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Abstract—The Internet of Things (IoT) offers new services
in the context of smart cities through digital devices embed-
ded with sensing, computation, and communication capabilities.
The IoT devices enhance the smart city vision by employ-
ing advanced communication and computation technologies for
smart city administrations. The IoT-based smart city applications
require many IoT devices and gateways to be deployed at dif-
ferent city points. Heterogeneous sensing devices, placing smart
devices in a constrained or physically inaccessible area, and large
urban areas to monitor together make IoT node deployment and
sensing management tasks difficult, time-consuming, and expen-
sive. Additionally, certain tasks may require smart devices to
be deployed for a very short period of time to sense and report
contextual information, making it economically infeasible to pur-
chase the devices. In this regard, we propose a drone-based IoT
as a Service (IoTaaS) framework that enables the dynamic provi-
sioning or deployment of IoT devices using drones. IoTaaS allows
IoT devices and gateways to be mounted on drones and provides
a distributed cloud service by placing the IoT devices in an area
according to the requirements specified by a user. We also pro-
vide an economic analysis for operating such drone-based IoT
services. A proof-of-concept implementation of IoTaaS for smart
agriculture and air pollution monitoring applications shows that
IoTaaS can reduce setup costs and increase the usage of IoT
devices.

Index Terms—Drones, gateway, Internet of Things (IoT),
provisioning, smart city, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

THE Internet of Things (IoT) is a technology paradigm that
offers intelligent connectivity among uniquely identifiable

smart devices and develops a smart pervasive framework. The
number of connected IoT devices is expected to be more than
40 billion by 2025 [1]. In the concept of IoT, billions of
physical devices are connected through the Internet, and they are
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capable of collecting and sharing data. IoT devices have gained
massive popularity in numerous systems, such as smart homes,
smart healthcare, industrial systems, surveillance equipment,
precision farming, and connected vehicles [2]–[7] where they
can communicate and interact as a cyber–physical system. The
idea of IoT-based smart city applications by integrating them
in different city places is increasingly becoming popular [8]–
[11]. For the fulfillment of the smart city vision, a considerable
amount of different IoT devices are required for different sensing
purposes throughout the city. However, deploying a huge amount
of IoT devices is costly and time consuming. Determining the
appropriate set of IoT nodes and their deployment positions
imposes challenges in this regard [12]. Moreover, an IoT device
needs to provide data depending on sensing time, location, and
power. Hence, a framework is required to provide on-demand
IoT-based services that can fulfill these requirements to enable
different smart city applications.

IoT devices provide a lot of applications in the context of
the smart city with varying requirements. For instance, read-
ings from sensors may be required under different conditions
and times such as environmental pollution monitoring [13].
Video surveillance [14] or vacant parking space detection [15]
tasks require movement of the IoT devices. Immediate deploy-
ment may also be required in different use cases such as a
disaster scenario [16], [17]. Moreover, the availability of the
IoT nodes may be limited if they need to provide measure-
ments with high precision or if they are of special uses [18].
Managing data and extracting information for better decision
making are usually harder than collecting data from such het-
erogeneous IoT devices [19]. Considering such a wide range
of sensing requirements, a dynamic IoT deployment frame-
work can resolve the issues of selecting the correct set of IoT
nodes, deployment place, and sensing management.

A drone-based distributed cloud service can enable the
dynamic IoT infrastructure deployment framework by facili-
tating the users to rent the devices based on their requirements.
Drones are feasible for this purpose because they are easy-to-
deploy, capable of carrying payloads, reprogrammable during
runtime, and able to measure anything from anywhere [20].
Many IoT-based applications in the smart city context leverage
drones as the medium of carrying the devices to the ser-
vice area [15], [17]. Fig. 1 shows several drone-based smart
city applications of IoT devices. The renting mechanism of
the drone-based IoT service framework allows the users to
rent IoT devices at any scale and upscale or downscale later.
Besides this, IoT sensing-as-a-service for different IoT use
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Fig. 1. Examples of drone-based IoT applications in smart city.

cases lets the users receive and interact with IoT data in a
pay-as-usage model [21]. Such a model enables the service
provider to generate larger profit if the IoT devices’ actual
usage is higher than the case of purchasing by the user [22].
The on-demand provisioning or deployment of IoT devices can
reduce the setup and management issues of an IoT system and
increase the usage of smart devices, hence becoming profitable
for both the user and service provider.

In this article, we propose an IoT as a Service (IoTaaS)
framework that provides on-demand IoT devices using drones.
We assume that the drones are equipped with proper IoT
devices and gateways. The users can request IoT devices and
the service providers provide the devices through drones. The
drones fly to the user-specified areas and create a dynamic
ad-hoc IoT system. Drones are also equipped with proper com-
munication devices to collect data from heterogeneous IoT
nodes and deliver them to a cellular network. The frame-
work requires considering the following aspects to operate
smoothly: drones’ short flight time, coverage area depend-
ing on the payload, optimizing the drone selection, and a
proper economic model and billing mechanism for the ser-
vice’s sustainability. In the proposed framework, we figure
out the maximum coverage area of drones by considering
their short flight time. We analyze the flight time and number
of required drone centers based on the payload for different
setups of IoT devices. We also perform the economic analysis
of the proposed framework in terms of setup cost and main-
tenance cost. A billing mechanism is demonstrated based on
the energy consumption by the IoT devices, total service time,
and the total number of transferred messages which reflect
the actual usage during the service period. We demonstrate
the feasibility of the framework through a proof-of-concept
implementation on Contiki [23]-powered IoT devices. The
experimental evaluations for smart agricultural fields and envi-
ronmental air pollution show that the IoTaaS framework can
reduce setup costs and increase usage of IoT devices.

Contribution: The specific contributions of this article are
as follows.

1) We propose IoTaaS, a drone-based IoTaaS framework
for smart cities to reduce deployment costs and ensure
proper usage of IoT devices. For this purpose, we intro-
duce a framework that enables renting and dynamic
deployment of IoT devices using drones to a specific

service area. The framework optimizes the drone selec-
tion and keeps track of the usage of the IoT devices
conforming to the quality of service.

2) We analyze the required number of drone centers in
different smart city places. For this purpose, we ana-
lyze the drone payload, flight time, and coverage area
to figure out the number of required drone centers to be
established.

3) We provide an economic analysis of the IoTaaS frame-
work that includes a detailed cost analysis and a billing
model to run the framework in an economically feasi-
ble manner. The study also provides cost analysis and
comparison between renting and purchasing IoT devices.

