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Abstract—Autonomous vehicles (AVs) are envisioned to en-
hance safety and efficiency on the road, increase productivity, and
positively impact the urban transportation system. Due to recent
developments in autonomous driving (AD) technology, AVs have
started moving on the road. However, this promising technology
has many unique security challenges that have the potential to
cause traffic accidents. Though some researchers have exploited
and addressed specific security issues in AD, there is a lack
of a systematic approach to designing security solutions using
a comprehensive threat model. A threat model analyzes and
identifies potential threats and vulnerabilities. It also identifies
the attacker model and proposes mitigation strategies based
on known security solutions. As an emerging cyber-physical
system, the AD system requires a well-designed threat model to
understand the security threats and design solutions. This paper
explores security issues in the AD system and analyzes the threat
model using the STRIDE threat modeling process. We posit that
our threat model-based analysis will help improve AVs’ security
and guide researchers toward developing secure AVs.

Index Terms—autonomous vehicles; threat model; security;
I. INTRODUCTION

Autonomous vehicles (AVs) are rapidly developing and
capable of sensing the surrounding environment and operating
with little or no human input. Autonomous driving (AD)
technology has gained tremendous improvement in recent
years. For example, Google’s Waymo crosses 20 million
miles of autonomous driving [1]. As AVs are considered
the future of transportation, ensuring their security is crucial.
The AVs require the protection of the sensors from different
attacks and robust decision-making algorithms. Hence, a
proper understanding of potential threats and vulnerabilities is
necessary to ensure AD security, which can be performed by
a systematic threat modeling.

AVs are complex cyber-physical systems that impose chal-
lenges in ensuring security. The AVs trust the information
extracted from sensors without any verification. However, these
sensors are vulnerable as the attacker can inject manipulated
analog signals [2]. Moreover, the AVs trust the control
commands provided by the control algorithms, and the actuators
execute them faithfully. Using sensor data without validation
is not a sustainable practice as sensor attacks continue to be
sophisticated and mature. Poisoning deep learning models by
injecting adversarial examples has also become feasible due to
the availability of open-source machine learning models for AD
and high-quality driving data [3]. Classical security mechanisms
such as encryption, authentication, or memory protection are
not enough for securing AVs. Hence, the security solution
must consider the design and architecture of the system and

also meet the security requirements to avoid random usage
of security technologies [4]. Considering the unique security
challenges and wide range of possible attacks on AVs, a proper
threat model-based approach is essential in this regard.

Threat modeling is a systematic approach that analyzes
all the security aspects to identify a system’s threats and
vulnerabilities [5]. First proposed by Microsoft, STRIDE
is a popular process for categorizing threats [6]. Threat
modeling helps identify the attack vector, profile of the attacker,
valuable assets in which the attackers are most interested, and
potential mitigation strategies. Thinking from an attacker’s
perspective and identifying the attacker’s motives make the
threat modeling problem more challenging. Focusing only on
the security issues related to a particular threat might leave a
considerable portion of attack space unprotected. The system
designers and developers must identify the specific security
requirements to ensure the security solution’s compatibility
with the system architecture. The threat model also helps to
validate the assumptions from brainstorming and justify the
security solution’s countermeasures for solving an issue.

In this paper, we analyze all the components of AD threat
modeling. We explain the AD components and explore the
attack surfaces to figure out the potential attacks that can cause
safety hazards on the road. We also demonstrate the attacker
model, identify vulnerabilities, and explore different security
enhancement techniques of AD. In this research, we do not
leverage the connected vehicle and the CAN bus security;
instead, our focus is limited to the components regarding AD.
We posit that the threat model can help researchers design
better security solutions for AVs in the future.
Contribution: The contributions of this paper are as follows:

1) We explore components of a module-based autonomous
driving system for AVs to identify security issues.

2) We provide a comprehensive threat model for AD systems
and identify assets, entry points, and attacker models.

3) We identify the potential threats, vulnerabilities, and miti-
gation strategies using STRIDE threat modeling process.

Organization: The rest of the paper is organized as follows:
Section II provides the background of threat modeling and
autonomous driving components. Sections III identifies the
valuable assets and IV explores the attacker entry points.
Section V explains the attacker model. Section VI presents
the threats and vulnerabilities of AVs. Section VII identifies
the potential mitigation strategies. We present related works in
Section VIII and conclude in Section IX.



