (e.g., transit) paid for at cost ¢; := ¢,(0) € RY,
on every stage. Let z!,2%,...,zT €{0,1}" be decision
variables corresponding to the dynamic network (e.g.,
microtransit) over the stages, each paid for at cost
ci:=cy(0) Ry For a,beR", let a-b=37", a;b; de-
note their dot product. Then, the design of integrated
transit networks can be posed as a multistage optimiza-
tion problem of the form

T
i x4+ Lot
min ;(cS x+c¢y-z') (1)

x,z4,22,...,
s.t. (x,z)) e P, vt e [T).

The constraints (x,z') € P' for each t € [T] ensure the
static network x and the dynamic network z' together
serve the travel demand I during the tth stage.

We emphasize the general dependency of the per-
stage costs ¢, := ¢;(6) and ¢, := ¢;(6) on the stage dura-
tion 0. If a system operates at a timescale different from
0, itis crucial that its per-stage cost is appropriately pro-
rated. To illustrate this, let ¢ € RY; encode the cost of a
single dispatch of the static system (e.g., the cost per
vehicle mile times the total vehicle miles covered by
transit in a single dispatch of all routes) and 7 - ¢ encode

the cost of a single dispatch of the dynamic system, for
some 1 > 0. The surcharge coefficient 1 captures the
notion that static systems and dynamic systems have
different operational costs on a per-mile basis, indepen-
dent of their relative frequencies (e.g., accounting only
for backend costs such as fuel, labor, and use of soft-
ware). We allow the systems to have different time-
scales by distinguishing between the transit headway
0s > 0 (i.e., the time interval between subsequent transit
dispatches) and the microtransit batching interval 64 >
0 (i.e., the time interval over which incoming travel
demands are aggregated and microtransit routes reop-
timized). Then, we prorate the per-stage costs of transit
and microtransit as ¢; = (0/0s)-c and ¢; =(6/04) -7+ ¢c,
respectively. For example, if the stages are of duration 6
=1 minute, a transit system with headway 6; = 10 min-
utes incurs only 1/10th of its dispatch cost on any given
stage. Going forward, we tie the stage duration to the
microtransit batching interval so that 6 := ;.

Let OPT denote the cost of an optimal solution to (1)
and OPT* denote the cost of an optimal static solution
to (1): that is, one in which we additionally require
2l =22 =...=zT = 0, where 0 refers to the zero vector.
We define the dynamicity gap o of (1) as the unitless coef-
ficient

T
= OPT >1. 2)
OPT

Large values of a indicate large gains from introducing
dynamism. Conversely, values of a close or equal to
one indicate little to no gains from introducing dyna-
mism. In this way, the dynamicity gap quantifies the
value of dynamism.

1.3. Summary of Results
The dynamicity gap a quantifies the value of dyna-
mism, but computing it involves solving (1), which
may be intractable. Moreover, we observe from (1) that
a is influenced by implicit and explicit parameters such
as the costs ¢, and ¢, the stage duration 6, and the rela-
tionship between the sets of feasible configurations
PLPA,. P

The overarching goal of this work is to parametrically
study the behavior of @ without the need of solving the
underlying multistage optimization problem. To this
end, we assume ¢, = c for some ¢ € RYjyand ¢; = 0 - ¢ for
some relative cost coefficient 6 > 0. That is, we restrict
our analysis to problems of the form

T
. Z ¢
x,zl,rgiﬁ.,zT P (c-x+0-c-2) 3)
s.t. (x,z") e P, Vte[T).

However, when tying this form back to transit, we
assume 0 := §4, and as described in Section 1.2, we pro-
rate the per-stage costs as ¢; = (84/0s)-c and ¢;=1-c.
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Then, for any fixed 65, 64 > 0, form (1) becomes

T
min Z(?-oxﬂpc-zt)

1 »2 T
%222, 20

sit.  (x,z)eP, Vte[T]
611 . g 65 t
5 amn (e e

s.t. (x,zH) ePt, Vte[T].

4

Note that this is a scaled version of (3) with 0 =17
(05/04). In this way, we embed any dependency on
1,05,04 within 6, which then captures both the differ-
ence in service frequency and the difference in opera-
tional costs on a per-mile basis.

Our analytical contributions around (3) are with respect
to the case in which the input scenarios I', %, ...,IT are
independent and identically distributed (i.i.d.) with proba-
bility distribution D over Z. This constitutes a speciali-
zation because in our definition (2) of dynamicity gap,
the sequence of input scenarios need not be stochastic
(where we have distributional information over input
parameters) or even uncertain (as in robust optimization,
where we only uncertainty set information over input para-
meters). We first show that if the input scenarios I',I?,
..., I" are sampled i.id. from a probability distribution D
over Z and moreover, T — oo, then we can reformulate
almost surely (a.s.) the horizon-normalized version of the
multistage Problem (3), wherein we scale the objective
function by 1/T, as the two-stage stochastic problem:

k
xlzlguZ/I}-/zk C.x+;pi.6'c.2i (5)
s.t. (x, Z[) eP;, Vie [k]

Recall Z:={L,I,..., I} is the collection of possible
inputscenarios. Foreachi € [k], let]; € 7 be the ith input
scenario, and let P; be the finite and nonempty set of
integrated network configurations that can serve it. Let
pi = Prp[I' = I;] for every t € [T]. Let x € {0,1}" be deci-
sion variables corresponding to the first-stage network,
and for each i € [k], let z; € {0,1}" be decision variables
corresponding to the second-stage network under in-
put scenario I. Then, the constraints (x, z;) € P; for each
i € [k] ensure the first-stage network x and the second-
stage network z; together serve the input scenario I,.
This intuitive result is closely related to the conver-
gence of the sample average approximation (SAA)
method shown by Kleywegt, Shapiro, and Homem-de
Mello (2002).

As a corollary, in this case, the dynamicity gap a of (3)
reduces a.s. to the dynamicity gap of (5): the ratio between
the cost of an optimal static solution to (5), that is one in
which we additionally require z; = zp =+ =z, =0, and
the cost of an optimal solution to (5). This equivalence

allows us to treat the dynamicity gap « := a(0) as a func-
tion a : R.g — Ry1 of the relative cost coefficient 0. In this
way, our second and main analytical contribution is a cer-
tificate of the value of dynamism (i.e., a certificate that
a(0) > 1) whenever the relative cost coefficient does not
exceed a certain value. Although this certificate is not tight
in general, we illustrate in Remark 2 (see Section 3) that
producing it does not require solving the two-stage sto-
chastic problem, and thus, it is (relatively) tractable.

Theorem 1. Suppose I, I2,..., 1" are sampled i.i.d. from a
probability distribution D over I and moreover, T — oo.
Let 0" := a(1) be the dynamicity gap of (5) when 0 = 1—
equivalently a.s., the dynamicity gap of (3) when 0 = 1. For
0 >0, we a.s. have

a(G)Zmax{QGj,l}. (6)

Our choice of notation 0':=a(1) (as opposed to
a’ := (1)) follows from the way we use (6); it implies
that if the relative cost coefficient O satisfies 0 < 6", then
a(0) > 1. We can strengthen this result to estimate a(6)
to any arbitrary precision, provided we solve a finite
number of two-stage stochastic problems (Theorem 5).