4) We implement a proof of concept of the IoTaaS to
demonstrate its feasibility in smart city applications.
We consider smart agricultural field and air pollu-
tion monitoring applications to analyze our proposed
framework.

Organization: The remainder of this article is organized as
follows. Section II provides the related background and moti-
vation to the problem. Section III explains the details of the
proposed framework. Section IV provides the economic anal-
ysis for the IoT service providers. Section V provides experi-
ment and evaluation of the framework. Section VI explores
the related works of drone-based IoT services. Finally, we
conclude in Section VII.

II. BACKGROUND AND MOTIVATION

Smart city refers to the implementation of pervasive and
ubiquitous computing in urban environments through smart
technology, smart devices, and intelligent management. The
vision of a smart city can be achieved using wireless networks,
sensors, and digital infrastructure [24], [25]. Smart cities are
characterized as locations where sensors and wireless networks
enhance the efficiency, security, and sustainability of the com-
munity [26]. Smart cities must also respond intelligently to the
community’s needs for public safety [27]. We already observe
several IoT-enabled technologies in the smart city perspective,
such as environment monitoring, intelligent transport, health-
care monitoring, waste management, smart parking, pedestrian
safety, etc. [10], [11], [28]–[31].

IoT devices are embedded with radio interfaces, sensors,
actuators, operating systems, and lightweight services. They
are capable of collecting contextual information and perform-
ing actions according to that information [29]. Several IoT
devices form a group or cluster which can perform a com-
plex task together. A cluster head synchronizes the operation
of the IoT devices. The IoT devices work in a constrained
and lossy network. Hence, they use several protocols, such as
ZigBee [32], 6LoWPAN [33], ZWave [34], and BLE [35]. An
IoT gateway bridges the communication between the outside
network and IoT devices by enabling communication between
heterogeneous networking protocols. For routing the packets
over the network, an IPv6 routing protocol named RPL [36] is
used. A typical 6LoWPAN network consists of three types of
nodes: 1) leaf; 2) root; and 3) intermediate nodes, where the
root node is responsible for communicating with the outside
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network. The 6LoWPAN nodes communicate over a wire-
less network defined by the IEEE 802.15.4 standard [37]. The
services of IoT devices can be local or cloud. Smart devices
offer local IoT services in a constrained network where the
cloud IoT services let the user query a smart device from
anywhere.

Unmanned aerial vehicles (UAVs) such as drones can be
an integral part of establishing the smart city idea with IoT
devices. They are already being used in numerous use cases
ranging from commercial applications, such as product deliv-
ery [38], and governmental applications, such as power line
monitoring [39]. Drones can be utilized for value-added IoT
services as they are a feasible medium to carry IoT devices,
sensors, and gateways to nearby distances inside the city.
Drones are lightweight, economically affordable, and capa-
ble of carrying lightweight IoT devices. Due to such reasons,
a drone-based dynamic IoT service platform is an appealing
idea.

From user’s perspective, renting IoT devices in a small scale
instead of purchasing can be beneficial due to variable setup
requirements and short usage time. Additionally, the users
possess the flexibility to scale the IoT devices based on the
requirements. Renting IoT devices through drones can also
resolve the issues regarding selecting correct IoT nodes, their
deployment positions, and performing optimizations depending
on the IoT application [12]. Such framework deployment can
also be beneficial from the service provider’s perspective. The
service provider of a pay-per-usage service makes higher profit
when the actual usage of IoT devices is higher than the expected
usage [22]. As multiple users are allowed to rent IoT devices
from IoTaaS, the usage of the IoT device is expected to be
higher than the fixed infrastructure setup. On the other hand,
though small-scale demand may not be economically feasible
for the service providers, several large users can make the
service profitable. For example, Amazon Web Services (AWS)
has a few large clients from whom AWS generate a huge amount
of profit. The top ten clients of AWS spend U.S. $109 million
monthly by using Amazon EC2 [40]. Though most of the users
may demand small-scale IoT services, several large scale users,
such as smart city authority, are expected to make the service
profitable for the service provider. Moreover, increasing the
usage of on-demand IoT services will also allow the service
providers to scale the infrastructure. Hence, an on-demand IoT
infrastructure service would be beneficial for both large and
small-scale demands from the perspective of service provider
and user. In this regard, a proper architecture and economic
analysis of the framework is required.

We present the following example scenario to better moti-
vate the drone-based IoT infrastructure deployment.

Example Scenario: Mr. X is a researcher who plans to deter-
mine the environmental pollution of the city in different places.
He wants to conduct the study for a month. For this pur-
pose, Mr. X needs a considerable amount of IoT devices to be
deployed in different places. Purchasing the IoT devices for a
short time is not economically feasible. Moreover, collecting
data from sensors under various conditions makes the frame-
work deployment more difficult. Mr. X can contact IoTaaS and
rent the required number of IoT devices to complete the study.

IoT devices have different use cases and applications in the
context of a smart city. To demonstrate the usability of IoTaaS
with different applications, we analyze two categories of IoT
sensor networks [12]: 1) static and 2) mobile sensor networks.

Static Sensor Network: In these networks, all the IoT nodes
are placed into fixed positions. Due to their fixed locations,
initial network design requires special attention in static sen-
sor networks. Examples of such use cases include environment
monitoring [41], structural health monitoring [42], etc. Such
networks incur a generic problem of deciding where to deploy
the nodes for better monitoring [43]. Incorporating different
IoT node placement mechanisms [44], [45] can be per-
formed by renting drone-mounted IoT nodes through IoTaaS
to achieve better performance.

Mobile Sensor Network: In these networks, the sensor nodes
themselves may move for collecting data based on previous
measurements or tasks, or the data collector nodes may move
to collect data from different sensor nodes [12], [46]. Mobile
nodes help to improve network performance in terms of cov-
erage [47], connectivity [48], and energy consumption [49].
IoTaaS framework can also serve for the use cases of mobile
sensor node deployment using drones with the flexibility to
execute route planning for mobile nodes [50], optimizing the
drone positions [51], etc.

III. PROPOSED FRAMEWORK

In this section, we provide the details of the proposed
IoTaaS framework. We subsequently explain the desired prop-
erties of the integrated drone-based IoT framework, drone
setup, and detailed architecture of the proposed framework.
After that, we analyze the drone payload and flight time based
on the drone setup. Finally, we explain the operation model for
requirement submission and drone assignment for a service.