II. BACKGROUND

In this section, we provide background information regarding
threat modeling and AV components.
A. Threat modeling

A threat model systematically identifies and prioritizes the
potential threats and vulnerabilities of a system [7]. There are
five steps in threat modeling where each of them is important
and complements each other [5], which are:
Assets: The attackers always target some assets of a system to
gain access to which they are interested in. Before designing
a security solution, it is crucial to understand the system’s
valuable assets, which may attract the attacker.
Entry points: The attacker needs to enter into the system
to access the targeted assets or launch an attack. They use
vulnerable or untrusted points to enter the system, referred to
as entry points.
Attacker model: The attacker model explains the character-
istics of the attackers. It defines who the attackers are, their
attack motives, and their capabilities.
Threats and vulnerabilities: This step identifies and lists all
the potential attacks on a system considering the assets, entry
points, and attacker model. Threat modeling processes help to
organize the threats and vulnerabilities by categorizing them
according to the security properties and requirements.
Mitigation strategies: Identifying mitigation strategies is the
last step of threat modeling. Mitigation strategies refer to
designing security solutions with known security enhancement
techniques to mitigate potential attacks and improve the
system’s security.
B. Autonomous driving components

AD system has four fundamental pillars for driving au-
tonomously on the road: perception, localization, planning, and
control [8]. The AV collects information by leveraging sensors
such as cameras, LiDAR, radar, and ultrasonic sensors and
extracts knowledge to understand the surrounding environment
in the perception module.
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Fig. 1: Autonomous driving components
Understanding the environment and scene representations

refer to locating the obstacles, detecting road signs, free space,
lane marking, other vehicles, and pedestrians along with their
movements. Object detection algorithms perform segmentation,
classification, and clustering using sensor data from camera,
LiDAR, and radar data. The localization module identifies the
vehicle’s location on the road with 2-10 centimeter accuracy.
This module fuses sensor data from GPS, LiDAR, and IMU

using bayesian filters such as Extended Kalman Filter and
Particle Filter. Perception and localization modules lead to
the next step of planning the path towards the destination. In
the planning phase, the AV makes purposeful decisions to
reach the destination by avoiding obstacles and maintaining
the traffic rules. The planning module consists of prediction,
path planning, behavior planning, and trajectory generation
components. The initial high-level planned path is followed by
generating a trajectory for the next few seconds after predicting
other nearby moving agents’ behavior. Finally, the control
module generates the acceleration, brake, and steering angle
using different control algorithms such as the PID controller
and model predictive controller and passes the command to
mechanical components. Figure 1 shows different AD modules.

III. ASSETS OF AUTONOMOUS VEHICLES

Assets are the most important things of AVs that seem
attractive to attackers. The most critical assets of AVs are:
Sensors: AVs are equipped with multiple sensors such as
cameras, radar, LiDAR, and GPS. These sensors are the most
critical assets of AVs because they must work correctly for
safe autonomous driving. The correctness of sensor data is also
essential for AV safety and decision-making algorithms.
Decision-making algorithms: The AVs process the sensor
data for perception and predict the movement of nearby objects
to decide the subsequent actions, which are crucial assets.
Computation hardware: Computation hardware, such as
NVIDIA Drive PX, NVIDIA AGX, etc., are important assets
of AVs which execute the deep learning models on sensor data.
Log data: Log data is essential for software debugging and
analyzing vehicle behavior in specific circumstances. Log data
are also necessary for future forensic investigation.
Reputation of the manufacturer company: Multiple tech-
nology and automobile companies are currently working on
AD. The performance of the AVs may reflect on the reputation
of the companies.

IV. ENTRY POINTS OF THE ATTACKERS

The attacker needs to enter the system to launch an attack or
access valuable assets. Entry points are the vulnerable points
that the attacker exploits to enter the system. Determining the
trust boundary [4] is also essential along with the entry points.
Figure 2 shows the potential entry points of attackers in AV.
Physical access: AVs are physically accessible on the road,
where the attackers can access the outside sensors. They can
also perform passive keyless entry [9] to open the door and
physically access the hardware and OBD port inside the car.
Sensors: Autonomous vehicle sensors are one of the key entry
points to launch the attacks. The attacker can use different
techniques to jam the sensors or spoof sensor data.
Deep learning model: AD perception and path planning
depend on the correctness of the deep learning model. Hence,
the deep learning models work as another potential entry point
for the attackers to perform adversarial attacks.
Roadside signs: Attackers can use road signs or traffic lights
as an entry point by making them unrecognizable to the AV.