Remark 1. Tying this result back to transit, under the
transformation from (1) to (4) wherein 6:=§,, ¢, =
(04/0s) ¢, and ¢; = 1 - ¢, the condition 0 < o' is equiva-
lent to n-(6s/04) < 6. To see this, note that for any
fixed 65,04 > 0, we have
oa . T
o min Do X
__OPT* st. (x,00eP, Vie[T]

o= =
OPT &, min Zf=1<c-x+n'%-c-zt>
d

Os x,21,22,...,2T
s.t. (x,2')eP!, Vte[T]
min Y c-x
X

st. (x,0)eP, Vtel[T]
min Ztll(c-x+n-%-c-zt>
0d

x,z1,22,...,2T

s.t. (x,2) e P!, Vte[T]

By Theorem 1, the last ratio is a.s. greater than one when-
ever 0=1-(0s/04) <0, where 0" := (1) is computed
for the special case in which 0 = 17+ (65/04) = 1—for exam-
ple,ifn=1and 6, = 0,.

We view this as a quick, high-level rule of thumb
giving a green light for the full-blown integrated tran-
sit system design process; given a microtransit batch-
ing interval 0;>0 and a probability distribution D
over input scenarios Z of duration 6 :=§,, we set 1-
(85/64) = 1 to (relatively) tractably compute 6" := a(1),
with which we can certify the value of microtransit for
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certain combinations of transit frequency 0, and sur-
charge coefficient 17, namely whenever 1 -6, < 0" - 5.

By (6), higher values of 0" lead to a larger O regime
wherein the dynamicity gap a(0) is certifiably greater
than one. Therefore, as our third contribution, we use 0"
as a proxy measure for the value of dynamism and
study how it is influenced by other parameters implicit
in (3) within the context of integrated transit networks.
We conduct two sets of computational experiments.

1. Stylized experiments. We conduct exhaustive styl-
ized experiments involving a multistage version of the
Steiner tree problem as an elemental abstraction for the
design of integrated transit networks. Our goal is to
gain qualitative insights about the effects of the under-
lying network topology and the demand distribution
on the value of dynamism for network design. Our
experiments suggest that microtransit may be valuable
if demand concentrates in downtown areas as a func-
tion of their prominence yet still appears sparingly in
suburban areas. Conversely, they suggest that micro-
transit may be unnecessary in cities with high spatial seg-
regation of urban functions (e.g., residential, commercial,
industrial), wherein there is no prominent downtown
area and demand concentrates in peripheral areas.

2. Realistic experiments. We conduct more realistic
experiments involving a multistage version of the Stei-
ner forest problem and publicly available data from
New York City. Our goal is to showcase how we can
use our framework to obtain quantitative estimates of
parameter combinations under which dynamism is
certifiably valuable and to moreover gain qualitative
insights about the effects of the transit headway 0s,
microtransit batching interval 04 and surcharge coeffi-
cient 17, as well as the passengers’ tolerance to en route
detours (with respect to the shortest path in the under-
lying road network), on the value of dynamism. For
example, under the assumptions of our model, if the
transit headway is 10 minutes, microtransit is batched
every 6 minutes, and passengers tolerate detours incur-
ring up to a 25% en route travel time increase, then
dynamism is certifiably valuable whenever n <1.25. At
a qualitative level, our experiments suggest that, for
any fixed transit headway 0, the value of dynamism
increases with the microtransit batching interval 6,—
that is, assuming microtransit passengers tolerate long
wait times relative to the existing transit headway.
They moreover suggest slight gains from increased pas-
senger tolerance to en route detours, particularly for
small microtransit batching intervals. These observa-
tions can be explained as follows; tolerance to detours
enhances resource sharing for small 04 whereas for
large 04, resource sharing is naturally enhanced by the
number of travel demands per stage without the need
of increased detours. Lastly, our experiments highlight
the road segments where a static transit network might
be most useful given the historical distribution of travel

demand. Informally, we rank road segments by the fre-
quency (over the stages) with which they appear as part
of the nonanticipatory installed network, thereby pro-
viding some indication about their relative importance
as potential trunk lines and hence, about whether ser-
vice on them should be installed statically or dynami-
cally. We believe this can be leveraged in a subsequent
step of the transit system design process: the design of
the operational network. In particular, we believe fre-
quently used road segments can be combined to obtain a
good data-driven initial set of candidate lines for line plan-
ning via column generation (see Borndorfer, Grotschel,
and Pfetsch 2007, Gattermann, Harbering, and Schobel
2017).

1.4. Organization

The remainder of this paper is organized as follows. In
Section 2, we outline related work. In Section 3, we
develop our analytical framework, including the refor-
mulation of the multistage problem as a two-stage sto-
chastic problem as well as Theorem 1. In Section 4, we
describe our computational experiments and summa-
rize our findings. In Section 5, we make concluding
remarks.

2. Related Work

In Section 2.1, we outline work related to (3) as an
abstract formulation. In Section 2.2, we outline related
work around transit and on-demand systems.

2.1. Optimization Under Uncertainty

Formulation (3) resembles that of paradigms of optimi-
zation under uncertainty. In robust optimization, the
decision maker produces a solution that is feasible for
all input scenarios. In two-stage stochastic optimization
with recourse, the decision maker leverages distribu-
tional information about the problem input to produce
first-stage decisions. In the second stage, an input sce-
nario is realized, and the decision maker produces a feasi-
ble solution by complementing their first-stage decisions
with second-stage recourse actions. The objective is to
minimize the expected total cost. In two-stage adaptive opti-
mization, the decision maker similarly produces first-stage
decisions and second-stage recourse actions, except the
objective is to minimize the worst-case total cost.

The dynamicity gap measures the attainable benefit
of allowing (but not requiring) dynamic components
in the response strategy to a multistage optimization
problem. In this sense, it continues a line of work dedi-
cated to measuring the potential benefit of solving the
“true” problem at hand, compared with solving a sim-
plified version of it. An early example of this approach
is from Birge (1982) within the context of two-stage
stochastic optimization. Birge (1982) defines the wvalue
of the stochastic solution as the difference between the
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objective value attainable with first-stage decisions ob-
tained through the expected value problem (in which sto-
chastic parameters are replaced by their expectation)
and the objective value of the two-stage stochastic prob-
lem. We note that this approach necessitates that the
expected value problem encodes an instance of the prob-
lem at hand, which need not be the case if the unknown
parameters are required to take integer values. More
recent examples are from Bertsimas and Goyal (2010),
who study the relative quality of robust solutions for
two-stage stochastic and adaptive optimization pro-
blems. They define the stochasticity gap as the ratio
between the cost of an optimal solution to the robust
problem and the cost of an optimal solution to the two-
stage stochastic problem. Similarly, they define the
adaptability gap as the ratio between the cost of an opti-
mal solution to the robust problem and the cost of an
optimal solution to the two-stage adaptive problem.
Although the dynamicity gap is similar in form to these
gaps, it differs fundamentally in that (3) need not be sto-
chastic (where we have distributional information over
input parameters) or even uncertain (where we have
uncertainty set information over input parameters). (See
Ben-Tal, El Ghaoui, and Nemirovski 2009 for a detailed
explanation of the difference between the stochastic and
robust optimization paradigms.) In Online Appendix A,
we delineate how the dynamicity gap and stochasticity
gap differ as concepts even under the conditions of our
two-stage reformulation, although for the specific form of
(5) we consider, the two quantities evaluate identically
whenever 0 > 1.