A. Desired Properties of the Framework

An integrated IoT service provisioning framework using
drones should possess several properties. Previous works did
not consider all these properties together for integrated drone-
based IoT service provisioning. The desired properties are as
follows.

1) Users should be able to choose proper IoT devices
according to the requirements.

2) The framework should monitor each of the ongoing
services and upscale or downscale based on the require-
ments or performance.

3) There should be a proper economic analysis and cor-
responding billing mechanism that would reflect the
devices’ actual usage.

4) The framework should be able to execute IoT device
placement algorithms for better sensing results and also
store service details for future auditing purpose.

5) The framework should assign drones based on the
mounted IoT devices, payload, and distance by optimiz-
ing the service time or energy consumption.

6) Drones should be equipped with proper IoT devices,
communication devices, and gateways. In this regard, the
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Fig. 2. Overview of the IoTaas framework.

framework should consider payload carrying capability
and maximum flight time of the drone.

B. Drone Setup

Fig. 2 shows the overview of the IoTaaS framework with a
drone equipped with IoT devices and gateways. The service
provider establishes several drone centers in different city areas
where different IoT devices and gateways are mounted on
the drones to deliver the on-demand dynamic IoT infrastruc-
ture. Examples of attached IoT devices include temperature
sensors, Radio Frequency Identification (RFID) devices, cam-
eras, motion sensors, and GPS. The service provider supplies
its pricing model to the IoTaaS framework based on energy
consumption, service time, number of messages transferred
from IoT to cloud, and user requirements. The drones are
equipped with Wireless Local Area Network (WLAN—IEEE
802.11), IoT (IEEE 802.15.4), and 4G/5G network interfaces
to maintain excellent and stable connectivity. It is thus possi-
ble to preprogram the drones regarding the service and send
updated instructions. In addition, the drones are capable of
storing the sensed data in the cloud using the mounted IoT
gateway. Section III-D explains the drone payload and flight
time calculation process.

C. IoTaaS System Framework

The IoTaaS framework provides a front-end for the users to
provide the requirements and find out the optimized resources.
Fig. 3 provides the detailed architecture of IoTaaS system
framework. The framework components are as follows.

1) IoTaaS Service Framework: The IoTaaS service frame-
work is responsible for executing and monitoring each of the
concurrently running drone-based IoT services separately. The
framework keeps track of the current status of each services
and aggregates the available and free resources of each drone
center. The system framework has the following modules.

Fig. 3. System framework of IoTaaS.

Management Portal: Unlike many previous frameworks,
IoTaaS contains a Management Portal that provides a Web
interface for a user to explore the available resources. A
user can navigate the available services and price packages
through the user interface of the management portal in the
cloud by providing service requirements. The user can explore
the software and hardware specification details of the sen-
sors, actuators, gateways, and topology, such as mesh, star,
and tree. The user can also monitor the ongoing service and
interact with the data from the cloud reported by the IoT
devices. The service provider can update the resource pool and
obtain information regarding ongoing services through man-
agement portal. Section III-E explains the operation model for
requirement submission and drone assignment process.

Service Integration: The service integration module is
responsible for analyzing the available resources to figure
out the best service deals. It analyzes the service require-
ments and discovers the compatible resources from resource
database (RDB).

The service and resource pool manager maintains the details
of all the drones and mounted IoT devices in RDB. This com-
ponent also keeps track of ongoing services in service database
(SDB) and maintains the current information regarding the
drones, such as its battery status, location, route, and installed
IoT equipment.

The service requirement negotiator finds the best resource
deals for a specific requirement after getting the detailed
specification of the resources. Finally, the specifications are
delivered to the users through management portal. This com-
ponent also stores the service information in the SDB once a
service starts.

The drone selection service selects the drones that can per-
form tasks specified by the user. The optimized drones can be
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selected from multiple drone centers depending on different
conditions, such as distance from service place, availability
of drones, availability of IoT devices, etc. A service provider
may have different types of drones with varying properties,
such as weight, payload capabilities, and battery. Drone selec-
tion is optimized based on service time or energy consumption
which can be divided into three phases: 1) flying to the ser-
vice area; 2) processing the sensed data; and 3) transmitting
the data to the cloud server [52]. If the service provider has a
total of n drones in multiple drone centers, then

Ej = Efly + Eprocess + Etransmit (1)

Tj = Tfly + Tprocess + Ttransmit. (2)

Here, Ej and Tj denotes the energy and time required to pro-
vide the service using the jth drone where 0 ≤ j < n. Efly,
Eprocess, and Etransmit denotes energy consumption for travel-
ing, processing data, and sending the data to the cloud server,
respectively. Similarly, Tfly, Tprocess, and Ttransmit stand for
flying time, data processing time, and network latency for
sending data to the cloud server. We can define the overhead
cost in terms of energy and time as follows:

Zij = Ej × pi + Tj × qi. (3)

Here, pi and qi denote the importance weights of energy con-
sumption and time for a specific service i where 0 ≤ pi, qi ≤ 1
and p + q = 1. The weights influence the drone selection
and service strategy. For example, more drones in the ser-
vice area reduce the time required for the service. However,
the total amount of energy consumption is increased if more
drones fly to the service area. Hence, qi will be larger than
pi for optimizing service time by putting less importance on
energy consumption. Conversely, low importance on service
delay with a higher span of service time with optimized energy
consumption requirement puts a larger value to pi. Hence, if
there are n available drones and m service requests, we can
formulate the following optimization problem:

minimize
n∑

j=1

m∑

i=1

Zij × xij (4)

such that

∀jεn : Ej × xij ≤ Ei (5)

∀jεn : Tj × xij ≤ Ti (6)

∀jεn :
m∑

i=1

xij ≤ 1 (7)

xijε{0, 1}. (8)

Here, xij in (4) denotes a decision variable that decides whether
the drone j is selected to provide service i. As the drone’s
movement consumes most of the energy, the energy consump-
tion optimization leads to completing the task with the fewest
number of drones and minimum movement inside the service
area. In contrast, time optimization requires to select more
drones with higher CPU and bandwidth capability. However,
irrespective of the value of pi and qi, each drone j requires to
maintain a threshold of energy consumption and time for pro-
viding a service i which are denoted by Ei and Ti [constraints

(5) and (6)]. Thus, time and energy consumption should not
exceed the threshold to maintain the quality of service. Finally,
constraints (7) and (8) ensure that each drone is assigned to
at most one service.

Drone Center Manager: The drone center manager is
responsible for controlling one drone center. This module
manages all the current services, status of the drones, pro-
vides available resource list according to the requirements,
tracks current resource usage, and places drones to optimized
locations.