Attacker

Attacks 
Sensors

Attacks Machine 
Learning Model

Attacks 
Hardware

Attacks 
Road Signs

Fig. 2: Attacker entry points in autonomous vehicles
Besides these, an attacker can also access and interfere with

sensor data or AD system using CAN bus, vehicular network,
or vehicle infotainment system.

V. ATTACKER MODEL
The attacker model defines who the attackers are, their

motives, and their capabilities, which are explained below:
A. Attacker

Attackers are the person or entities who directly launch
attacks on the system to achieve any goal. Potential attackers
of the AD system are identified and listed as follows:
Car owner: Car owners themselves can be the attacker to
achieve different gains such as insurance fraud. They have
physical access to all the AD components and can tamper with
the sensors or deep learning algorithms to damage the vehicle.
Pedestrian: Attacker can be a pedestrian who throws lights to
blind the camera or laser beam to insert fake 3D point clouds.
Other cars: Attackers from other cars can inject out-of-band
signals to spoof or jam the sensors such as radar, lidar, and
GPS from the same or adjacent lanes. They can also spoof the
AV by pretending as emergency vehicles or police cars.
Infrastructure owner: The attacker can be an infrastructure
owner who executes attacks on AVs in exchange for money.
Developing the attack infrastructure can be costly and time-
consuming, which may motivate to outsource the resources.
B. Attack motives

The motives behind an attack can be highly dynamic based
on the attacker, system architecture, and the assets that are in
the attacker’s mind. The potential attack motives can be:
Traffic collision: The attacker may try to force the AV to
deviate to the lanes of the opposite direction or stop on the
shoulder lane. Such kind of incidents can damage the reputation
of rival companies and unfairly gain competitive advantages.
Economic damage: The purpose of an attack can be causing
different economic attacks such as damaging the car, more fuel
consumption, routing to toll roads, etc.
Insurance fraud: Another motive of attackers behind attacking
AVs may be inducing fraudulent activity to gain financial
advantage from the insurance company.
Personal gain: Attacking the AVs may include different
personal gains of attackers, such as forcing them to take
alternate routes to make the intended route clear.
Mass terrorist attack: Mass terrorist attack on the road may
be conducted by forcing collision among the cars, with specific
infrastructures, or at a particular place.

C. Attacker capabilities
Capabilities are the actions an attacker can perform from

inside or outside of the system which depends on many factors
such as access/privilege of the attacker, resource availability to
launch attacks, inside information known to the attacker, etc.
Targeted and untargeted attack: The attacker can launch an
attack targeting a specific vehicle or broadcasting the attack
so that any AV can be the victim.
Remote attacks: The attacker is capable of attacking the AD
system without physical access, such as jamming the GPS,
inserting fake 3D points clouds, creating fake obstacles, etc.
Manipulating deep learning model: Attackers know the deep
learning model artifacts used in AD, such as the learned weights,
activation functions, and model architecture. Moreover, they
can also manipulate the model by retraining it with carefully
crafted adversarial examples and deploying them into AV [10].
Manipulating hardware and software states: Attackers can
modify the software and hardware states by manipulating the
output variables. They can also design machine learning models
to decide when to launch an attack [11], [12].
Sensor system knowledge: The attacker can access the sensor
system and understand the underlying properties such as
operational frequency, packet format, bandwidth, etc. They
can exploit the hardware and manipulate the sensor values or
signals such as manipulating LiDAR point cloud [13].

VI. THREATS AND VULNERABILITIES

This section analyzes the AD system’s threats and vulnerabili-
ties according to STRIDE threat modeling process to understand
the potentially vulnerable points and severity of the attacks.

A. STRIDE threat modeling process

The STRIDE threat modeling process was first proposed
by Microsoft to identify the security threats of a system [6].
The term STRIDE refers to Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service, and Elevation of
privilege. Each section of the STRIDE model corresponds to
a desirable security property, which are authenticity, integrity,
non-repudiability, confidentiality, availability, and authorization.

