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Abstract. The rise of on-demand mobility technologies over the past decade has sparked 
interest in the integration of traditional transit and on-demand systems. One of the main rea
sons behind this is the potential to address a fundamental trade-off in transit: the ridership ver
sus coverage dilemma. However, unlike purely fixed systems or purely on-demand systems, 
integrated systems are not well understood; their planning and operational problems are sig
nificantly more challenging, and their broader implications are the source of a heated debate. 
Motivated by this debate, we introduce the dynamicity gap, a general concept that quantifies 
the attainable benefit of allowing (but not requiring) dynamic components in the response 
strategy to a multistage optimization problem. Although computing the dynamicity gap 
exactly may be intractable, we develop an analytical framework with which to approximate it 
as a function of problem input parameters. The framework allows us to certify the value of 
dynamism (i.e., a dynamicity gap greater than one) for certain combinations of problem input 
parameters. We showcase our approach with two sets of computational experiments, from 
which we gain both qualitative and quantitative insights about the settings in which the inte
gration of transit and on-demand systems may certifiably be a worthwhile investment.
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1. Introduction
The design of transit systems is a classical yet persis
tently challenging problem. Part of the difficulty stems 
from the complexity of the application domain—it has 
multiple interacting components such as the physical 
infrastructure network (e.g., the network of bus lanes), 
the operational network (e.g., the set of bus lines), time
tables, and crew and fleet schedules. To add to this, there 
may be multiple objectives and/or quality of service tar
gets, often without a clear mathematical description and 
in conflict with one another. As a result, there is no single 
“global” optimization problem, and if there was, it 
would not be tractable. Rather, the design of transit sys
tems is typically decomposed into a sequence of steps, 
starting from the bare bones—the design of the physical 
infrastructure network—and continuing on toward 
increasingly operational considerations. Even when the 
process is decomposed, the optimization problems aris
ing in each step are usually NP-hard (see Desaulniers 
and Hickman 2007 and Schöbel 2012 for an overview of 
the transit system design process).

The rise of on-demand mobility technologies over 
the past decade has sparked interest in the integration 

of traditional transit and on-demand systems—the 
number of microtransit (i.e., high-capacity on-demand 
shuttles) pilot programs conducted by transit agencies 
across the United States is a testament to this (see Wes
tervelt et al. 2018 for a compilation of experiences). One 
of the main reasons behind this is the potential for 
microtransit to address a fundamental trade-off in tran
sit: the ridership versus coverage dilemma. It is well 
known that, given a limited budget, transit networks 
that maximize ridership and transit networks that max
imize coverage (e.g., the geographical service area) tend 
to be vastly different (see Walker 2012 for a practitioner- 
oriented discussion). Intuitively, integrated systems 
may bridge this gap by letting each subsystem do what it 
does best; transit should focus on ridership, microtransit 
should extend coverage as a first/last mile service, and 
the two should be jointly optimized.

However, unlike purely fixed systems or purely 
on-demand systems, integrated systems are not well 
understood; their planning and operational problems are 
significantly more challenging, and their broader implica
tions are the source of a heated debate. Some transporta
tion researchers and practitioners have suggested that 
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on-demand systems can complement traditional transit 
(e.g., Feigon and Murphy 2016, Shaheen and Chan 
2016, Alonso-González et al. 2018, Hall, Palsson, and 
Price 2018, Stiglic et al. 2018, Liu and Ouyang 2021). At 
the same time, others have raised concerns about or 
even flat-out dismissed the supposed benefits (e.g., 
Walker 2012, 2018; Rayle et al. 2016; Westervelt et al. 
2018; Merlin 2019).

Motivated by this debate, we introduce the dynamicity 
gap, a general concept that quantifies the attainable bene
fit of allowing (but not requiring) dynamic components 
in the response strategy for a multistage optimization 
problem. We study the dynamicity gap within the con
text of the strategic planning of transit infrastructure net
works: the first step in the transit system design process 
and arguably, the most decisive one because all subse
quent steps depend on it. However, we note that the con
cept is more generally applicable in domains where 
goals can be met through a combination of static and 
dynamic (i.e., stage-specific) decisions. Our contribu
tions are threefold. 

1. As a conceptual contribution, we introduce the 
dynamicity gap.

2. Computing the dynamicity gap exactly may be 
intractable. Therefore, as a methodological contribu
tion, we develop an analytical framework with which 
to approximate it as a function of the problem input 
parameters. The framework allows us to certify the 
value of dynamism (i.e., a dynamicity gap greater than 
one) for certain combinations of input parameters.

3. We study the dynamicity gap within the context of 
the strategic planning of transit infrastructure networks. 
We pose the design of integrated transit networks as a 

multistage network design problem and showcase our 
analytical framework with two sets of computational 
experiments. As a scientific contribution, we provide 
both qualitative and quantitative insights about the set
tings in which the integration of transit and on-demand 
systems may certifiably be a worthwhile investment.

As we formalize our study, we point to Table 1 for a 
summary of notation.

1.1. Design of Transit Networks
We study the dynamicity gap within the context of cen
trally designed integrated transit networks. To this end, 
we first describe the Steiner forest problem, the prototypi
cal problem in network design. We focus on this abstrac
tion because it lends itself to mathematical analysis and 
comprehensive experimentation that we believe to be 
useful at the level of the strategic planning of transit 
infrastructure networks. One can in principle enhance it 
with operational features such as capacity constraints, 
detour constraints (i.e., ensuring travel demand is met 
through relatively direct routes), fleet rebalancing con
straints, pricing, and consumer choice models; by ex
tending the notion of picking edges to picking “lines” 
(i.e., picking paths in G); by limiting the number of line 
transfers passengers can take; and so on. However, we 
note that producing and efficiently solving the resulting 
models are research areas in and of themselves (see Bert
simas, Ng, and Yan 2020, 2021; Luo, Samaranayake, and 
Banerjee 2021 for some recent representative work).

In the Steiner forest problem, we are given a connected 
graph G � (V, E) with costs c : E → R≥0 and a collection 
I ⊆ V × V of origin-destination pairs. The problem is to 
find a minimum cost subset X ⊆ E of edges supporting a 

Table 1. Summary of Notation

Symbol Description

G � (V, E) Underlying graph topology
T ∈ N Number of stages
δ > 0 Stage duration
I :� {I1, I2, : : : , Ik} ⊆ 2V×V Possible input scenarios (also known as travel demand realizations)
Ii ∈ I ith possible input scenario
It ∈ I Input scenario during the tth stage
Pi ⊆ {0,1}

2m Set of integrated networks configurations that can serve Ii
Pt ⊆ {0,1}

2m Set of integrated networks configurations that can serve It

(x, zi) ∈ Pi Integrated static x and dynamic zi network that can serve Ii
(x, zt) ∈ Pt Integrated static x and dynamic zt network that can serve It

D Probability distribution over I
pi PrD[It � Ii] for every t ∈ [T]

cs :� cs(δ) ∈ Rm
≥0 Per-stage cost vector for static network (with usage duration δ)

cd :� cd(δ) ∈ Rm
≥0 Per-stage cost vector for dynamic network (with usage duration δ)

c ∈ Rm
≥0 Cost vector for a single run of the static network

η > 0 Surcharge coefficient
δs > 0 Transit headway
δd > 0 Microtransit batching interval
α ≥ 1 Dynamicity gap (see (2) for definition)
θ > 0 Relative cost coefficient (in Remark 1, let δ :� δd and θ � η · (δs=δd))
θ† :� α(1) Dynamicity gap when θ � 1 (see Theorem 1)
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path between each origin-destination pair. In the context 
of transit, G represents the underlying graph topology 
(e.g., a road network), I represents the travel demand, and 
X represents the installed network. More generally, we 
aim to distinguish between two types of installed net
works: a transit network and a microtransit network. 
Therefore, we extend the Steiner forest abstraction by 
allowing us to pick two subsets X, Z ⊆ E of edges such 
that (s.t.) X ∪ Z supports a path between each origin- 
destination pair. We treat X as a transit network and Z as a 
microtransit network so that X ∪ Z is an integrated net
work—this distinction becomes much more meaningful in 
Section 1.2 and beyond, where we consider a multistage 
version of the problem. Going forward, we represent sub
sets X, Z ⊆ E of edges by their characteristic vectors x, z ∈

{0,1}
m where m � |E|.