The resource-tracking service keeps track of the drones of a
drone center and reports to service and resource pool manager
to update the available resource list in RDB. The resource-
tracking service also provides the drone center’s compatible
and available resources according to the requirements received
from the service integration module.

The resource usage tracker (RUT) tracks the resource uti-
lization in terms of power consumption, memory, bandwidth,
and CPU utilization of the IoT devices. Resource usage
tracking is essential for billing purposes at the end of service.

Resource reporting service reports the service details peri-
odically to the alarming module of provisioning service to
ensure the quality of service. This component also updates
the resource usage summary in SDB at the end of the service.

Drone placement service is responsible for placing the
drones to optimized locations for maximizing the sensing out-
put. For this purpose, the drone placement service executes
related IoT node placement algorithms [44], [45].

Provisioning Service: The provisioning service enables
upscaling and downscaling the resources. For this purpose, this
service monitors the resource usage and verifies the service-
level agreement (SLA) and Quality of Service. A user can
specify usage threshold parameters for the allocated services
and define the required actions to be performed when a metric
exceeds the threshold. The monitoring service can also gener-
ate log provenance for forensic investigation and performance
audit of the service provider in future. The monitoring ser-
vice receives usage reports from resource reporting service and
monitors whether they are performing as expected. Alarming
service informs the drone center manager regarding any unsat-
isfactory condition in sensing or battery status to provision
with more drones.

Auditing Service: The auditing service is composed of
three components: 1) security audit module; 2) privacy impact
audit module; and 3) performance audit module. The audit-
ing module periodically logs the activities among the users,
IoTaaS service provider, and the IoTaaS Service Framework.
This module is also responsible for maintaining the secure
provenance of the logs for post-verifiable auditing. The audit-
ing service provides an interface for auditors to retrieve and
analyze the stored logs for forensic investigation. Previous
drone-based IoT frameworks [14], [53], [54] do not support
auditing services, which is crucial for future investigation of
a service-related incident.

Reporting and Billing: The performance analyzer module
generates reports based on service usage and SLAs from
SDB. Then, the module calculates provides the service report
to billing management component. The billing management
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Fig. 4. Parameters that affect drone flight time and coverage area: total
weight with payload (W), height from the ground (H), and velocity (V).

component considers all the usage report to generate the bill.
Section IV provides economic analysis and billing mecha-
nisms that reflect the actual usage of the rented devices.
Though several works [55], [56] proposed billing mechanisms
for the IoT device renting framework, they do not provide
complete economic analysis in this regard.

2) Drone Reporting Engine: The drone reporting engine
is responsible for reporting the current status of the service
periodically to the IoTaaS service framework. The reporting
module includes the CPU utilization reporter, power consump-
tion reporter, drone battery status reporter, and latency reporter.
These reporters are required for the service to maintain the
quality of service and keep track of the usage to bill the user
later. A Raspberry Pi that works as the gateway in the IoT
networks is responsible for executing these modules. Here,
we explain the responsibilities of different reporting modules.

CPU Utilization Reporter: CPU utilization refers to dif-
ferent utilization metrics of IoT devices, such as RAM,
bandwidth, CPU cycles, etc. CPU utilization reporter period-
ically checks these metrics and sends report through drone
reporting engine.

Power Consumption Reporter: This component is responsi-
ble for keeping track of consumed energy while transferring
data between the IoT device and the cloud server.

Battery Status Reporter: As the IoT devices consume energy
from the drone battery, it is crucial to monitor the drone battery
status continually. The battery status reporter module monitors
the drone battery to determine the drone’s return time to ensure
the safe return to the drone center.

Latency Reporter: In the IoTaaS architecture, drones can
collect data individually or multiple drones can create an
ad-hoc IoT cloud. The latency reporter module sends ping
messages to different IoT devices and calculates the round
trip time that represents the latency.

D. Drone Payload and Flight Time Calculation

The drones must have enough energy before being assigned
for a service task. Here, we determine the payload weight of
IoT devices and gateways the drone can carry and the drone’s
maximum flight time with that payload. Fig. 4 shows the

parameters that affect drone flight time and coverage area.
Here we explain the parameters briefly.

Flying Position and Speed: The requirements of flying to
the service area and maintaining a height from the ground
affect the total energy consumed by a drone. Placing a drone
to a much higher position requires the drone to generate a
much higher amount of thrust and significantly larger energy.
Moreover, the hover position draws much less energy than
moving forward at a certain speed. Again, more speed and
wind from the opposite direction also draw more energy.

Weight: The energy consumption for flying a drone is
also proportional to the amount of weight carried by a
drone. Besides carrying the IoT devices, a drone itself has
some weights, such as frame, motors, electronics, battery,
accessories, etc.

Ideally, we need to maintain around thrust-to-weight ratio
of 2:1. Suppose the weight of a drone without considering the
weight of battery and IoT devices is wd. The average weight
of battery and each IoT device are wbt and wiot, respectively.
Drone motors can generate wth maximum thrust on an aver-
age. Hence, the maximum number of IoT devices a drone can
carry is

niot =
wth
2 − wd − wbt

wiot
. (9)

Now, we determine how long we can use a fully charged drone
with payload before we need to call them back for recharging.
The flight time of a drone is calculated as

Flight time = capacity ∗ discharge/AAD.

Here, the capacity refers to how much current the battery
can hold when it is fully charged and the discharge indicates
the maximum allowed level to discharge the drone battery.
Usually, the recommended level of battery discharge is 80%
to ensure the good health of the battery. The average Ampere
draw (AAD) can be calculated as follows:

AAD = AUW ∗ P/V.

All up weight (AUW) refers to the take-off weight, P denotes
the power required to lift 1 kg weight, and V stands for the
voltage of the drone battery. P varies with the drone speed
as low speed costs low power and high speed draws more
power. However, an optimal speed provides the maximum effi-
ciency to a drone that depends on the drone weight and battery.
Maximum efficiency of the drone allows the drone to cover
maximum path.

E. Operation Model

Based on the requirements provided by the user, the IoTaaS
framework figures out the optimized drones and assigns for the
service. Fig. 5 provides the operation model for requirement
submission and drone assignment process. Here, we explain
all the steps of the operation model.