1) Spoofing attacks: Spoofing ruins authenticity by falsifying
data to fool the autonomous driving system. In these attacks, the
attacker masquerades with a legitimate source of information
and inserts fake sensor data to force the vehicle to make wrong
decisions. Possible spoofing attacks on AVs can be:
LiDAR spoofing: LiDAR spoofing attacks make the obstacles
appear closer or farther than the actual distance. Usually, the
LiDARs wait to listen for the reflected signals and consider
it closer if the reflected signal arrives earlier. The attackers
inject counterfeit signals in this wait window. They can delay
the original signal before relaying it to take control of the
object position [14]. Multiple fake copies of one real object
make the attack even worse. LiDAR spoofing attacks can also
create fake objects, hide objects, or reduce the performance
of object detection algorithms that use LiDAR point clouds.
Placing a spoofed object on top of the target causes failure of
LiDAR-based object detection algorithms [15].



Radar spoofing: Radars are used to determine the obstacle
distance by probing a signal in a lower resolution than LiDARs.
In a scenario of two moving vehicles, the forward vehicle
transmits a fake signal to the following vehicle that provides a
wrong idea regarding the distance between them [16]. Hence,
the victim car considers the distance as different than the actual.
Ultrasonic sensor spoofing: In an ultrasonic sensor spoofing
attack, the attacker carefully generates ultrasonic signals that
appear legitimate [17]. These signals are identical to the original
sensor signals in terms of frequency, amplitude, modulation,
etc. The spoofed ultrasonic signal timing is adjusted carefully
to create fake obstacles or alter distance as they are considered
authentic by autonomous vehicles.
GPS spoofing: GPS spoofing misleads GPS receivers by
broadcasting realistic and valid but incorrect GPS signals.
Initially, the attacker broadcasts a valid GPS signal that is
synchronized with the original signals received by the GPS
receiver. Then the attacker increases the signal power and
gradually modifies the position to spoof the GPS signal. The
GPS receiver usually considers the strongest signal available
and hence starts using the spoofed GPS signal. Extended
Kalman Filter can be exploited using GPS spoofing to perform
lane departure attack where spoofed GPS signal overtakes
inputs from other sources such as LiDAR [18].

2) Tampering attacks: Tampering attacks perform unautho-
rized updates or alterations to any sensor data. These are attacks
on the integrity of the system. Potential tampering attacks are:
Absorbing laser pulses: LiDARs use laser pulses to sense the
obstacles’ distance and depth from the reflection of the pulses.
LiDARs can only detect things if the target reflects the light.
An attacker can intentionally absorb the laser beam that the
LiDARs throw. As no reflected light returns to the LiDAR, it
cannot detect the object [14].
Adversarial attacks: Adversarial attacks aim to fool the deep
learning models where they generate adversarial examples
by adding small noise or perturbations to the original data.
The adversarial examples can be two types depending on the
target. Untargeted attacks force the model to predict any other
class than the original one, while the targeted attacks label the
adversarial example to a specific class. If the machine learning
model is denoted by M , an adversarial example is x

0
, and

output label is y, then M(x
0
) 6= y denotes untargeted attack

and M(x
0
) = y

0
expresses the targeted attack. Here, y

0
denotes

the targeted attack label, and y is the true label. LiDAR-based
perception can be victim of adversarial attack [10], where
adversarial LiDAR point clouds fool the model by minimizing
the loss and making the model biased to the spoofed points.
Different adversarial point cloud generation techniques [19]
have made adversarial attacks more feasible. The adversarial
objects may remain undetected by the AD system.

Advanced driving assistance systems depend on cameras
for driving, which can be vulnerable to subtle adversarial
manipulation of images. The attacker maximizes the steering
angle and deviation from the road by manipulating the images
analyzed by the deep learning models [20].

Trojan attacks: In a Trojan attack, the attacker collects a
learned deep learning model and inject malicious behavior
[21]. The model is retrained with carefully generated trojan
trigger examples which force the model to learn a malicious
behavior, such as making a u-turn in the middle of the road
upon finding a particular sign.
Fault injection attacks: The fault injection attacks identify the
safety-critical situations and faults that can lead to a potential
accident. A machine learning-based fault injector algorithm
can identify the scenario to launch an attack through injecting
bias to Extended Kalman Filter [12], corrupting the hardware
and software states [11], and so on. Fault injection can force
the AV to move out, move in, or depart from the lane.