1.2. Dynamicity Gap
We consider a multistage version of the design of inte
grated transit networks, wherein the transit network is 
static, whereas the microtransit network is dynamic. 
The temporal planning horizon is partitioned into T ∈

N stages indexed by [T] :� {1, 2, : : : , T}. It is implicit that 
each stage has a (say uniform) duration δ > 0; we elabo
rate on this shortly. Let I :� {I1, I2, : : : , Ik} ⊆ 2V×V be 
the collection of possible travel demand realizations 
(i.e., the collection of possible sets of origin-destination 
pairs), which we also refer to as input scenarios. For 
each t ∈ [T], let It ∈ I be the travel demand during the 
tth stage and Pt be the finite and nonempty set of inte
grated network configurations that can serve it. Let x ∈

{0, 1}
m be decision variables corresponding to the static 

network (e.g., transit) paid for at cost cs :� cs(δ) ∈ Rm
≥0 

on every stage. Let z1, z2, : : : , zT ∈ {0,1}
m be decision 

variables corresponding to the dynamic network (e.g., 
microtransit) over the stages, each paid for at cost 
cd :� cd(δ) ∈ Rm

≥0. For a, b ∈ Rm, let a · b �
Pm

j�1 ajbj de
note their dot product. Then, the design of integrated 
transit networks can be posed as a multistage optimiza
tion problem of the form

min
x,z1,z2, : : : ,zT

XT

t�1
(cs · x + cd · zt)

s:t: (x, zt) ∈ Pt, ∀t ∈ [T]:

(1) 

The constraints (x, zt) ∈ Pt for each t ∈ [T] ensure the 
static network x and the dynamic network zt together 
serve the travel demand It during the tth stage.

We emphasize the general dependency of the per- 
stage costs cs :� cs(δ) and cd :� cd(δ) on the stage dura
tion δ. If a system operates at a timescale different from 
δ, it is crucial that its per-stage cost is appropriately pro
rated. To illustrate this, let c ∈ Rm

≥0 encode the cost of a 
single dispatch of the static system (e.g., the cost per 
vehicle mile times the total vehicle miles covered by 
transit in a single dispatch of all routes) and η · c encode 

the cost of a single dispatch of the dynamic system, for 
some η > 0. The surcharge coefficient η captures the 
notion that static systems and dynamic systems have 
different operational costs on a per-mile basis, indepen
dent of their relative frequencies (e.g., accounting only 
for backend costs such as fuel, labor, and use of soft
ware). We allow the systems to have different time
scales by distinguishing between the transit headway 
δs > 0 (i.e., the time interval between subsequent transit 
dispatches) and the microtransit batching interval δd >

0 (i.e., the time interval over which incoming travel 
demands are aggregated and microtransit routes reop
timized). Then, we prorate the per-stage costs of transit 
and microtransit as cs � (δ=δs) · c and cd � (δ=δd) · η · c, 
respectively. For example, if the stages are of duration δ 
� 1 minute, a transit system with headway δs � 10 min
utes incurs only 1/10th of its dispatch cost on any given 
stage. Going forward, we tie the stage duration to the 
microtransit batching interval so that δ :� δd.

Let OPT denote the cost of an optimal solution to (1) 
and OPTΣ denote the cost of an optimal static solution 
to (1): that is, one in which we additionally require 
z1 � z2 � ⋯� zT � 0, where 0 refers to the zero vector. 
We define the dynamicity gap α of (1) as the unitless coef
ficient

α :�
OPTΣ

OPT ≥ 1: (2) 

Large values of α indicate large gains from introducing 
dynamism. Conversely, values of α close or equal to 
one indicate little to no gains from introducing dyna
mism. In this way, the dynamicity gap quantifies the 
value of dynamism.

1.3. Summary of Results
The dynamicity gap α quantifies the value of dyna
mism, but computing it involves solving (1), which 
may be intractable. Moreover, we observe from (1) that 
α is influenced by implicit and explicit parameters such 
as the costs cs and cd, the stage duration δ, and the rela
tionship between the sets of feasible configurations 
P1,P2, : : : ,PT.

The overarching goal of this work is to parametrically 
study the behavior of α without the need of solving the 
underlying multistage optimization problem. To this 
end, we assume cs � c for some c ∈ Rm

≥0 and cd � θ · c for 
some relative cost coefficient θ > 0. That is, we restrict 
our analysis to problems of the form

min
x,z1,z2, : : : ,zT

XT

t�1
(c · x +θ · c · zt)

s:t: (x, zt) ∈ Pt, ∀t ∈ [T]:

(3) 

However, when tying this form back to transit, we 
assume δ :� δd, and as described in Section 1.2, we pro
rate the per-stage costs as cs � (δd=δs) · c and cd � η · c. 
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Then, for any fixed δs,δd > 0, form (1) becomes

min
x,z1,z2, : : :,zT

XT

t�1

δd
δs

·c ·x+η ·c ·zt
� �

s:t: (x,zt) ∈Pt, ∀t ∈ [T]

�

δd
δs

· min
x,z1,z2, : : :,zT

XT

t�1
c ·x+η ·

δs

δd
·c ·zt

� �

s:t: (x,zt) ∈Pt, ∀t ∈ [T]:

(4) 

Note that this is a scaled version of (3) with θ � η·
(δs=δd). In this way, we embed any dependency on 
η,δs,δd within θ, which then captures both the differ
ence in service frequency and the difference in opera
tional costs on a per-mile basis.

Our analytical contributions around (3) are with respect 
to the case in which the input scenarios I1, I2, : : : , IT are 
independent and identically distributed (i.i.d.) with proba
bility distribution D over I . This constitutes a speciali
zation because in our definition (2) of dynamicity gap, 
the sequence of input scenarios need not be stochastic 
(where we have distributional information over input 
parameters) or even uncertain (as in robust optimization, 
where we only uncertainty set information over input para
meters). We first show that if the input scenarios I1, I2, 
: : : , IT are sampled i.i.d. from a probability distribution D 

over I and moreover, T → ∞, then we can reformulate 
almost surely (a.s.) the horizon-normalized version of the 
multistage Problem (3), wherein we scale the objective 
function by 1=T, as the two-stage stochastic problem:

min
x,z1,z2, : : : ,zk

c · x +
Xk

i�1
pi ·θ · c · zi

s:t: (x, zi) ∈ Pi, ∀i ∈ [k]:

(5) 

Recall I :� {I1, I2, : : : , Ik} is the collection of possible 
input scenarios. For each i ∈ [k], let Ii ∈ I be the ith input 
scenario, and let Pi be the finite and nonempty set of 
integrated network configurations that can serve it. Let 
pi � PrD[It � Ii] for every t ∈ [T]. Let x ∈ {0,1}

m be deci
sion variables corresponding to the first-stage network, 
and for each i ∈ [k], let zi ∈ {0,1}

m be decision variables 
corresponding to the second-stage network under in
put scenario Ii. Then, the constraints (x, zi) ∈ Pi for each 
i ∈ [k] ensure the first-stage network x and the second- 
stage network zi together serve the input scenario Ii. 
This intuitive result is closely related to the conver
gence of the sample average approximation (SAA) 
method shown by Kleywegt, Shapiro, and Homem-de 
Mello (2002).

As a corollary, in this case, the dynamicity gap α of (3) 
reduces a.s. to the dynamicity gap of (5): the ratio between 
the cost of an optimal static solution to (5), that is one in 
which we additionally require z1 � z2 � ⋯ � zk � 0, and 
the cost of an optimal solution to (5). This equivalence 

allows us to treat the dynamicity gap α :� α(θ) as a func
tion α : R>0 → R≥1 of the relative cost coefficient θ. In this 
way, our second and main analytical contribution is a cer
tificate of the value of dynamism (i.e., a certificate that 
α(θ) > 1) whenever the relative cost coefficient does not 
exceed a certain value. Although this certificate is not tight 
in general, we illustrate in Remark 2 (see Section 3) that 
producing it does not require solving the two-stage sto
chastic problem, and thus, it is (relatively) tractable.

Theorem 1. Suppose I1, I2, : : : , IT are sampled i.i.d. from a 
probability distribution D over I and moreover, T → ∞. 
Let θ† :� α(1) be the dynamicity gap of (5) when θ � 1— 
equivalently a.s., the dynamicity gap of (3) when θ � 1. For 
θ > 0, we a.s. have

α(θ) ≥ max θ
†

θ
, 1

� �

: (6) 

Our choice of notation θ† :� α(1) (as opposed to 
α† :� α(1)) follows from the way we use (6); it implies 
that if the relative cost coefficient θ satisfies θ < θ†, then 
α(θ) > 1. We can strengthen this result to estimate α(θ)

to any arbitrary precision, provided we solve a finite 
number of two-stage stochastic problems (Theorem 5).

Remark 1. Tying this result back to transit, under the 
transformation from (1) to (4) wherein δ :� δd, cs �

(δd=δs) · c, and cd � η · c, the condition θ < θ† is equiva
lent to η · (δs=δd) < θ†. To see this, note that for any 
fixed δs,δd > 0, we have

α :�
OPTΣ

OPT
�

δd
δs

· min
x

PT
t�1 c · x

s:t: (x, 0) ∈ Pt, ∀t ∈ [T]

δd
δs

· min
x,z1,z2, : : : ,zT

PT
t�1 c · x + η ·

δs

δd
· c · zt

� �

s:t: (x, zt) ∈ Pt, ∀t ∈ [T]

�

min
x

PT
t�1 c · x

s:t: (x, 0) ∈ Pt, ∀t ∈ [T]

min
x,z1,z2, : : : ,zT

PT
t�1 c · x + η ·

δs

δd
· c · zt

� �

s:t: (x, zt) ∈ Pt, ∀t ∈ [T]

:

By Theorem 1, the last ratio is a.s. greater than one when
ever θ � η · (δs=δd) < θ†, where θ† :� α(1) is computed 
for the special case in which θ � η · (δs=δd) � 1—for exam
ple, if η � 1 and δs � δd.