Bertsimas and Goyal (2010) show, among other
structural results, that the stochasticity gap is at most
two when both the uncertainty set over the right-hand
side of the constraints and its distribution are symmetric
and there are no integer decision variables in the sec-
ond stage. Bertsimas, Goyal, and Sun (2011) study the
impact of broader geometric properties of the uncer-
tainty set and its distribution, such as symmetry, on the
relative quality of static and finitely adaptable (i.e.,
nearly static) solutions for multistage stochastic and
adaptive optimization problems. Bertsimas, Goyal, and
Lu (2015) give a tight characterization of the adaptabil-
ity gap for two-stage linear packing problems under a
general class of uncertainty sets, including settings in
which the robust solution is optimal. Awasthi, Goyal,
and Lu (2019) study another general class of uncertainty
sets, for which they give both a logarithmic hardness of
approximation result for the adaptive optimization prob-
lem and an approximation guarantee for the robust solu-
tion (ie., a bound on the adaptability gap), which is
furthermore tight up to a constant in certain settings.

Another related but distinct measure is the adaptivity
gap, introduced by Dean, Goemans, and Vondrak (2008).
They consider stochastic problems where solutions are
built incrementally via a sequence of decisions, each of

which incrementally instantiates the problem input. Then,
the adaptivity gap measures the relative benefit of
adapting the sequence of decisions in response to past
realizations.

Our approach differs from that in the references in
that we study the behavior of the dynamicity gap @ and
related measures as a function of the relative cost coeffi-
cient 0 and other implicit input parameters. Capturing
these parameters analytically easily becomes unwieldy,
and thus, we naturally take an experimental approach.
The purpose of our analytical framework is to support
experimentation by introducing tractable measures that
act as principled proxies for the value of dynamism.

The algorithmic aspects of two-stage stochastic optimi-
zation have been studied extensively. The main challenge
in two-stage stochastic optimization is that, generally
speaking, an explicit representation of the underlying dis-
tribution over input scenarios may be exponentially large.
Kleywegt, Shapiro, and Homem-de Mello (2002) show
the convergence of the SAA method, a natural Monte
Carlo simulation-based approach. Ravi and Sinha (2006)
give approximation algorithms for several problems
assuming polynomially many input scenarios. Immorlica
et al. (2004) consider several problems where the input
scenario is determined by a set of active clients and give
approximation algorithms when the clients are activated
independently and the cost between stages differs by a
constant factor—this is the type of setting we consider in
our first set of experiments. Gupta et al. (2004) provide
approximation algorithms for several problems using the
same proportionality assumption together with black box
access to the input scenario distribution. Gupta et al.
(2005) extend this framework to multistage optimization,
wherein the recourse actions become increasingly expen-
sive, and to a setting in which the relative cost coeffi-
cient depends on the input scenario. Shmoys and
Swamy (2006) also give approximation algorithms
under the black box model, but they do not require the
costs between stages to be proportional. Their method
involves a dedicated version of the ellipsoid method to
solve the arising linear programming relaxations, fol-
lowed by a simple rounding scheme.

2.2. Transit and On-Demand Systems

The design of transit systems is a mature area of research;
we point the reader to Desaulniers and Hickman (2007)
and Schobel (2012) for an overview. This is also the case
for the operation of on-demand mobility; we point the
reader to Toth and Vigo (2014) and Alonso-Mora et al.
(2017) for commonly used techniques.

The design and operation of integrated systems are an
area of increasing interest. We briefly describe some repre-
sentative work. Archetti, Speranza, and Weyland (2018)
conduct a simulation study suggesting on-demand sys-
tems can offer user-favorable service even under the pres-
ence of direct travel and transit as alternatives. Stiglic et al.
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(2018) give an optimization model for the operations of
integrated systems given an existing transit network. Their
base model is restricted to trips starting in a suburban area,
going into the city center, and in which at most two passen-
gers can share a vehicle (both passengers need to connect
through the same transit station). They find that inte-
grated systems can enhance mobility and increase tran-
sit ridership. Steiner and Irnich (2020) give a strategic
planning optimization model to integrate on-demand
services within an existing transit network. Given a
travel demand realization, their model decides on exist-
ing transit lines to maintain or suspend and what areas
to cover with the on-demand system along with transfer
points to transit (using an approximate model for
on-demand costs), as well as passenger route assignment.
Liu and Ouyang (2021) give an approximate analytic
model for the joint optimization of integrated systems on
a square region of the plane. Their objective is to mini-
mize the system-wide cost per passenger (e.g., accounting
for costs per vehicle mile, costs per vehicle hour, road con-
gestion). They assume a constant passenger arrival rate
and uniformly distributed origin-destination pairs. They
restrict the transit network to grids of uniform spacing and
the on-demand system to operate within independent
“local” squares, both determined as part of the optimiza-
tion. They find that integrated systems generally outper-
form purely fixed or purely on-demand systems, except
possibly on very small or very congested cities. Périvier
et al. (2021) consider the joint optimization of transit lines
and single-occupancy vehicle routes so as to maximize a
measure of welfare subject to a budget constraint. Given a
collection of travel demands and pool of candidate transit
lines, they develop a (1 —1/e — €)-approximation algo-
rithm when no transit-to-transit transfers are allowed.

3. Analytical Framework

We first outline some technical assumptions. As men-
tioned in Section 1.1, we represent integrated network
configurations by their characteristic vectors in {0,1}".
We assume without loss of generality that any feasible
integrated network x,z € {0,1}" satisfies x; +z; € {0,1}
for all j € [m]—because the edge costs are nonnegative,
if xj+z;=2, we can set z; = 0 and maintain origin-
destination connectivity at no greater cost. In particu-
lar, we assume that for each t€[T], (x,z') € P!, and
j € [m], we have x; +z]t- € {0,1}, meaning P' C {0,1}*".
Similarly, we assume that for each i€ [k], (x,z;) € P;,
and j € [m], we have x; +z;; € {0, 1}, where z;; is the jth
entry of z;, meaning P; C {0,1}*". We assume through-
out that the feasible configurations PLP? . Pl in
(3) are nonempty and finite. Recall p; = Prp[I' = I;] for
every t € [T]. We assume that p; > 0 for all i € [k], as oth-
erwise, we remove [; from 7. Lastly, we assume that
pi < 1foralli€ [k], as otherwise, we have a determinis-
tic single-stage problem.