3) Repudiation attacks: Repudiation attacks refer to denying
after performing an action. The repudiation attack can be
performed by the car user or the manufacturing company during
a forensic investigation case [22]. Here, the car user may
claim that the investigation logs belong to another user. The
manufacturing company may also claim that the logs belong
to a vehicle from another manufacturer.

4) Information disclosure attacks: In information disclosure
attacks, the attacker can hide the identity, acquire specific
sensitive information regarding the victim, and use them later.
Potential information disclosure attacks on AV can be:
Cache side-channel attack: An attacker can install malicious
software inside the victim AV and perform a cache side-channel
attack to predict the destination [23]. The malicious software
runs in the same processor as the AD software. It exploits the
correlation between physical state and cache access patterns
to infer the victim AV’s movement.
Diagnosing deep learning model: All the information regard-
ing the deep learning model of AD perception is confidential.
The attacker diagnoses the model to find and disclose its details,
such as its architecture and weights.
Sensor information disclosure: Attackers can diagnose the
sensors to detect the hardware specifications (i.e., LiDAR
beams, camera focal length, etc). Knowledge of the speci-
fications helps the attacker to launch sophisticated attacks.

5) Denial of service attacks: The denial of service attacks
disrupts the service availability, performance, and efficiency
of the system. Attackers can disrupt any of the perception,
prediction, or control steps to make the AD system unavailable.
Potential denial of service attacks are:
AV freezing and emergency brake attack: In an AV freezing
attack, a spoofed front near an obstacle can freeze the AV while
the vehicle is waiting at the traffic signal. In this attack, the
vehicle does not move even after the traffic signal turns green
[10]. In the emergency brake attack, the attacker spoofs a front-
near obstacle to a moving AV that forces the car to decide to
stop within a very short time [10].
Jamming ultrasonic sensors: An attacker can jam the ultra-
sonic sensors by generating fake ultrasonic echo pulses. The
generated signals are stronger than the original pulses that cause
the sensors to stop working. Usually, the ultrasonic sensors do
not expect strong interference, and hence the strong pulses can
launch the attack to jam the ultrasonic sensors.



Camera blinding: Attackers use a laser beam to beam to
partially or fully blind the camera [24] and hide the object
consequently. Camera blinding attack depends on environmen-
tal light, the light source used in the blinding attack, and the
distance between the light source and camera [14].
LiDAR blinding: Saturating the LiDAR with sufficient light
intensity can blind the LiDAR [25]. Attackers use a light source
of the same wavelength as the LiDARs and can focus it onto
the target LiDAR.

6) Elevation of privilege attacks: Elevation of privilege
refers to gaining unauthorized privileges or access in a system
that the attacker does not suppose to have. These attacks ruin
authorization, which is a critical security property. Possible
elevation of privilege attacks on AV are:
Passive keyless entry and start (PKES): The attacker can
enter and start the car by relaying messages between the smart
key and vehicle [9]. Both wired and wireless mechanism is
suitable for such kind of attacks.
Gaining access to camera: The attacker can access and modify
the live feed of the camera used by the perception module of
an AV [12]. A man-in-the-middle strategy allows the attacker
to gain camera access and modify the data.
Publish subscribe overprivilege: Different autonomous driv-
ing modules exchange messages among themselves using Robot
Operating System (ROS), which works in a publish-subscribe
architecture. However, overprivileged publisher and subscriber
nodes can be exploited to launch different attacks on AV [26].
B. Physical attacks:

The STRIDE threat modeling process considers the assets
are physically protected from the attacker. However, AV assets
can be exposed physically to the attacker. Physical attacks on
AVs are listed as follows:
Adding stickers to traffic signs: One major physical attack on
AV system is adding stickers on various traffic signals [27]. In
this attack, the attacker does not directly control AV; however,
such perturbations may lead to potential accidents.
Damaging sensors: Most important sensors of autonomous
vehicles such as cameras, LiDAR, radar, and ultrasonic sensors
are installed outside the AV. The attacker can damage any of
these sensors that can force the vehicle not to work properly.