We view this as a quick, high-level rule of thumb 
giving a green light for the full-blown integrated tran
sit system design process; given a microtransit batch
ing interval δd > 0 and a probability distribution D 

over input scenarios I of duration δ :� δd, we set η ·

(δs=δd) � 1 to (relatively) tractably compute θ† :� α(1), 
with which we can certify the value of microtransit for 
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certain combinations of transit frequency δs and sur
charge coefficient η, namely whenever η · δs < θ† · δd.

By (6), higher values of θ† lead to a larger θ regime 
wherein the dynamicity gap α(θ) is certifiably greater 
than one. Therefore, as our third contribution, we use θ† 

as a proxy measure for the value of dynamism and 
study how it is influenced by other parameters implicit 
in (3) within the context of integrated transit networks. 
We conduct two sets of computational experiments. 

1. Stylized experiments. We conduct exhaustive styl
ized experiments involving a multistage version of the 
Steiner tree problem as an elemental abstraction for the 
design of integrated transit networks. Our goal is to 
gain qualitative insights about the effects of the under
lying network topology and the demand distribution 
on the value of dynamism for network design. Our 
experiments suggest that microtransit may be valuable 
if demand concentrates in downtown areas as a func
tion of their prominence yet still appears sparingly in 
suburban areas. Conversely, they suggest that micro
transit may be unnecessary in cities with high spatial seg
regation of urban functions (e.g., residential, commercial, 
industrial), wherein there is no prominent downtown 
area and demand concentrates in peripheral areas.

2. Realistic experiments. We conduct more realistic 
experiments involving a multistage version of the Stei
ner forest problem and publicly available data from 
New York City. Our goal is to showcase how we can 
use our framework to obtain quantitative estimates of 
parameter combinations under which dynamism is 
certifiably valuable and to moreover gain qualitative 
insights about the effects of the transit headway δs, 
microtransit batching interval δd, and surcharge coeffi
cient η, as well as the passengers’ tolerance to en route 
detours (with respect to the shortest path in the under
lying road network), on the value of dynamism. For 
example, under the assumptions of our model, if the 
transit headway is 10 minutes, microtransit is batched 
every 6 minutes, and passengers tolerate detours incur
ring up to a 25% en route travel time increase, then 
dynamism is certifiably valuable whenever η ≤ 1:25. At 
a qualitative level, our experiments suggest that, for 
any fixed transit headway δs, the value of dynamism 
increases with the microtransit batching interval δd— 
that is, assuming microtransit passengers tolerate long 
wait times relative to the existing transit headway. 
They moreover suggest slight gains from increased pas
senger tolerance to en route detours, particularly for 
small microtransit batching intervals. These observa
tions can be explained as follows; tolerance to detours 
enhances resource sharing for small δd, whereas for 
large δd, resource sharing is naturally enhanced by the 
number of travel demands per stage without the need 
of increased detours. Lastly, our experiments highlight 
the road segments where a static transit network might 
be most useful given the historical distribution of travel 

demand. Informally, we rank road segments by the fre
quency (over the stages) with which they appear as part 
of the nonanticipatory installed network, thereby pro
viding some indication about their relative importance 
as potential trunk lines and hence, about whether ser
vice on them should be installed statically or dynami
cally. We believe this can be leveraged in a subsequent 
step of the transit system design process: the design of 
the operational network. In particular, we believe fre
quently used road segments can be combined to obtain a 
good data-driven initial set of candidate lines for line plan
ning via column generation (see Borndörfer, Grötschel, 
and Pfetsch 2007, Gattermann, Harbering, and Schöbel 
2017).

1.4. Organization
The remainder of this paper is organized as follows. In 
Section 2, we outline related work. In Section 3, we 
develop our analytical framework, including the refor
mulation of the multistage problem as a two-stage sto
chastic problem as well as Theorem 1. In Section 4, we 
describe our computational experiments and summa
rize our findings. In Section 5, we make concluding 
remarks.

2. Related Work
In Section 2.1, we outline work related to (3) as an 
abstract formulation. In Section 2.2, we outline related 
work around transit and on-demand systems.

2.1. Optimization Under Uncertainty
Formulation (3) resembles that of paradigms of optimi
zation under uncertainty. In robust optimization, the 
decision maker produces a solution that is feasible for 
all input scenarios. In two-stage stochastic optimization 
with recourse, the decision maker leverages distribu
tional information about the problem input to produce 
first-stage decisions. In the second stage, an input sce
nario is realized, and the decision maker produces a feasi
ble solution by complementing their first-stage decisions 
with second-stage recourse actions. The objective is to 
minimize the expected total cost. In two-stage adaptive opti
mization, the decision maker similarly produces first-stage 
decisions and second-stage recourse actions, except the 
objective is to minimize the worst-case total cost.

The dynamicity gap measures the attainable benefit 
of allowing (but not requiring) dynamic components 
in the response strategy to a multistage optimization 
problem. In this sense, it continues a line of work dedi
cated to measuring the potential benefit of solving the 
“true” problem at hand, compared with solving a sim
plified version of it. An early example of this approach 
is from Birge (1982) within the context of two-stage 
stochastic optimization. Birge (1982) defines the value 
of the stochastic solution as the difference between the 
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objective value attainable with first-stage decisions ob
tained through the expected value problem (in which sto
chastic parameters are replaced by their expectation) 
and the objective value of the two-stage stochastic prob
lem. We note that this approach necessitates that the 
expected value problem encodes an instance of the prob
lem at hand, which need not be the case if the unknown 
parameters are required to take integer values. More 
recent examples are from Bertsimas and Goyal (2010), 
who study the relative quality of robust solutions for 
two-stage stochastic and adaptive optimization pro
blems. They define the stochasticity gap as the ratio 
between the cost of an optimal solution to the robust 
problem and the cost of an optimal solution to the two- 
stage stochastic problem. Similarly, they define the 
adaptability gap as the ratio between the cost of an opti
mal solution to the robust problem and the cost of an 
optimal solution to the two-stage adaptive problem. 
Although the dynamicity gap is similar in form to these 
gaps, it differs fundamentally in that (3) need not be sto
chastic (where we have distributional information over 
input parameters) or even uncertain (where we have 
uncertainty set information over input parameters). (See 
Ben-Tal, El Ghaoui, and Nemirovski 2009 for a detailed 
explanation of the difference between the stochastic and 
robust optimization paradigms.) In Online Appendix A, 
we delineate how the dynamicity gap and stochasticity 
gap differ as concepts even under the conditions of our 
two-stage reformulation, although for the specific form of 
(5) we consider, the two quantities evaluate identically 
whenever θ ≥ 1.

Bertsimas and Goyal (2010) show, among other 
structural results, that the stochasticity gap is at most 
two when both the uncertainty set over the right-hand 
side of the constraints and its distribution are symmetric 
and there are no integer decision variables in the sec
ond stage. Bertsimas, Goyal, and Sun (2011) study the 
impact of broader geometric properties of the uncer
tainty set and its distribution, such as symmetry, on the 
relative quality of static and finitely adaptable (i.e., 
nearly static) solutions for multistage stochastic and 
adaptive optimization problems. Bertsimas, Goyal, and 
Lu (2015) give a tight characterization of the adaptabil
ity gap for two-stage linear packing problems under a 
general class of uncertainty sets, including settings in 
which the robust solution is optimal. Awasthi, Goyal, 
and Lu (2019) study another general class of uncertainty 
sets, for which they give both a logarithmic hardness of 
approximation result for the adaptive optimization prob
lem and an approximation guarantee for the robust solu
tion (i.e., a bound on the adaptability gap), which is 
furthermore tight up to a constant in certain settings.

Another related but distinct measure is the adaptivity 
gap, introduced by Dean, Goemans, and Vondrák (2008). 
They consider stochastic problems where solutions are 
built incrementally via a sequence of decisions, each of 

which incrementally instantiates the problem input. Then, 
the adaptivity gap measures the relative benefit of 
adapting the sequence of decisions in response to past 
realizations.

Our approach differs from that in the references in 
that we study the behavior of the dynamicity gap α and 
related measures as a function of the relative cost coeffi
cient θ and other implicit input parameters. Capturing 
these parameters analytically easily becomes unwieldy, 
and thus, we naturally take an experimental approach. 
The purpose of our analytical framework is to support 
experimentation by introducing tractable measures that 
act as principled proxies for the value of dynamism.