3.1. Two-Stage Reformulation

In this section, we show that if the input scenarios
I'I2,...,I" are sampled i.i.d. from a probability distri-
bution D over Z and moreover, T — oo, then we can
a.s. reformulate the horizon-normalized version of the
multistage Problem (3), wherein we scale the objective
function by 1/T, as the two-stage stochastic Problem
(5). As a corollary, in this case, the dynamicity gap of (3)
reduces a.s. to the dynamicity gap of (5).

For fixed TeN and I',I%,...,I7, let Z(T) :={I, € T :
(3t € [TDI' = L]} be the set of input scenarios observed
atleast once. Note that forany t,# € [T]withI! =1 = I,
we have P! = P! = P,. Therefore, we rewrite the objec-
tive value of (3) as

min o(x,z1,22,...,21)},
(X/Zl/zz,N.,zk)ep(I(T)){gT( )}

where

k
§r(x,z1,22,. .., 21) i= Z:HfE [T):I'=I}(c-x+6-c-z)
i-1

aggregates the stage costs by the number of occurrences
of each input scenario and

P(I(T)) :={(x,z1,22,...,2) € {O/]}mx(kﬂ)
(VI € Z(T))[(x, z:) € Pil}

is the set of integrated network configurations that can
serve the set Z(T) of observed input scenarios. We nor-
malize ¢ by the horizon T'and write

Ur= mi {flT(x,zl,zz,. .z} (7)

in
(x, 217227 -+ zk)EP(I(T))
where sz(x, 21,22, .. ,2k) 1= %QT(x, 21,20, .., 2k)-
Similarly, we rewrite the objective value of (5) as

V= min {h(x,z1,22,...,21)}, (8)

(x,21,22, ..., 2)EP(T)

where

k
h(x,z1,22,...,2k) :=c~x+Zpi'9-c-zi
=1

and

PI):={(x,z1,22,...,2) € {0,1}'”X(k+1)
(VI € Dl(x,z) € Pil}

We relate the horizon-normalized version of (3)—(5)
through the relation between (7) and (8). First, we show
that the feasible regions of (7) and (8) are equal a.s. as
T — oo.

Proposition 1. If the input scenarios I',I?, ..., IT are sam-
pled iid. from a probability distribution D over I, then
I(T)=Zas.as T — oo.

Proof. For any T €N, we have Z(T) C 7 because for
every t € [T], I' = I; for some I; € Z. It remains to show
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ZCI(T) as. as T — oo. Note that for any I €7 and
any TeN, we have Prp[l; ¢ Z(T)] = (1 — pl) There-
fore,

(o)

Z Pr(Z¢Z(T)] <

Pr[l; ¢ Z(T
> Pr{1; ¢ 7(T)]

e
M» M-

/‘\

k o
=y > a-p)h,

i=1 T=1

=
I
L
i
KA

where the inequality holds by the union bound and the
second equality holds by the monotone convergence
theorem (recall p; >0 for every i€ [k]). In particular,
Sy Pro[ZZ Z(T)] < oo, and the Borel-Cantelli lemma
implies Prp[{Z € Z(T) infinitely often}] =0. O

As a consequence, we have that, under the conditions
of Proposition 1,

by = min (hr(x,z1,22,..., 20} (9)

(x,21,22, ..., 2)EP(T)

a.s. as T — oo. Note that the only difference between
Expressions (7) and (9) is in the feasible set.

For ease of notation, let P denote P(Z). For any € > 0,
let P¢ be the nonempty set of solutions to (8) within an
e-additive term from optimality and P¢ be the none-
mpty set of solutions to (7) within an e-additive term
from optimality. In particular, 7° is the set of optimal
solutions to (8), and PY is the set of optimal solutions to
(7). We use Proposition 1 to show the objective value,
and the sets of approximately optimal solutions to (7)
converge a.s. as T — oo to their counterparts in (8). The
remainder of our argument largely replicates, within
the context of our formulation, the argument of Kley-
wegt, Shapiro, and Homem-de Mello (2002) for the con-
vergence of the SAA method. We include a proof in
Online Appendix B for completeness.

Theorem 2. If the input scenarios I', I?, ..., 1" are sampled
i.i.d. from a probability distribution D over I, then

1.9r > vas.as T — oo and

2. forany e >0, P$ C P as.as T — oo.

This result has two immediate yet key consequences,
one operational and one analytical.

Corollary 1. Under the conditions of Theorem 2, we can
a.s. extend an optimal solution (x,z1,z,...,zx) to (5) to an
optimal solution to (3) by setting x as an ex ante static
response and following the natural ex post dynamic policy
for every stage t € N: if I' = I;, we respond with z' = z; so
that (x,z') = (x,z;) € P; = P'. This holds because normaliz-
ing the objective function of (3) does not change the set of
optimal solutions.

Corollary 2. Under the conditions of Theorem 2, the dyna-
micity gap a of (3) reduces a.s. to the dynamicity gap of (5).

Namely, if OPT(5) denotes the cost of an optimal solution to
(5) and OPT ) denotes the cost of an optimal static solution
to (5), that zs one in which we additionally require z1 = z,
==z, =0, then

_oPT

OPT(5) a.s.

In other words, we may study the limit behavior of «
with a framework built around (5), which is more suit-
able for parametric analysis. In light of this, for the
remainder of this work we assume the conditions of
Theorem 2 hold, drop the a.s. notation, and let OPT and
OPT* be with respect to (5) instead of the original Prob-
lem (3).

3.2. Estimating the Value of Dynamism

For ease of notation, let P = P(Z), and let I1(0) refer to
(5) explicitly parametrized by the relative cost coeffi-
cient 0 and implicitly parametrized by the distribution
DoverI.Lethg and OPT(0) refer to the objective func-
tion and objective value of T1(0), respectively. Simi-
larly, let TT*(6) refer to the static version of (5) explicitly
parametrized by 0 and OPT*(6) refer to its objective
value. Recall 0 refers to the zero vector. We begin by
showing a monotonicity property with respect to the
relative cost coefficient.

Lemma 1. For 0 < 01 < 0, < oo and (x,z1,23,...,2) €P,
we have hg, (x,21,22,...,2¢) <he,(x, 21,22, ..., 2¢). If, fur-
thermore, (x,21,2a,...,2x) € P¥, then the inequality holds
at equality.

Proof. Note that hg,(x,z1,22,...,2¢) =c-x+ Zi;l pi-
01 c- 21§Z7 1Pi- Or-c-z;= hez(x,21,22,...,zk), where
the inequality holds because ¢>0 and because

(x,z1,22,...,2) € P implies z1,2p,...,2x>0. If (x,z1,
Z2,...,2k) € P, then z; =z, ==z =0, and we have
equality. O

Corollary 3. For 0 < 01 < 6, < oo, we have (i) OPT(6,) <
OPT(6,), (ii) OPT>(0;) = OPT*(0,), and (iii) a(6,) <
0((91).