VII. MITIGATION STRATEGIES
Defining mitigation strategies is the final step of threat

modeling. Mitigation strategies are defined to prevent attacks
and mitigate threats and vulnerabilities. Potential mitigation
strategies are as follows:
System level defense: For system-level defense against AV
attacks, the manufacturers can install a separate intrusion
detection system in AVs. Using physical invariant can be
helpful for such system-level defense [2]. Understanding the
AV’s physical properties and analyzing the incurred deficiencies
in sensor data can help design an online anomaly detection
algorithm. Forensics investigation framework for storing and
analyzing the events that occur inside the vehicle can help
identify the potential reasons behind an incident [22].

Independent localization results from different positioning
sources can be cross-checked to reduce the Extended Kalman

Filter (EKF) based attacks. For example, a spoofed GPS signal
can take over the EKF output due to high noise in LiDAR data
and performs a lane departure attack. In that case, it should
be detectable by the camera-based lane detection [18].
Sensor level defense: Sensor-level defense mechanisms can
improve security by fusing different sensor data [28], which
undoubtedly increases the attacker’s effort. The camera blinding
attack can be defended by integrating a removable near-infrared-
cut filter into the camera. However, the filter is only effective
during the daytime as the AV needs infrared light for night
vision. Authentication and integrity verification techniques
can be used together to prove the authenticity of the GPS
signal source that can protect the GPS device from spoofing
attack [29]. Both the radar and LiDAR spoofing attacks
can be detected and thwarted by physical challenge-response
authentication. Multiple methods can be applied to mitigate
the attack, such as the recursive least square method [30] and
the Spatio-temporal challenge-response method [16].
Machine learning-based defense: The deep learning model
can be trained using adversarial examples to make the model
more robust against adversarial attacks [31]. For this purpose,
adversarial examples can be generated and used with original
data to conduct adversarial training. Another possible mitigation
strategy is analyzing the distribution of wrongly predicted
results. The Trojan attack forces the model to make the wrong
decisions for some specific scenarios. Analyzing the wrong
predictions’ distribution can be highly effective as one of the
outputs will be the majority [21].

Cooperative perception in AD is another promising approach
for mitigating attacks on the AVs [32]. The edge computing
platforms of AVs can share high-level features among them and
achieve broader perception [33], [34]. However, cooperative
perception requires additional computation complexity and sup-
port infrastructure deployments, such as vehicle-to-everything
(V2X) communication and roadside edge servers.

VIII. RELATED WORKS
Threat model analysis is a process to identify and prioritize

the potential threats and vulnerabilities of a particular system. In
this paper, we have used the STRIDE threat modeling process.
Several other threat modeling approaches have been proposed
in the literature, such as the goad-oriented approach [35],
attack tree-based approach [36], collaborative attack modeling
approach, etc. Threat modeling has been used in different other
domains. Engoulou et al. [37] analyzed all the components of
threat modeling for the vehicular ad-hoc network (VANET).
Hoque et al. explored the security, and threat model of fog
computing-assisted VANET [32], [38]. Security and privacy
issues of cloud and fog computing have also been explored
using threat modeling [39].

Security of AVs is an emerging research field as new security
vulnerabilities, and attack surfaces are constantly being exposed.
Researchers have designed threat models considering specific
attacks on AV [10], [13], [18]. However, such attack-specific
threat models do not consider all the security aspects of AVs.
Besides attack-specific threat modeling, several research works
have explored overall AV hardware and software security issues.



Authors of [40] listed the potential cyberattacks on connected
and automated vehicles. Ren et al. [41] explored the security
issues and attack strategies of AVs. They have considered
different attacks on sensors and in-vehicle systems. Liu et
al. [42] analyzed different security issues in the context of
CAVs. While these research works address various security
issues, there is no structured approach towards designing a
comprehensive threat model for AVs. This paper addresses the
issue by exploring all the components of AV threat modeling.

IX. CONCLUSION
Proper threat modeling is the first and most important step

to design an effective security solution. Unstructured analysis
using only brainstorming, focusing on a particular problem
that has just occurred, or depending on previous experiences
does not provide a complete threat model for an emerging
cyber-physical system such as autonomous vehicles. In this
work, we present a comprehensive threat model for the AD
system. We analyze the critical assets and the attacker model.
We also analyze and categorize the potential attacks on the AD
systems based on the STRIDE threat modeling process. Finally,
we explore the possible mitigation strategies for the attacks.
We hypothesize this threat modeling will help develop secure
AVs by enabling the development of better security solutions.
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