The algorithmic aspects of two-stage stochastic optimi
zation have been studied extensively. The main challenge 
in two-stage stochastic optimization is that, generally 
speaking, an explicit representation of the underlying dis
tribution over input scenarios may be exponentially large. 
Kleywegt, Shapiro, and Homem-de Mello (2002) show 
the convergence of the SAA method, a natural Monte 
Carlo simulation-based approach. Ravi and Sinha (2006) 
give approximation algorithms for several problems 
assuming polynomially many input scenarios. Immorlica 
et al. (2004) consider several problems where the input 
scenario is determined by a set of active clients and give 
approximation algorithms when the clients are activated 
independently and the cost between stages differs by a 
constant factor—this is the type of setting we consider in 
our first set of experiments. Gupta et al. (2004) provide 
approximation algorithms for several problems using the 
same proportionality assumption together with black box 
access to the input scenario distribution. Gupta et al. 
(2005) extend this framework to multistage optimization, 
wherein the recourse actions become increasingly expen
sive, and to a setting in which the relative cost coeffi
cient depends on the input scenario. Shmoys and 
Swamy (2006) also give approximation algorithms 
under the black box model, but they do not require the 
costs between stages to be proportional. Their method 
involves a dedicated version of the ellipsoid method to 
solve the arising linear programming relaxations, fol
lowed by a simple rounding scheme.

2.2. Transit and On-Demand Systems
The design of transit systems is a mature area of research; 
we point the reader to Desaulniers and Hickman (2007) 
and Schöbel (2012) for an overview. This is also the case 
for the operation of on-demand mobility; we point the 
reader to Toth and Vigo (2014) and Alonso-Mora et al. 
(2017) for commonly used techniques.

The design and operation of integrated systems are an 
area of increasing interest. We briefly describe some repre
sentative work. Archetti, Speranza, and Weyland (2018) 
conduct a simulation study suggesting on-demand sys
tems can offer user-favorable service even under the pres
ence of direct travel and transit as alternatives. Stiglic et al. 
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(2018) give an optimization model for the operations of 
integrated systems given an existing transit network. Their 
base model is restricted to trips starting in a suburban area, 
going into the city center, and in which at most two passen
gers can share a vehicle (both passengers need to connect 
through the same transit station). They find that inte
grated systems can enhance mobility and increase tran
sit ridership. Steiner and Irnich (2020) give a strategic 
planning optimization model to integrate on-demand 
services within an existing transit network. Given a 
travel demand realization, their model decides on exist
ing transit lines to maintain or suspend and what areas 
to cover with the on-demand system along with transfer 
points to transit (using an approximate model for 
on-demand costs), as well as passenger route assignment. 
Liu and Ouyang (2021) give an approximate analytic 
model for the joint optimization of integrated systems on 
a square region of the plane. Their objective is to mini
mize the system-wide cost per passenger (e.g., accounting 
for costs per vehicle mile, costs per vehicle hour, road con
gestion). They assume a constant passenger arrival rate 
and uniformly distributed origin-destination pairs. They 
restrict the transit network to grids of uniform spacing and 
the on-demand system to operate within independent 
“local” squares, both determined as part of the optimiza
tion. They find that integrated systems generally outper
form purely fixed or purely on-demand systems, except 
possibly on very small or very congested cities. Périvier 
et al. (2021) consider the joint optimization of transit lines 
and single-occupancy vehicle routes so as to maximize a 
measure of welfare subject to a budget constraint. Given a 
collection of travel demands and pool of candidate transit 
lines, they develop a (1 � 1=e � ɛ)-approximation algo
rithm when no transit-to-transit transfers are allowed.

3. Analytical Framework
We first outline some technical assumptions. As men
tioned in Section 1.1, we represent integrated network 
configurations by their characteristic vectors in {0,1}

m. 
We assume without loss of generality that any feasible 
integrated network x, z ∈ {0,1}

m satisfies xj + zj ∈ {0, 1}

for all j ∈ [m]—because the edge costs are nonnegative, 
if xj + zj � 2, we can set zj � 0 and maintain origin- 
destination connectivity at no greater cost. In particu
lar, we assume that for each t ∈ [T], (x, zt) ∈ Pt, and 
j ∈ [m], we have xj + zt

j ∈ {0, 1}, meaning Pt ⊆ {0,1}
2m. 

Similarly, we assume that for each i ∈ [k], (x, zi) ∈ Pi, 
and j ∈ [m], we have xj + zi,j ∈ {0, 1}, where zi,j is the jth 
entry of zi, meaning Pi ⊆ {0,1}

2m. We assume through
out that the feasible configurations P1,P2, : : : ,PT in 
(3) are nonempty and finite. Recall pi � PrD[It � Ii] for 
every t ∈ [T]. We assume that pi > 0 for all i ∈ [k], as oth
erwise, we remove Ii from I . Lastly, we assume that 
pi < 1 for all i ∈ [k], as otherwise, we have a determinis
tic single-stage problem.

3.1. Two-Stage Reformulation
In this section, we show that if the input scenarios 
I1, I2, : : : , IT are sampled i.i.d. from a probability distri
bution D over I and moreover, T → ∞, then we can 
a.s. reformulate the horizon-normalized version of the 
multistage Problem (3), wherein we scale the objective 
function by 1=T, as the two-stage stochastic Problem 
(5). As a corollary, in this case, the dynamicity gap of (3) 
reduces a.s. to the dynamicity gap of (5).

For fixed T ∈ N and I1, I2, : : : , IT, let I(T) :� {Ii ∈ I :

(∃t ∈ [T])[It � Ii]} be the set of input scenarios observed 
at least once. Note that for any t, t′ ∈ [T] with It � It′

� Ii, 
we have Pt � Pt′

� Pi. Therefore, we rewrite the objec
tive value of (3) as

min
(x,z1,z2, : : : ,zk)∈P(I(T))

{ĝT(x, z1, z2, : : : , zk)}, 

where

ĝT(x, z1, z2, : : : , zk) :�
Xk

i�1
|{t ∈ [T] : It � Ii}|(c · x +θ · c · zi)

aggregates the stage costs by the number of occurrences 
of each input scenario and

P(I (T)) :� {(x, z1, z2, : : : , zk) ∈ {0,1}
m×(k+1)

: (∀Ii ∈ I(T))[(x, zi) ∈ Pi]}

is the set of integrated network configurations that can 
serve the set I (T) of observed input scenarios. We nor
malize ĝT by the horizon T and write

ν̂T :� min
(x,z1,z2, : : : ,zk)∈P(I (T))

{ĥT(x, z1, z2, : : : , zk)}, (7) 

where ĥT(x, z1, z2, : : : , zk) :� 1
T ĝT(x, z1, z2, : : : , zk).

Similarly, we rewrite the objective value of (5) as
ν :� min

(x, z1, z2, : : : , zk)∈P(I )
{h(x, z1, z2, : : : , zk)}, (8) 

where

h(x, z1, z2, : : : , zk) :� c · x +
Xk

i�1
pi · θ · c · zi 

and

P(I ) :� {(x, z1, z2, : : : , zk) ∈ {0,1}
m×(k+1)

: (∀Ii ∈ I)[(x, zi) ∈ Pi]}:

We relate the horizon-normalized version of (3)–(5) 
through the relation between (7) and (8). First, we show 
that the feasible regions of (7) and (8) are equal a.s. as 
T → ∞.

Proposition 1. If the input scenarios I1, I2, : : : , IT are sam
pled i.i.d. from a probability distribution D over I , then 
I (T) � I a.s. as T → ∞.

Proof. For any T ∈ N, we have I (T) ⊆ I because for 
every t ∈ [T], It � Ii for some Ii ∈ I . It remains to show 
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I ⊆ I (T) a.s. as T → ∞. Note that for any Ii ∈ I and 
any T ∈ N, we have PrD[Ii ∉ I(T)] � (1 � pi)

T. There
fore,

X∞

T�1
Pr
D

[I 􏿼⊆I(T)] ≤
X∞

T�1

Xk

i�1
Pr
D

[Ii ∉ I (T)]

�
X∞

T�1

Xk

i�1
(1 � pi)

T
�
Xk

i�1

X∞

T�1
(1 � pi)

T, 

where the inequality holds by the union bound and the 
second equality holds by the monotone convergence 
theorem (recall pi > 0 for every i ∈ [k]). In particular, 
P∞

T�1 PrD[I 􏿼⊆I(T)] < ∞, and the Borel–Cantelli lemma 
implies PrD[{I 􏿼⊆I(T) infinitely often}] � 0. w

As a consequence, we have that, under the conditions 
of Proposition 1,

v̂T � min
(x, z1, z2, : : : , zk)∈P(I )

{ĥT(x, z1, z2, : : : , zk)} (9) 

a.s. as T → ∞. Note that the only difference between 
Expressions (7) and (9) is in the feasible set.