Proof. Let (x,z1,2y,...,2x) € P be an optimal solution
to I1(60,), and note that it is feasible for I'T(6;). Then,
OPT(61) < hgl (x,z1,22,...,2k) < hgz(x, 21,22,...,2r) = OPT(0,),
where the second inequality holds by Lemma 1.
OPT*(0;) = OPT>(6,) holds because z1 = zp =+ =z =
0 implies (x,z1,22,...,2k) € P* is an optimal solution
to I1%(0,) if and only if it is an optimal solution to
I1%(6). Together, these facts imply a(6,) = OPT*(0,)/
OPT(6,) = OPT*(6,)/OPT(6,) < OPT*(6,)/OPT(0;) =
a(Or). O

Next, we provide a parametric upper bound on
OPT(0) that takes as input any collection xi, Xz, .-,
X« € {01} of nonanticipatory feasible solutions to in-
putscenarios I, Ip, ..., Ii.
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Theorem 3. Let xq,Xa,-- -, Xi € {01} be such that (x;,0)
€ P; for all i € [k]. Then, for any 6 > 0, we have

OPT(6) < icj 'min{l,e- ( Z Pz‘) }/

j=1 i€[k]:x; =1

where c; is the jth entry of ¢ € RY, in (5) and x;; is the jth
entry of the ith vector x;. If in addition, x; = x + z; for all
i € [k], where (x,z1,z2,...,2x) € P is an optimal solution to
I1(0), then the inequality holds at equality.

Proof. Let S={je[m]: min{1,0- (Zie[k]:xillepf)} =1}
Define & € {0,1}", where &; = 1 if and only if j € S. Simi-
larly, for each i € [k], define ¢ € {0,1}", where Cij=1if
and only if x;; =1 yetj¢ S. By construction, (§ &) € P;
for each i € [k]. Therefore, (§,&,&,, ..., &) € P and

m

k
OPT(0)< > (c; &+ pi6og CiJ‘)
j=1 i=1
k
cj- (5]' +0- ZPi : Cz‘,j)

= 20

Il
—_

i=1

qmm{l,@( Z pl>}
i€[k]:x; =1

Now, suppose (x, z1, 22, . .., zx) € P is an optimal solution
to P(6) and x; = x + z; for all i € [k]. Note that x; € {0,1}"
for all i € [k] by assumption (the first paragraph of Section
3). First, take any decision j € [m] with x; = 1, meaning it
is chosen statically. Then, j € S, and its cost ¢; is accounted
for exactly. Conversely, take any decision j € [m] with x;
= 0, meaning it is chosen dynamically. This decision is
paid for with cost multiplied by a factor of 6 with proba-
bility Zie[k]:xi,jzlpi' Suppose 63 icpi).y, <1Pi > 1. Then,
setting x; = 1 and z;; = 0 for all i € [k] maintains feasibility
at strictly lower cost, contradicting optimality. Therefore,
its expected cost ¢;- 6 (3. X[,j=1pi) is accounted for
exactly. O

]

Remark 2. If 6 = 1 and more generally, if 0<0<1,
there is no benefit in making static decisions. We can
see this from the fact that, for any such 0, the follow-
ing holds:

Somape 2 )5 2r)

ie[k]:x; =1 kl:x; =1

Therefore, to compute the objective value of (5) with O
=1, it is sufficient to, individually for each input sce-
nario I; € Z, compute an optimal nonanticipatory solu-
tion with characteristic vector x; (i.e., a minimum cost
X; such that (x;0)€P;) and aggregate their costs
weighted by the probabilities p; for i € [k]. This is rela-
tively tractable in the sense that it does not involve
solving a two-stage stochastic problem, but a collection

of independent, deterministic single-stage optimization
problems (e.g., although the single-stage problems may
remain NP-hard and the collection may be large, their
computation can be parallelized). In the case of the Stei-
ner forest problem, we refer the reader to Ljubi¢ (2021)
for a survey of state-of-the-art solution techniques.

We moreover use the following technical result,
which we prove in Online Appendix B.

Lemma 2. Let x1, Xy, - - -, Xk € {0.1}" be such that (x;,0) €
P for all i € [k]. Then, for 0 < 61 < 8, < oo, we have

zm:c]-‘min{l,ﬁz- < Z I%)}
=1 i€[k]:x; =1
9 m
ge—j‘;q-min{l,ey ( Z Pz’) }

i€[k]:x;,;=1

In what follows, we use the results obtained thus far to
show that if we evaluate a := ¢(0) at a finite number «
of points 1 = 01 < 0, <--- < 0, < 00, we can produce esti-
mates @, &% : Ry — Ry such that, for any 6 € Ryq, we
have &~ (0) < a(0) < a*(0). The estimates @~,a" are a
concatenation of local estimates, similar to a step func-
tion, interpolating between the evaluations a(61), a(6>),
..., a(0,). Let 1 denote the indicator function.

Theorem 4. Let 1=01 <0, << 0, <Oyyp =o00. Let & :
Ry — Ryq, where

& (0)=> max{O;-(0;)/0,a(0r1)} - L{o,0<0,.,)/
=1

and let &* : Rs1 — Rsq, where

&t (0) = a0) L{,0<00.1)-
=1

Then, for any O > 1, we have
a—(0) <a(0) <a*(0).

Proof. Let O > 1, and note that 6, < 0 < 6,41 holds for
exactly one (e [x]—pick such €. If max{0;-a(6,)/6,
@(0¢+1)} = a(Bp+1), then @~ (0) = a(O¢41) < (0), where
the inequality holds by Corollary 3 and 0 < 0¢4;. Other-
wise, max{0;- a(0;)/6,a(O¢+1)} = 6O¢-a(6,)/6, and we
have
O¢-a(0;) 0, OPT*(0,) O, OPT*(0)

6 6 OPT(6,) 6 OPI(6,)

OPT*(0)

G

9—[2;11 G mjn{l/ Oc - (Eie[k]:)(,-,j:1pi)}

B OPT*(0) - OPT*(0)
~ 2 m g min{1, 0+ (X, 1)} - OPT(O0)
= a(0),

a=(0) =

where the third equality holds by Corollary 3, xy, x»,
- Xk € {01}" are such that (x;,0) € P; foralli € [k] and
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Theorem 3 holds at equality for 0, the first inequality
holds by Lemma 2, and the second inequality holds by
Theorem 3. Lastly, a*(0)=a(6;) = a(60), where the
inequality holds by Corollary 3and 6 > 6,. O

As we state next, the bounds can be made arbitrarily
tight by systematically evaluating « at sufficiently
many points. We prove the following result in Online
Appendix B.

Theorem 5. Let € >0. Let 01 =1 and Op1 =(1+€)- 0,
forall i e N. Let k = arg mingena(6¢) < 1+ €. Then, Theo-
rem 4, given 01,0, ...,0,, yields &~ and &* such that for
any 0 > 1, we have &*(0) < (1+¢)-a(0).

In light of the monotonicity result in Corollary 3, we
define 0" := arg ming-o{a(6) = 1} as the critical relative
cost coefficient after which dynamism is no longer
valuable. We then obtain the following corollary to
Theorem 5.

Corollary 4. Let x be as in the statement of Theorem 5.
Then, 6, < 6".