Step 1: The users provide requirement specification through
the management portal. Steps 2 and 3: The requirements
are forwarded to the resource pool service. Step 4: The
requirements are analyzed to define the specification from the
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Fig. 5. Operation model of IoTaaS framework.

resource pool specifications. Step 5: Requirement specification
is provided to the drone center manager for getting the compat-
ible resource list. Step 6: The drone center manager returns the
resource list that fulfills the requirement specification. Steps 7
and 8: The resource list is returned to the resource pool and
the list is sorted to find the best options at the start. Steps 9
and 10: The list is returned to the user through the manage-
ment portal. Step 11: The user selects the most feasible option
from the list. Step 12 and 13: The selected option is forwarded
to the resource pool and the resource allocation request is sent
to the corresponding drone center. Step 14: The drone center
allocates necessary resources to the user. Step 15: The drone
center manager sends the IoT device and gateway mounted
drones to the specific site defined by the user. Step 16: The
user uses the resources to perform the specific sensing task.
Step 17: At the end of the resource usage, the drones are sent
back to the drone center.

IV. ECONOMIC ANALYSIS

In this section, we provide an economic analysis of the
IoTaaS framework. The cost model derived from the economic
analysis can be used to estimate the financial feasibility of
IoTaaS-based service.

A. Economic Analysis of IoTaaS

To perform the economic analysis of IoTaaS, we provide
a cost model for setting up and running the IoTaaS service.
Then, we propose a billing mechanism to use IoTaaS based
on two strategies: 1) total consumed energy and 2) the total
number of transferred messages during service time.

1) Setup Cost: Initial costs for system setup include pur-
chasing the service equipment, renting places to operate the
service, and setting up the system framework. The service

provider needs to establish several drone centers in different
city areas. To provide IoT infrastructure services, they need to
purchase drones, IoT devices, IoT gateways, and other aux-
iliary equipment. The drone centers contain charging stations
to recharge the drone batteries. Some hardware and software
are also required to set up the system framework and device
maintenance. Service providers usually hire experienced peo-
ple or third-party vendors for the initial setup. Moreover, the
service providers need to rent virtual machines to host the
cloud service. So, the initial setup cost would be

Initial cost = device purchase cost + infrastructure setup cost.

If the service provider wants to cover a smart city area and
ensure the drones will spend at most x% of their energy for
providing service, then the maximum fly time of a drone ts
can be calculated using the properties explained in Section IV.
If the drones have an average speed v, then we can calculate
the maximum radius of the area they can cover according to
the following formula:

rmax = x
2 ∗ 100

× v × m. (10)

To reduce the setup cost, the service provider wants to set up
as few drone centers as possible. Hence, they need to minimize
the overlapping of the coverage area. Instead of the circular
shape of the coverage area, we are considering the shape as
square. Hence, the maximum area that one drone center can
cover is

areamax = 2 × r2
max. (11)

As we have assumed the coverage area is a, the minimum
amount of drone centers need to be established in the smart
city will be

ndroneCenter = a
areamax

.

If the service provider targets to serve y users at a time with p
drones to each user, then the total number of drones (ndrones)
required for all drone centers will be

ndrones = ndroneCenter × y × p. (12)

Hence, the purchasing cost for drones will be

ndrones × droneunitPrice. (13)

2) Maintenance Cost: The devices used for providing ser-
vice require proper maintenance to ensure the quality of
service. Hence, the service provider needs to hire some reg-
ular employees to ensure appropriate device maintenance.
Moreover, the provider has to pay the rent of drone center
spaces established in different smart city locations. The total
maintenance cost can be calculated by aggregating all these
expenses.

The cost of repairing devices can be calculated using the
probability of a device’s failure in a day and the average cost
for fixing such a device. Multiplication by the total number of
failed devices provides the total repair cost:

Repair Cost = Failing probability (in a day) × No of failed

device × Average cost for repairing the device.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on February 27,2023 at 18:00:55 UTC from IEEE Xplore.  Restrictions apply. 



12432 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

The cost for employees can be calculated as

Employee cost = Total no. of employee × Average salary of

an employee.

Rental cost for drone centers is another important cost for
the service providers. The rental cost can be calculated as

Rental cost = Total number of drone centers × Average rent

of drone centers.

The power consumption cost is incurred by the drones and
other hardware and networking devices. We can calculate the
power consumption cost as

Power consumption cost = Number of device × Average

Energy Consumption × Unit Energy Cost.

The total maintenance cost can be calculated by aggregating
all the costs.

Maintenance cost = Repair cost + Employee cost

+ Rental cost + Power consumption cost.

3) Billing: As our proposed framework works in a pay-
as-you-go model similar to the cloud, the billing mechanism
depends on the usage of the rented resources. We propose the
billing method based on the total number of messages sent to
the cloud server and total consumed energy for sensing and
reporting. We also consider the dynamics of IoT traffic and
incorporate that into the billing mechanism. Here we illustrate
the entire billing method along with the traffic modeling.

Dynamics of IoT Traffic: The fundamental theorem for traf-
fic processes is the Palm–Khintchine theorem which states that
large number of independent traffic process can be described
by a Poisson process. IoT traffic from multiple nodes can also
be described using the theorem. For the Poisson process, inter-
arrival time X follow an exponential distribution with traffic
arrival rate λ with probability density function [57]

X ∼ Exp(λ) : fx(t) = λe−λt. (14)

Hence, the expected interarrival time for a traffic process i
would be

E[Xi] = 1
λi

. (15)

Here, λi is the traffic arrival intensity of process i. Let us
assume that there are n IoT devices attached to the drone. If
all the nodes send data at a similar periodic interval T , then
approximation of the Poisson process provides the expectation
of interarrival time as follows:

E[Xi] = T
(n + 1)

. (16)

However, in our proposed framework, there can be multiple
IoT nodes with different periods as the IoT devices may be
used for different purposes. Moreover, some IoT devices can
be event driven instead of reporting data periodically. Fig. 6
shows a example of traffic arrival patterns from different IoT
nodes mounted in a drone. Hence, we model a mixed traffic
scenario that aggregates both the Poisson traffic and periodic

Fig. 6. Arrival of IoT traffic.

traffic. To model such heterogeneous traffic, we consider α

fraction of total IoT traffic arrive as the Poisson process and the
remaining 1 − α fraction arrive as the periodic process. Here,
all the Poisson and periodic traffic are aggregated separately
to figure out the total number of messages reported by all the
IoT devices mounted in the drone.

Billing Based on Total Consumed Energy: The total bill is
calculated based on consumed energy by all the IoT devices
operated in the drone. We consider the following parameters
while service being provided by a single drone.