For ease of notation, let P denote P(I ). For any ɛ > 0, 
let Pɛ be the nonempty set of solutions to (8) within an 
ɛ-additive term from optimality and P̂ɛ

T be the none
mpty set of solutions to (7) within an ɛ-additive term 
from optimality. In particular, P0 is the set of optimal 
solutions to (8), and P̂0

T is the set of optimal solutions to 
(7). We use Proposition 1 to show the objective value, 
and the sets of approximately optimal solutions to (7) 
converge a.s. as T → ∞ to their counterparts in (8). The 
remainder of our argument largely replicates, within 
the context of our formulation, the argument of Kley
wegt, Shapiro, and Homem-de Mello (2002) for the con
vergence of the SAA method. We include a proof in 
Online Appendix B for completeness.

Theorem 2. If the input scenarios I1, I2, : : : , IT are sampled 
i.i.d. from a probability distribution D over I , then 

1. ν̂T → ν a.s. as T → ∞ and
2. for any ɛ ≥ 0, P̂ɛ

T ⊆ Pɛ a.s. as T → ∞.

This result has two immediate yet key consequences, 
one operational and one analytical.

Corollary 1. Under the conditions of Theorem 2, we can 
a.s. extend an optimal solution (x, z1, z2, : : : , zk) to (5) to an 
optimal solution to (3) by setting x as an ex ante static 
response and following the natural ex post dynamic policy 
for every stage t ∈ N: if It � Ii, we respond with zt � zi so 
that (x, zt) � (x, zi) ∈ Pi � Pt. This holds because normaliz
ing the objective function of (3) does not change the set of 
optimal solutions.

Corollary 2. Under the conditions of Theorem 2, the dyna
micity gap α of (3) reduces a.s. to the dynamicity gap of (5). 

Namely, if OPT(5) denotes the cost of an optimal solution to 
(5) and OPTΣ(5) denotes the cost of an optimal static solution 
to (5), that is one in which we additionally require z1 � z2 
� ⋯� zk � 0, then

α �
OPTΣ(5)

OPT(5)

a:s:

In other words, we may study the limit behavior of α 
with a framework built around (5), which is more suit
able for parametric analysis. In light of this, for the 
remainder of this work we assume the conditions of 
Theorem 2 hold, drop the a.s. notation, and let OPT and 
OPTΣ be with respect to (5) instead of the original Prob
lem (3).

3.2. Estimating the Value of Dynamism
For ease of notation, let P � P(I ), and let Π(θ) refer to 
(5) explicitly parametrized by the relative cost coeffi
cient θ and implicitly parametrized by the distribution 
D over I . Let hθ and OPT(θ) refer to the objective func
tion and objective value of Π(θ), respectively. Simi
larly, let ΠΣ(θ) refer to the static version of (5) explicitly 
parametrized by θ and OPTΣ(θ) refer to its objective 
value. Recall 0 refers to the zero vector. We begin by 
showing a monotonicity property with respect to the 
relative cost coefficient.

Lemma 1. For 0 < θ1 ≤ θ2 < ∞ and (x, z1, z2, : : : , zk) ∈ P, 
we have hθ1 (x, z1, z2, : : : , zk) ≤ hθ2 (x, z1, z2, : : : , zk). If, fur
thermore, (x, z1, z2, : : : , zk) ∈ PΣ, then the inequality holds 
at equality.

Proof. Note that hθ1 (x, z1, z2, : : : , zk) � c · x +
Pk

i�1 pi ·

θ1· c · zi ≤
Pk

i�1 pi ·θ2 · c · zi � hθ2 (x, z1, z2, : : : , zk), where 
the inequality holds because c ≥ 0 and because 
(x, z1, z2, : : : , zk) ∈ P implies z1, z2, : : : , zk ≥ 0. If (x, z1, 
z2, : : : , zk) ∈ PΣ, then z1 � z2 � ⋯ � zk � 0, and we have 
equality. w

Corollary 3. For 0 < θ1 ≤ θ2 < ∞, we have (i) OPT(θ1) ≤

OPT(θ2), (ii) OPTΣ(θ1) � OPTΣ(θ2), and (iii) α(θ2) ≤

α(θ1).

Proof. Let (x, z1, z2, : : : , zk) ∈ P be an optimal solution 
to Π(θ2), and note that it is feasible for Π(θ1). Then, 
OPT(θ1) ≤ hθ1 (x, z1, z2, : : : , zk) ≤ hθ2 (x, z1, z2, : : : , zk) � OPT(θ2), 
where the second inequality holds by Lemma 1. 
OPTΣ(θ1) � OPTΣ(θ2) holds because z1 � z2 � ⋯ � zk �

0 implies (x, z1, z2, : : : , zk) ∈ PΣ is an optimal solution 
to ΠΣ(θ2) if and only if it is an optimal solution to 
ΠΣ(θ1). Together, these facts imply α(θ2) � OPTΣ(θ2)=

OPT(θ2) � OPTΣ(θ1)=OPT(θ2) ≤ OPTΣ(θ1)=OPT(θ1) �

α(θ1). w

Next, we provide a parametric upper bound on 
OPT(θ) that takes as input any collection x1, x2, : : : , 
xk ∈ {0,1}

m of nonanticipatory feasible solutions to in
put scenarios I1, I2, : : : , Ik.
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Theorem 3. Let x1, x2, : : : , xk ∈ {0,1}
m be such that (xi, 0)

∈ Pi for all i ∈ [k]. Then, for any θ > 0, we have

OPT(θ) ≤
Xm

j�1
cj · min

(

1,θ ·

 
X

i∈[k]:χi,j�1
pi

!)

, 

where cj is the jth entry of c ∈ Rm
≥0 in (5) and χi,j is the jth 

entry of the ith vector xi. If in addition, xi � x + zi for all 
i ∈ [k], where (x, z1, z2, : : : , zk) ∈ P is an optimal solution to 
Π(θ), then the inequality holds at equality.

Proof. Let S � {j ∈ [m] : min{1,θ · (
P

i∈[k]:χi,j�1pi)} � 1}. 
Define j ∈ {0,1}

m, where ξj � 1 if and only if j ∈ S. Simi
larly, for each i ∈ [k], define zi ∈ {0,1}

m, where ζi,j � 1 if 
and only if χi,j � 1 yet j ∉ S. By construction, (j, zi) ∈ Pi 

for each i ∈ [k]. Therefore, (j, z1, z2, : : : , zk) ∈ P and

OPT(θ) ≤
Xm

j�1

 

cj · ξj +
Xk

i�1
pi ·θ · cj · ζi,j

!

�
Xm

j�1
cj ·

 

ξj +θ ·
Xk

i�1
pi · ζi,j

!

�
Xm

j�1
cj · min

(

1,θ ·

 
X

i∈[k]:χi,j�1
pi

!)

:

Now, suppose (x, z1, z2, : : : , zk) ∈ P is an optimal solution 
to P(θ) and xi � x + zi for all i ∈ [k]. Note that xi ∈ {0,1}

m 

for all i ∈ [k] by assumption (the first paragraph of Section 
3). First, take any decision j ∈ [m] with xj � 1, meaning it 
is chosen statically. Then, j ∈ S, and its cost cj is accounted 
for exactly. Conversely, take any decision j ∈ [m] with xj 
� 0, meaning it is chosen dynamically. This decision is 
paid for with cost multiplied by a factor of θ with proba
bility 

P
i∈[k]:χi,j�1pi. Suppose θ ·

P
i∈[k]:χi,j�1pi > 1. Then, 

setting xj � 1 and zi,j � 0 for all i ∈ [k] maintains feasibility 
at strictly lower cost, contradicting optimality. Therefore, 
its expected cost cj ·θ · (

P
i∈[k]:χi,j�1pi) is accounted for 

exactly. w

Remark 2. If θ � 1 and more generally, if 0 < θ ≤ 1, 
there is no benefit in making static decisions. We can 
see this from the fact that, for any such θ, the follow
ing holds:

Xm

j�1
cj ·min

(

1,θ·

 
X

i∈[k]:χi,j�1
pi

!)

�
Xm

j�1
cj ·θ ·

 
X

i∈[k]:χi,j�1
pi

!

:

Therefore, to compute the objective value of (5) with θ 
� 1, it is sufficient to, individually for each input sce
nario Ii ∈ I , compute an optimal nonanticipatory solu
tion with characteristic vector xi (i.e., a minimum cost 
xi such that (xi, 0) ∈ Pi) and aggregate their costs 
weighted by the probabilities pi for i ∈ [k]. This is rela
tively tractable in the sense that it does not involve 
solving a two-stage stochastic problem, but a collection 

of independent, deterministic single-stage optimization 
problems (e.g., although the single-stage problems may 
remain NP-hard and the collection may be large, their 
computation can be parallelized). In the case of the Stei
ner forest problem, we refer the reader to Ljubić (2021) 
for a survey of state-of-the-art solution techniques.