Theorem 5 gives a systematic way of estimating the
dynamicity gap as a function of the relative cost coeffi-
cient 0 to any arbitrary precision by evaluating it at a
finite set of points. However, evaluating it at any given
point generally involves solving the two-stage stochas-
tic Problem (5), which may be intractable. As an alterna-
tive, Remark 2 points out that evaluating the dynamicity
gap at 01 =1 is relatively tractable and that this is suffi-
cient to obtain an (albeit weaker) lower bound on the crit-
ical relative cost coefficient 0°. This is Theorem 1, which
we finally prove.

Proof of Theorem 1. For 6 > 1, the inequality a(6) >
max{0'/6,1} follows from the special case of Theo-
rem 4 with ¥ = 1. For 0 <6 <1, we use the equality
in Remark 2. The inequality 0" <6* follows from
max{0'/60,1} > 1 as long as 6" /60 > 1: that is, for any
0<6<6". O

4. Computational Experiments

We now use the framework developed in Section 3 to per-
form computational experiments around (abstractions of)
the design of integrated transit networks. Recall the advan-
tage of the bound in Theorem 1 over computing the dyna-
micity gap exactly is that it is relatively tractable, as stated
in Remark 2. In particular, using 6" := a(1) as a proxy for
measure for the value of dynamism allows us to swiftly
run comprehensive experiments. Because 6" < 0°, where
0" := arg ming.o{a(0) = 1} is the critical relative cost coef-
ficient, we can certify that the dynamicity gap is greater
than one whenever 0 < 6 < 8'. Therefore, our goal is to
understand how various input parameters implicit in (3),
equivalently (5) under the conditions of Theorem 1, influ-
ence 6. We conduct two sets of experiments.

1. In Section 4.1, we conduct stylized experiments
involving a multistage version of the Steiner tree prob-
lem as an elemental abstraction. Our goal is to gain quali-
tative insights about the effects of the network topology
and demand distribution on the value of dynamism for
network design.

2. In Section 4.2, we conduct more realistic experi-
ments involving a multistage version of the Steiner for-
est problem and publicly available data from New
York City. Our goal is to showcase how we can use our
framework to obtain quantitative estimates of parame-
ter combinations under which dynamism is certifiably
valuable and to moreover gain qualitative insights about
the effects of the transit headway 0,, microtransit batch-
ing interval 04 and surcharge coefficient 1 (see Section
1.2 for descriptions), as well as the passengers’ tolerance
to en route detours, on the value of dynamism.

4.1. Stylized Experiments

4.1.1. Setup. We consider a multistage version of the
Steiner tree problem as the most elemental abstraction
for the design of integrated transit networks. In the Stei-
ner tree problem, we are given a graph G = (V,E) and a
set I CV of terminals. The problem is to find a mini-
mum cost set of edges connecting every pair in I. The
possible input scenarios Z correspond to the possible
terminal sets. We point the reader to Online Appendix
C for an integer linear programming formulation of
this problem. In its multistage version, the connectivity
requirements of each stage are met through a combina-
tion of edges X C E picked statically and edges Z' C E
picked dynamically.

We consider all 995 unweighted connected simple
graphs on 2 < n <7 nodes. Such a list has been compiled
by Read and Wilson (1998) and is retrievable in python
through the networkx package of Hagberg, Swart, and
Chult (2008). These are admittedly small graphs, but this
is what enables us to run exhaustive experiments—the
number of such graphs grows exponentially in 1, and the
Steiner tree problem is well known to be NP-hard.

We consider probability distributions D over 7 aris-
ing from independent Bernoulli trials on the nodes. For
each u € V, let g, := Pr[u € I] be the probability that u is
a terminal. This yields a probability distribution D over
7 with

pi=Prl=1L1=]]q ][] 1 ~q) (10)

uel;  ueV\l

for all i € [k]. Different choice of parameters 0 <g, <1
for u € V yields different distributions. We test three
different rules to generate these parameters.

1.1f g, = 1/2 for each u € V, then Equation (10) yields
pi=1/2" for each i€ [k]. This is the uniform distribu-
tion over Z, which we denote by U/.

For u,veV, let {(u,v) be the shortest-path length
between u and v (e.g., with respect to costs ¢ : E — Ryx).
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The closeness centrality of a node u € V, denoted by C(u),
is given by C(u):=(n—1)/>",.,¢(u,v). This centrality
measure, first introduced by Bavelas (1950), characterizes
anode as “central” if it is close to all other nodes. We say
a node is “peripheral” if it is not central. Intuitively, if
G = (V, E) represents a road network, nodes in a promi-
nent downtown area are “central,” whereas nodes in a
suburban area are “peripheral.”

2.1t g, =C(u)-n/(n—1) for each u € V, then Equation
(10) yields a distribution biased toward terminal sets consist-
ing of “central” nodes yet still supported on “peripheral”
nodes. We denote this distribution by D**". Intuitively,
we think of D**" as a distribution where demand con-
centrates in downtown areas as a function of how
“central” they are but still arises sparingly elsewhere.

3. Conversely, if g, =1—C(u)-n/(n—1) foreachu €V,
then Equation (10) yields a distribution biased toward
terminal sets consisting of “peripheral” nodes yet still
supported on “central” nodes. We denote this distribu-
tion by D", Intuitively, we think of D" as a distri-
bution where demand concentrates in suburban areas
as a function of how “peripheral” they are but still
arises sparingly elsewhere.

Lastly, to study the effects of the underlying topol-
ogy, we characterize graphs through three different
measures of connectivity.

1. The average degree of a graph G, denoted by d(G), is
the average degree over all nodes. Formally, d(G) :=
Y ouey W(u) | /n=2m/n, where N'(u) CV is the set of
neighborsof u € V.

2. The average node connectivity of a graph G, first
introduced by Beineke, Oellermann, and Pippert (2002)
and denoted by %(G), is the average, over all pairs
of nodes, of the maximum number of internally node-
disjoint paths connecting them. Formally, x(G):=
> wvevasokc(1,0)/ g;), where x¢(u,0) is the maximum
number of internally node-disjoint paths connecting u
and vin G.

3. Let Lg be the Laplacian matrix of a graph G and
A1, Ay, ..., Ay be its eigenvalues, counting multiplicities,
in decreasing order. The algebraic connectivity of G,
denoted by a(G), is the second smallest eigenvalue of
L counting multiplicities. That is, a(G) := A,,_1. It holds
that a(G) > 0 if and only if G is connected. It, moreover,
holds that a(G) < n, with the inequality holding at equal-
ity if and only if G is the complete graph on 7 nodes.

We note that these connectivity measures are related
in subtle ways. For example, Das (2018) has shown that
a(G) —d(G) > 4 — n — 4/n and has moreover character-
ized when the inequality holds at equality. See New-
man (2018) for a comprehensive description of these
measures.