1) Consumed energy for reporting each unit of data is Er.
2) The size of each data reported by an IoT device is x.
3) The total usage time of drone-based service is m.
Energy consumption-based billing mechanism leverages the

message arrival rate. Higher message rate (low inter arrival
time) incurs more bill and vice versa. If the total number
of messages reported by the IoT devices is r, observed inter
arrival time is t, and expected inter arrival time is texp, then
the energy consumption by all IoT devices of a drone will be

Edrone = (Er × x × r)(
t/texp

) . (17)

Let us assume the cost for consuming each unit energy is c.
Moreover, the bill also depends on total service time. If a
drone is rented for m minutes and cost for each minute is z,
then we can calculate cost for one drone as follows:

Cdrone = (Edrone × c) + (m × z). (18)

If the drone’s performance point is d and the provider wants
p% profit, then the billing amount for one drone will be

Bdrone = (1 + p/100) × Cdrone × d. (19)

The profit margin covers all other costs and profits of the
service provider. The total bill for using n drones for the
service will be calculated as

Btotal =
n∑

n=1

Bdrone. (20)

Billing Based on Total Number of Transferred Messages:
In this method, the bill is calculated based on the total num-
ber of transferred messages between the IoT devices and the
cloud server. The framework considers the maximum size of
a message as 1 kB. Hence, a message of size more than 1 kB
is divided into multiple messages. If the average message size
is x bytes and all the IoT devices of a single drone send p
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messages, then the total number of messages calculated by
the billing mechanism is

Mdrone = (x/1024) × p. (21)

If the cost for per message is c, and the drone is rented for m
units time in a rate of z cents, then the cost for a single drone
can be calculated as follows:

Cdrone = (Mdrone × c) + (m × z). (22)

After calculating the cost for a single drone, the total billing
amount can be calculated using the equations 16 and 17. For
both the billing strategy, the service provider can adjust the
per unit price (based on consumed energy or message) and
profit margin by maintaining the SLA.

B. Economic Analysis of Fixed Infrastructure

We explain the economic analysis of the fixed infrastruc-
ture by analyzing device purchase cost and maintenance cost.
Device purchasing costs for the fixed infrastructure include
IoT device purchase costs and drone purchase costs. Purchased
devices need to be adequately maintained, which incurs device
repair costs, rental costs, and power consumption costs. All
these costs are identical to the setup and maintenance costs
of the IoTaaS architecture. However, the costs will depend on
the application scale, which will vary based on different use
cases of the IoT devices.

For economic analysis, we use the concept of net present
value (NPV), which is popularly used to calculate an invest-
ment decision’s profitability. Walker [58] used this methodol-
ogy to explore the feasibility of renting computation resources
from the cloud. Calculating NPV is important as it considers
all cash inflows and outflows during the lifetime of the invest-
ment. Moreover, it also considers the decrements of dollar
value over time. We adopt the methodology for calculating
NPV from [59] which is defined as

NPV =
Y−1∑

t=0

Ct

(1 + r)t . (23)

Here, Y denotes the number of years, r is the rate at which
the dollar’s value decreases, and Ct is the cost at time t.

Time Value of the IoT Devices: Now, we analyze the cost
per hour for the purchase case (setting up the fixed infrastruc-
ture) and lease case of IoT devices. For this purpose, we adopt
the analysis mechanism from [58]. According to Moore’s law,
the number of integrated circuit transistors is expected to be
doubled every two years, leading the CPU capacity to be dou-
bled in that timeframe. We assume the law is also applicable
for IoT devices. Hence, the cost per hour for both the fixed
infrastructure and lease case would be

cost = NPV
NPC

. (24)

Here, NPV is the net present value, and NPC represents the
net present capacity, which is the total hours of usage (CPU
hours) of all the considered IoT devices. The total capacity
(TC) is calculated using the total working hours for a specific
period. For example, if an IoT device works 50% of its total
capable time, the TC for one year would be 365 × 24 × 0.5 h.

However, due to CPU depreciation according to Moore’s law,
the NPC for next Y years would be

NPC = TC ×
1 −

(
1√
2

)Y

1 − 1√
2

. (25)

Hence, the cost per hour for fixed infrastructure case would
be [from (24)]

cost =

(
1 − 1√

2

)
×

(∑Y−1
t=0

Ct
(1+r)t

)

1 −
(

1√
2

)Y
× TC

. (26)

We assume that the ervice provider updates the IoT devices
with time. Hence, the user does not face the CPU depreciation
cost. For renting IoT devices, TC is the total usage hours of
the IoT devices. Hence, total cost per hour for renting devices
would be

cost =
∑Y−1

t=0
Ct

(1+r)t

Y × TC
. (27)

V. EXPERIMENT AND EVALUATION

In this section, we explain our conducted experiments and
evaluations to demonstrate the feasibility of the proposed
framework. We initially calculated the drone coverage area
and the number of required drone centers considering different
sensor setups. We further considered the smart farming sce-
nario to demonstrate the renting cost compared to the case of
purchasing the devices. Moreover, we present the cost com-
parison of investment alternatives for several years. Finally,
we considered the industry air pollution monitoring scenario
to find the usage of the sensors in different circumstances.

A. Number of Drone Centers

We considered DJI Phantom 2 drones for providing the IoT
services. The weight of the DJI Phantom 2 drone is 1000 g.
These drones are capable of lifting up to 1300 grams of weight
during take-off. The drone has a 5200-mAh battery with 25
min of hover flight time. The drone draws approximately 290-
W power to lift 1 kg weight while operating at 40 km/h, which
optimizes the traveled distance and power consumption. As the
drone can fly with a maximum of 300 g of extra weight, it is
impossible to mount all the sensors for different purposes in
one drone. For the purpose of our experiment, we considered
two different drone setups to use for various IoT applications.
The purpose of one setup was precision farming, where the
drones were equipped with a salinity sensor, moisture sen-
sor, gas sensor, weather station sensor, and Raspberry pi. The
total weight of the drone became 1175 grams after mounting
all the sensors in the drone. The other setup was used for
disaster management and pollution monitoring that included
Bluetooth beacon, GPS device, smoke detector, humidity sen-
sor, air quality sensor, and Raspberry pi having a total weight
of 1275 g.

For drone center setup, we considered a smart city with an
area of 400 km2 and calculated the approximate number of
drone centers required to cover the city area. We assumed that
drones are assigned to cover the area under a particular drone
center. Fig. 7 shows the coverage area of a drone considering
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Fig. 7. Coverage area of drone with different weight.