We moreover use the following technical result, 
which we prove in Online Appendix B.

Lemma 2. Let x1, x2, : : : , xk ∈ {0,1}
m be such that (xi, 0) ∈

Pi for all i ∈ [k]. Then, for 0 < θ1 ≤ θ2 < ∞, we have
Xm

j�1
cj · min

(

1,θ2 ·

 
X

i∈[k]:χi,j�1
pi

!)

≤
θ2

θ1
·
Xm

j�1
cj · min

(

1,θ1 ·

 
X

i∈[k]:χi,j�1
pi

!)

:

In what follows, we use the results obtained thus far to 
show that if we evaluate α :� α(θ) at a finite number κ 
of points 1 � θ1 < θ2 < ⋯< θκ < ∞, we can produce esti
mates α̂�, α̂+ : R≥1 → R≥1 such that, for any θ ∈ R≥1, we 
have α̂�(θ) ≤ α(θ) ≤ α̂+(θ). The estimates α̂�, α̂+ are a 
concatenation of local estimates, similar to a step func
tion, interpolating between the evaluations α(θ1),α(θ2), 
: : : ,α(θκ). Let 1 denote the indicator function.

Theorem 4. Let 1 � θ1 < θ2 < ⋯< θκ < θκ+1 � ∞. Let α̂� :

R≥1 → R≥1, where

α̂�(θ) �
Xκ

ℓ�1
max{θℓ ·α(θℓ)=θ,α(θℓ+1)} · 1{θℓ≤θ<θℓ+1}, 

and let α̂+ : R≥1 → R≥1, where

α̂+(θ) �
Xκ

ℓ�1
α(θℓ) · 1{θℓ≤θ<θℓ+1}:

Then, for any θ ≥ 1, we have

α̂�(θ) ≤ α(θ) ≤ α̂+(θ):

Proof. Let θ ≥ 1, and note that θℓ ≤ θ < θℓ+1 holds for 
exactly one ℓ ∈ [κ]—pick such ℓ. If max{θℓ · α(θℓ)=θ, 
α(θℓ+1)} � α(θℓ+1), then α̂�(θ) � α(θℓ+1) ≤ α(θ), where 
the inequality holds by Corollary 3 and θ < θℓ+1. Other
wise, max{θℓ· α(θℓ)=θ,α(θℓ+1)} � θℓ ·α(θℓ)=θ, and we 
have

α̂�(θ) �
θℓ · α(θℓ)

θ
�
θℓ
θ

·
OPTΣ(θℓ)

OPT(θℓ)
�
θℓ
θ

·
OPTΣ(θ)

OPT(θℓ)

�
OPTΣ(θ)

θ

θℓ

Pm
j�1 cj · min{1,θℓ · (

P
i∈[k]:χi,j�1pi)}

≤
OPTΣ(θ)

Pm
j�1 cj · min{1,θ · (

P
i∈[k]:χi,j�1pi)}

≤
OPTΣ(θ)

OPT(θ)

� α(θ), 

where the third equality holds by Corollary 3, x1, x2, 
: : : , xk ∈ {0,1}

m are such that (xi, 0) ∈ Pi for all i ∈ [k] and 
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Theorem 3 holds at equality for θℓ, the first inequality 
holds by Lemma 2, and the second inequality holds by 
Theorem 3. Lastly, α̂+(θ) � α(θℓ) ≥ α(θ), where the 
inequality holds by Corollary 3 and θ ≥ θℓ. w

As we state next, the bounds can be made arbitrarily 
tight by systematically evaluating α at sufficiently 
many points. We prove the following result in Online 
Appendix B.

Theorem 5. Let ɛ > 0. Let θ1 � 1 and θℓ+1 � (1 + ɛ) ·θℓ 
for all i ∈ N. Let κ � arg minℓ∈Nα(θℓ) < 1 + ɛ. Then, Theo
rem 4, given θ1,θ2, : : : ,θκ, yields α̂� and α̂+ such that for 
any θ ≥ 1, we have α̂+(θ) < (1 + ɛ) · α̂�(θ).

In light of the monotonicity result in Corollary 3, we 
define θ∗ :� arg minθ>0{α(θ) � 1} as the critical relative 
cost coefficient after which dynamism is no longer 
valuable. We then obtain the following corollary to 
Theorem 5.

Corollary 4. Let κ be as in the statement of Theorem 5. 
Then, θκ ≤ θ∗.

Theorem 5 gives a systematic way of estimating the 
dynamicity gap as a function of the relative cost coeffi
cient θ to any arbitrary precision by evaluating it at a 
finite set of points. However, evaluating it at any given 
point generally involves solving the two-stage stochas
tic Problem (5), which may be intractable. As an alterna
tive, Remark 2 points out that evaluating the dynamicity 
gap at θ1 � 1 is relatively tractable and that this is suffi
cient to obtain an (albeit weaker) lower bound on the crit
ical relative cost coefficient θ∗. This is Theorem 1, which 
we finally prove.

Proof of Theorem 1. For θ ≥ 1, the inequality α(θ) ≥

max{θ†=θ, 1} follows from the special case of Theo
rem 4 with κ � 1. For 0 < θ < 1, we use the equality 
in Remark 2. The inequality θ† ≤ θ∗ follows from 
max{θ†=θ, 1} > 1 as long as θ†=θ > 1: that is, for any 
0 < θ < θ†. w

4. Computational Experiments
We now use the framework developed in Section 3 to per
form computational experiments around (abstractions of) 
the design of integrated transit networks. Recall the advan
tage of the bound in Theorem 1 over computing the dyna
micity gap exactly is that it is relatively tractable, as stated 
in Remark 2. In particular, using θ† :� α(1) as a proxy for 
measure for the value of dynamism allows us to swiftly 
run comprehensive experiments. Because θ† ≤ θ∗, where 
θ∗ :� arg minθ>0{α(θ) � 1} is the critical relative cost coef
ficient, we can certify that the dynamicity gap is greater 
than one whenever 0 < θ < θ†. Therefore, our goal is to 
understand how various input parameters implicit in (3), 
equivalently (5) under the conditions of Theorem 1, influ
ence θ†. We conduct two sets of experiments. 

1. In Section 4.1, we conduct stylized experiments 
involving a multistage version of the Steiner tree prob
lem as an elemental abstraction. Our goal is to gain quali
tative insights about the effects of the network topology 
and demand distribution on the value of dynamism for 
network design.

2. In Section 4.2, we conduct more realistic experi
ments involving a multistage version of the Steiner for
est problem and publicly available data from New 
York City. Our goal is to showcase how we can use our 
framework to obtain quantitative estimates of parame
ter combinations under which dynamism is certifiably 
valuable and to moreover gain qualitative insights about 
the effects of the transit headway δs, microtransit batch
ing interval δd, and surcharge coefficient η (see Section 
1.2 for descriptions), as well as the passengers’ tolerance 
to en route detours, on the value of dynamism.

4.1. Stylized Experiments
4.1.1. Setup. We consider a multistage version of the 
Steiner tree problem as the most elemental abstraction 
for the design of integrated transit networks. In the Stei
ner tree problem, we are given a graph G � (V, E) and a 
set I ⊆ V of terminals. The problem is to find a mini
mum cost set of edges connecting every pair in I. The 
possible input scenarios I correspond to the possible 
terminal sets. We point the reader to Online Appendix 
C for an integer linear programming formulation of 
this problem. In its multistage version, the connectivity 
requirements of each stage are met through a combina
tion of edges X ⊆ E picked statically and edges Zt ⊆ E 
picked dynamically.

We consider all 995 unweighted connected simple 
graphs on 2 ≤ n ≤ 7 nodes. Such a list has been compiled 
by Read and Wilson (1998) and is retrievable in python 
through the networkx package of Hagberg, Swart, and 
Chult (2008). These are admittedly small graphs, but this 
is what enables us to run exhaustive experiments—the 
number of such graphs grows exponentially in n, and the 
Steiner tree problem is well known to be NP-hard.

We consider probability distributions D over I aris
ing from independent Bernoulli trials on the nodes. For 
each u ∈ V, let qu :� Pr[u ∈ I] be the probability that u is 
a terminal. This yields a probability distribution D over 
I with

pi � Pr
D

[I � Ii] �
Y

u∈Ii

qu
Y

u∈V\Ii

(1 � qu) (10) 

for all i ∈ [k]. Different choice of parameters 0 ≤ qu ≤ 1 
for u ∈ V yields different distributions. We test three 
different rules to generate these parameters. 

1. If qu � 1=2 for each u ∈ V, then Equation (10) yields 
pi � 1=2n for each i ∈ [k]. This is the uniform distribu
tion over I , which we denote by U.