4.1.2. Results. For very small graphs, we derive ana-
lytic expressions for a(6). There is one connected graph
with n = 2, namely the complete graph K, = (V,E) with

V' ={1,2} and E ={{1,2}}. The collection of possible
terminal sets is Z = {I,I, 15,14}, where I =0, I = {1},
I; ={2}, and I; = {1,2}. Similarly, there are two con-
nected graphs with n = 3, namely the path P; = (V,E)
with V={1,2,3} and E = {{1,2},{2,3}} and the com-
plete graph K3 = (V,E) with V ={1,2,3} and E = {{1,2},
{2,3},{1,3}}. The collection of possible terminal sets is
1= {11,12,. . .,Ig}, where 11 = @, 12 = {1}, 13 = {2}, 14 =
{3}, 5=1{1,2}, s =1{2,3},I; ={1,3}, and Is={1,2,3}.
We summarize our expressions in Table 2 and point the
reader to Online Appendix C for derivations.

Table 2 showcases how we may fix a set of character-
istic vectors forming an input to Theorem 3 to obtain
analytic estimates expressions for (0). For any fixed 6
and distribution D, we may produce exact estimates by
exhausting all possible characteristic vectors in Theo-
rem 3. Indeed, the expressions in Table 2 are exact for 0
=1 and the uniform distribution ¢, in which case 6" = 4
on Ky, 61 =2.6 on P3, and 6" =32 on K3 (see Online
Appendix C).

For larger graphs, we transition to a computational
study. In Figure 1, we present scatterplots of 0" as a
function of graph connectivity measures for graphs on
n =7 nodes and different distributions D over Z. We
point to Online Appendix C for similar figures for
graphs on 4 <n <6 nodes and error curves (in gap
form) of the bound in Theorem 1 relative to the exact
value of a(0) for 6 > 1.

Figure 1 shows medium to strong correlation between
graph connectivity and the value of dynamism. For the dis-
tribution D**™ biased toward “central” nodes, dynamism
tends to be more valuable on sparsely connected graphs.
This can be explained as follows; in well-connected graphs,
a large proportion of nodes are highly “central,” in which
case a large proportion of nodes are “almost always” (in a
colloquial sense of the term) terminals under D**™. Given
that road networks are far from being complete graphs,
this supports the notion that microtransit may be valuable
if demand concentrates in downtown areas as a function of
their prominence yet still appears sparingly in suburban
areas. Conversely, for the uniform distribution ¢/ and
the distribution D" biased toward “peripheral” nodes,
dynamism tends to be more valuable on well-connected
graphs. This can be explained as follows; in sparsely con-
nected graphs, a large proportion of edges are utilized
under most input scenarios (especially if terminals are
likely to be on the “periphery,” as is the case for both 2/ and
D), rendering dynamism unnecessary. This suggests
that in cities with high spatial segregation of urban functions
(e.g., residential, commercial, industrial), wherein there is
no prominent “downtown” and demand concentrates in
“peripheral” areas, microtransit may be unnecessary.

4.2. Realistic Experiments
4.2.1. Setup. We now consider a more realistic abstrac-
tion for the design of integrated transit networks—the
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Table 2. Analytic Expressions for a(60) for Our Multistage Steiner Tree Problem on Graphs K5, P5, and K5 and a Generic

Distribution D over 7

Ky Ps K
2 2
_ 1 —
a(@)  =max{1, 7o} min{1, (ps + p7 + ps) - O} + min{1, (po + pr +p) -0} = min{1, (ps + ps) - 0} + min{1, (ps + ps) - 0} + min{1, p; - 0}

Steiner forest problem and its multistage version, as
described in Sections 1.1 and 1.2, respectively. We obtain
a crowdsourced graph G = (V, E) representing the Man-
hattan road network through the osmnx package of Boe-
ing (2017). The nodes V represent intersections, and the
edges E represent road segments weighted by length c:
E — Ry in meters. We treat length as a proxy for both
operating cost and travel time. We represent travel
demand with taxi trip records from June 2016, avail-
able for download from the NYC Taxi and Limousine
Commission (2021).

To bring this abstraction closer to reality and to re-
duce the number of variables needed in our integer lin-
ear programming formulations via multicommodity
flows, we impose detour constraints on pairwise con-
nectivity. Namely, if I' is the travel demand during
the tth stage, (u,v) €', and the shortest-path length
between u and vin G with respect to costsc: E — Ry is
{(u,v), then the shortest-path length between 1 and v in
the integrated network during the tth stage must be
less than or equal to p - £(u, v) for some allowable detour
factorp > 1.

We preprocess the raw data as follows. For tractability
purposes, we focus on a subset of Manhattan roughly
south of the Flatiron Building and prune G accordingly.
We turn G into a simple undirected graph after deleting
any self-loops, bidirecting every edge, and removing any
duplicates. We delete any nodes of unit degree and con-
tract any edges shorter than 30 meters. To account for
lower speed limits and lower traffic light priority on
streets (roughly traversing G from east to west) compared
with avenues (roughly traversing G from south to north),
we augment the length of edges labeled as “residential”
or as “unclassified” by a factor of 1.5—road class labels
are part of the crowdsourced data obtained via osmnx.
We focus on trips starting on weekdays between 7:00 a.m.
and 8:00 a.m. We match the geographical start of a trip
(encoded by latitude and longitude) to the nearest node in
G and discard the trip if the Euclidean distance exceeds
250 meters. We do the same with the geographical end of
a trip. We discard any trips shorter than 1,1000 meters as
these are unlikely to take place in transit.

Recall from Section 1.2 that 6 is the stage duration,
that 6, is the microtransit batching interval, and that we
match 0 := §,. Given any fixed 6,4, we distribute the trips
into bins of uniform duration 6 := §, based on their start
timestamp. The trips assigned to each bin constitute the
input scenario of each stage—we assume these satisfy
the i.i.d. condition of Theorem 2. Because the data are

finite, the number of stages depends on the choice of
04. For example, because there were 22 weekdays in
July 2016, we have (60/1) - 22 = 1,320 stages for 6; =1
minute but only (60/15) - 22 = 88 stages for 6; = 15 min-
utes. Because trips correspond to the same hourly inter-
val on weekdays, for binning purposes we focus on 0,
a divisor of 60 minutes.

We aim to use 0" := a(1) as a proxy for the critical rel-
ative cost coefficient 0" :=arg ming.o{a(6) =1}. We
compute OPT(1) by solving each stage independently
in a nonanticipatory manner, as justified in Remark 2.
We do so with a 5% optimality tolerance and a time-out
of max{10, 5;} minutes. If there are T € N stages, we let
pi=[{t€[T]:I'=L}|/T for all i € [k]. However, for our
scale of G, computing OPT?* remains challenging as the
Steiner forest problem is NP-hard. Therefore, as a poly-
nomial time solvable approximation, we use the length
of a minimum spanning tree of G. We justify this as
follows.

Proposition 2. Let ' := ¢(MST(G))/OPT(1), where {(MST(G))
denotes the length of a minimum length spanning tree of G.
If the input scenarios I',I?,..., 1" are sampled i.i.d. from a
probability distribution D over T with p; >0 for all i € [k],
thena.s.as T — oo, we have 0T > 6F.