Fig. 8. Number of drone centers required for different payloads in drone.

the take-off weight. The coverage area was calculated using
the drone flight time calculation formula explained in Section
IV. Fig. 8 shows the number of drone centers required to cover
the city area. During the calculation, we considered that the
drones would spend at most their 75% of battery life, including
returning to the drone center.

B. Energy Consumption Based on Optimization Constraints

We evaluated the effects of optimization constraints described
in Section IV by implementing the solution of the optimization
problem in python and varying the service time and energy
consumption constraints. The importance weights of energy
consumption and service time (p and q, respectively) resulted
in different energy consumption levels. The simulation was
performed for a variable number of drones and corresponding
energy consumption depending on the constraints. We varied
the total number of drones from 50 to 500 and calculated
the energy consumption considering they will maintain around
25% of their battery level after returning to the drone center.
Fig. 9 shows total energy consumption with variable values
of importance weights. We observed that higher importance
on service time (q = 0.9) caused high energy consumption
with an increasing number of drones. This approach decided
to incorporate more drones to reduce service time without
considering total energy consumption. For equal weights on
time and energy consumption constraints (p = 0.5 and q = 0.5)
shows less energy consumption than the previous approach. In
this case, the algorithm tried to assign a limited number of drones
to reduce energy consumption and maintain a reasonable service
time duration. Finally, more weights on energy consumption

Fig. 9. Energy consumption for different number of available drones with
variable optimization constraints.

Fig. 10. Experimental network setup.

optimization (p = 0.9) reduced total energy consumption by
selecting fewer drones, which introduced a delay in service.

C. Smart Agriculture Field

We considered a smart Agriculture [60] scenario for our
experiment where IoT devices measure the environmental con-
text of the agriculture field and report them to keep the farmers
informed about the current condition. We considered usage of
different sensors for smart farming, such as salinity, moisture,
weather station, and location sensors. To calculate the number
of sensors required for smart farming, we considered an acre of
farming land and divided it into multiple blocks according to
the signal strength of the sensors’ radio transceiver. The drones
were equipped with all four sensors and a gateway capable of
communicating with both IPv4 and IPv6 protocols. The IEEE
802.15.4 has around 10-m communication range. Hence, the
sensor can cover approximately 100 m2 of farming land. A
total number of 41 drones were required to cover the full 1
acre of farming land. We assumed that the drones will not
move inside the farming land which lead to the requirements
of 41 drones to cover full one acre land. However, drones can
be programmed to move around the field and collect data to
reduce the total number of drones required.

1) Experimental Setup: We created a proof of concept
implementation of IoTaaS that runs on RE-Mote IoT device
powered by the Contikiti [23] operating system. The device
was simulated using the Cooja simulator [61] and operated
at 8-MHz CPU speed, 64-kB RAM, and 512-kB ROM. The
IoTaaS service framework was running as a Web Service on
a Virtual Machine located in Amazon Cloud. We performed
the simulation in a MacBook Pro with a Core i5 proces-
sor and 8-GB RAM. We created a gateway application that
was running on the laptop. Fig. 10 shows our experimental
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(a) (b) (c) (d)

Fig. 11. Probability distribution of inter arrival time (in second) of data for (a) moisture sensor, (b) salinity sensor, (c) location sensor, and (d) weather
station sensor.

network setup for one drone where the IoT devices created a
star topology.

2) Evaluation: We performed an analysis of the effective-
ness of our proposed solution in terms of the cost of purchasing
individual sensors and renting sensors embedded in a drone.
For the fixed infrastructure with purchased IoT devices, we
calculated device purchasing cost and their operating cost.
Purchasing costs for all the sensors for an acre of land would
be approximately U.S. $3362 based on the current market
price.

We calculated the energy consumption for transferring
sensed data for each IoT device to determine the incurred
bill in IoTaaS. For this purpose, we calculated the message
size for each request sent to the cloud server from each sensor
mounted in the drone. The IoT devices sent the data using post
request, and the payload size was x1 = 316 bytes for the mois-
ture sensor, x2 = 309 bytes for the sanity sensor, x3 = 535
bytes for the weather station, and x4 = 375 bytes for the
location sensor. As an explanation of the message sizes, the
JSON object generated by the weather station sensor contains
the following information: temperature in Fahrenheit, pressure
in pascal, humidity in percentage, dew point temperature in
Fahrenheit, wind speed in meter/second (m/s), the maximum
speed of wind gusts in m/s, and rainfall value in millimeter.

We assumed that the moisture sensor sends data once in
every 5 s, sanity sensor sends data in every 10 s, location sen-
sor sends data in every 30 s, and weather station sensor sends
data in every 60 s. We performed simulation for data arrival
intensity λi for all the sensors and calculated the probability
distribution of inter arrival times. Fig. 11 shows the probabil-
ity distribution of inter arrival times for all the sensors. Based
on the inter arrival time probability distribution for all four
sensors, we measured total consumed energy and calculated
total cost for renting device from IoTaaS. Figs. 12 and 13
show a comparison between fixed infrastructure cost and the
cost through IoTaaS framework. We presented the result with
variable profit margin and price per unit energy consumption.
The cost with the variable profit margin was calculated by set-
ting the cost for per joule energy consumption as 1.5 cents.
On the other hand, for the variable price per unit energy, the
profit margin was fixed to 20%. The profit margin can be
adjusted based on other costs of the service provider, such
as drone center rent, personnel cost, etc. Cost calculation was
shown for four months, considering the required time for a full

Fig. 12. Comparison of cost with variable profit margin.

Fig. 13. Comparison of cost with variable price per unit energy for energy
consumption-based billing strategy.

cycle of growing and harvesting crops. We also calculated cost
considering the number of messages transferred to the cloud
server. The maximum message size was 535 bytes for the
stated scenario, while the maximum allowed message size was
1024 bytes. Hence, with each data report, the number of mes-
sages transferred was increased by one. Fig. 14 shows the cost
with fixed infrastructure and variable price per 1000 messages.
We observe that the cost is significantly lower and feasible if
the sensors are rented through the IoTaaS framework.

Comparing Investment Alternatives: We calculated the cost
per hour for renting and purchasing IoT devices to compare
the investment alternatives. Fig. 15 shows the cost per hour
comparison if the user purchases the devices and rents through
the IoTaaS. Even if the user sets up his own infrastructure with
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Fig. 14. Comparison of cost with variable price for per 1000 messages.