For u, v ∈ V, let ℓ(u, v) be the shortest-path length 
between u and v (e.g., with respect to costs c : E → R≥0). 
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The closeness centrality of a node u ∈ V, denoted by C(u), 
is given by C(u) :� (n � 1)=

P
v∈Vℓ(u, v). This centrality 

measure, first introduced by Bavelas (1950), characterizes 
a node as “central” if it is close to all other nodes. We say 
a node is “peripheral” if it is not central. Intuitively, if 
G � (V, E) represents a road network, nodes in a promi
nent downtown area are “central,” whereas nodes in a 
suburban area are “peripheral.”

2. If qu � C(u) · n=(n � 1) for each u ∈ V, then Equation 
(10) yields a distribution biased toward terminal sets consist
ing of “central” nodes yet still supported on “peripheral” 
nodes. We denote this distribution by D+cent. Intuitively, 
we think of D+cent as a distribution where demand con
centrates in downtown areas as a function of how 
“central” they are but still arises sparingly elsewhere.

3. Conversely, if qu � 1 � C(u) · n=(n � 1) for each u ∈ V, 
then Equation (10) yields a distribution biased toward 
terminal sets consisting of “peripheral” nodes yet still 
supported on “central” nodes. We denote this distribu
tion by D�cent. Intuitively, we think of D�cent as a distri
bution where demand concentrates in suburban areas 
as a function of how “peripheral” they are but still 
arises sparingly elsewhere.

Lastly, to study the effects of the underlying topol
ogy, we characterize graphs through three different 
measures of connectivity. 

1. The average degree of a graph G, denoted by d(G), is 
the average degree over all nodes. Formally, d(G) :�P

u∈V |N (u) | =n � 2m=n, where N (u) ⊆ V is the set of 
neighbors of u ∈ V.

2. The average node connectivity of a graph G, first 
introduced by Beineke, Oellermann, and Pippert (2002) 
and denoted by κ(G), is the average, over all pairs 
of nodes, of the maximum number of internally node- 
disjoint paths connecting them. Formally, κ(G) :�P

u,v∈V:u≠vκG(u, v)= n
2

� �

, where κG(u, v) is the maximum 
number of internally node-disjoint paths connecting u 
and v in G.

3. Let LG be the Laplacian matrix of a graph G and 
λ1,λ2, : : : ,λn be its eigenvalues, counting multiplicities, 
in decreasing order. The algebraic connectivity of G, 
denoted by a(G), is the second smallest eigenvalue of 
LG counting multiplicities. That is, a(G) :� λn�1. It holds 
that a(G) > 0 if and only if G is connected. It, moreover, 
holds that a(G) ≤ n, with the inequality holding at equal
ity if and only if G is the complete graph on n nodes.

We note that these connectivity measures are related 
in subtle ways. For example, Das (2018) has shown that 
a(G) � d(G) ≥ 4 � n � 4=n and has moreover character
ized when the inequality holds at equality. See New
man (2018) for a comprehensive description of these 
measures.

4.1.2. Results. For very small graphs, we derive ana
lytic expressions for α(θ). There is one connected graph 
with n � 2, namely the complete graph K2 � (V, E) with 

V � {1, 2} and E � {{1, 2}}. The collection of possible 
terminal sets is I � {I1, I2, I3, I4}, where I1 � ∅, I2 � {1}, 
I3 � {2}, and I4 � {1, 2}. Similarly, there are two con
nected graphs with n � 3, namely the path P3 � (V, E)

with V � {1, 2, 3} and E � {{1, 2}, {2, 3}} and the com
plete graph K3 � (V, E) with V � {1, 2, 3} and E � {{1, 2}, 
{2, 3}, {1, 3}}. The collection of possible terminal sets is 
I � {I1, I2, : : : , I8}, where I1 � ∅, I2 � {1}, I3 � {2}, I4 �

{3}, I5 � {1, 2}, I6 � {2, 3}, I7 � {1, 3}, and I8 � {1, 2, 3}. 
We summarize our expressions in Table 2 and point the 
reader to Online Appendix C for derivations.

Table 2 showcases how we may fix a set of character
istic vectors forming an input to Theorem 3 to obtain 
analytic estimates expressions for α(θ). For any fixed θ 
and distribution D, we may produce exact estimates by 
exhausting all possible characteristic vectors in Theo
rem 3. Indeed, the expressions in Table 2 are exact for θ 
� 1 and the uniform distribution U, in which case θ† � 4 
on K2, θ† � 2:6 on P3, and θ† � 3:2 on K3 (see Online 
Appendix C).

For larger graphs, we transition to a computational 
study. In Figure 1, we present scatterplots of θ† as a 
function of graph connectivity measures for graphs on 
n � 7 nodes and different distributions D over I . We 
point to Online Appendix C for similar figures for 
graphs on 4 ≤ n ≤ 6 nodes and error curves (in gap 
form) of the bound in Theorem 1 relative to the exact 
value of α(θ) for θ > 1.

Figure 1 shows medium to strong correlation between 
graph connectivity and the value of dynamism. For the dis
tribution D+cent biased toward “central” nodes, dynamism 
tends to be more valuable on sparsely connected graphs. 
This can be explained as follows; in well-connected graphs, 
a large proportion of nodes are highly “central,” in which 
case a large proportion of nodes are “almost always” (in a 
colloquial sense of the term) terminals under D+cent. Given 
that road networks are far from being complete graphs, 
this supports the notion that microtransit may be valuable 
if demand concentrates in downtown areas as a function of 
their prominence yet still appears sparingly in suburban 
areas. Conversely, for the uniform distribution U and 
the distribution D�cent biased toward “peripheral” nodes, 
dynamism tends to be more valuable on well-connected 
graphs. This can be explained as follows; in sparsely con
nected graphs, a large proportion of edges are utilized 
under most input scenarios (especially if terminals are 
likely to be on the “periphery,” as is the case for both U and 
D�cent), rendering dynamism unnecessary. This suggests 
that in cities with high spatial segregation of urban functions 
(e.g., residential, commercial, industrial), wherein there is 
no prominent “downtown” and demand concentrates in 
“peripheral” areas, microtransit may be unnecessary.

4.2. Realistic Experiments
4.2.1. Setup. We now consider a more realistic abstrac
tion for the design of integrated transit networks—the 
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Steiner forest problem and its multistage version, as 
described in Sections 1.1 and 1.2, respectively. We obtain 
a crowdsourced graph G � (V, E) representing the Man
hattan road network through the osmnx package of Boe
ing (2017). The nodes V represent intersections, and the 
edges E represent road segments weighted by length c :

E → R≥0 in meters. We treat length as a proxy for both 
operating cost and travel time. We represent travel 
demand with taxi trip records from June 2016, avail
able for download from the NYC Taxi and Limousine 
Commission (2021).

To bring this abstraction closer to reality and to re
duce the number of variables needed in our integer lin
ear programming formulations via multicommodity 
flows, we impose detour constraints on pairwise con
nectivity. Namely, if It is the travel demand during 
the tth stage, (u, v) ∈ It, and the shortest-path length 
between u and v in G with respect to costs c : E → R≥0 is 
ℓ(u, v), then the shortest-path length between u and v in 
the integrated network during the tth stage must be 
less than or equal to ρ · ℓ(u, v) for some allowable detour 
factor ρ ≥ 1.

We preprocess the raw data as follows. For tractability 
purposes, we focus on a subset of Manhattan roughly 
south of the Flatiron Building and prune G accordingly. 
We turn G into a simple undirected graph after deleting 
any self-loops, bidirecting every edge, and removing any 
duplicates. We delete any nodes of unit degree and con
tract any edges shorter than 30 meters. To account for 
lower speed limits and lower traffic light priority on 
streets (roughly traversing G from east to west) compared 
with avenues (roughly traversing G from south to north), 
we augment the length of edges labeled as “residential” 
or as “unclassified” by a factor of 1.5—road class labels 
are part of the crowdsourced data obtained via osmnx. 
We focus on trips starting on weekdays between 7:00 a.m. 
and 8:00 a.m. We match the geographical start of a trip 
(encoded by latitude and longitude) to the nearest node in 
G and discard the trip if the Euclidean distance exceeds 
250 meters. We do the same with the geographical end of 
a trip. We discard any trips shorter than 1,l000 meters as 
these are unlikely to take place in transit.

Recall from Section 1.2 that δ is the stage duration, 
that δd is the microtransit batching interval, and that we 
match δ :� δd. Given any fixed δd, we distribute the trips 
into bins of uniform duration δ :� δd based on their start 
timestamp. The trips assigned to each bin constitute the 
input scenario of each stage—we assume these satisfy 
the i.i.d. condition of Theorem 2. Because the data are 

finite, the number of stages depends on the choice of 
δd. For example, because there were 22 weekdays in 
July 2016, we have (60=1) · 22 � 1, 320 stages for δd � 1 
minute but only (60=15) · 22 � 88 stages for δd � 15 min
utes. Because trips correspond to the same hourly inter
val on weekdays, for binning purposes we focus on δd, 
a divisor of 60 minutes.