Proof. By Proposition 1, Z(T) = Z a.s. as T — co. In par-
ticular, VxV e€Z(T) as. as T — oo, which requires
any optimal static solution to contain a spanning tree.
By nonnegativity of the edge lengths, any circuit-
creating edges (which may exist because of the detour
constraints) can be removed at no additional cost.
Then, 6" := OPT*(1)/OPT(1) > £(MST(G))/OPT(1). O

An alternative proof with more realistic assumptions
(but heavier notation) observes that, as T — oo, we a.s.
observe at least one travel demand for each possible
origin-destination pair in the city. Therefore, the opti-
mal static solution should at least span all of V.

4.2.2. Results. Recall the condition 1+ (65/0,) < 0" cer-
tifying the value of dynamism in Remark 1. For any
fixed stage duration 6:=0,; and any fixed allowable
detour factor p, our experiments use Proposition 2 to com-
pute the lower bound 0" on 6" —this allows us to certify
the value of dynamism whenever n-(5/0,) < 0%, If

0s = 04, the condition reduces to 1 < @’L; More generally,
for 65 # 04, the condition reduces ton < o (6, /0s).

Figure 2 shows the term 0" - (64/05) as a function of
04, 05, and p for 64 < 6—which is to say that the
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Figure 1. (Color online) Plot of 6" := a(1) as a Function of Graph Connectivity Measures for the Multistage Steiner Tree Problem
on Graphs on n = 7 Nodes and Different Distributions D over Z: the Uniform Distribution ¢, the Distribution Dreent Biased

Toward “Central” Nodes, and the Distribution D! Biased Toward “Peripheral” Nodes
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Note. The dashed lines correspond to linear fits.

microtransit batching interval less than or equal to the
transit headway. In this way, we obtain quantitative
estimates on the parameter combinations under which
dynamism is certifiably valuable. For example, the
curves suggest that if the microtransit batching interval
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and the transit headway are each 15 minutes, then on-
demand integration is worthwhile as long as the sur-
charge coefficient 1) is less than around 1.5. We caution
that these experiments, although more realistic than those
in Section 4.1, are still based on an abstraction that does
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Figure 2. (Color online) 0% (5, /5) as a Function of 0,4, 05, and p

p=5/4

p=4/3

p=23/2

15 20 0

ds .[min]

d, i;lli[l]

Notes. The left, center, and right panels correspond to p equal to 5/4, 4/3, and 3/2, respectively. Within each panel, each curve corresponds to a
different choice of 6 := §,, as indicated by the legend. For fixed 64, s, and p, we certify the value of dynamism for surcharge coefficient 1 less
than the value along the corresponding curve. For example, if 0, = 6 and p = 5/4 (i.e., the curve third from the left in the left panel) and moreover,
0s = 10, we can certify the value of dynamism for n < 1.25 (i.e., the vertical axis value of the curve at the horizontal axis value of 10).

not capture factors such as demand-side effects, fleet size,
vehicle capacities, and rebalancing. Nevertheless, the fig-
ure provides robust qualitative insights. First, for any
fixed transit headway 0s, the value of dynamism in-
creases with the microtransit batching interval 0, assum-
ing passengers tolerate longer waiting times relative to
the transit headway. This effect is amplified for small o,
where the surcharge coefficient 7 can be large—for very
small o,, transit operations are already very costly, in
which case microtransit can be valuable even if the sur-
charge coefficient is very large (again, assuming pas-
sengers tolerate long waiting times relative to the
transit headway). We moreover observe slight gains
from increased passenger tolerance to detours as cap-
tured by p, particularly for small 6;. Namely, if we treat
ot .= é+(6d, p) as a function 01 Rog X Rog — R, the
plots show that for fixed 6; and p, > p,, we have

0% (64, py) = 0% (54, p,)- These effects can be explained as
follows; for small 0,4, there are fewer requests per stage,
and so, travel demands are met with more direct, less
shared paths. In this case, increasing p enhances sharing,
thereby reducing costs. For large 04 there are more
requests per stage, and so, travel demands are more likely
to overlap, naturally enhancing sharing without the need
of increasing p. In other words, the longer customers wait
to be served by the dynamic system, the cheaper it is for
the system to offer them shared yet direct travel.

The effects of 6, are further evidenced in Figure 3.
Recall we compute an optimal nonanticipatory solu-
tion with characteristic vector x' for input scenario I €
7 (i.e.,a minimum cost ' such that (x/,0) € P') individ-
ually for each stage t € [T]. For each j € [m] correspond-
ing to the jth edge, we compute the frequency
{telT]: )(]4 = 1}|/T with which it appears as part of the

Figure 3. (Color online) We Compute an Optimal Nonanticipatory Solution Independently for Each Stage t € [T], with p =5/4

and Different Choices of 6 := ¢, in Minutes

Notes. The darker a road segment, the higher its frequency (over the stages) as part of the installed network. (Left panel) 6; = 1 (minutes). (Center

panel) 0,4 = 6 (minutes). (Right panel) 6; = 15 (minutes).
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nonanticipatory solutions. In other words, we rank
road segments by the frequency (over the stages) with
which they appear as part of the installed network and
thereby, their importance as potential trunk lines. We
observe that the smaller 6 := ¢, is, the fewer high rank
road segments there are. However, these few road seg-
ments are precisely the best candidates for forming the
static network; they appear as part of the installed net-
work in most stages despite the fact that there are few
requests per stage for small 6,—they are the ones that
enable sharing. We believe this can be leveraged in a
subsequent step of the transit system design process:
the design of the operational network. In particular, we
believe frequently used road segments, especially those
that are frequently used for small 6 := §,, can be com-
bined to obtain a good data-driven initial set of candi-
date lines for line planning via column generation (see
Borndorfer, Grotschel, and Pfetsch 2007, Gattermann,
Harbering, and Schobel 2017).

5. Conclusions

Our goal with this work is to provide a principled and
tractable analytical framework with which to study the
value of dynamism, as quantified by the dynamicity
gap and related measures. Our main practical motivation
is the ongoing debate regarding the value of on-demand
integration in transit systems. We showcase our frame-
work with two sets of computational experiments involv-
ing high-level abstractions of integrated transit systems.
Our abstractions are by no means an exact representation
of the real world; producing and solving such models are
research problems in and of themselves. However, we
believe they capture the essence of the real-world problem
sufficiently well to provide qualitative insight about the
conditions under which on-demand integration might
be most valuable. We hope this style of characterization
enables accessible insight for both researchers and practi-
tioners: given the problem at hand, leverage knowledge
about the input parameters to quickly assess whether
dynamism is worthwhile investment.

Going forward, we are interested in expanding our
framework and experiments to handle enhanced models
with more realistic operational features and moreover, in
studying the value of dynamism in settings not necessar-
ily related to network design. We are also interested in
studying the value of dynamism while relaxing a crucial
assumption in our framework, namely that the input sce-
narios are sampled ii.d. on every stage. Although it may
be much more challenging to obtain convergence results,
we believe capturing stage dependence and stage transi-
tion costs (e.g., in our context, microtransit rebalancing)
would significantly enhance our models.
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