Fig. 15. Cost per hour (in dollars) comparison between renting and
purchasing the IoT devices.

all the IoT devices required for one acre of agriculture field,
the cost per hour will surpass renting after around five years.
We performed the calculation based on the NPV, and NPC
explained in the economic analysis section (Section IV). The
NPV included all the costs for IoT device purchase, drone pur-
chase, initial drone center setup, and yearly operational costs
for one drone center. We calculated the cost per hour for pur-
chasing and renting devices using (26) and (27). Initially, the
cost per hour for fixed infrastructure was 19 cents. On the other
hand, the cost per hour for renting devices was 23 cents. In the
next few years, the cost for fixed infrastructure reduced a lit-
tle. However, it increased since then and surpassed the renting
cost after around five years. We saw in the previous results
that the cost would be significantly lower if users rent the
devices instead of purchasing them. However, one can argue
that the user can build his infrastructure, covering the upfront
purchasing cost over the years. This analysis shows that the
cost per hour would be higher after several years due to the
depreciation cost of the devices.

D. Industry Air Pollution Monitoring

We evaluated our proposed model using air pollution moni-
toring applications where the air quality sensors report data
after each specified time interval. For evaluation, we con-
sidered that the uniformly distributed sensors have the same
distance among them. The time interval of two consecutive
readings from each place was 30 min. We conducted our sim-
ulation considering the requirement of sensing air quality in
50 and 100 different places in the industrial area. Each drone

Fig. 16. Energy consumption per sensor with varying number of drones.

was equipped with an air quality sensor, and the payload of
the sensor data was 315 bytes. We varied the total number of
drones and calculated each sensor’s energy consumption for
reporting the sensed data. We simulated the environment using
the same network setup shown in Fig. 10.

Fig. 16 shows the energy cost per sensor considering differ-
ent numbers of drones. We observed that energy consumption
for each sensor decreases with increasing the number of
drones. Hence, a lower number of drones can ensure more
usage of the sensors. On the other hand, more drones reduce
each sensor’s energy consumption, which implies less sen-
sor usage. Hence, we can conclude that the drones can sense
data from multiple places by reducing the required number of
sensors and increase the usage of the sensors.

VI. RELATED WORKS AND COMPARATIVE DISCUSSION

In this section, we compare IoTaaS with the related works
regarding drone-based IoT services. Our proposed frame-
work consists of several components: a framework for on-
demand provisioning of the IoT devices, optimizing the drone
selection, drone payload and coverage area calculation, and
economic analysis. All these components are essential for
drone-based IoT services for smart cities. To the best of our
knowledge, no other research works covered all these issues
to provide drone-based IoT services.

Drone-based IoT services gained significant research atten-
tion recently. Motlagh et al. [14] proposed an UAV-based IoT
platform and explained a use case for crowd surveillance.
IGaaS by Hoque et al. [62] provided an on-demand IoT gate-
way using drones to improve the quality of service of an IoT
network. Vasisht et al. [53] proposed a drone-based smart
agriculture framework that provides virtual walkthroughs,
warnings, and suggestions of different events. Drone-based
network packer delivery service in the vehicular network [54],
LTE network [63], structural health monitoring [64], edge
computing platform for connected autonomous vehicles [65],
pipe inspection [66], monitoring hazardous aerial plumes [67],
etc., are several other important drone-based IoT applications.
Drones can also serve the active IoT devices for collecting
data instead of a fixed base station which can reduce the
total-transmit power [68]. All these frameworks only focus on
collecting data and provide insights for a specific application.
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TABLE I
COMPARISON WITH RELATED WORKS

However, they do not consider relevant issues, such as drone
payload, deployment optimization, or billing mechanism.

The optimization of drone selection is an integral part for
drone-based IoT applications. Optimization can be performed
based on different purposes, such as coverage area, energy
consumption, connectivity, task management, etc. Zorbas and
Douligeris [51] proposed a mechanism to recharge IoT devices
using the battery mounted in drones wirelessly. For this purpose,
they have identified a minimum number of drone locations to
charge all the nodes. Bor-Yaliniz et al. [69] proposed efficient
placement of drone-based base stations to optimize the coverage
area and revenue. Fan and Ansari [70] proposed a traffic load-
balancing scheme using drones to minimize the response time
of IoT requests. The research focused on drone placement in
suitable areas and allocating traffic load accordingly to avoid
traffic congestion. Motlagh et al. [52] considered a drone-based
IoT platform where they proposed energy and delay aware task
assignment mechanism to drones. Different drone-as-a-service
mechanisms [71] minimize delivery time and costs based on
different heuristics. IoTaaS is complementary to these research
works and leverages these different optimization schemes based
on the specific IoT applications.

The incentive and billing mechanism is essential for sustain-
ability of a cloud-based service. Aura by Hasan et al. [55] is
an incentive-driven IoT cloud framework for proximal mobile
computation offloading. Alwateer et al. [56] proposed drone as
a service, where users can rent drones for different purposes.
Cellcloud by Al Noor et al. [72] is a mobile cloud framework
based on bidding incentives where participants can outsource
mobile computation resources in exchange for incentives to
form a mobile cloud. However, these research works do not
complement a billing mechanism for renting IoT devices for
sensing purpose.

Overall, the researchers have focused on various drone-
based IoT applications for smart cities and relevant
optimization schemes. However, little attention has been
focused on developing a cloud-based service using drones that
enables users to rent IoT devices for on-demand provisioning.
A cloud-oriented service for a drone-based IoT platform can
resolve the issues by on-demand ad-hoc IoT system deploy-
ment while providing the flexibility of cloud services. Table I
shows the comparison of our framework with previous works.

VII. CONCLUSION AND FUTURE WORKS

Drones are becoming popular in numerous use cases due
to their low price, availability, and usability. They can enable
different smart city applications with mounted IoT devices,
gateways, and other communication interfaces. This arti-
cle proposed IoTaaS—a drone-based IoTaaS framework that
achieves optimization in terms of deployment, cost, and IoT
device usage. The IoT infrastructure service provider can rent
out their devices through IoTaaS to achieve maximum resource
utilization and ensure the best deals for users to fulfill their
requirements. The users can reduce the setup and sensing man-
agement issues and costs by renting appropriate IoT devices
based on need. Our proof-of-concept implementation showed
that IoTaaS could significantly reduce the cost of setting up
an IoT system and increase the usage of smart devices. In the
future, we plan to enhance the IoTaaS framework to analyze
the drone payload and flight time calculation more analyti-
cally with different variables, such as various IoT applications,
drones, battery capacity, etc. Moreover, we plan to design a
broker model for IoTaaS to enable the user to choose the best
renting option from multiple service providers.
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