We aim to use θ† :� α(1) as a proxy for the critical rel
ative cost coefficient θ∗ :� arg minθ>0{α(θ) � 1}. We 
compute OPT(1) by solving each stage independently 
in a nonanticipatory manner, as justified in Remark 2. 
We do so with a 5% optimality tolerance and a time-out 
of max{10,δd} minutes. If there are T ∈ N stages, we let 
pi � |{t ∈ [T] : It � Ii}|=T for all i ∈ [k]. However, for our 
scale of G, computing OPTΣ remains challenging as the 
Steiner forest problem is NP-hard. Therefore, as a poly
nomial time solvable approximation, we use the length 
of a minimum spanning tree of G. We justify this as 
follows.

Proposition 2. Let θ̂† :� ℓ(MST(G))=OPT(1), where ℓ(MST(G))

denotes the length of a minimum length spanning tree of G. 
If the input scenarios I1, I2, : : : , IT are sampled i.i.d. from a 
probability distribution D over I with pi > 0 for all i ∈ [k], 
then a.s. as T → ∞, we have θ† ≥ θ̂†.

Proof. By Proposition 1, I(T) � I a.s. as T → ∞. In par
ticular, V × V ∈ I(T) a.s. as T → ∞, which requires 
any optimal static solution to contain a spanning tree. 
By nonnegativity of the edge lengths, any circuit- 
creating edges (which may exist because of the detour 
constraints) can be removed at no additional cost. 
Then, θ† :� OPTΣ(1)=OPT(1) ≥ ℓ(MST(G))=OPT(1). w

An alternative proof with more realistic assumptions 
(but heavier notation) observes that, as T → ∞, we a.s. 
observe at least one travel demand for each possible 
origin-destination pair in the city. Therefore, the opti
mal static solution should at least span all of V.

4.2.2. Results. Recall the condition η · (δs=δd) < θ† cer
tifying the value of dynamism in Remark 1. For any 
fixed stage duration δ :� δd and any fixed allowable 
detour factor ρ, our experiments use Proposition 2 to com
pute the lower bound θ̂† on θ†—this allows us to certify 
the value of dynamism whenever η · (δs=δd) < θ̂†. If 
δs � δd, the condition reduces to η < θ̂†. More generally, 
for δs ≠ δd, the condition reduces to η < θ̂† · (δd=δs).

Figure 2 shows the term θ̂† · (δd=δs) as a function of 
δd, δs, and ρ for δd ≤ δs—which is to say that the 

Table 2. Analytic Expressions for α(θ) for Our Multistage Steiner Tree Problem on Graphs K2, P3, and K3 and a Generic 
Distribution D over I

K2 P3 K3

α(θ) � max 1, 1
p4 ·θ

n o
�

2
min{1, (p5 + p7 + p8) ·θ} + min{1, (p6 + p7 + p8) ·θ}

≥
2

min{1, (p5 + p8) ·θ} + min{1, (p6 + p8) ·θ} + min{1, p7 ·θ}
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microtransit batching interval less than or equal to the 
transit headway. In this way, we obtain quantitative 
estimates on the parameter combinations under which 
dynamism is certifiably valuable. For example, the 
curves suggest that if the microtransit batching interval 

and the transit headway are each 15 minutes, then on- 
demand integration is worthwhile as long as the sur
charge coefficient η is less than around 1.5. We caution 
that these experiments, although more realistic than those 
in Section 4.1, are still based on an abstraction that does 

Figure 1. (Color online) Plot of θ† :� α(1) as a Function of Graph Connectivity Measures for the Multistage Steiner Tree Problem 
on Graphs on n � 7 Nodes and Different Distributions D over I : the Uniform Distribution U, the Distribution D+cent Biased 
Toward “Central” Nodes, and the Distribution D�cent Biased Toward “Peripheral” Nodes 

Note. The dashed lines correspond to linear fits.
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not capture factors such as demand-side effects, fleet size, 
vehicle capacities, and rebalancing. Nevertheless, the fig
ure provides robust qualitative insights. First, for any 
fixed transit headway δs, the value of dynamism in
creases with the microtransit batching interval δd assum
ing passengers tolerate longer waiting times relative to 
the transit headway. This effect is amplified for small δs, 
where the surcharge coefficient η can be large—for very 
small δs, transit operations are already very costly, in 
which case microtransit can be valuable even if the sur
charge coefficient is very large (again, assuming pas
sengers tolerate long waiting times relative to the 
transit headway). We moreover observe slight gains 
from increased passenger tolerance to detours as cap
tured by ρ, particularly for small δd. Namely, if we treat 
θ̂† :� θ̂†(δd,ρ) as a function θ̂† : R>0 × R>0 → R≥1, the 
plots show that for fixed δd and ρ1 ≥ ρ2, we have 

θ̂†(δd,ρ1) ≥ θ̂†(δd,ρ2). These effects can be explained as 
follows; for small δd, there are fewer requests per stage, 
and so, travel demands are met with more direct, less 
shared paths. In this case, increasing ρ enhances sharing, 
thereby reducing costs. For large δd, there are more 
requests per stage, and so, travel demands are more likely 
to overlap, naturally enhancing sharing without the need 
of increasing ρ. In other words, the longer customers wait 
to be served by the dynamic system, the cheaper it is for 
the system to offer them shared yet direct travel.

The effects of δd are further evidenced in Figure 3. 
Recall we compute an optimal nonanticipatory solu
tion with characteristic vector xt for input scenario It ∈

I (i.e., a minimum cost xt such that (xt, 0) ∈ Pt) individ
ually for each stage t ∈ [T]. For each j ∈ [m] correspond
ing to the jth edge, we compute the frequency 
|{t ∈ [T] : χt

j � 1}|=T with which it appears as part of the 

Figure 2. (Color online) θ̂† · (δd=δs) as a Function of δd, δs, and ρ 

Notes. The left, center, and right panels correspond to ρ equal to 5/4, 4/3, and 3/2, respectively. Within each panel, each curve corresponds to a 
different choice of δ :� δd, as indicated by the legend. For fixed δd, δs, and ρ, we certify the value of dynamism for surcharge coefficient η less 
than the value along the corresponding curve. For example, if δd � 6 and ρ � 5=4 (i.e., the curve third from the left in the left panel) and moreover, 
δs � 10, we can certify the value of dynamism for η ≤ 1:25 (i.e., the vertical axis value of the curve at the horizontal axis value of 10).

Figure 3. (Color online) We Compute an Optimal Nonanticipatory Solution Independently for Each Stage t ∈ [T], with ρ � 5=4 
and Different Choices of δ :� δd in Minutes 

Notes. The darker a road segment, the higher its frequency (over the stages) as part of the installed network. (Left panel) δd � 1 (minutes). (Center 
panel) δd � 6 (minutes). (Right panel) δd � 15 (minutes).
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nonanticipatory solutions. In other words, we rank 
road segments by the frequency (over the stages) with 
which they appear as part of the installed network and 
thereby, their importance as potential trunk lines. We 
observe that the smaller δ :� δd is, the fewer high rank 
road segments there are. However, these few road seg
ments are precisely the best candidates for forming the 
static network; they appear as part of the installed net
work in most stages despite the fact that there are few 
requests per stage for small δd—they are the ones that 
enable sharing. We believe this can be leveraged in a 
subsequent step of the transit system design process: 
the design of the operational network. In particular, we 
believe frequently used road segments, especially those 
that are frequently used for small δ :� δd, can be com
bined to obtain a good data-driven initial set of candi
date lines for line planning via column generation (see 
Borndörfer, Grötschel, and Pfetsch 2007, Gattermann, 
Harbering, and Schöbel 2017).

5. Conclusions
Our goal with this work is to provide a principled and 
tractable analytical framework with which to study the 
value of dynamism, as quantified by the dynamicity 
gap and related measures. Our main practical motivation 
is the ongoing debate regarding the value of on-demand 
integration in transit systems. We showcase our frame
work with two sets of computational experiments involv
ing high-level abstractions of integrated transit systems. 
Our abstractions are by no means an exact representation 
of the real world; producing and solving such models are 
research problems in and of themselves. However, we 
believe they capture the essence of the real-world problem 
sufficiently well to provide qualitative insight about the 
conditions under which on-demand integration might 
be most valuable. We hope this style of characterization 
enables accessible insight for both researchers and practi
tioners: given the problem at hand, leverage knowledge 
about the input parameters to quickly assess whether 
dynamism is worthwhile investment.

Going forward, we are interested in expanding our 
framework and experiments to handle enhanced models 
with more realistic operational features and moreover, in 
studying the value of dynamism in settings not necessar
ily related to network design. We are also interested in 
studying the value of dynamism while relaxing a crucial 
assumption in our framework, namely that the input sce
narios are sampled i.i.d. on every stage. Although it may 
be much more challenging to obtain convergence results, 
we believe capturing stage dependence and stage transi
tion costs (e.g., in our context, microtransit rebalancing) 
would significantly enhance our models.
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